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EXPONENTIAL GROWTH OF SPACES
WITHOUT CONJUGATE POINTS

N. D. LEBEDEVA

§1. INTRODUCTION

An n-dimensional polyhedral space is a length space 91 (with intrinsic metric) trian-
gulated into n-simplexes with smooth Riemannian metrics. In the definitions below, we
assume that the triangulation is fixed.

The boundary of 9 is the union of the (n — 1)-simplexes of the triangulation that are
adjacent to only one (n — 1)-simplex.

As usual, a geodesic in 91 is a naturally parametrized locally shortest curve defined
on an interval. We say that 9 has no conjugate points if any two points in the universal
covering space 2 of M are joined by a unique geodesic. .

We say that the volume entropy of 9 is positive if the volume of metric balls in 91
has at least exponential growth.

Now, we state the main result of this paper.

Theorem 1. Let MM be an n-dimensional compact polyhedral space without boundary
and without conjugate points. If the triangulation of M contains three n-simplexes with
a common (n — 1)-face, then the volume entropy of M is positive.

Corollary 1. Under the assumptions of Theorem 1, the fundamental group 71 (9) of M
has at least exponential growth.

§2. GEODESICS IN I: G, SO, ETC.

A geodesic in M is complete if it is defined on the entire real line R. A geodesic is
generic if it intersects no (n — 2)-simplexes and intersects (n — 1)-simplexes transversally.
We denote by G the set of complete generic geodesics in 9t and consider the geodesic
flow transformation (GFT)

ot G—= G, ory(s)=~(t+s).

We observe that a generic geodesic v : [a,b] — 9 with (b) ¢ M" ! is uniquely
continued beyond b. If v(b) belongs to a common (n—1)-face F of n-simplexes Ay, ..., Ay,
then + is continued beyond b in [ — 1 different ways (uniquely into each of the remaining
[ — 1 simplexes by the rule “the angle of incidence is equal to the angle of reflection”).

The tangent space T,9M of M at a point = € M is the tangent cone of M at z. If
z € M\ M1 then T, is isometric to R™.
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If = belongs to an (n — 1)-simplex F' that is a common (n — 1)-face of n-simplexes
Aq,..., Ay, then T, 9 is the union of the half-spaces T,A; with common boundary
hyperplane T, F. We say that the vectors in T, A; \ T, F go in the direction of A;.

For each unit vector e € T, M\ T, F, there exists a geodesic v with 4/(0) = e. Observe
that if we “glue together” two geodesic segments with initial velocity vectors making an
angle of 7, then we obtain a geodesic segment.

In what follows, we consider only tangent vectors at points in 0%\ 9"~ 2. For z € 9N,
we let S, C T,97 be the set of unit tangent vectors in T, 9. For any set K C I, we
define SK := (J, ¢ ¢ Sz Thus, S is the space of all unit tangent vectors of 9.

§3. THE LIOUVILLE MEASURE pf,

Let 90t be a polyhedral space. A canonical measure py, on the space SO is defined
in a standard way as the product of two measures: the Riemannian volume on 9t and
Lebesgue measure A, on the unit (n — 1)-sphere S,, z € 9. This measure is called
Liouville measure.

Let A ={v : [a,b] — M} be a set of generic geodesics. We define

A't):={y(t) |ye A} C S, t € [a,b]
The multiset AT(t) is the pair (A'(t),141()), where
1AT(t) : Si)ﬁ — {0} U N
is the “indicator function” acting by the rule
e—#{ye Al (t)=e}.
The measure pp(AT(t)) of AT(t) is the integral of 141

pr(AT(t)) ZZ/ Latydpr.
Son

If for any two geodesics 71,72 € A we have v} (t) # v4(t), then At(¢) may be regarded
as the usual set A’(t), and 14+(y is the usual indicator function of A’(t) (equal to 1 on
A’(t) and vanishing outside A’(t)): 14t = La/(r). Obviously, in this case, we have

nr(AT(t) = pr(A'(t).

We say that two generic geodesics defined on the segment [a, b] have one combinatorial
type if they traverse the simplexes in the same succession. (In particular, they pass the
branchings in the same way.)

Claim. Let A = {v : [a,b] — M} be a set of generic geodesics of one combinatorial
type. Then

(3.1) pr(A'(a)) = pr(A' (b)),
i.e., the “transformation of the geodesic flow along A” preserves Liouville measure.

