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Norbert Wiener and Chaos

BROCKWAY McMILLAN

The roots of Wiener’s “Homogeneous Chaos” [W3] can be found in a
series of papers from the period 1919-1922, of which “Differential Space”
[W1] was the penultimate, and in the later paper “Generalized Harmonic
Analysis” [W2] of 1930. The final paper of the 1919-1922 series recasts some
of the arguments of [W1] and of the earlier papers. It is [W3] that introduced
the term “chaos,” a term that did not long retain Wiener’s original intended
meaning, and is used in a different technical sense today.

The contributions of [W3] over its predecessors were of course more than
verbal. They included

(1) the definition of the pure homogeneous chaos, an extension to a many
dimensional space of the random process on the time axis described in [W1],
accomplished by a method different from that of [W1]

(2) a multidimensional ergodic theorem, later sharpened in [W4]

(3) extensions to multidimensional processes of some of the results of [W2]
on time series

(4) the definition of the discrete homogeneous chaos, a multidimensional
random point process, and
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(5) a theorem to the effect that a certain class of functionals of the pure
chaos is weakly dense within a much larger, but not clearly specified, class of
random processes.

The term “chaos,” as used by Wiener in [W3] and later, is a noun that,
with qualifiers, indicates a kind of random process. A general definition is
given in 42 of [W3], almost en passant. a chaos is a real- or vector-valued
function F(S;a). S is drawn from a sufficiently rich class of subsets of n-
dimensional Euclidean space E,, a class later chosen to be a countable ring
= that generates the g-ring of Borel sets. The function F(S; ), as a function
of S, is finitely additive over Z and for each S is a Lebesgue measurable
function of the real variable c on 0 < a < 1.

[W3] always makes the “random” label « explicit, and represents the com-
plete probability space, of which « is a representative point, as the unit in-
terval 0 < o < 1 with ordinary lebesgue measure.

[W3] does not adhere strictly to the initial definition of “chaos,” using the
term also to designate a random point function defined on E,, now often
called a random field. By specialization, then, the term also designates any
function measurable on 0 < a < 1.

Throughout [W1] and its predecessors, there is emphasis on models of
natural phenomena, particularly on models of Brownian motion. [W2] fo-
cuses on the analysis of observational data in the form of time series, but the
element of randomness is not explicitly present. [W3] opens with a clear state-
ment of intent to provide a mathematical basis for the modeling and study of
a wide class of random phenomena in nature, mentioning specifically physics
and statistical mechanics. Its opening paragraphs display Wiener’s deep con-
cern about ergodic theory — the problem of identifying the average of some
local physical quantity over an ensemble, or random universe of states of a
system, with the average of that same quantity over all localities in a partic-
ular sample state drawn from that universe. (In Wiener’s terms, the average
over an ensemble of states is called the “phase average.”) This problem of
identification is fundamental to the Gibbs approach to statistical mechanics.

Because of the ergodic issue, the paper lays great store by the uniform
structure of the underlying Euclidean space E, and by the invariance, not
only of E,, itself but also of the mathematical structures to be erected thereon,
under an n-generator group of translations. Hence the “homogeneous” in its
title, and the definition, already in 42, of homogeneity: F(-;-) is defined to
be homogeneous if the distributions of the random variables F(S;-), F(T';-)
are the same whenever T is a translation of .S.

Paragraphs three, four, and five of [W3] deal with ergodic theory, proving
an ergodic theorem based on iterates of translations drawn from the symme-
try group of E,, a theorem later sharpened in [W4]. This theorem establishes
the existence of the spatial average, over a sample state (i.e., for a chosen ),
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of a fairly general kind of functional of a chaos. To identify this average with
the ensemble average of that functional requires that the chaos be metrically
transitive: a chaos is metrically transitive if, for each set S, given that S,
is the translation of S by the vector v, the joint distribution of F(S;-) and
F(Sy; ) tends to independence as |v| — oo.

