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AN ESTIMATE FOR THE VOLUME ENTROPY
OF NONPOSITIVELY CURVED GRAPH-MANIFOLDS

S. BUYALO

Abstract. Let M be a closed 3-dimensional graph-manifold. It is proved that
h(g) > 1 for every geometrization g of M , where h(g) is the topological entropy
of the geodesic flow of g.

§1. Introduction

Asymptotic geometry of a nonpositively curved (for brevity, NPC) graph-manifold is
a complicated mixture of flat and hyperbolic parts, which both contribute nontrivially
to the general picture. We recall that an NPC-metric on a closed 3-dimensional graph-
manifoldM recovers the JSJ-decomposition ofM in the following sense. There is a unique
(up to isotopy) minimal finite collection E of pairwise disjoint flat geodesically embedded
tori and Klein bottles such that the metric completion of each connected component of
the complement of E is a Seifert space called a block of M . Each block Mv is fibered over
a 2-orbifold Sv with negative Euler characteristic, χ(Sv) < 0. Furthermore, along the
interior of each block the metric locally splits as U × (−ε, ε), where U is an NPC-surface,
this splitting is compatible with the fibration, the fibers are closed geodesics, and the
regular fibers have one and the same length lv > 0 depending only on the block.

Since we are interested in asymptotic properties, which are certainly the same for any
finite covering of M , we may assume for simplicity that M is orientable, the collection
E consists of tori, and each block is a trivial S1-bundle over a compact surface Sv with
boundary, Mv = Sv × S1. We also assume that the graph-manifold structure of M is
nontrivial, i.e., that M itself is not a Seifert fibered space (though it may consist of one
block).

The flat part of the asymptotic geometry of M was studied in [BS], [CK]; see also [HS].
Roughly speaking, this part can be described by fairly special geodesic rays [0,∞) →
M , which leave any block, passing through separating tori e ∈ E almost tangentially
and spending most of the time near tori; moreover, this time rapidly increases at each
step. Though the set of such rays is a negligible part of all rays, it keeps an important
information about the geometry of M : in [CK] it was shown how this information allows
one to recover (up to scaling) the marked length spectrum of the closed geodesics on Sv,
as well as the fiber length for each block Mv.

In this paper we study the hyperbolic part of the asymptotic geometry of M , assuming
that the surface U occurring in the local splitting U × (−ε, ε) as above has constant
curvature K = −1. In other words, each block fibers over a hyperbolic orbifold (surface)
Sv. An NPC-metric on M satisfying this condition is called a geometrization of M
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(because the metric of each block is modeled on H2×R). We note that any geometrization
of M is only C1,1-smooth, being analytic along the interior of each block. It is known [L]
that M admits an NPC-metric if and only if M admits a geometrization. In topological
terms, necessary and sufficient conditions for M to carry an NPC-metric were found in
[BK].

A relevant metric invariant that measures hyperbolicity of a space is the volume en-
tropy h. Let π : X → M be the universal covering, and let x0 ∈ X . We recall that
h = h(X) is defined by the formula

h = lim
R→∞

1
R

ln volBR(x0),

where BR(x) is the ball in X of radius R and centered at x. It is well known (see
[M]) that the limit above exists, the quantity h is independent of the choice of x0, and
that if M is NPC, then h coincides with the topological entropy of the geodesic flow
of M . The volume entropy scales as l−1, where l is the length. Thus, the choice of a
geometrization g of M also serves as a normalization. For the sectional curvatures of
g we have −1 ≤ K ≤ 0. Consequently, h(g) ≤ 2, by comparison with H3. Moreover,
for the Ricci curvatures of g we have −1 ≤ Ricg ≤ 0 (whereas RicH3 = −2). The space√

2 H3, where the distances are those of H3 multiplied by
√

2, has the constant Ricci
curvature Ric√2 H3 = −1 and the volume entropy h(

√
2 H3) = 1√

2
h(H3) =

√
2. The

Bishop comparison theorem yields

volBgR ≤ volB
√

2 H3

R

for the volumes of the balls of one and the same radius R in the metric g and in
√

2 H3.
Thus, h(g) ≤

√
2 for every geometrization g.

Our main result is as follows.

