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CLASSIFICATION OF SIMPLE MULTIGERMS OF CURVES
IN A SPACE WITH SYMPLECTIC STRUCTURE

P. A. KOLGUSHKIN

Abstract. A classification of stably simple germs of curves (both reducible and
irreducible) in the complex space equipped with a symplectic structure is obtained.
This classification extends the result by V. I. Arnol′d of 1999, which described the
A2k singularities in the symplectic complex space. The proofs involve the homotopy
method and the Darboux–Givental theorem.

§1. Introduction

A significant number of papers is devoted to classification of simple singularities
of curves. Bruce and Gaffney [4] classified the irreducible plane curves. Gibson and
Hobbs [6] classified the simple singularities of irreducible curves in the complex 3-space.
Arnol′d [1] classified the (stably) simple singularities of irreducible curves in the complex
linear space of arbitrary dimension. The stably simple singularities of germs of reducible
curves (or multigerms) in the complex space of arbitrary dimension were classified in [7],
[8].

Now suppose that the complex space is equipped with a certain additional structure,
e.g., a symplectic one. In this case, we consider not all local diffeomorphisms of our
space, but only those that preserve this additional structure. Suppose that the complex
2n-space C2n is equipped with a symplectic structure, and we have a germ of a curve
that is equivalent to (t2, t2m+1) in the sense of the usual RL-equivalence (where all local
diffeomorphisms are allowed). Arnol′d studied this case in the paper [2]. His result is
stated below. We consider singularities of both reducible and irreducible curves in a
space equipped with a symplectic structure, and give a list of stably simple ones.

The necessary definitions are as follows. A singularity of an irreducible curve at the
origin of Cn is a germ f : (C, 0) → (Cn, 0) of a complex analytic mapping. Let L
(respectively, R) be the group of coordinate changes in (Cn, 0) (respectively, in (C, 0)),
i.e., the group of germs (Cn, 0)→ (Cn, 0) (respectively, (C, 0)→ (C, 0)) of nondegenerate
analytic mappings. The group L (respectively, R) is called the group of left (respectively,
right) coordinate changes .

Definition 1. A multigerm F = (f1, . . . , fk) in (Cn, 0) is a collection of germs fi : (C, 0)
→ (Cn, 0) of analytic mappings, where Im fi ∩ Im fj = {0} for i 6= j (f1, . . . , fk are the
components of F).

Let G ⊂ L be a subgroup. Then we define RG := G × R(1) × · · · × R(k), where, for
each i, R(i) is a copy of R. The group RG (of right-left coordinate changes) acts on the
space of multigerms by the formula

(g, h1, . . . , hk) · (f1, . . . , fk) = (g ◦ f1 ◦ h−1
1 , . . . , g ◦ fk ◦ h−1

k ).
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Definition 2. A multigerm F is RG-simple if F has a neighborhood that intersects
at most finitely many RG-orbits, in the space of multigerms (with the usual Whitney
topology: the base of this topology consists of the preimages of open sets in the space of
m-jets for each m).

Definition 3. Two multigerms F and F ′ in (Cn, 0) are RG-equivalent if they lie in one
RG-orbit.

In what follows, we assume that our space is even-dimensional and symplectic, i.e., it
is equipped with a closed nondegenerate 2-form ω. By the familiar Darboux theorem,
there exist coordinates (q1, . . . , qn; p1, . . . , pn) (they are said to be symplectic) in which
locally we have

ω =
n∑
i=1

dpi ∧ dqi.

Now we let G be the group of symplectomorphisms of (C2n, 0), i.e., the group of local
diffeomorphisms preserving ω. In this situation, an RG-equivalence will be called a
symplectic equivalence.

We denote by ω(n) the germ of the symplectic form in (C2n, 0) and by ω(N) the germ
of the symplectic form in (C2N , 0). Let i : (C2n, 0) ↪→ (C2N , 0) be an embedding
such that i∗ω(N) = ω(n). A multigerm F is said to be stably simple if the multigerm
i ◦ F := {i ◦ f1, . . . , i ◦ fk} is also simple for each N . Two multigerms F and F ′ such
that the multigerms i ◦ F and i ◦ F ′ are equivalent are said to be symplectically stably
equivalent .

Now we state Arnol′d’s result presented in [2]. Here and below, the coordinates
(q1, . . . , qn; p1, . . . , pn) are assumed to be symplectic if not stipulated otherwise; we sep-
arate the q-coordinates from the p-coordinates by a semicolon and sometimes drop the
coordinates equal to zero.

Theorem 1. Suppose C is a germ of a curve RL-equivalent to (t2, t2m+1). Then C is
symplectically equivalent to exactly one germ on the following list:

A2m,0 : (t2; t2m+1),

A2m,r : (t2, t2m+1; t2m+2r+1, 0), 0 < r ≤ 2m.

Remark. For r = 2m, we can replace the monomial t2m+2r+1 in p1 by zero.
In particular, Theorem 1 implies that each multigerm RL-equivalent to (t2, t2m+1) is

also symplectically simple.

We classify the other symplectically simple germs of irreducible curves, as well as
the symplectically simple germs of reducible curves (multigerms). Our main result is as
follows.

Theorem 2. Up to permutation of components, each symplectically stably simple multi-
germ F is symplectically stably equivalent to exactly one multigerm on the list presented
below.

1. Germs of irreducible curves. Here, we do not present Arnol′d’s list given above.

1. (t3, t5; t4, 0); 2. (t3; t4); 3. (t3, t4; t5, 0);

4. (t3, t4; 0, t5); 5. (t3, t4, t5; t7, 0, 0); 6. (t3, t4, t5; t8, 0, 0);

7. (t3, t4, t5; 0, 0, 0); 8. (t3, t7; t5, 0); 9. (t3; t5).
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2. Two-component multigerms.

2.1. Both components are nonsingular. Here, m > 1 and k are positive integers.

1. ((t; 0), (0; t)); 2. ((t, 0; 0, 0), (0, t; 0, 0));

3. ((t; 0), (t; tm)); 4. ((t, 0; 0, 0), (t, tm; 0, 0));

5. ((t, 0; 0, 0), (t, tm; tk, 0)), m < k < 3m− 1.

2.2. One of the components is singular. Here, m and k are positive integers.

1. ((t2, t2m+1; t2m+1, 0), (0, 0; t, 0));

2. ((t2, t2m+1; t2k+1, 0), (0, 0; t, 0)), m < k < 3m;

3. ((t2, t2m+1; 0, 0), (0, 0; t, 0)); 4. ((t2; t2m+1), (0; t));

5. ((t2, 0; t3, t3), (0, t; 0, 0)); 6. ((t2, 0; t3, 0), (0, t; 0, 0));

7. ((t2, t3; t5, 0), (0, 0; 0, t)); 8. ((t2, t3; 0, 0), (0, 0; 0, t));

9. ((t2, t3, 0; t5, 0, 0), (0, 0, t; 0, 0, 0)); 10. ((t2, t3, 0; 0, 0, 0), (0, 0, t; 0, 0, 0));

11. ((t2, t4; t3, 0), (t, 0; 0, 0)); 12. ((t2; t3), (t; 0)).

3. Three-component multigerms. Here, m > 1 and k are positive integers.

1. ((t, 0; 0, 0), (0, 0; t, 0), (t, t; t, 0)); 2. ((t, 0; 0, 0), (0, 0; t, 0), (t, t; 0, 0));

3. ((t, 0; 0, 0), (0, 0; t, 0), (0, t; 0, 0));

4. ((t, 0, 0; 0, 0, 0), (0, t, 0; 0, 0, 0), (0, 0, t; 0, 0, 0));

5. ((t; 0), (0; t), (t; t)); 6. ((t; 0), (0; t), (t; tm));

7. ((t, 0; 0, 0), (0, 0; t, 0), (t, tm; tm, 0)); 8. ((t, 0; 0, 0), (0, 0; t, 0), (t, tm; 0, 0));

9. ((t, 0; 0, 0), (0, 0; t, 0), (t, tm; tk, 0)), m < k < 3m− 1.

Before starting the proof, we make some preliminary remarks.
The tangent vector (more precisely, the tangent direction) of the germ C of an irre-

ducible curve C at the origin is the limit position of the (complex) line through the origin
and a point on C approaching the origin. (In the general case, where we deal with a
germ of a singular submanifold, this object is usually called the tangent cone.)

The tangent space of a multigerm F at the origin is the tangent space of the germ of
a submanifold of minimal dimension containing F . The tangent space of the k-jet of a
germ is the tangent space of the polynomial mapping of degree at most k representing
the jet. We easily see that this definition does not depend on the choice of a coordinate
system.