Paragraphs six and seven introduce one of the two random processes of
interest in the present essay. In 96 we find the one-dimensional pure homo-
geneous chaos, known today as the Wiener process (an interesting synonymy
in itself). This is exactly the process considered in [W1], now defined by
explicitly introducing a measure into the space of additive set functions on
the ring Z of subsets of E,. In the companion papers to [W1], references to
an underlying probability measure, in measure-theoretic terms, were absent
or at best muted. These papers dealt with function spaces and the averages
(expectations) of functionals defined on them. These averages were defined
directly as Daniell integrals and the underlying probability measure per se
given little explicit attention. [W3] made the probability measure a basic ele-
ment by mapping elementary events—subsets of the function space called by
Wiener contingencies and in [Ko] cylinder sets — into subsets of the interval
0 < a < 1 in such a way that the Lebesgue measure of the image equalled the
desired probability of the elementary event.

Between the date, 1921, of [W1] and the publication of [W3], much had
happened in the theory of random processes. In particular, Kolmogoroff’s
fundamental paper [Ko] had appeared. I have no evidence that Wiener ever
read [Ko]. Certainly its basic result would have greatly simplified the proofs,
in 996, 7, and 11 of [W3], as well as, later, in [WW], that a stochastic process
with specified properties exists. Bochner [B] shows an elegant adaptation of
the method of [Ko] specifically to spaces of additive set functions. Bochner
told me that this latter paper was inspired by his impatience with Wiener’s
approach.

[W1] used Brownian motion as its motivation. It dealt with that motion in
terms of the paths, or time-histories of displacement, of a particle subjected
to random impulses. Accordingly, [W1] introduced a measure into the space
of paths: functions on 0 < ¢ < I that vanish at t = 0. [W1] showed that this
measure assigns outer measure unity to the class of continuous functions.
This is now known as the Wiener measure.

A sample path can be thought of as the definite integral, from time zero,
of the sample of “white noise” that constitutes the history of buffeting to
which the Brownian particle was subject. This is indeed the basis on which
[W1] defined the Wiener measure. An important contribution of [W3] then
appears in 46, for here the point of view is shifted back from paths to their
increments: the Wiener process of €46, an additive set function on the one-
dimensional time axis, is the indefinite integral of a sample of white noise.
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This change in point of view is fundamental, for it allows the extension of
the theory, in €7, to several dimensions.

In q7 lies the heart of the paper. The argument of €6 is extended from the
one-dimensional time axis to E, and defines the multidimensional Wiener
process or pure homogeneous chaos. This is a chaos P(-;-) such that for
every collection S;,S5,...,S, of pairwise disjoint sets drawn from = the
random variables P(S;;-),..., P(Sk;-) are independent and Gaussian, with
means zero and variances respectively equal to u(S), ..., 4(Sk), where u(-)
is Lebesgue measure in E,. That a random process with these properties
exists is in fact a theorem, proved from primitive hypotheses. For the proofs
in both 96 and §7 Wiener uses the technique, mentioned above, of mapping
measurable events into measurable subsets of the interval 0 < a < 1.

The pure chaos P(-;a), as a set function, is neither countably additive nor
of bounded variation, but it admits the definition of (stochastic) integrals.
Examples are

) / F(x)P(dx:a)
(12) |[ stx.v)piaxiap@yia)

integration being over x € E,, y € E,. The objects (I1) and (I2) are of
course random variables having values, and properties, that justify the sug-
gestive notation. If the integrands here are simple functions, step functions
measurable on = and taking only finitely many values, the definitions of the
corresponding integrals are obvious from the notation. (I1) is then extended
from simple functions to integrands f € L2(u) by continuity in L2(da). Mul-
tiple integrals such as (I12) are extended from the integrals of simple functions
by a convergence in probability (da).

From the definitions, Wiener shows that the phase average, that is, the
expectation, [da, of (I1) is zero, as is the expectation of any (Im) of odd
order m. That of (I2) is given by

/da/ g(x, y)P(dx;a)P(dy;a) /g(x,x)u(dx).

More generally, the expectation of (Im) for even values of m is a2 sum of
integrals each of order m/2 in u, in which the integrand appears with its
variables identified in pairs in all possible ways. The principle is simple
enough but the combinatorics get complicated. One does well so to define
his integrands that they vanish when any two variables coincide.