To see this, it suffices to prove that Liouville measure is preserved in a neighborhood
of a point of any (n — 1)-simplex adjacent exactly to two n-simplexes. We give a precise
statement.

Lemma 1. Let F be a common (n — 1)-face of two n-simplexes Ay and Ag. Let U C
A1UA, be an open ball with center in F, and let B ={v : [0,c] — U} be a set of generic
geodesics. Then

pr(B'(0)) = pr(B'(c)).
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Proof. The set B is a countable union of sets By such that each geodesic in By, intersects
F at an angle greater than 1/k. It suffices to prove that ur, (B, (0)) = ur(Bj,(c)) for each
k. Therefore, we may assume that each geodesic in B intersects F' once.

Let dx be the volume element on F. We consider the measure ur on SF with the
density

durp(v) = |cosa(v)|dA; (v)dz,
where a(v) is the angle between v and the normal to F' (see [1I] and [4] Chapter 6]). For
C C SF, up(C) is equal to the flux across C of the vector field generating the geodesic
flow on U.

Let ¢, be the value of the parameter for which v € B intersects F: {t,} = v~ *(F).
The mapping

B,(O) — SF x [0,¢], 7,(0) = ('y,(t—y),t—y),
determines coordinates (v,t) on B'(0).

Since the Liouville measure py, is preserved within one simplex, the density of uy in
the coordinates (v,t) has the form dur(v,t) = dup(v)dt (see [4, Chapter 6]). Under
the passage from B’(0) to B’(c), the vector v € SF' changes to the opposite one, and
the parameter along the flow changes by a constant. Hence, the Liouville measure uj, is
preserved. O

Proposition 1. Let A = {v : [a,b] — M} be a set of generic geodesics. Then
(32) pr(Af(a) = pr(AT(b)).

Proof. 1) First, suppose that the geodesics in A have one combinatorial type. Then the
velocity vector at ¢ uniquely determines a geodesic in A, so that 14+ = 14/ for each
t € [a,b], whence

)
pr(Af(a)) = pr(A' (@) = (A (1) = pr(A(D)).
2) In the general case, A splits into countably many subsets Ay in each of which the
geodesics have one combinatorial type. For each k, we have

ne(Af(a) = pr (AL ().

Summing these relations, we obtain (3.2). O

§4. PROOF OF THEOREM 1

Let X be an (n — 1)-simplex that is a common hyperface of n-simplexes T1,..., Ty,
where d > 3.

Notation. Let v : (a,b) — 9 be a generic geodesic. Suppose that v passes from an
n-simplex A; to an n-simplex Ao and intersects their common (n — 1)-face at a point
v(¢), ¢ € (a,b). We define

’yg_(C) = ’y/(C) € T»Y(C)AQ C T.Y(C)Dﬁ and . (c) := ’7/(—0) S T’y(c)Al C TV(C)DR,

where 3(t) = y(—t).
A tangent vector v at a point of an (n — 1)-simplex F' is said to be almost orthogonal
to F if v makes an angle less than 7/10 with one of the normals of F.

We denote by (901, p) a universal cover of (I, p), where p is the lifting of the metric p.

Let Q C X be a (sufficiently small) region. We denote by € the preimage of Q in 9.

We recall that 91 is isometric to the quotient space E,DVT/ I', where T" is a subgroup of
the group of isometries of m isomorphic to 1 (M). We denote by My a fundamental
domain in 9.
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4.1. A special set. For convenience, we introduce a certain subset G, C G within
which all geodesics extend uniquely in both directions, except the branching on 2.

For this, we introduce the following structure. For each (n—1)-simplex F', we cyclically
order the n-simplexes adjacent to F. We say that a generic geodesic 7 is regular if for
every x € y~1(9M" 1) one of the following two conditions is fulfilled:

1) v(z) € Q, and the vector 7/ (z) is almost orthogonal to X;

2) the point y(x) belongs to a common (n — 1)-face F of n-simplexes Aq,...,A;, and

r}/f (J?) € T’Y(I)Ai7 ’er (J)) € T“/(I)A’H-l-

(As usual, we set Ajyq := Aq.)
We denote by Gycg the set of complete regular geodesics.

Remark 1. 1) For “almost every” unit tangent vector v € SO, each regular geodesic with
initial velocity vector v can be continued to a generic regular complete geodesic. (Cf. the
Appendix.)

2) The set Gyeg is GFT-invariant.