Part I. Simple singularities of irreducible curves

§2. Curves with 4-jet (t3, t4)

Consider the 4-jet of our germ C. It is obvious that in some coordinate system in
the space of 4-jets this 4-jet has the form (t3, t4, 0, . . . , 0). Two cases are possible: the
restriction of ω to the tangent space of the 4-jet at the origin is either a nonzero or a
zero form. Consider the first case.
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2.1. The tangent space of the 4-jet of C at the origin is nonisotropic. In this
situation, we obviously bring the 4-jet of C to the form

(q1 = t3, p1 = t4, q>1 = p>1 = 0).

We consider the case where C is RL-equivalent to the plane curve

(2.1) (t3, t4).

Then there exists a germM of a 2-dimensional submanifold in (C2n, 0) containing C, and
the restriction of ω to the tangent space of M at the origin is nonzero. We show that
there exist symplectic coordinates onM in which C has the form (2.1), and then apply the
Darboux–Givental theorem [3], which asserts that, up to a germ of a symplectomorphism,
a germM of a submanifold in a symplectic space is uniquely determined by the restriction
of ω to M .

Lemma 1. Suppose M is a germ of a 2-manifold with coordinates (x, y) in which C
has the form (2.1). We also assume that M is equipped with a symplectic form ω =
f(x, y)dx ∧ dy, where f(0, 0) 6= 0. Then there exist coordinates (p, q) in which we have
ω = dp ∧ dq and (possibly, after some right change) C has the form (2.1).

Proof. Without loss of generality, we may assume that f(0, 0) > 0. In the coordinates
(x, y), we have C = {y3 = x4}. We construct the required diffeomorphism by the
homotopy method. Consider the following family of 2-forms:

ωt = (tf(x, y) + 1− t)dx ∧ dy = ft(x, y)dx ∧ dy.
Obviously, there exists a neighborhood of the origin in which the form ωt is nondegenerate
for each t. We must find a family φt(x, y) of diffeomorphisms preserving C and such that

(2.2) φ∗tω0 = ωt.

Let vt(x, y) be a family of vector fields in a neighborhood of the origin that satisfies the
following condition:

(2.3)
d

dt
φt(x, y) = vt(φt(x, y)).

Differentiating (2.2) with respect to t, we obtain

Lvtωt = (f(x, y)− 1)dx ∧ dy,
where Lvtωt is the Lie derivative of ωt with respect to the vector field vt. The familiar
formula Lv = ivd+ div (where iv is the 1-form ωt(v, ·)) and the fact that the form ωt is
closed for each t imply that

divtωt = (f(x, y)− 1)dx ∧ dy.
Writing this relation in more detail, we obtain div(ftvt) = f(x, y)− 1.

We easily see that the vector field v = 3x∂x + 4y ∂y is tangent to C. Furthermore,
the vector field g(x, y)v is also tangent to C for any function g. The above arguments
show that it suffices to solve the “homological” equation div(g(x, y)v) = h(x, y) for a
given function h(x, y). We do this in the analytic case. Let h(x, y) =

∑
hklx

kyl and
g(x, y) =

∑
gklx

kyl. Then gkl = hkl
3(k+1)+4(l+1) . �

Remark. The idea of this proof was borrowed from [2].

Now suppose that C ∼
RL

(t3, t4, t5).

Lemma 2. If the restriction of ω to the tangent space of the 4-jet of C is nonzero, then

C ∼
Sp

(q1 = t3, q2 = t5, p1 = t4, q>2 = p>1 = 0).
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Proof. It is obvious that a symplectic change brings the 5-jet of C to the form

(q1 = t3 + o(t3), q2 = t5, p1 = t4 + o(t4), q>2 = p>1 = 0).

Projecting C to the (2n−2)-dimensional subspace (q1, q3, . . . , qn; p1, p3, . . . , pn), we obtain
a plane curve C equivalent to (2.1). By Lemma 1 and the Darboux–Givental theorem,
a symplectic change brings C to the normal form, as before. Thus, C lies in the 4-
dimensional subspace (q1, q2; p1, p2), and we have

C = (t3, t5 + o(t5); t4, o(t5)).

The 6-jet of C has the form (t3, t5 + o(t5); t4, αt6). The symplectic change of coordinates

(2.4) Q = q, P = p− ∂S(q)
∂q

with S(q1, q2) = αq2
1q2 yields

C = (t3, t5 + o(t5); t4 + o(t7), o(t6)).

In this case, the 7-jet of C has the form

(2.5) (t3, t5 + o(t5); t4, βt7).

We must “kill” the monomial t7 in the last coordinate. Once again we use the homotopy
method, i.e., we seek the required family of diffeomorphisms in the form of a solution
of equation (2.3). The field vt is chosen to be Hamiltonian (from [5] we know that the
phase flow of a Hamiltonian system preserves the symplectic form). In the space of 7-jets
with coordinate β we consider a one-parameter family of the form (2.5). It suffices to
construct a family of vector fields smoothly depending on β and such that for each β the
image of the corresponding vector field under the action on the space of 7-jets gives the
tangent vector of the family, i.e., the vector (0, 0; 0, t7). It is easily seen that the vector
field (−q1q2, 0; q2p1, q1p1) with the Hamiltonian H = q1q2p1 is the required one. Thus,
the corresponding right change yields

C = (t3, t5 + o(t5); t4 + o(t4), o(t7)).

On the whole, this argument is similar to the proof of the well-known Mather lemma
in [9]. Each function o(t7) can be written as f(q1, q2). After the change (2.4) with
S(q1, q2) =

∫ q2
0
f(q1, q)dq, the last coordinate of C becomes zero. Next, the change

described in Lemma 1 in the (p1, q1)-plane yields

C = (t3, t5 + o(t5); t4, 0).

The germ of any analytic function of order o(t5) has the form f(q1, p1). Finally, in the
subspace {p2 = 0} (containing C), the vector field with the HamiltonianH = −f(q1, p1)p2

has only one nonzero component, namely, q2. Therefore, the integral trajectories lying
in this subspace are of the following form (s is the parameter on the trajectory):

(Q1 = q1, Q2 = q2 + sf(q1, p1);P1 = p1;P2 = 0).

This proves the existence of a change that “kills” o(t5). �

2.2. The tangent space of the 4-jet of C at the origin is isotropic. In this
situation, we can bring the 4-jet to the form (q1 = t3, q2 = t4, q>2 = p = 0). We assume
that

(2.6) C ∼
RL

(t3, t4, t5).
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Lemma 3. Suppose the restriction of ω to the tangent space of the 4-jet of the germ
(2.6) is zero. If the tangent space of C contains a vector that is not skew-orthogonal to
the tangent vector of C at the origin, then

C ∼
Sp

(q1 = t3, q2 = t4; p1 = t5, q>2 = p>1 = 0).

Proof. We easily bring the 5-jet of C to the form

(q1 = t3 + o(t3), q2 = t4 + o(t4); p1 = t5, q>2 = p>1 = 0).

Consider the projection of C to the Lagrangian surface L := {p = 0}. From [1] it
follows that a diffeomorphism Φ of L brings the projection to the form (2.1). Then
the symplectomorphism induced by Φ on the ambient space Cn preserves L, whence
p = o(t4). However, each function o(t4) is of the form f(q1, q2, p1). Consequently, we
may assume that C lies in the 4-dimensional submanifold

M := {q>2 = 0, p>2 = F (q1, q2, p1)}
((q1, q2; p1, p2) are coordinates on M), and that the restriction of ω to M is equal to
dp1 ∧ dq1 + dp2 ∧ dq2. By the Darboux–Givental theorem, C ∼

Sp
(t3, t4; t5 + o(t5), o(t4)).

In order to get rid of t5 in p2, we perform the change

P2 = p2 − αp1, Q1 = q1 + αq2, Q2 = q2, P1 = p1.

Now p2 = o(t5); hence, p2 has the form f(q1, q2). The change (2.4) with S(q1, q2) =∫ q2
0 f(q1, q)dq yields

C = (t3 + o(t3), t4 + o(t4); t5 + o(t5), 0).

As in the proof of Lemma 1, a symplectic change in the (q1, p1)-plane (and, possibly, a
right change) leads to C = (t3, t4 + o(t4); t5, 0). First, integrating the vector field with
the Hamiltonian H = q1q2p2, we delete the term t7 in the second coordinate. Now we
delete the remaining terms. Clearly, we have q2 = t4 + f(q1, p1). Consequently, the
Hamiltonian vector field with the Hamiltonian H = f(q1, p1)p2 generates the required
transformation. �

Lemma 4. If the tangent space of the curve (2.6) contains a vector skew-orthogonal
to the tangent vector of C at the origin, but not skew-orthogonal to some vector in the
tangent space of the 4-jet of C, then C ∼

Sp
(t3, t4; 0, t5).

Proof. As in the proof of Lemma 3, we see that

C ∼
Sp

(t3, t4; o(t5), t5 + o(t5)).