€9 defines random fields—random functions of a point z € E,—from
integrals such as (I1), (I2) or a general (Im), by replacing the integrands
therein with f(z — x), g(z — x, z — p), etc. The discussion then returns in
€10 to the generalized harmonic analysis of [W2]. By a careful extension of
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[W2], it is shown that, except for a null set of labels «, to such a random field
can be assigned a (random) multidimensional power spectrum, a nonnegative
chaos on frequency space, frequency space being a copy E, again. For such a
random field G(z; «), the power spectrum is the generalized Fourier transform
of the sample autocorrelation

H(x;a) =1lim V(r) /Gx+y, so)u(dy),

in which “[” denotes integration over a sphere about the origin, of radius
r and volume V(r), the limit is as r — oo, and “+” is vector addition in
n-space.

The final issue, in regard to the pure chaos, appears in 412, identified
as the weak approximation theorem. It asserts that a general chaos, as de-
fined in 42, can be approximated weakly in distribution by a suitably chosen
polynomial functional of the pure chaos. The statement of this theorem is
somewhat vague and is inconsistent with its citations of earlier formulas. The
subsequent argument is so obscure that I cannot deduce from it exactly what
class of chaoses has been proved to admit this approximation in distribution.
In fact, a much stronger result now stands. Taking off from the isometry
between L2 on E, and L?(da), defined by the mapping of f(-) on E, into the
function (I1) (on 0 < o < 1), Kakutani [Ka], Ito [It1], and Segal [S] have
developed alternative structures within which the results of §96-10 of [W3]
are extended and, in particular, polynomials in the pure chaos appear as a
dense set. A large class of random processes on the line are described by
measures in function space that are absolutely continuous with respect to the
Wiener measure.

911 introduces the other chaos of interest here, the discrete chaos, or mul-
tidimensional Poisson process. The argument starts from primitive assump-
tions and shows that there exists a random additive set function D(S;a)
defined and Lebesgue measurable on 0 < a < 1 for each S € &, such that (i)
if S and S, are disjoint then the random variables D(S;;-) and D(S>;-) are
independent and

(i)  Prob{D(S;) = k} = ”(S)k exp{—u(S)}, k=01,2,....

Indeed, it is shown that the assumption (i), and the equality (ii) for k = 0,
suffice to characterize the chaos D(-;-). The discussion continues, defining
the first order stochastic integral [ f(x)D(dx;a) by extension from simple
functions f(-) to functions /' € L?(u) in analogy with the case of the pure
chaos, and showing that

(A) /da/f D(dxa) = /f
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These results, with 410, suffice for calculating the power spectrum of the
reponse of a resonator (any linear time-invariant dynamical system) to a Pois-
son time series of unit impulses. The calculation results in a conclusion that
has been known, at least in engineering terms, since 1909 [Ca]. It completes
the discussion in [W3] of the Poisson process. Our discussion here of that
process will resume later.

My first encounter with Norbert Wiener was in an undergraduate class. I
had entered MIT, after two years at another school, without full third-year
status, and was caught up in a quite irregular program. This put me, in the
spring term of 1935, along with a few other misfits, into a hurriedly scheduled
class in differential equations with Wiener as our teacher. It seems likely that
this was the first undergraduate teaching he had done in some years. The
text was that by H. B. Phillips, written for engineers and full of practical-
looking problems, problems that could give one a feel for what the terms of a
differential equation really meant. It was clear that Wiener enjoyed teaching
this material and he taught it in the spirit of the book. He did not try to
improve our minds with excessive rigor. With gusto he showed us all the
tricks. He tackled the problems with enthusiasm, and brought in new ones of
his own — for example, given the tensile strength of steel as then available,
how long can you make a suspension bridge? (Answer: not long enough to
bridge the Atlantic.) Wiener was always beautifully articulate but, before
even a small group, he tended to adopt a somewhat oratorical style. Beyond
this, however, his teaching manner was informal, chatty, even avuncular. He
enjoyed a question that required a thoughtful answer. I liked him at once.

Differential equations met right after lunch. Wiener usually entered class
with a cigarillo in his mouth. He would sneak a few puffs and then put the
butt on the chalk rail. Later he would surreptitiously drop the butt into the
side pocket of his jacket. We waited all term for him to drop a smoldering
butt into that pocket but he never did.