Theorem 1.1. For any geometrization g of a graph-manifold M we have h(g) > 1.

Remark 1.2. Though the universal covering X of M looks much more complicated than
the model space H2×R, even the estimate h(g) ≥ 1 = h(H2×R) is not obvious and
nontrivial: X contains no isometrically and geodesically embedded H2, which would lead
to h(g) ≥ 1; on the other hand, the attempt to compare X and H2×R via exponential
maps identifying some tangent spaces fails, because the Jacobian of such a map is greater
than 1 at some points. Finally, the estimate in [BW] for the measure-theoretic entropy
of the geodesic flow, which never exceeds h(g), gives only π/4 < 1 as a lower bound for
any geometrization g of M (even if we ignore the fact that the C1,1-smoothness of g is
not sufficient for the application of that estimate).

In the proof of Theorem 1.1 we use the well-known fact that h(g) coincides with the
critical exponent of the Poincaré series

P(t) =
∑
γ∈Γ

e−t|x0−γx0|,

where the fundamental group Γ = π1(M) acts on X isometrically as the deck transfor-
mation group. Actually, instead of P we use a modified Poincaré series PW in which
summation is taken over some set W of walls in X . Our proof involves three ingredients:

(i) A local estimate, which is technical and used in (ii); this estimate is obtained in
§2.

(ii) An accumulating procedure, which consists in the inductive construction of appro-
priate broken geodesics in X between the base point x0 and the walls in W ; the choice
of these paths is the key point of the proof. The outcome of the accumulating procedure
is the generating set for PW to be used in (iii); the procedure is described in §3.
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(iii) A self-similarity type argument. In this part of the proof we use a standard idea
from self-similarity theory and the generating set obtained in (ii) to show that PW (h)
diverges for some h > 1. This is done in §4.

Acknowledgment. I am grateful to W. Ballmann for useful discussions of the topic
treated in this paper. This work has been done during my stay at MPI of Mathematics
(Bonn), and I thank MPI for the invitation and excellent working conditions.

§2. Local estimate

Let F be the universal covering of a compact hyperbolic surface S with geodesic
boundary. We identify F with a convex subset F ⊂ H2 bounded by countably many
disjoint geodesic lines and fix a point o ∈ H2 \F . Let w0 be the boundary line of F closest
to o, and let o0 ∈ w0 be the point on w0 closest to o, so that |o−o0| = dist(o, F ) =: l > 0.

We denote by A the set of the boundary lines of F different from w0. For w ∈ A, let
ow ∈ w be the point closest to o. Then the geodesic segment oow intersects w0 at some
point tw, and for l̃w = |o− ow| we have

l̃w = l̃′w + l′′w,

where l̃′w = |o− tw|, l′′w = |tw − ow| (all distances are taken in H2).
Next, we identify H2 with H2×0 ⊂ H2×R, so that F becomes a subset of H2×R; we

keep the notation introduced above. Observe that the point o0 is the closest to o among
the points of the wall w0×R. We take a nonhorizontal geodesic line σ ⊂ w0×R through
o0, i.e., σ 6= w0×0, and take sw ∈ σ with |sw−o0| = |tw−o0|. Now, we put l′w := |o−sw|
(the distance is taken in H2×R), and ∆w := l̃′w − l′w.

In other words, we replace the distance l̃′w between o and tw in the hyperbolic plane H2

by the distance l′w in H2×R, which is shorter by comparison: the triangles oo0tw ⊂ H2×0,
oo0sw ⊂ H2×R have right angles at o0 (∠(oo0tw) = π/2 = ∠(oo0sw)), have a common
side oo0, and have equal sides |o0−tw| = |o0−sw|. Since oo0tw lies in the hyperbolic plane
H2×0, but oo0sw does not, we have ∆w > 0 except in the case where tw = o0 = sw.
Now, we want to estimate the accumulation of the differences ∆w from below. The
precise statement is as follows.

Lemma 2.1. For any l0 > 0, and any α0 ∈ (0, π/2], there exists λ0 > 1, which depends
only on l0, α0, and the compact surface S, so that

λ(F, l, α) := el
∑
w∈A

e∆we−l̃w ≥ λ0

whenever l = dist(o, w0) ≥ l0 and the angle α between the lines w0 × 0 and σ is at least
α0, i.e., α0 ≤ α ≤ π/2.