Each function o(t5) is of the form f(q1, q2). We present p1 in this form. Then the
change (2.4) with S(q1, q2) =

∫ q1
0 f(q, q2)dq yields C = (t3, t4; 0, t5+o(t5)). The projection

C′ of C to the (q2, p2)-plane has the 5-jet (t4, t5). From [1] we know that each plane curve
C with such a 5-jet is RL-equivalent either to (t4, t5), or to (t4, t5 + t7), and if the 7-jet of
C has the form (t4, t5), then C is RL-equivalent to the former curve. We bring the 7-jet
of C′ precisely to this form. First we delete the monomial t6 in the second coordinate.
This can be done by performing a certain right change and subtracting p2 from q2, which
does not affect the symplectic form. Thus, we may assume that

C = (t3 + o(t3), t4; 0, t5 + αt7 + o(t7)).

The right change t 7→ t+ kt3, with k to be chosen later, yields

C = (t3 + o(t3), t4 + 4kt6 + o(t6); 0, t5 + (5k + α)t7 + o(t7)).
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Next, we perform the symplectic change

(2.7) Q2 = −p2, P2 = q2.

The change (2.4) with S = βq2
1q2 and the change converse to (2.7) yield

C = (t3 + o(t3), t4 + (4k − β)t6 + o(t6); 2βt8 + o(t8), t5 + (5k + α)t7 + o(t7)).

The change (2.4) with S = 2βq1q
2
2 yields

C = (t3 + o(t3), t4 + (4k − β)t6 + o(t6); o(t8), t5 + (5k − 4β + α)t7 + o(t7)).

Let β and k be the solution of the linear system{
4k − β = 0,
4β − 5k = α.

Using the change (2.4), we make p1 = 0, and the addition to p2 arising under this
change has the form o(t7). Thus, we obtain

C = (t3 + o(t3), t4 + o(t6); 0, t5 + o(t7)).

The above arguments imply that the projection of C to the (q2, p2)-plane is RL-
equivalent to (t4, t5); consequently, in some (not necessarily symplectic) system of coor-
dinates we have C = {x5 − y4 = 0}. Applying the same arguments as in the proof of
Lemma 1, we obtain C = (t3 + o(t3), t4; 0, t5).

Now we wish to delete t6, t7, and t11 in q1. We show how we delete, e.g., t7 if t6 has
already been deleted. We use symplectic changes on the space of 7-jets. Integrating the
vector field with the Hamiltonian H = q1q2p1, we obtain a change Φ that obviously does
not affect the components q2, p1, and p2. At the same time, the image of the tangent
vector under the action on the space of 7-jets is of the form (t7, 0; 0, 0). This shows that
Φ is the required transformation. In a similar way, we delete t6 and t11. After this, we
present the remaining term o(t3) in the form f(q2, p2) and, integrating the vector field
with the Hamiltonian H = f(q2, p2)p1, we bring C to the required form. �

Lemma 5. Suppose that C ∼
RL

(2.1), and the restriction of ω to the tangent space of C
is zero. Then

C ∼
Sp

(q1 = t3, q2 = t4; p1 = c1t
7 + c2t

8 + c3t
10 + c4t

11 + c5t
14, p2 = 0).

Proof. Obviously, a symplectomorphism yields

C = (q1 = t3 + o(t3), q2 = t4 + o(t4), q>2 = p = o(t5)).

We project C to the Lagrangian submanifold L := {p = 0}. A diffeomorphism Φ of L
brings the projection to the form (2.1). Since the symplectomorphism of Cn induced by Φ
preserves L, we have p = o(t5), whence p>2 = F (q1, q2). Thus, C lies in the 4-dimensional
submanifold

M := {q>2 = 0, p>2 = F (q1, q2)},
and the restriction of ω toM has the form dp1∧dq1+dp2∧dq1. By the Darboux–Givental
theorem, we have

C ∼
Sp

(q1 = t3, q2 = t4; p1 = f(t), p2 = g(t), q>2 = p>2 = 0),

where f, g = o(t5).
For simplicity, we let q1 = x and q2 = y. Clearly,

f(t) = u(x) + yz(x) + y2r(x) and g(t) = v(x) + yw(x) + y2s(x),

where u, v = o(x) and z, w = o(1).
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Using the change (2.4) with

S(x, y) = A(x) + yB(x) + y2C(x) + y3D(x) + y4E(x) + y5F (x),

we obtain {
∂S
∂x = A′ + yB′ + y2C′ + y3D′ + y4E′ + y5F ′,
∂S
∂y = B + 2yC + 3y2D + 4y3E + 5y4F.

Since on C we have x4 = y3, it follows that on C the above equations take the form{
∂S
∂x = (A′ + x4D′) + y(B′ + x4E′) + y2(C′ + x4F ′),
∂S
∂y = (B + 4x4E) + y(2C + 5x4F ) + y2(3D).

Now we choose A(x) and D(x) so that

A′(x) + x4D′(x) = u(x) and 3D(x) = s(x).

After that, we take B(x) and C(x) so that

B(x) + 4x4E(x) = v(x) and 2C(x) + 5x4F (x) = w(x).

Then

B′ + x4E′ = v′ − 16x3E − 3x4E′ and 2C′ + 2x4F ′ = w′ − 20x3F − 3x4F ′.

After this choice, we obtain g − ∂yS = 0 and

f − ∂S

∂x
= y(z − v′ + 16x3E + 3x4E′) +

y2

2
(2r − w′ + 20x3F + 3x4F ′)

= y(z − v′ + x3(16E + 3xE′)) +
y2

2
(2r − w′ + x3(20F + 3xF ′)).

Clearly, z(x)− v′(x) = O(x) and 2r(x)−w′(x) = O(1). Consequently, E(x) and F (x)
can be chosen so that the expression in the first (respectively, second) parentheses be
equal to a1x+a2x

2 (respectively, b1 +b2x+b3x2). Thus, recalling that x = t3 and y = t4,
on C we obtain

f − ∂S

∂x
= y(a1x+ a2x

2) + y2(b1 + b2x+ b3x
2) = c1t

7 + c2t
8 + c3t

10 + c4t
11 + c5t

14.

�
Lemma 6. Suppose C ∼

RL
(t3, t4, t5). If the restriction of ω to the tangent space of C is

zero, then C is symplectically equivalent to one of the following three curves:
(1) (t3, t4, t5; t7, 0, 0),
(2) (t3, t4, t5; t8, 0, 0),
(3) (t3, t4, t5; 0, 0, 0).

Remark. Below it will be shown that these three curves are not symplectically equivalent.

Proof. Arguments similar to those used in the proof of Lemma 5 yield

(2.8) C = (t3, t4, t5; c1t7 + c2t
8 + c3t

10 + c4t
11 + c5t

14, 0, 0).

A change of the form (2.4) allows us to assume that c3 = c4 = c5 = 0.
Suppose c1 6= 0. Then C ∼

Sp
(t3, t4, t5; t7 + αt8, 0, 0). We show how to delete t8. The

tangent space of an R-orbit contains the vector (3t4, 4t5, 5t6; 7t8, 0, 0). Using the vector
fields with the Hamiltonians H = p2q3, q2

1p3, p1q2, q3
2 , q1q

2
2 , we easily obtain the vector

(0, 0, 0; 0, t8, 0). Now, integrating the corresponding vector fields on the space of 8-jets
of right and left changes, we obtain the required change. The higher terms arising in p1

are deleted by a change of the form (2.4), as before. Thus, we come to the normal form
(1).
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If in (2.8) we have c1 = 0 and c2 6= 0, then we obtain the normal form (2).
Finally, if c1 = c2 = 0, we obtain the normal form (3). �

§3. Curves with 5-jet (t3, t5)

From [1] we know that up to RL-equivalence there are only two curves C with such a
5-jet, namely, (t3, t5) and (t3, t5, t7).

Lemma 7. If the restriction of ω to the tangent space of the 5-jet of C is nonzero, then
C is symplectically equivalent to one of the following two curves:

(1) (q1 = t3, q2 = t7, p1 = t5, q>2 = p>1 = 0),
(2) (q1 = t3, p1 = t5, q>1 = p>1 = 0).

Proof. If C ∼
RL

(t3, t5), then the proof is similar to that of Lemma 1. (We set v :=

3x∂x + 5y ∂y.) If C ∼
RL

(t3, t5, t7), then the proof is similar to that of Lemma 2. �

§4. Nonsimple families

We prove that all germs except for those indicated in [2] and in Lemmas 1–4, 6, and 7
are nonsimple.

Lemma 8. The curves with the 5-jet (q1 = t3, q2 = t4; q>2 = p = 0) are not simple.