Three years later, in the spring of 1938, it was arranged that I would do a
thesis under Wiener, in the field of random processes. The obvious necessary
reading of [W1] and [W2] was already under way or accomplished when a
hint of something more specific turned up, in the suggestion by Wiener that
I look into [Sch] on the shot-effect. Summer passed and the fall term began
with two events, equally unforseen and having, to me, comparable immediate
impact: New England’s first great hurricane and, a few days later, the arrival
of the galley proofs of [W3], handed to me by Wiener with the request that I
proofread them. I decline to admit responsibility for the many typographical
errors and inconsistencies that remain in the published version of [W3], for,
by the time I had catalogued the ones I understood, Wiener had already
returned the galleys!

Actually, the specific subject matter of [W3] scarcely figured in any dis-
course between Wiener and me during the roughly fifteen months that I
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worked under his tutelage. Throughout this period, his consuming interest
was to apply the results of [W3] to the modeling of natural phenomena. He
saw in the Wiener process (known to him of course as the pure homogeneous
chaos) and in the related weak representation theorem a way to represent the
distribution-over-states of fluids and fields. Similarly, though the working
tools were not as fully developed, he saw in the Poisson process a way to rep-
resent the random states of a particulate system, such as a classical molecular
gas or fluid, and as a means to model the shot-effect in electronic devices.

Wiener was anxious to get at both of these fields of application. He sug-
gested that for a thesis I develop the calculus of stochastic integrals with
respect to the discrete chaos, and of their ensemble averages, telling me to
hurry — since “we” had more important problems to work on. As he had
known, it was easy to do. I did hurry, and he accepted the result, [Mcl]. The
task was easy for two reasons: the discrete chaos D(- ;) is nonnegative, and
is of bounded variation on = with probability one, facts exploited in [Mc1].
Indeed, more strongly, the process can so be defined on a Euclidean space
that with probability one D(- ; a) is a g-finite measure on the o-ring generated
by the class of all bounded sets, so that stochastic integrals are unnecessary.
This fact was unknown to me then. Whether it was then known to Wiener
I am not sure. He never raised the question with me — to answer it would
have made a good thesis. In hindsight, the fact explains why the Poisson
chaos is easy to work with.

During that academic year, and into the summer of 1939, I saw Wiener’s
work with the Poisson process from the inside, so to speak, as an amanuensis
and quasicollaborator. Along with several others, I also had the opportunity
to observe from the outside his work with the Wiener process.

Wiener had scheduled for 1938-1939 a repeat of lectures given some years
before on Fourier series and integrals. A good set of mimeographed notes was
available from the original lectures, prepared by W. T. Martin and others.
Exploiting the existence of these notes, Wiener sped through the entire subject
matter of the original lectures in but a few weeks. That in itself was someting
of an experience for his listeners, but more was to come. He immediately
launched into a quick introduction to the Wiener process and then treated us
for the remainder of the academic year to a research seminar addressing the
problem of modeling or understanding fluid-mechanical turbulence.

None of his listeners were equipped in any way to participate actively in
this research effort. It was a one-man show. Twice weekly he would lay be-
fore us his latest ideas for an attack on the problem, sometimes covering the
blackboard with prodigious and clearly extemporaneous calculations, some-
times simply speculating, sometimes discussing why what he had just been
attempting didn’t work. The subject matter was interesting, the spectacle
was entertaining, but almost invariably he would break off his line of attack,
anticipating some mathematical difficulty, long before any difficulty became
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evident to his mortal listeners. Quite literally, he could see a shock wave
(“Verschiebungstoss” was his word for it) coming long before we could. He
regularly deplored the lack of a good existence theory for the Navier-Stokes
equations.

This line of application did not lead far during Wiener’s lifetime. Later
developments, as of 1976, are summarized in [DMc]. At a more basic level,
the impact of [W3] and of its predecessors on mathematics has been signifi-
cant. See [It2] for a brief appreciation. [W3] has also, through the works of
Kakutant, Ito, and Segal, had some influence on quantum field theory.