Proof. By a well-known formula of hyperbolic geometry, we have el = (tan ψ
4 )−1, e−l̃w =

tan ψw
4 , where ψ and ψw are the angles under which w0 and w ∈ A are observed in H2

from o, respectively. The boundary at infinity ∂∞F ⊂ ∂∞H2 = S1 coincides with the
limit set of π1(S) represented in Iso(H2) as a Fuchsian group of the second kind. It is
well known that the Hausdorff dimension of ∂∞F (with respect to the angle metric) is
less than 1; in particular, the Lebesgue measure of ∂∞F is zero. Thus, ψ =

∑
w∈A ψw.

Therefore, tanψ/4 ≤
∑

w∈A tan ψw
4 , and

el
∑
w∈A

e−l̃w =
∑
w∈A

τw ≥ 1,
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where τw = el−l̃w . However, the sum
∑

w∈A τw can be made as close to 1 as we like (e.g.,
we can let l → ∞). As was mentioned above, ∆w > 0 unless sw = tw. Thus, we always
have λ(F, l, α) > 1. The point is that λ(F, l, α) is separated away from 1 uniformly over
all l ≥ l0, α ≥ α0.

Consider the subset A0 ⊂ A that consists of all w ∈ A with |tw − o0| ≥ 1. Then
∆w ≥ δ0 > 0 for all w ∈ A0, where δ0 depends only on l0 and α0. We claim that

(1)
∑
w∈A0

τw ≥ m0 > 0,

where m0 = m0(F̃ , l0) is independent of l.
Assuming (1), we obtain

λ(F, l, α) =
∑
w∈A

e∆wτw ≥
∑
w∈A0

e∆wτw +
∑

w∈A\A0

τw

≥ eδ0
∑
w∈A0

τw +
∑

w∈A\A0

τw

= (eδ0 − 1)
∑
w∈A0

τw +
∑
w∈A

τw ≥ (eδ0 − 1)m0 + 1 =: λ0 > 1.

It remains to prove (1). Let o′w ∈ w be the point closest to o0 ∈ w0. Then l̃w ≤
|o − o′w| ≤ l + |o0 − o′w|, whence l̃w − l ≤ dist(o0, w). Consequently, τw ≥ e− dist(o0,w) ≥
ψ̃w/4, where w is observed from o0 under the angle ψ̃w. Since the Lebesgue measure
class on ∂∞H2 is independent of the choice of a marked point, we have

∑
w∈A ψ̃w = π.

Since l ≥ l0, for a sufficiently small m0 = m0(S, l0) > 0 the sectors S+(m0) and
S−(m0) to be defined below intersect no line w ∈ A \A0. The definition of the S±(m0)
is as follows. The common vertex o0 of S±(m0) divides the line w0 into two oppo-
site rays w±0 . The sectors S±(m0) ⊂ H2 are bounded by the rays w±0 , s±(m0), where
∠o0(s±(m0), w±0 ) = 2m0, and s±(m0) ∩ F 6= ∅.

Therefore, from the relation
∑
w∈A ψ̃w = π it follows that

∑
w∈A0

τw ≥ m0, which
completes the proof. �

§3. Accumulating procedure

In order to describe the accumulating procedure, we need some information about the
metric structure of the universal covering X of (M, g), where g is a geometrization.

3.1. Metric structure of the universal covering. We recall (see, e.g., [BS], [CK])
that X can be represented as a countable union X =

⋃
v Xv of blocks, where each Xv is a

closed convex subset in X isometric to the metric product Fv×R, and Fv is the universal
covering of a compact hyperbolic surface Sv with geodesic boundary. Any two blocks are
either disjoint, or intersect each other along a boundary component that is 2-flat in X
and separates them; consequently, no three blocks have a point in common. The 2-flats
in X that separate blocks are called walls. A common wall w of two blocks Xv and Xv′