Proof. By Lemma 5, the 8-jet of such a curve C adjoins the family (t3, t4; t7+αt8, 0). This
family will be regarded as a 1-dimensional submanifold in the space of 8-jets. We show
that at no point the tangent vector (0, 0; t8, 0) of this submanifold is contained in the
tangent space of an orbit of the action of the group. For this, we use the following asser-
tion from [5]: the tangent vector field of a one-parameter family of symplectomorphisms
is Hamiltonian.

We argue by contradiction. The monomial t8 in p1 can be obtained with the help of
some of the following four vectors:

(3t4, 4t5; 7t8, 0),

(3t3, 4t4; 7t7 + 8αt8, 0),

(0, 0; t8, 2t7), H = q1q
2
2 ,

(−t3, 0; t7 + αt8, 0), H = p1q1.

We cannot use the first vector because t5 in q2 cannot be compensated by anything.
Since t3 in q1 can be obtained only by the two ways indicated above (the second and
fourth vectors), we must compensate t7 in p1 somehow. This can be done only with the
help of the vector (0, 0; 2t7, t6) with the Hamiltonian H = q2

1q2. But t6 in p2 cannot be
obtained in any other way, and so this monomial cannot be compensated by anything. If
we try to use the third vector, then we must compensate t7 in p2. This can be done only
with the help of the vector (−t4, 0; 0, t7 +αt8) with the Hamiltonian H = p1q2. However,
t4 in q1 can be compensated only by the first vector; as was observed before, we cannot
use it. A contradiction. �
Lemma 9. If C ∼

RL
(t4, t5, t6, t7), then C is not symplectically simple.

Proof. It is clear that, perturbing C, we can ensure that the restriction of ω to the tangent
space W of the 5-jet of C be nondegenerate and the restriction of ω to the tangent space
V of C (V is 4-dimensional) be also nondegenerate, W ⊂ V . Thus, we bring the 5-jet of
C to the form

(q1 = t4 + o(t4), p1 = t5; q>1 = p>1 = 0).
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The restriction of ω to the skew-orthogonal complement of W in V is nondegenerate,
which means that we can bring the 7-jet of C to the form

(q1 = t4 + o(t4), q2 = t6 + o(t6); p1 = t5 + o(t5), p2 = αt7, q>2 = p>2 = 0).

We show that the parameter α is a module, i.e., for distinct α’s these curves are sym-
plectically nonequivalent. Indeed, if such an equivalence existed, then so would its linear
part. Clearly, P2 = p2/b. If Q2 = o(t5), then necessarily Q2 is a linear combination
of q2 and p2. However, the term p2 is immaterial for us, and if we delete it, then the
change will remain symplectic. Therefore, we may assume that Q2 = bq2. Now we
observe that the subspace with the coordinates (q2, p2) is invariant with respect to our
transformation. Consequently, the skew-orthogonal complement of the subspace (q2, p2)
is also invariant. Arguing in a similar way, we see that changes of the following form can
be used (a, b, c 6= 0):

Q1 = aq1, P1 =
p1

a
,

Q2 = bq2, P2 =
p2

b
,

t = cT.

Performing these changes, we easily check that the required result cannot be achieved.
�

Now we easily see that all the remaining curves adjoin one of the two families presented
above.

§5. Symplectic invariants of singularities

We show that all curves occurring in Lemma 6 are symplectically distinct.

Theorem 3. For each curve C as in Lemma 6, the order of tangency of C with any
Lagrangian surface L does not exceed the order of tangency of C with the (Lagrangian)
surface L0 := {p = 0}.

Proof. We argue by contradiction. Suppose that for some curve C there exists a La-
grangian surface L such that the order of tangency of C with L is higher than the order
of tangency of C with L0. Then the tangent space of L at the origin is {p = 0}.

Indeed, suppose L is given by equations of the form

Aq1 +Bq2 + Cq3 +Dp1 + Ep2 + Fp3 +R(p, q) = 0,

where R(p, q) denotes terms of higher order. Substituting C, we obtain At3 +Bt4 +Ct5 +
R2t

6 + o(t6). By assumption, this is at least o(t7). Therefore, A = B = C = 0, which
implies our assertion.

In view of this assertion, L is given (locally) by the equation p = ∂qS. For short, we
let q1 = x, q2 = y, and q3 = z. Then

S(x, y, z) = A(x) +B(x)y + C(x)y2 +D(x)y3 + E(x)yz + F (x)z2 +G(x)y2z +R(x)z,

because the higher terms y4, y3z, yz2, and z3 contribute O(t12), O(t12), O(t9), and
O(t10), respectively.
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On C we have y3 = x4, yz = x3, z2 = x2y, and y2 = xz; therefore,

∂S

∂x
= A′ +B′y + C′y2 +D′y3 + E′yz + F ′z2 +G′y2z +R′z

= (A′ + x3E′ + x4D′) + y(B′ + x2F ′ + x3G′) + z(R′ + xC′),
∂S

∂y
= B + 2Cy + 3Dy2 + Ez + 2Gyz

= (B + 2x3G) + y(2C) + z(E + 3xD),
∂S

∂z
= Ey + 2Fz +Gy2 +R

= R+ y(E) + z(2F + xG).

Both curves (1) and (2) in Lemma 6 can be written as (t3, t4, t5; ta, 0, 0), where a = 7
or a = 8. Then, by assumption, for one of these a we have

∂S

∂x
− ta = o(ta),

∂S

∂y
= o(ta), and

∂S

∂z
= o(ta).

First, we consider the curve (1) (a = 7). The above formulas show that t7 in ∂xS
can only come from x in B′(x), which means that B(x) contains x2 with a nonzero
coefficient. But this means that ∂yS contains t6 with a nonzero coefficient, because t6

cannot be “killed” with the help of the expressions in the other parentheses. In this case,
∂yS 6= o(t7).

Now we consider the curve (2) (a = 8). The above formulas show that t8 in ∂xS can
only come from x in R′(x) or from the constant term in C′(x), which means that R(x)
contains x2 with a nonzero coefficient, or C(x) contains x with a nonzero coefficient.
But this implies that either ∂zS contains t6 with a nonzero coefficient, or ∂yS contains
t7 with a nonzero coefficient, because these terms cannot be “killed” with the help of
the expressions in the other parentheses. In this case, ∂zS 6= o(t8) or ∂yS 6= o(t8). A
contradiction. �

Remark. The idea of the construction of such an invariant is borrowed from [2].

Part II. Simple singularities of multigerms

§6. A pair of intersecting lines

Suppose that

(6.1) F = (C1, C2) ∼
RL

((t, 0), (0, t)).

Lemma 10. If the restriction of ω to the tangent space of the multigerm (6.1) is nonzero,
then

F ∼
Sp

((q1 = t, q>1 = p = 0), (p1 = t, q = p>1 = 0)).

Proof. The argument is similar to that used in the proof of Lemma 1. Suppose that
F lies on a 2-dimensional submanifold M2 ⊂ C2n and has the form ((t, 0), (0, t)) in
some coordinates (x, y). Then F is given by the equation xy = 0, and we can set
v := x∂x + y ∂y. �

Lemma 11. If the restriction of ω to the tangent space of the multigerm (6.1) is zero,
then

F ∼
Sp

((q1 = t, q>1 = p = 0), (q2 = t, q6=2 = p = 0)).
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Proof. It is obvious that a symplectic transformation brings the 1-jet of F to the required
form. Now we project F to the q-subspace along the p-subspace. A diffeomorphism Φ of
the q-coordinates brings the projection to the form ((q1 = t, q>1 = 0), (q2 = t, q6=2 = 0)).
Φ induces a symplectomorphism of Cn. For C1 we have p>2 = f(q1). Correspondingly,
for C2, we have p>2 = g(q2) and f, g = o(q). Then, obviously, F lies on the 4-dimensional
submanifold

M := {q>2 = 0, p>2 = f(q1) + g(q2)}.
The restriction of ω toM is of the form dp1 ∧dq1 + dp2∧dq2. By the Darboux–Givental
theorem, we obtain

F ∼
Sp

((t, 0; f(t), g(t)), (0, t;u(t), v(t))),

where f, g, u, v = O(t2).
Applying the change (2.4) with

S(q1, q2) = A(q1) +B(q2) + q1C(q2) + q2D(q1),

where A, B, C, and D will be chosen later in such a way that all of them be O(q2), we
obtain {

∂S
∂q1

= A′(q1) + C(q2) + q2D
′(q1),

∂S
∂q2

= B′(q2) +D(q1) + q1C
′(q2).

Along C1, we have
∂S

∂q1
= A′(q1) and

∂S

∂q2
= D(q1).

Along C2, we have
∂S

∂q1
= C(q2) and

∂S

∂q2
= B′(q2).

Taking

A′(q1) = f(q1), B′(q2) = v(q2), C(q2) = u(q2), and D(q1) = g(q1),

we bring F to the required form. �

§7. A pair of nonsingular curves C1, C1 touching each other

As was shown in [8], in this case

(7.1) F ∼
RL

((t, 0), (t, ta)).