Directly upon the appearance of the galley proofs of [W3], Wiener also
plunged into an attack on the statistical mechanics of fluids, work in which
I was expected to participate. The working tool was of course the Poisson
process. It was clear that Wiener found it stimulating to argue with, or
perform before, some kind of audience, even a not very responsive one. I
was the chosen audience for statistical mechanics, much as the class in Fourier
analysis was that for fluid mechanics.

The work on statistical mechanics turned out to be more substantial and
more concrete than that on turbulence. It is described in some detail in
[DMc]. I was something more than straight man to the Wiener act, serving
as amanuensis and working with the intricate and combinatorial calculations
that soon dominated the enterprise. I had brief moments of glory before
seminars; Wiener regularly left the exposition to me. He even had me write
the abstract [WMc] and let me present the nonresults to the AMS meeting in
February 1939. Occasionally I had the exquisite pleasure of contributing a
computational trick.

The attack on statistical mechanics began with a natural idea: imagine
an infinite cloud of points (molecules), a sample from the Poisson process
randomly populating the phase space E¢ (three space coordinates, three ve-
locity coordinates). At time ¢ = O turn on the intermolecular forces and let
this cloud evolve according to Newton’s laws. In other words, consider the
infinite system of differential equations (of first order, since we are in the
phase space of one molecule) that governs the state of this cloud. Given a
functional of the cloud such as

(F2) ¥(f30)= 33 (% p),
x vy

these equations will imply a differential equation that describes its growth.
Here f (-, ") is, say, a smooth function with bounded carrier such that f(x, x)
= 0 for all x, the sums are over all x and y in the cloud, and a, as you
have guessed, marks the particular cloud at issue. Wiener would call (F2)
a polynomial homogeneously of degree two in the chaos from which this
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particular cloud is a sample. It is in fact a double integral, (a stochastic
integral, as of 1939):

¥(f;a) = / / £(x, )D(dx;2)D(dy; ).

The differential equation for ¥ allows one to compute its time-derivatives at
t = 0. The mth such derivative is a polynomial (in D(- ;-)) such as (F2) is,
of degree m + 2 in D(- ;). It is linear in f(-,-) and its derivatives, and is of
degree m in the interparticle potential.

Since the cloud at time ¢ = 0 is a sample from the Poisson process, one can
calculate the averages ([ - da) of the derivatives of ¥ at t = 0. These average
derivatives describe a formal Maclaurin’s series in the time for the average
of ¥ at a later time. The key to the whole application of chaos theory is that
integrals over o are reducible to integrals over phase space as in the display
(A). By integrating these latter by parts to eliminate the derivatives of f(:,-),
one can recast the terms as functionals of f(-,-) so that, formally,

(B) / W(f;a)da = / / £, y)pax, v ) u(dx)(dy).

Here p,(-,- ;t) is the second-order density of a point process that describes
the distribution-over-states of the cloud at time ¢, given that it started as a
Poisson cloud at time zero. Similar calculations lead to the other densities
Pm, m=2,3,..., (py is trivial).

Wiener’s hope was by this means to derive expansions for the p,, as series
in powers of such physical parameters as density and temperature. Terms
in such series would be sums of multiple integrals involving the interparticle
potential. The calculations and results are in fact no less intricate than those
found in other approaches to the problem, approaches that were generating
an extensive literature at that very time: [MM], [BG] and others. After July
1939, little seems to have been done by Wiener along this line. Later, by quite
another method, he did develop formulas for the multiplet-densities p,,. The
work was submitted for publication, I believe, in the Journal of Chemical
Physics, but the method and results had been anticipated by a paper already
in press [MMo]. Wiener’s manuscript has apparently been lost.

Though nothing of significance to statistical mechanics resulted from this
work with the Poisson process, two mathematical problems emerged. For
a convenient term, define a true point process, on Euclidean space E,, as a
complete probability measure on the class of all subsets of E, that assigns
unit probability to a certain subclass I". I' consists of exactly those subsets
y C E, such that card(yn.S) is finite for every bounded set S C E,. I" can be
called the class of locally finite sets.