covers a 2-torus e ⊂M , which separates (possibly, only locally) the blocks Mv = π(Xv),
Mv′ = π(Xv′) of M . The metric decompositions Xv = Fv × R and Xv′ = Fv′ × R do
not agree on w, and their R-factors induce two fibrations of w by parallel geodesics. We
denote by αw the angle between these fibrations, 0 < αw ≤ π/2. Since M is compact
and the set E of separating tori in M is finite, we have α0 := infw αw > 0, where the
infimum is taken over all walls in X .
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3.2. Modified Poincaré series. We fix a wall w∗ ⊂ X , a block Xv∗ ⊂ X for which w∗

is a boundary wall, and a base point x0 ∈ w∗. Let W0 be the set of all boundary walls
of Xv∗ different from w∗; we denote by Wn, n ≥ 1, the set of all walls in X that lie at
the combinatorial distance n+ 1 from w∗, i.e., w ∈Wn if and only if the interior of any
geodesic segment in X between x0 and w intersects n walls, including a wall from W0.
Observe that W =

⋃
n≥0Wn consists of all walls in X that lie on the same side from w∗

as Xv∗ . Now, we define a modified Poincaré series by the formula

PW (t) =
∑
w∈W

e−tdist(x0,w).

Comparing PW with P(t) =
∑
γ∈Γ e

−t|x0−γx0|, and using the triangle inequality, we
easily see that P(t) ≥ e−DPW (t), where D > 0 is the maximum diameter of the tori
e ∈ E. Recall that the critical exponent of P is defined as the infimum of all t ∈ R
for which P(t) < ∞. Therefore, the critical exponent h of PW satisfies h ≤ h(g), and
Theorem 1.1 will be proved if we show that h > 1.

3.3. Special broken-geodesic paths.

Proposition 3.1. For each n ≥ 0, we have

Pn(1) :=
∑
w∈Wn

e− dist(x0,w) ≥ π

4
λn0 ,

where λ0 > 1 is the same constant as in Lemma 2.1.

Proof. We use induction on n. For each n ≥ 0 and each wall w ∈ Wn, we construct a
broken geodesic ξw in X between x0 and w as follows. For w ∈ W0 we put ξw = x0xw,
where xw ∈ w is the point closest to x0. The segment x0xw lies in a horizontal slice
Fv∗ × {r0} of the block Xv∗ = Fv∗ × R.

Suppose that the broken geodesic ξw is already defined for all k with 0 ≤ k ≤ n−1 and
all w ∈ Wk, and that ξw is a juxtaposition ηw0ηw1 · · · η′wk of geodesic segments, where
the sequence wi ∈Wi of walls leads to w = wk. Moreover, we assume that each segment
of ξw lies in a block and connects its different boundary components, the last segment
η′wk lies in a horizontal slice of the block that contains it, and η′wk is orthogonal to the
wall w.

Let w ∈Wn. Then there is a unique w ∈ Wn−1 that precedes w. By assumption, the
last edge η′w = swxw of ξw lies in a horizontal slice Fv′ ×{rv′} of its block Xv′ = Fv′ ×R
and is orthogonal to the wall w (at the endpoint xw). It is important that ξw contains
all segments of ξw except for the last segment η′w.

Let Xv ⊂ X be the other block adjacent to w; in particular, the walls w and w are
boundary components of Xv. We recall that the metric splitting Xv = Fv × R does not
agree with the metric splitting Xv′ along w. Let Fv × {rv} be the horizontal slice of Xv

that contains the point xw on the corresponding boundary component. The boundary
lines of the slices Fv′ ×{rv′} and Fv×{rv}, which lie in w, contain xw and form an angle
of αw ∈ (α0, π/2].

To construct ξw, we act as follows. We take an isometric copy Fv ⊂ H2×{rv′} of
Fv×{rv} (by rotating the latter through the angle αw), where Fv′×{rv′} ⊂ H2×{rv′}, so
as to ensure that Fv′×{rv′} and Fv are sitting in the hyperbolic plane H2×{rv′} and are
adjacent along their common boundary component, for which we use the same notation
w. Now, we connect the initial point sw of the last edge η′w ⊂ ξw with the boundary
component of Fv corresponding to w by the shortest geodesic segment swx′w ⊂ H2×{rv′}
and take tw = swx

′
w ∩ w. The segment twx′w turned back to Fv × {rv} gives the last

segment η′w = swxw of ξw. Thus, sw ∈ w ∩ Fv × {rv}, |sw − xw | = |tw − xw|, and the
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segment η′w ⊂ Fv × {rv} is orthogonal to w at xw. To complete the construction of ξw,
we delete the last segment η′w ⊂ ξw, replacing it with ηwη

′
w, where ηw = swsw ⊂ Xv′ .