Lemma 12. Suppose the restriction of ω to the tangent space of the multigerm (7.1) is
nonzero. Then

F ∼
Sp

((q1 = t, q>2 = p = 0), (q1 = t, p1 = ta, q>1 = p>1 = 0)).

Proof. The argument repeats the proof of Lemma 10 with the only difference that (in
some coordinates on the corresponding 2-manifold) F is given by the equation (xa−y)y =
0, and in order to bring ω to the standard form we use the vector field v = x∂x+ay ∂y. �

Lemma 13. Suppose the restriction of ω to the tangent space of the multigerm (7.1) is
zero. Then F is symplectically equivalent to one of the following multigerms:

(1) ((q1 = t, q>1 = p = 0), (q1 = t, q2 = ta, q>2 = p = 0)),
(2) ((q1 = t, q>1 = p = 0), (q1 = t, q2 = ta, p1 = tb, q>2 = p>1 = 0)), where

a < b < 3a− 1.

Remark. Putting b = 3a− 1 in the normal form 2, we obtain a multigerm symplectically
equivalent to the normal form 1.
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Proof. Suppose that C1 already has the required form. First, we reduce the problem to
the 4-dimensional case. We observe that a symplectic transformation brings the a-jet to
the required form. We project F to the q-subspace along the p-subspace. By the theorem
on the RL-classification, a diffeomorphism Φ of the q-subspace brings the projection to
the form

((q1 = t, q>1 = 0), (q1 = t, q2 = ta, q>2 = 0)).
Φ induces a symplectomorphism of Cn. Along the second component, we have pi =
q2fi(q1), i = 1, 2. Thus, F lies on the 4-dimensional submanifold

M := {q>2 = 0, p3 = q2f3(q1), . . . , pn = q2fn(q1)}.
The restriction of ω to M is of the form dp1 ∧ dq1 + dp2 ∧ dq2 (because dq>2 = 0). The
Darboux–Givental theorem yields

F = ((t, 0; 0, 0), (t, ta; f(t), g(t))), q>2 = p>2 = 0.

For simplicity, we let q1 = x and q2 = y. Clearly, along C2 we have p1 = y · z(x) and
p2 = y · w(x), where z, w = O(x).

The change (2.4) with S(x, y) = y2B(x) + y3C(x) yields{
∂S
∂x = y2B′(x) + y3C′(x),
∂S
∂y = 2yB(x) + 3y2C(x).

Along F we have xay = y2, whence{
∂S
∂x = y(xaB′ + x2aC′),
∂S
∂y = y(2B + 3xaC).

Observe that both expressions above vanish along C1. Now we find B(x) from the condi-
tion 2B(x)+3xaC(x) = w(x), with C(x) to be chosen later. Differentiating this identity,
we obtain

2(B′(x) + xaC′(x)) = w′(x) − 3axa−1C(x)− xaC′(x).
After this change, p2 = 0 along C2. For p1, we have

p1 = f(t)− ∂S

∂x
= y(z(x)− (xaB′(x) + x2aC′(x)))

= y
(
z − 1

2
xaw′(x) +

1
2
x2a−1(3aC + xC′)

)
.

For every function h(x), the equation 3aC(x)+xC′(x) = h(x) is solvable (locally). Thus,
along C2, we obtain

p1 = y
2a−2∑
r=1

crx
r =

3a−2∑
r=a+1

drt
r.

Let b be the minimum degree of a nonzero monomial in p1 of C2. We bring the (3a−2)-jet
of F to the required form. Consider the following submanifold M ⊂ J3a−2 (c1, . . . , c2a−2

are coordinates on M):

M :=
{

(t, 0; 0, 0),
(
t, ta; tb +

3a−b−2∑
r=1

crt
b+r, 0

)}
.

Suppose that we have deleted the monomials of degree less than b + r (except tb). We
show how we can delete tb+r. In the tangent space at the identity of the group of (3a−2)-
jets of the coordinate changes of the form considered, we construct a smooth family of
vectors the images of which under the action on M have the form (0, 0; tb+r + o(tb+r), 0).
The function H = p1q

r+1
1 generates the vector field (−qr+1

1 , 0; (r+ 1)p1q
r
1, 0). The action

on the second component of M yields the vector (−tr+1, 0; (r+ 1)tb+r + o(tb+r), 0). It is
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also clear that the vector (tr+1, ata+r; btb+r + o(tb+r), 0) is the image of some vector in
the tangent space of R. Finally, the image of the vector field with the Hamiltonian H =
−qr1q2p2 is (0, ta+r; 0, 0). We easily obtain the required vector as a linear combination
(with constant coefficients!) of the above vectors.

Thus, we have brought the (3a − 2)-jet of F to the required form. Changing the
q-coordinates, we bring the projection of C2 to the q-subspace to the form (t, ta). This
change preserves the projection of C1, and also induces a symplectomorphism preserving
the (3a − 2)-jet of F . However, the above-said implies that a change of the form (2.4)
brings F to the required form. �

Lemma 14. The normal forms indicated in Lemma 13 are distinct.

Proof. The normal forms in question are discriminated by the maximum possible order
of tangency of C2 with the germs of 2-dimensional Lagrangian surfaces L at the origin
containing C1. We show that this order of tangency is equal to b. Suppose that there is
a surface L having a higher order of tangency with C2.

First we show that the tangent space of L at the origin is given by the condition
{p = 0}. Suppose that L is given by equations of the form

Aq1 +Bq2 + Cp1 +Dp2 +R(p, q) = 0,

where R(p, q) is the remainder term of the first order Taylor expansion. Since C1 ⊂ L,
all monomials of the form qk1 occur in the Taylor expansion with zero coefficient. In
particular, this means that A = 0. For C2, we have Bta + Ctb + o(ta) = o(tb), whence
B = 0. Thus, A = B = 0, and the tangent space has the equation {p = 0}. This implies
that L is given (locally) by the equation {p = ∂qS}.

For convenience, we set q1 = x and q2 = y. Since 3a > b, it suffices to set

S(x, y) = A(x) + yB(x) + y2C(x) + y3D(x).

(Along C2, y4 gives at least t3a = o(tb).) We have{
∂S
∂x = A′ + yB′ + y2C′ + y3D′,
∂S
∂y = B + 2yC + 3y2D.

Since C1 ⊂ L, we have A′(x) = B(x) = 0. Thus, along C2, where xa = y, we have{
∂S
∂x = y(xaC′ + x2aD′),
∂S
∂y = y(2C + 3xaD).

By assumption, ∂yS = o(tb) and ∂xS − tb = o(tb). Since 3a > b, C′(x) contains xb−2a

with a nonzero coefficient. Consequently, C(x) contains xb−2a+1. Then, along C2, ∂yS
necessarily contains tb−a+1, which we cannot “kill” by the second term because 2a > b−
a+1 (or, what is the same, b < 3a−1). This is a contradiction, since tb−a+1 6= o(tb). �

§8. The multigerms F consisting of a nonsingular

component Cnons and a component Csing of multiplicity 2

We denote the tangent vectors of Cnons and Csing by v1 and v2, respectively.

8.1. Case where ω(v1,v2) 6= 0. From [8] it follows that up to RL-equivalence there
exist two series satisfying this condition:

((t, 0, 0), (0, t2, t2m+1)),(8.1)

((t, 0), (t2m+1, t2)).(8.2)
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8.1.1. First, suppose that F ∼
RL

(8.1).

Lemma 15. Suppose ω(v1,v2) 6= 0, and, moreover, the restriction of ω to the tangent
space of Csing is nonzero. Then

F ∼
Sp

((0, t; t, 0), (t2, 0; t2m+1, 0)) (p>2 = q>2 = 0).

Proof. We may assume that

Csing = (q1 = t2; p1 = t2m+1),

and the 1-jet of Cnons is of the form (at, t; t, 0). We project F to the (q1, p1)-plane.
From [8] it follows that in some coordinates (x, y) the projection is given by the equation
x(x2m+1 − y2) = 0. As before, the diffeomorphism of (x, y) generated by the vector field
v = 2x∂x + (2m + 1)y ∂y brings the restriction of ω to the form dx ∧ dy. The induced
symplectomorphism of C2n yields

F = ((q1 = t2, p1 = t2m+1, p>1 = q>1 = 0), (q1 = 0, q2 = t+ f(t); p1 = t, p2 = g(t))).

We project F to the subspace (q2, . . . , qn; p2, . . . , pn). By the Darboux–Givental theorem,
a symplectic transformation (and, possibly, some right change) brings the projection to
the form (t, 0, . . . , 0). This transformation yields

F = ((t2, 0; t2m+1, 0), (0, t; t+ f(t), 0)),

where f(t) = o(t). It is easy to check that the change (2.4) with S(q1, q2) = q1f(q2)
brings F to the required form. �

Remark. We easily see that the above normal form is symplectically equivalent to

((t2, t2m+1; t2m+1, 0), (0, 0; t, 0)).

