This is called the Langlands decomposition of q_1 [GaVa, Knap2, Wall2]. It is easy to see that m_1 is a reductive Lie subalgebra of g. We can define a corresponding subgroup M_1 of G as follows. The group $Q_1 \cap \theta(Q_1)$ has a Cartan decomposition (cf. (A.2.3.1))

$$Q_1 \cap \theta(Q_1) = (Q_1 \cap \theta(Q_1) \cap K) \exp(q_1 \cap p).$$

Set

(A.2.4.5) \hspace{1cm} M_1 = (Q_1 \cap \theta(Q_1) \cap K) \exp(m_1 \cap p).

Then the Cartan decomposition plus decompositions (A.2.4.4) tell us that

(A.2.4.6) \hspace{1cm} P_1 = M_1 A_1 N_1^+

in the strong sense that the map from $M_1 \times A_1 \times N_1^+$ defined by multiplication to P_1 is a diffeomorphism. The factorization (A.2.4.6) is called the Langlands decomposition of P_1.

The procedure sketched above constructs 2^r, where $r = \#(\mathcal{F})$, parabolic subgroups of \tilde{G} containing P_0. These are all possible parabolics containing P_0. To show this requires a more detailed study of root systems than we wish to give here. Instead we will finish as we started, by looking at GL_n. We will sketch how to see that possibilities for subgroups of GL_n containing the Borel subgroup of upper triangular matrices are the groups of block upper triangular matrices defined by various partial flags (cf. §1.4). Consider the basis $\{E_{jk}\}_{j,k=1}^n$ of standard matrix units for gl_n. These satisfy the commutation relations

$$[E_{jk}, E_{lm}] = \delta_{kl}E_{jm} - \delta_{jm}E_{lk}.$$

The upper triangular matrices b^+ are the span of the E_{jk} with $j \leq k$. Suppose we add to this another element $x = \sum c_{lm}E_{lm}$. Since the E_{lm}’s are eigenvectors for the adE_{jj}, with distinct eigenvalues, we find that if $c_{lm} \neq 0$, then E_{lm} is in the algebra generated by b^+ and x. So take $x = E_{lm}$ for some $l > m$. Taking commutators with E_{jl}, $j \leq l$, shows us E_{jm} belongs to the algebra generated by E_{lm} and b^+. Similarly, we must have E_{lk}, $k \geq m$, in this algebra. Repeating this process, we find that all E_{jk}, $j \leq l$, $k \geq m$, are in the algebra. These span the whole block to the upper right of E_{lm}. Next suppose we have two elements E_{lm}, E_{rs} which generate overlapping blocks, in the sense that $m < s \leq l < r$. Then from the argument above, we can find E_{rl} in the algebra generated by b^+ and E_{rs}. Hence $[E_{rl}, E_{lm}] = E_{rm}$ is in our algebra, and therefore so is the smallest diagonal block containing both E_{lm} and E_{rs}. Thus we get the general parabolic containing b^+ by adding disjoint diagonal blocks. We remark that the calculations sketched above are similar to those used in the context of general root systems.

Acknowledgments. In writing this paper I have benefitted from the insights and remarks of many people. I thank James Arthur, Richard Askey, Joseph
Bernstein, Sol Friedberg, Steve Gelbart, Robert Langlands, Alex Lubotzky, Dan Mostow, Ilya Piatetski-Shapiro, Steve Rallis, George Seligman, Eli Stein, David Vogan, Nolan Wallach, and Gregg Zuckerman for helpful conversation and advice. I apologize to others I have forgotten to name. Thanks to Felix Browder and Carol Moura for their patience. Thanks to my wife Lyn for support and encouragement in the last agonies of getting this done. I have had many occasions in the past to thank Mrs. Mel DelVecchio for her superb typing and cooperative spirit. This time I would also like to thank the Lord and Phyllis Stevens for bringing Mel to the Yale Mathematics Department.

REFERENCES

A CENTURY OF LIE THEORY

[HaCh22] -----, Harmonic analysis on real reductive groups. III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math. (2) 104 (1976), 117–201.
[Harr] M. Harris, Automorphic forms of $\bar{\partial}$- cohomology type as coherent cohomology classes, J. Differential Geom. 32 (1990), 1–63.
[Hawk2] -----, Geometry, differential equations, and the birth of Lie’s theory of groups, Frank J. Hahn Lectures, Yale University, April, 1990.
[Helg3] -----, A formula for the radial part of the Laplace-Beltrami operator, J. Differential Geom. 6 (1972), 411–419.

The items below labelled [ITGTx] refer to the proceedings of sessions of the International Colloquium on Group Theoretical Methods in Physics, which have been convened annually since 1972, in the diverse locations indicated.

[ITGTIII] Nijmegen, Faculty of Science, Univ. of Nijmegen, 1973.

[Mar2] ________, Arithmeticity of irreducible lattices in semisimple groups of rank greater than 1, appendix to Russian translation of M. Raghunathan, Discrete subgroups of Lie groups, Mir, Moscow 1977.

[Thom] J. Thompson, Some finite groups which appear as $\text{Gal}(L/K)$ where $K \subset \mathbb{Q} (\mu_n)$, J. Algebra 89 (1984), 437–449.

Department of Mathematics, Yale University, New Haven, Connecticut 06520