In defining the integral (I1) as a stochastic integral, [W3] explicitly avoids
claiming that the Poisson chaos is a true point process. Whether or not it
was such a process made no difference to the formal calculations of the work
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on statistical mechanics but the mathematical question remained open, albeit
tacit at the time. Actually, during those calculations it became evident — it
is already evident in the display (B) — that the Poisson process itself was
irrelevant. What was relevant was some other point process that modeled
the distribution-over-states of the physical gas, a distribution that depends of
course upon the interparticle potential and depends upon it in a distressingly
complicated way.

Display (B) suggests the existence of a distribution-over-states in which
pairs near the point (x,y) € Eg x E¢ occur with density py(x, y;t). The
analog of (B) for functionals ¥ of degree m similarly defines p,,(-, -, ..., ;?)
as the density of m-tuplets in Eg,,. A critical mathematical question then
is: does there exist a true point process that exhibits this sequence {p,} of
densities? This question subsumes that of the nature of the Poisson chaos,
because the latter is characterized by a density sequence {4} in which the
constant A is the intensity of the process (4 is simply a scaling parameter,
assumed = 1 in (A)).

Wiener and I subsequently and separately worked on these two problems.
In the spring of 1940 I communicated to Wiener the fact that a chaos (not
claimed to be a true point process) with well-behaved moments exists if and
only if a certain set function E{S}, definable in terms of the given sequence
{pm} of densities, is sufficiently regular and has the property of complete
monotonicity. (See [Mc3] for complete monotonicity.) The chaos is then
characterized by E{-} as a function on Z, in that E{S} =Prob{y NS = O}.
(It is not then an accident that this latter probability alone, in the form of
the function exp(—u(S)), the archetypical “sufficiently regular” completely
monotone function of S (see [Mc2], 96.32) sufficed to define the Poisson
chaos in 11 of [W3].)

Wiener replied to this news by inviting me to join him and Aurel Wint-
ner as co-author of what, after I declined, became [WW]. This latter paper
contains a positivity theorem: given the m-tuplet densities, under certain reg-
ularity conditions on the putative moments of the process, a chaos exists if
all the putative probabilities Prob{card(ynS)=m}, Se€ = m=0,1,2,...,
are nonnegative. Here, of course, the putative moments and probabilities are
expressed by those formulas in the given densities that would describe them
if a chaos did exist. The tool used is the joint factorial-moment generating
function, the (putative) expectation of the product [];(i — z;)0"S) con-
sidered as a function of the complex variables z; and the pairwise disjoint
bounded Borel sets S;. In fact, it suffices to consider this function only for
one variable z and one variable S, and to postulate that it be continuous
from above in S, regular for |1 — z| < 1 +J(S), where 6(S) > 0 forall S € Z,
and completely monotone in .S when z = 1 (or for each zin 0 < z < 1.)
This fact was very nearly in the authors’ hands.
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Though [WW] is weak in not providing criteria for the positivity of the
necessary probabilities, it is strong in that it proves, under its own sufficient
conditions, that a true point process exists. The proof is not a model of
clarity but, basically, it reduces the problem to that within a bounded set
T where, since y N T is a finite set, measure theory on a compact space is
directly available.

A true point process is one example of a set-valued random process, or
random set. In 1973 David Kendall, [Ke], proved a definitive theorem on
such processes. Given a space X and a sufficiently rich class X of subsets of
X, [Ke] defines a property of X and X that resembles compactness (although
X need not have a conventional topology). Given then a set function E{S}
defined for S € Z, if E{-} is continuous from above and is completely mono-
tone, then there exists a random set y such that E{S} =Prob{y NS = J}. It
is further true that, if X is a countable ring that covers X and separates its
points, and if the random set is locally finite—i.e., if yN.S is a finite set with
probability one, for § € £ — then no compactness condition is needed. This
fact is confirmed by [WW] and is probably deducible directly from [Ke], but
the only proof I have is based on the methods of [Mc2].