Lemma 16. Suppose that ω(v1,v2) 6= 0, but the restriction of ω to the tangent space of
Csing is zero. Then F is symplectically equivalent to one of the following forms:

(1) ((t2, t2m+1; t2k+1, 0), (0, 0; t, 0)), m < k < 3m;
(2) ((t2, t2m+1; 0, 0), (0, 0; t, 0)).

Remark. The list of singular components coincides with the list obtained by Arnol′d
in [2].

Proof. We may assume that Cnons has the standard form. Clearly, we can bring the
(2m+ 1)-jet of Csing to the form

(q1 = t2, q2 = t2m+1, q>2 = p = 0),

and Cnons = (p1 = t, q = p>1 = 0). We project F to the q-subspace. A diffeomorphism Φ
of the q-subspace brings the projection of Csing to the form (t2, t2m+1, 0, . . . , 0), and the
differential of Φ at the origin is the identity. Then Φ induces a symplectomorphism of Cn
linear in p, and the differential at the origin is also the identity. This implies that Cnons

survives this transformation. Also, observe that along Csing we have pi>2 = fi(q1, q2) and
fi(q1, q2) = o(1). Consequently, F lies on the 4-dimensional submanifold

M := {q>2 = 0, p3 = f3(q1, q2), . . . , pn = fn(q1, q2)}.

Since the restriction of ω toM is of the form dp1∧dq1 +dp2∧dq2, the Darboux–Givental
theorem implies that

F ∼
Sp

((t2, t2m+1; f(t), g(t)), (0, 0; t, 0)), f, g = o(t2m+1).
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As was shown in [2], a change of the form (2.4) yields

Csing =
(
t2, t2m+1;

2m∑
r=1

crt
2(m+r)+1, 0

)
.

It is obvious that Cnons survives this change. Let 2k + 1 be the minimum degree of a
monomial occurring in the expansion of p1 with a nonzero coefficient. We show how the
terms of higher order can be “deleted”. Suppose that we have already deleted all terms
of degree less than 2(k + r) + 1. The (2(k + r) + 1)-jet of Csing has the form

(t2, t2m+1; t2k+1 + αt2(k+r)+1, 0).

We must construct a family of Hamiltonian vector fields (and also a family of vector
fields on (C, 0)) smoothly depending on α and such that these fields give the vec-
tor (0, 0; t2(k+r)+1, 0) under the action on the space of jets. At the points of the family
considered, the image under the action on the space of jets of the vector field with the
Hamiltonian H = p1q

r+1
1 has the form (t2(r+1), 0;−(r + 1)t2(k+r)+1, 0). The vector

(2t2+2r, (2m+ 1)t2m+2r+1; (2k + 1)t2(k+r)+1, 0)

is the image of some vector in the tangent space at the identity of R. Finally, the
Hamiltonian H = qr1q2p2 yields (0, t2m+2r+1; 0, 0). We easily obtain the required vector
field as a linear combination of the vector fields indicated above.

We also observe the following. First, Cnons survives the actions of the symplectomor-
phisms constructed. Second, if we consider jets of an arbitrarily high order, then we see
that the corresponding transformations do not change q1, q2, and p2.

After we have deleted the monomials up to the degree 6m + 1, we can delete the
remaining “tail” by using the form (2.4). �

8.1.2. Finally, suppose that F ∼
RL

(8.2).

Lemma 17. Suppose that ω(v1,v2) 6= 0. Then F ∼
Sp

((t2; t2m+1), (0; t)).

Proof. The proof is similar to that of Lemma 10. �

8.2. Case where ω(v1,v2) = 0.

Lemma 18. Suppose that
F ∼

RL
((t2, t3), (0, t))

and the restriction of ω to the tangent space of F at the origin is zero. Then F is not
symplectically simple.

Proof. We assume that Cnons has the standard form. Then we bring the 3-jet of F to the
form ((t2, t3; 0, 0), (0, t; 0, 0)). We project F to the q-subspace. By [8], a diffeomorphism
Φ of the q-subspace brings the projection to the form

((q1 = t2, q2 = t3, q>2 = 0), (q2 = t, q6=2 = 0)).

Φ induces a symplectomorphism of Cn linear in p. Consequently, p = 0 along Cnons, and
p = o(t3) along Csing. Then we have p>2 = f(q1, q2) along Csing, and f(q1, q2) = 0 along
Cnons. Thus, F lies on the 4-dimensional submanifold

M := {q>2 = 0, p>2 = f(q1, q2)}.
The restriction of ω to M is of the form dp1 ∧ dq1 + dp2 ∧ dq2. Applying the Darboux–
Givental theorem, we reduce the problem to the 4-dimensional case. Thus,

(8.3) F = ((t2, t3; f(t), g(t)), (0, t; 0, 0)) f, g = o(t3).
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Applying a change of the form (2.4), we ensure that f, g = o(t4). (In order to delete the
monomial in p2 proportional to t4, we take S(q1, q2) proportional to q2

1q2.) The 5-jet has
the form

((t2, t3; at5, bt5), (0, t; 0, 0)).

There is no loss of generality in assuming that a 6= 0. After a right change of the form
t = kT and a linear symplectic change, we may assume that a = 1. Now we consider
a one-parameter family of 5-jets of the form (8.3) with parameter b. In much the same
way as in the proof of Lemma 8, we show that at none of the points in this family
the tangent space of the orbit contains the tangent vector of the family, i.e., the vector
((0, 0; 0, t5), (0, 0; 0, 0)). This implies that the parameter b is a module. �

Lemma 18 implies that if ω(v1,v2) = 0, then Csing ∼
RL

(t2, t3). Suppose that

(8.4) F ∼
RL

((t2, t3, 0), (0, 0, t)).

Lemma 19. Suppose that ω(v1,v2) = 0, while the restriction of ω to the tangent space of
Csing is nonzero. Then F is symplectically equivalent to one of the following two normal
forms:

1. ((t2, 0; t3, 0), (t, t; 0, 0)), 2. ((t2, 0; t3, 0), (0, t; 0, 0)).

Remark. It is easily seen that the normal form 1 is symplectically equivalent to

((t2, 0; t3, t3), (0, t; 0, 0)).

Proof. Suppose that Csing has the standard form, i.e., Csing = (q1 = t2; p1 = t3). There
are two cases: the tangent space of Csing either contains or does not contain a vector
such that the value of ω at this vector and at the tangent vector of Cnons is nonzero.
Depending on which of these cases occurs, we obtain

Cnons = (εt+ f(t), t; g(t), 0) f, g = o(t), ε ∈ {0, 1}.
The change (2.4) with S(q1, q2) = g(q2)q1 preserves Csing, and after this change we have
p1 = 0 along Cnons. Possibly, something is added to the coordinate p2 of Cnons, but we
easily compensate this by using the change (2.4) with S = S(q2). In order to bring q1 to
the required form, we proceed as follows. We transpose the coordinates q1 and p1 and
change the sign of one of them. Obviously, this transformation is symplectic. After that,
we use the same arguments as when bringing p1 to the required form, then transpose p1

and q1 once again, and change the sign of the same coordinate as before. The change
constructed preserves Csing and brings F to the required form. �

Lemma 20. Suppose that ω(v1,v2) = 0 and that the restriction of ω to the tangent
space of Csing is zero. Then F is symplectically equivalent to one of the following normal
forms:

1. ((t2, t3; t5, 0), (0, 0; 0, t)), 2. ((t2, t3; 0, 0), (0, 0; 0, t)),

3. ((t2, t3, 0; t5, 0, 0), (0, 0, t; 0, 0, 0)), 4. ((t2, t3, 0; 0, 0, 0), (0, 0, t; 0, 0, 0)).

Proof. We assume that Cnons has the standard form. There are two cases: the tangent
space of Csing either contains or does not contain a vector such that the value of ω at this
vector and the tangent vector of Cnons is nonzero. In these cases, we bring the 3-jet to
one of the following two forms:{

((t2, t3, 0, . . . , 0; 0, . . . , 0), (0, . . . , 0; 0, t, 0, . . . , 0)),
((t2, t3, 0, . . . , 0; 0, . . . , 0), (0, 0, t, 0, . . . , 0; 0, . . . , 0)).
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A diffeomorphism Φ of the q-subspace with identity 1-jet at the origin brings the first
component to the form (t2, t3, 0, . . . , 0) and does not affect the second component. Φ
induces a symplectomorphism of Cn with identical 1-jet; consequently, Φ preserves the
second component. Since any function o(t3) has the form f(q1, q2), we can apply the
Darboux–Givental theorem to reduce the problem to the 4- and the 6-dimensional case,
respectively.