For V' C SO, we define
G(V):={y€G |7 (0) €V}, Gureg(V):={7€ Gz [7(0) €V}

4.2. A special measure on G,c,. In the Appendix it is proved that there is a measure
m on G such that Gyeg has full measure in G and the following properties 1)-3) are
fulfilled (an invariant measure on G satisfying property 2) is described in detail in [I]):

1) the measure m is GFT-invariant;

2) if V'.C SO is a measurable subset, then m(Gyeg(V)) = pr(V);

3)let j e {l,...,d}, and let ¥ = {v : (—o0,2,) — M} be a set of one-sided regular
geodesics such that for each v € ¥ we have y(z,) € Q, the vector 7’ (x,) is almost
orthogonal to X, and 7' (z,) € Ty Y;. Furthermore, we assume that none of the
geodesics in ¥ is a continuation of another geodesic. For i € {1,...,d}\ {j}, let ¥;
denote the set of continuations of all geodesics in W to the simplex T; and further, in all
possible ways, up to complete regular geodesics in Gy, i.e.,

U, = {’y S Greg : 7|(—oo,;c,y) ev & 'y;(xv) S TW(xW)Ti}.

Thus, ¥ := \U; ¥; is the set of all possible continuations of geodesics in ¥ to complete
geodesics in Greg. Then

m(¥;) = code{l,...d\{j}

4.3. Estimating the measure of a set of geodesms We denote by G the space of
complete generic geodesms vy:R— fm we denote by Greg the preimage of the set Gieg
in G, and we let 7 : Greg — Gireg be the projection map, which is a covering.

We say that a geodesic v in M is regular if v is a lifting of a regular geodesic.

Let m denote the lifting of the measure m to (/};e/g under the covering 7.

For a set A of regular generic geodesics in M that are defined on segments, we denote
by m(.A) the m-measure of the set of all possible continuations of the geodesics in A to
complete geodesics in é:e/g. If for v € A we have y(a) € My, then the projection of A
to the space of geodesics in 9 is injective, and the measure ji; (A'(a)) of the multiset
Af(a) is well defined as the measure of the projection. The following lemma relates the
measure m(A) of some set A of geodesics defined on a segment to fi; (A").
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Lemma 2. Letl € N, and let A= {v : [a,b] — ﬁ} be a set of regular generic geodesics
with initial points in a fundamental domain My. Suppose that for every v € A there exist
parameters t1(y) < -+ < t;(y) € (a,b) such that y(t;(v)) € Q for each i, and v_(t;(7))
is almost orthogonal to X and goes in the direction of T1. Then
~ fi(AT(a) _ i (AT()
< = .
(The identity fi (A (a)) = i, (AT (b)) was proved earlier.)

Proof. At a point ts(7y), the geodesic v € A passes to one of the simplices TQ, ce ..
With each geodesic 7 € A we associate a sequence {i1,...,4;} so that v passes to Tik
at the point ¢x(7y). Since the number of such sequences is finite, A splits into finitely
many subsets A; such that for each ¢ the geodesics in A; determine one and the same
sequence. O

Claim. The subsets A; satisfy the required inequality, namely,

_ fig,(Ai(a))
(%) m(A;) < ﬁ

for each i.
We denote by A; s the set consisting of all complete geodesics in (/};/g that are contin-

uations of the restrictions of the geodesics v € A; to the interval (a,ts(y)) (this interval
is specific for each geodesic v):

-Ai,s = {'Yl(a,ts(w)) S Greg}-

Since the initial points of the geodesics in A lie in My, it follows that the projection
mla : A — Gueg is an injective mapping, whence m(w(A)) = m(A). Therefore, by
property 3) of the measure m, where we put ¥; := A, ;11 and ¥ := A; 5, we have

m(A; s41) < %, s=1,...,1.

Property 2) of the measure m implies that
m(A;1) < fig (Aj(a)).
Combining the above [ + 1 inequalities, we obtain

_ py (Al(a
s < LA

Since m(A;) < m(A;;), we arrive at (x;).
Summing the inequalities (x;), i € N, we obtain

_ 1 ~
m(A) < @1y Z:ML(AQ(G»
Since A = |J; Ai, we have
D 1ua(e) < Lar@(e), ecSM
Integration over SO yields

i (Ai@) < i (Al(a),

which proves ().
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4.4. The set A. of often-branching geodesics. The next step of the proof is con-
struction of the set of sufficiently-often-branching geodesics, to which we apply Lemma 2.