Anecdotes about Wiener are of course legion. Many of them are transpar-
ent adaptations of known absent-minded-professor jokes and are of doubtful
validity. One frequently heard complaints, however, from persons whom
Wiener knew well that he would pass them on the street or in the hall, star-
ing straight ahead and giving no sign of recognition. This occasionally hap-
pened to me. One explanation cites Wiener’s obvious near-sightedness, but
this explanation will not hold water, as I can prove from personal experi-
ence. During my year of work with him I lived in the then “new” Graduate
House, what had been the Riverbank Court Hotel across Massachusetts Av-
enue from the main MIT building. A regular Saturday afternoon event was
a handball game with roommate and fellow student Abraham Schwartz. In
inclement weather the comfortable way to the handball court led through the
halls of the main building. On several occasions during that year our trot
through these corridors was interrupted by a hail from far down the hall:
“Oh McMillan...” in Wiener’s best theatrical voice. The handball court then
waited while we heard Wiener’s latest thoughts about the work in progress.
In a semidarkened hallway, from perhaps 100 feet away, near-sighted or not,
he could recognize me in shorts, sweatshirt, and sneakers (not the typical
student’s dress in those days).

During 1938-1939 D. J. Struik lectured on the history of mathematics, a
late-afternoon two-hour lecture once a week, not for credit. Attendees came
from all over. Wiener was one; he always sat in the front row next the
window. Regularly, behind him, sat a silent young man named Slutz. After
an absence, Slutz reappeared with a handsome beard, a rarity among students
in those days. Slutz also abandoned his habitual seat and sat in the center
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of the front row. Wiener arrived and sauntered across the front of the room
toward his usual place. The new beard caught his eye. He sauntered back
to the door and turned to survey the competition from a discreet distance.
Then he walked briskly up to Slutz, thrust a welcoming hand forward and
introduced himself: “My name’s Wiener.”

I have only pleasant memories of my personal dealings with Norbert
Wiener, from the first days of that class in differential equations. He was
always cordial and friendly. I sensed a genuine warmth muted by a faintly
Continental formality. He was never patronizing nor was there the slightest
suggestion of any master-slave relation between professor and student. He
always treated me with full respect.

During the school year of our association, there was little opportunity
for more than working meetings. During June and July of 1939, however, I
lodged in a boarding house near the Wiener summer place in Tamworth, New
Hampshire, and we had more contact. Usually I walked the mile to his place
for a working session in the morning, returning to my lodgings for lunch, and
possibly repeating these trips in the afternoon. Sometimes he would ferry me
in his car. There was a period when his family was not in residence and he
took his meals with me.

He was a charming and entertaining companion. Strong as his ego was,
he almost never talked in a personal vein. I do remember him reminiscing,
amused and self-deprecating, about the unsoldierly PFC Wiener, USA, in
service at the Aberdeen Proving Ground during World War I. He and I were
bridge partners on a few occasions and he played no better than I' He knew
a lot about the folkways, history and dialect of the southern New Hampshire
region and enjoyed talking about them. One lunchtime he entertained me
with thundering recitations of the poetry of Heine. His humor was subtle,
seldom bawdy. He liked limericks — we exchanged only clean ones — and
loved a bad pun. We enjoyed exploring science-fiction fantasies, distorting a
law of physics and exploring the consequences, or inventing simple ways to
harness solar energy.

Wiener never gossiped with me. He spoke with respect of the work of von
Neumann and urged me to seek von Neumann out when I went to Princeton.
He spoke admiringly of J. D. Tamarkin the man, referring to him as “Jacob
Davidovitch,” and of his work. He went out of his way to express admiration
and respect for Solomon Lefschetz and for his work. He never dropped
names. I heard nothing from him about his studies in Cambridge or his
work in philosophy and the foundations of mathematics. He seemed always
to me as his autobiographical works show him: warm, fond of people, more
sensitive than he appeared on the surface, and slightly distant from others
more from shyness than from arrogance.
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It was inspirational, and discouraging, to watch him work. He did not
see me as a competitive threat, but the evidence is that he also worked well
with young people who might have been seen as threats. His list of successful
collaborations with gifted students is fairly long. He worked hard to get me
an appointment for the difficult year 1939-1940, and succeeded. I am in his
debt for a career well started. I valued his friendship, and I am pleased to
acknowledge this debt in a public way.
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