In the first case, we have

F = ((t2, t3; f(t), g(t)), (0, 0; 0, t)), f, g = o(t3).

The further argument repeats the proof of Lemma 16 (it is easily seen that the vectors
indicated there give a zero vector under the action on the nonsingular component), and
we obtain the normal forms 1 and 2.

In the second case, we have

F = ((t2, t3, 0; f(t), g(t), h(t)), (0, 0, t; 0, 0, 0)), f, g, h = o(t3).

There is a function φ = φ(q1, q2) such that along Csing we have h(t) = φ(q1, q2). The
change (2.4) with S = q3φ(q1, q2) does not affect Cnons, and after this change we obtain
p3 = 0 along Csing. The projection of F to the subspace (q1, q2; p1, p2) has the form
(t2, t3; o(t3), o(t3)). To this projection we apply the argument of Arnol′d [2]; this leads
to the normal forms 3 and 4. (We could also apply the argument used in the proof of
Lemma 16.) �

Now it remains to consider the case where the tangent vectors of the components of
F are collinear. From [8] it follows that up to RL-equivalence there are two multigerms:

((t2, t3, t4), (t, 0, 0)),(8.5)

((t2, t3), (t, 0)).(8.6)

Certainly, the restriction of ω to the tangent space of Csing is nonzero by Lemma 18.

Lemma 21. Suppose that the restriction of ω to the tangent spaces of the singular
components of the multigerms (8.5) and (8.6) is nonzero. Then these multigerms are
symplectically equivalent, respectively, to

1. ((t2, t4; t3, 0), (t, 0; 0, 0)); 2. ((t2; t3), (t; 0)).

Proof. First, we consider (8.6). As we have already done several times, we consider a
2-dimensional submanifold M containing F . In some coordinates (x, y) on M, F is
given by the equation (x3 − y2)y = 0. Further, we apply the homotopy method and
the Darboux–Givental theorem, using the fact that the vector field v = 2x∂x + 3y ∂y is
tangent to F .

Now we turn to (8.5). Assume that Cnons has the standard form. Clearly, we can bring
the 4-jet to the form

((t2, 0; t3, t4), (t, 0; 0, 0)), q>2 = p>2 = 0.

We project F to the subspace (q1, q3, . . . , qn; p1, p3, . . . , pn). The projection is RL-
equivalent to (8.6), so that we can bring it to the normal form. Thus, we obtain

F = ((t2, f(t); t3, t4 + g(t)), (t, 0; 0, 0)), f, g = o(t4).

Let f(t) = at5 +o(t5). We get rid of at5. For this, in the space of 5-jets we consider the
corresponding 1-dimensional submanifold with coordinate a on it. In the tangent space at
the identity of the group of 5-jets of symplectomorphisms, we consider the vector with the
Hamiltonian H = q1p1p2. The corresponding vector has the form (q1p2, q1p1;−p1p2, 0).
Obviously, the image of this vector under the action on our submanifold has the form
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(0, t5; 0, 0). Integrating the corresponding right-invariant vector field, we obtain the re-
quired change, and Cnons survives this change. Now we can find a function φ = φ(p1, p2)
such that q2 = φ(p1, p2) along Csing. We define S(p1, p2) =

∫ p2

0 φ(p1, x)dx. Then the
change Q = q − ∂pS yields

Csing = (t2 + o(t2), 0; t3 + o(t3), t4 + o(t4)).

Applying the arguments used when analyzing (8.6), we obtain

F = ((t2, 0; t3, t4 + h(t)), (t, 0; 0, 0)), h(t) = o(t4).

Clearly, h(t) = ψ(q1, p1), and ψ(q1, 0) = 0. Integrating the vector field with the Hamil-
tonian H = −ψ(q1, p1)q2, we “delete the tail” in the coordinate p2 of Csing. Transposing
q2 and p2 and changing the sign of the latter coordinate, we obtain the required normal
form 1. �

§9. About other two-component multigerms

9.1. Here, we show that there are no other simple multigerms with two components.

Lemma 22. A multigerm F consisting of a nonsingular component Cnons and a compo-
nent Csing of multiplicity 3 is not simple.

Proof. We assume that Cnons has the standard form. The most general situation is as
follows: ω(v1,v2) 6= 0. Consequently, we may assume that the 3-jet of F has the form

((t, 0, . . . , 0; 0, . . . , 0), (0, . . . , 0; t3, 0, . . . , 0)).

We consider the 4-jet of F . In the general case, the restriction of ω to the tangent
space of this 4-jet is nonzero, and at the same time, from the viewpoint of RL-equivalence
the situation ((t, 0, 0, 0), (0, t3, t4, t5)) is the most general. Thus, we may assume that the
4-jet has the form

((t, 0, . . . , 0), (t4, t4, 0, . . . , 0; t3, 0, . . . , 0)).

In the general case, the 5-jet of F is equivalent to

((t, 0; 0, 0), (t4 + at5, t4; t3, bt5)), q>2 = p>2 = 0.

We fix an arbitrary a0 6= 0 and show that a0 has a neighborhood U such that the 5-jet
at a0 is not equivalent to the 5-jet in the same family at a if a ∈ U r {a0}. This will
imply that a is a module.

Assume the contrary, i.e., there is a number a arbitrarily close to a0 and such that the
corresponding 5-jets are symplectically equivalent. We consider a symplectomorphism
and right changes realizing this equivalence. The linear partA of this symplectomorphism
at the origin is also a symplectomorphism and also brings the 5-jet to the required form. It
follows that A takes the vectors v1 and v2 to vectors proportional to them. Consequently,
the subspace spanned by the vectors (1, 0; 0, 0) and (0, 0; 1, 0) is invariant with respect to
A. Therefore, its skew-orthogonal complement is also invariant with respect to A. This
implies that, in the coordinates, A has the form Q1 = αq1, P1 = p1/α. (We are not
interested in the form of the other coordinates.) We still have a right transformation of
Csing. Its 2-jet is of the form t = kT , because otherwise there arises a monomial in p1

proportional to t4. Then we have conditions on α and k:

αk4 =
k3

α
= 1, aαk5 = a0.

The first two relations imply that α = k3 and k7=1, whence a0/a = k8 = k. Conse-
quently, if a is sufficiently close to a0, then k = 1 and a = a0. A contradiction. �
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9.2. Now suppose that our multigerm F consists of two singular components.

Lemma 23. A multigerm F consisting of two components of multiplicity 2 is not simple.

Proof. Without loss of generality, we may assume that ω(v1,v2) 6= 0. Then we bring the
2-jet of F to the form

((t21, 0, . . . , 0; 0, . . . , 0), (0, . . . , 0; t22, 0, . . . , 0)).

In the general case, the restrictions of ω to the tangent spaces of the components of
F are nonzero, which means that in the general case the projection of the 3-jet to the
(q1, p1)-plane has the form ((t21; t31), (at32, t22)). After that, we argue as in the proof of
Lemma 22. �

§10. Multigerms consisting of three nonsingular components

10.1. Suppose that

(10.1) F = (C1, C2, C3) ∼
RL

((t, 0, 0), (0, t, 0), (0, 0, t)).

Lemma 24. Suppose that the value of ω at the tangent vectors of some two components
is nonzero. Then F is symplectically equivalent to a multigerm on the following list:

1. ((t, 0; 0, 0), (0, 0; t, 0), (t, t; t, 0)), 2. ((t, 0; 0, 0), (0, 0; t, 0), (t, t; 0, 0)),

3. ((t, 0; 0, 0), (0, 0; t, 0), (0, t; 0, 0)).

Proof. There is no loss of generality in assuming that the components mentioned in the
statement are C1 and C2. Then a symplectic transformation brings them to the form

C1 = (q1 = t, q>1 = p = 0), C2 = (p1 = t, q = p>1 = 0).

We project F to the subspace (q2, . . . , qn; p2, . . . , pn). The components C1 and C2
are projected to zero, and the projection of C3 is RL-equivalent to (t, 0, . . . , 0). The
Darboux–Givental theorem yields C3 = (q2 = t, q>2 = p>1 = 0).