Clearly, the resulting ξw has all properties advertised above.
Let l = |sw−xw| = L(η′w) be the length of the last segment of ξw, and let l′w = L(ηw),

l′′w = L(η′w). Then

L(ξw) = L(ξw)− l + l′w + l′′w = L(ξw)− l + l̃w −∆w,

where l̃w = L(swx′w) and l̃′w = L(swtw), so that l̃w = l̃′w + l′′w, and ∆w = l̃′w − l′w.
We arrive at the same configuration that was studied in §2, and we are going to apply
Lemma 2.1 to estimate Pn(1) from below. Since l is the length of a segment in X that
connects different boundary components of a block, l is separated away from 0 by some
positive constant l0 depending only on M , l ≥ l0 > 0.

For n = 0 we have

P0(1) =
∑
w∈W0

e−|x0−xw| =
∑
w∈W0

tan
ψw
4
≥ π

4
,

where ψw is the angle under which the boundary component w of Xv∗ is observed from
x0 (in the horizontal direction).

By the induction assumption, we have

Pn−1(1) ≥
∑

w∈Wn−1

e−L(ξw) ≥ π

4
λn−1

0 .

We write Wn =
⋃
wWn,w, where the union is taken over all w ∈ Wn−1 and each

w ∈Wn,w follows w. Then

Pn(1) ≥
∑
w∈Wn

e−L(ξw) =
∑

w∈Wn−1

e−L(ξw)el
∑

w∈Wn,w

e∆we−l̃w .

Applying Lemma 2.1 with A = Wn,w, we obtain

Pn(1) ≥ λ0

∑
w∈Wn−1

e−L(ξw) ≥ π

4
λn0 ,

which completes the proof. �

§4. Self-similarity argument

The constant λ0 > 1 occurring in Proposition 3.1 depends only on some metric data
of M . Therefore, for some n ∈ N, n = n(M), we have π

4λ
n
0 > 1. Proposition 3.1 implies

that
Pn(h) =

∑
w∈Wn

e−hdist(x0,w) ≥ 1

for some h > 1. Furthermore, taking n sufficiently large, we can find h > 1 such that
Pn(h) ≥ 1 for any choice of the initial block Xv∗ , of its wall w∗, and of the base point
x0 ∈ w∗, because the set of such choices (up to isometries of X) is compact.

We fix n ∈ N with the above property and select a subset W ∗ =
⋃
k≥1 W

∗
k ⊂ W ,

where W ∗k = Wkn. The set W ∗1 serves as the generating set for W ∗. Connecting x0 with
each wall w ∈ W ∗1 by the shortest geodesic segment x0xw, we obtain new base points
xw ∈ w (these xw may differ from the xw constructed in the proof of Proposition 3.1).
By induction, we find a base point xw ∈ w for each w ∈ W ∗k , k ≥ 1, with the property
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that dist(xw , w) = |xw − xw|, where w ∈ W ∗k−1 precedes w. Furthermore, by the choice
of n and h, for each w ∈W ∗k−1 we have∑

w

e−h|xw−xw| ≥ 1,

where summation is over all w ∈ W ∗k that follow w. Since dist(x0, w) ≤ dist(x0, xw) ≤
dist(x0, xw) + |xw − xw|, we see that

PW∗k (h) =
∑
w∈W∗k

e−hdist(x0,w)

≥
∑

w∈W∗k−1

e−h dist(x0,xw) ≥
∑
w∈Wn

e−hdist(x0,xw) ≥ 1

for all k ≥ 1. Therefore, the modified Poincaré series

PW (h) ≥ PW∗(h) =
∑
k≥1

PW∗k (h)

diverges at h, whence h(g) ≥ h > 1. This completes the proof of Theorem 1.1.

References

[BW] W. Ballmann and M. Wojtkowski, An estimate for the measure-theoretic entropy of geodesic flows,
Ergodic Theory Dynam. Systems 9 (1989), 271–279. MR 90k:58165
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