Let vi denote the tangent vector of Ci at the origin. Three cases are possible:
1. ω(v1,v3) 6= 0 and ω(v2,v3) 6= 0;
2. ω(v1,v3) = 0 and ω(v2,v3) 6= 0;
3. ω(v1,v3) = ω(v2,v3) = 0.
We do not consider case 1 because after renumbering the components it reduces to

case 2. The above implies that we can obtain

F = ((t, 0; 0, 0), (0, 0; t, 0), (ε1t+ f(t), t; ε2t+ g(t), 0)), f, g = o(t), ε1,2 ∈ {0, 1}.
Here, case 1 corresponds to ε1 = ε2 = 1, case 2 corresponds to ε1 = 1 and ε2 = 0,

and case 3 corresponds to ε1 = ε2 = 0. After the change (2.4) with S(q1, q2) = q1g(q2),
the coordinate p1 of C3 will be equal to ε2t, and the coordinate p2 will change somehow,
but we can compensate this by the change (2.4) with S = S(q2). In order to bring q1 to
the required form, we transpose the coordinates q1 and p1 and change the sign of one of
them. After that, we apply the arguments that were used for bringing p1 to the required
form, and then transpose the same coordinates once again and change the sign of one of
them. �

Lemma 25. Suppose that the value of ω at any pair of the tangent vectors of the com-
ponents of the multigerm (10.1) is zero. Then

F ∼
Sp

((t, 0, 0; 0, 0, 0), (0, t, 0; 0, 0, 0), (0, 0, t; 0, 0, 0)).
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Proof. Lemma 11 allows us to assume that C1 = (t, 0; 0, 0) and C2 = (0, t; 0, 0). Then we
bring the 1-jet of C3 to the form

(q3 = t, q6=3 = p = 0).

We project F to the subspace (q3, . . . , qn; p3, . . . , pn). The components C1 and C2 are
projected to zero, and C3 is projected to a regular curve. By the Darboux–Givental
theorem, a symplectic transformation brings this projection to the form (q3 = t, q>3 =
p>2 = 0). Thus, the problem is reduced to the 6-dimensional case. Now we project F to
the 3-dimensional subspace (q1, q2, q3). A diffeomorphism Φ of this subspace brings the
projection to the form (10.1). Φ induces a symplectomorphism of Cn linear in p. Thus,
we have C3 = (0, 0, t; f(t), g(t), h(t)), where f, g, h = o(t). We apply the change (2.4)
with

S(q1, q2, q3) = q1f(q3) + q2g(q3) +
∫ q3

0

h(x)dx.

It is easily seen that this change preserves C1 and C2 and brings C3 to the required
form. �

10.2. Now suppose that

(10.2) F ∼
RL

((t, 0), (0, t), (t, t)).

Lemma 26. Suppose that the restriction of ω to the tangent space of the multigerm (10.2)
is nonzero. Then

F ∼
Sp

((q1 = t, q>1 = p = 0), (p1 = t, q = p>1 = 0), (q1 = p1 = t, q>2 = p>2 = 0)).

Proof. The proof is similar to that of Lemma 10. �

Lemma 27. If the restriction of ω to the tangent space of the multigerm (10.2) is zero,
then F is not symplectically simple.

Proof. In the general case, we easily bring the 2-jet of F to the form

((t, 0; 0, 0), (0, t; 0, 0), (t, t; at2, bt2)).

We assume that a 6= 0. Then, performing simple linear transformations, we can put
a = 1. Consider a 1-parameter family of 2-jets of multigerms (b is a parameter in this
family). We easily see that if b 6= 0, then the tangent space of the orbit of F does not
contain the tangent vector of the family, i.e., the vector ((0, 0; 0, 0), (0, 0; 0, 0), (0, 0; 0, t2)).
This implies that F is not simple. �

10.3. Now suppose that F is RL-equivalent to one of the following two multigerms:

((t, 0, 0), (0, t, 0), (t, 0, ta)),(10.3)

((t, 0), (0, t), (t, ta)).(10.4)

Lemma 27 implies that the restriction of ω to the tangent space of the first two compo-
nents is nonzero. (Otherwise, F adjoins the multigerm of Lemma 27 and, consequently,
is not simple.)

Lemma 28. Suppose that the restriction of ω to the tangent space of the multigerm (10.4)
is nonzero. Then F ∼

Sp
((t; 0), (0; t), (t; ta)).

Proof. The proof is similar to that of Lemma 10. �
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Lemma 29. Suppose that the restriction of ω to the tangent space of the first two com-
ponents of the multigerm (10.3) is nonzero, and, furthermore, that the restriction of ω to
the tangent space of the first and third components of F is nonzero. Then

F ∼
Sp

((t, 0; 0, 0), (0, t; t, 0), (t, 0; ta, 0)).

Remark. It is easy to check that the given normal form is equivalent to

((t, 0; 0, 0), (0, 0; t, 0), (t, ta; ta, 0)).

Proof. By Lemma 12, we can simultaneously bring the first and the third component to
the form

C1 = (q1 = t, q>1 = p = 0), C3 = (q1 = t, p1 = ta, q>1 = p>1 = 0).

We project our multigerm (10.3) to the (q1, p1)-plane. The projection is RL-equivalent
to (10.4), because ω(v1,v2) 6= 0 by assumption. Therefore, by Lemma 28, a symplectic
transformation brings this projection to the form ((t; 0), (0; t), (t; ta)). Now we project
F to the subspace (q2, . . . , qn; p2, . . . , pn). The projections of C1 and C3 are zero, while
the projection of C2 is a regular curve. (Otherwise, as it follows from [8], we would have
F ∼

RL
(10.4).) Consequently, we can use the Darboux–Givental theorem to bring the

projection of C3 to the form (q2 = t, q>2 = p = 0). All together, this means that a
symplectic transformation and a right change yield

F = ((t, 0; 0, 0), (0, t; t+ f(t), 0), (t, 0; ta, 0)), f(t) = o(t).

Finally, the change (2.4) with S(q1, q2) = f(q2)q1 obviously does not affect C1 and C3
and brings C2 to the required form. �

Now suppose that the restriction of ω to the tangent space of the first and third
components of the multigerm (10.3) is zero.

Lemma 30. Suppose that the restriction of ω to the tangent space of the first two com-
ponents of the multigerm (10.3) is nonzero, and, furthermore, that the restriction of ω
to the tangent space of C1 and C3 is zero. Then F is symplectically equivalent to a
multigerm on the following list:

(1) ((q1 = t, q>1 = p = 0), (p1 = t, p>1 = q = 0), (q1 = t, q2 = ta, q>2 = p = 0));
(2) ((q1 = t, q>1 = p = 0), (p1 = t, p>1 = q = 0), (q1 = t, q2 = ta, p1 = tb, q>2 =

p>1 = 0)), and a < b < 3a− 1.

Proof. By Lemma 10, we may assume that

C1 = (q1 = t, q>2 = p = 0), C2 = (p1 = t, p>2 = q = 0).

Then, obviously, we can bring the a-jet of C3 to the form (q1 = t, q2 = ta, q>2 = p = 0).
We project F to the q-subspace along the p-subspace. A diffeomorphism Φ of the q-
subspace brings the projections of C1 and C3 to the form ((q1 = t, q>1 = 0), (q1 = t,
q2 = ta, q>2 = 0)), and the 1-jet of Φ at the origin is the identity transformation.
Then Φ induces a symplectomorphism of Cn, also with the identity 1-jet at the origin.
Consequently, the symplectomorphism constructed preserves C2. The further argument
repeats the proof of Lemma 13. (The changes used there are easily seen to preserve
C2.) �



CLASSIFICATION OF SIMPLE MULTIGERMS OF CURVES 125

§11. About other multigerms with at least three components

Lemma 31. If a multigerm F consists of two nonsingular components and one singular
component, then F is not symplectically simple.

Proof. From the viewpoint of RL-equivalence, in this situation the multigerm

((t, 0, 0, 0), (0, t, 0, 0), (0, 0, t2, t3))

is generic. In the generic case, the tangent vectors of the nonsingular components at the
origin are not skew-orthogonal, and the tangent vector of the singular component also is
not skew-orthogonal to the tangent vectors of the nonsingular components. This means
that we can bring the nonsingular components to the form ((t, 0; 0, 0), (0, 0; t, 0)), and we
can bring the 2-jet of the singular component to the form (t2, t2; t2, 0). In the generic
case, the 3-jet of the singular component is equivalent to (q1 = t2, p1 = t2 + at3). (We
are not interested in the form of the other coordinates.) As in the proof of Lemma 23,
we show that the parameter a is a module. �

Lemma 32. If a multigerm F contains at least four nonsingular components, then F is
not symplectically simple.

Proof. In the generic case, we may assume that the first two components have the form

((q1 = t, q>1 = p = 0), (p1 = t, p>1 = q = 0)).

Again in the generic case, the tangent vectors of the other components are not skew-
orthogonal to the tangent vectors of the first two components. This implies that we can
bring the 1-jet of F to the following form (we indicate only q1 and p1 because we are not
interested in the form of the other coordinates):

((q1 = t; p1 = 0), (q1 = 0; p1 = t), (q1 = t1; p1 = t1), (q1 = t2; p1 = at2)).

Now it remains to observe that, in the plane, four lines through the origin have a
continuous invariant: the cross-ratio. �

If F ∼
RL

((t, 0, 0), (t, t2, 0), (t, 0, t2)), then F is not symplectically simple because F
adjoins the multigerm from Lemma 27. This (and also [8]) implies that there exist no
other symplectically simple multigerms.
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