We describe an auxiliary subset of Gyeg. Let © C SQ2 be the set of all unit tangent
vectors at points in € that go in the direction of Y; and are almost orthogonal to X.
We assume that the closure of 2 lies strictly inside X.

There exists dg > 0 such that for every e € © there exists a unique geodesic e : [0, do]
— M with v(0) = e, i.e., ye does not intersect the (n — 1)-simplexes on which branching
is possible. We define

go = {—74(t) | e € ©,0 < t < g} c SM

and set
Go = Greg(go)'

We have ur(go) # 0. Then property 2) of the measure m and Remark 2 imply
that m(Go) # 0. For v € Gyeg and k£ > 0, we let N, (k) be the number of connected
components of the set [0, k] N (v/) " (go), i.e., N,(k) is the number of comings of 5 into
Go under the action of the geodesic flow transformation within the time k.

The set gg is chosen so that the duration of the stay of a geodesic in the set Gy under
the action of the geodesic flow be at least dp. Then, by the definition of N, (k), we have

k
(1.1) N, (k)do > / 1, (947)ds.

Lemma 3. For any e > 0, there is a set A. C Gyeg and positive numbers N and 6 with
the following properties:

1) m(A.) #0;

2) diam(A:(0)) < e. (Here and below, we use the natural notation A.(0) := {v(0) |
v e A} CM, etc.);

3) Ny(k) > 0k for all k> N and all v € A..

Proof. We use a general result for measure spaces, the proof of which involves the ergodic
theorem. 0

Proposition 2. Suppose D is a space with a measure m and {T;} is a one-parametric
semigroup of measure-preserving transformations of D, where t takes nonnegative real
values and Toyy = Ts - Ty. Furthermore, suppose that

D x RZO — _D7 (x,t) — Tt({E)

is a measurable mapping.

Then for every set A C D of nonzero finite measure there is a set Dy C D of nonzero
measure such that for the points in Dg the average duration of the stay in A under the
action of the transformation T; during the time t is uniformly bounded away from zero
as t — oo. This means that there exist so > 0 and g9 > 0 such that for any x € Dy and

any s > sg we have

1 S
—/ 1A(Ttl‘)dt > €op.
S Jo
Proof. Let Avea(x) denote the average value of 1a on the trajectory of the geodesic flow
with initial value z: .
1
Avea(x) :== lim — [ 1a(Ts(x))ds.

t—oo 0

Applying the ergodic theorem, we obtain

/ Aven (z)dm(x) :/ 1a(x)dm(z) = m(A) > 0.
D D



EXPONENTIAL GROWTH OF SPACES 133

Consequently, there is €3 > 0 and a set Dy C D of nonzero measure such that Avea (z) >
g9 for each x € D;. Then there exist numbers sg > 0 and ¢g > 0 and a set Dy C D,
such that for all z € Dy and s > sg we have

1

—/ 1A (Tix)dt > €.
S5 Jo

O

Since the measure m is invariant under the geodesic flow on Gieg, and m(Gp) # 0,
we can apply Proposition 2 to the case where

(D7m7 A7Tt) = (Greg7 m, GO) Sot)

Thus, there is a set Ay C Gyeg 0f nonzero measure and positive numbers sy and gy such
that

1 /T
T/ 1g, (¢sv)ds > eo
0

for any v € Ap and any T > so. Applying inequality (4.1) and letting § = £¢/do
and N = sg, we see that N,(k) > 0k for each geodesic v € Ay and each k > N.
Moreover, passing if necessary to a subset of Ay of nonzero measure, we may assume
that diam(Ap(0)) < €. Lemma 3 is proved.

Proposition 3. If the volume entropy of M is zero, then for every € > 0 there are
two complete generic geodesics y1 and 2 in M and a number to > 1 with the following
properties:

1) p(711(0),72(0)) <e;

2) 1(to) = 12(to) € _

3) 1’ (to) = 72, (to), and the vector v/, (to) is almost orthogonal to X and goes in
the direction of Tj for some 5 € {1,...,d};

4) at the point to, the geodesics 1 and 2 pass to Tj from distinct n-simplexes adjacent
to X, i.e., 71 (to) # 72 (to)-

Proof. Applying Lemma 3, we obtain a set A, C Greg and numbers N and 0.

We fix a fundamental domain 2ty C M and a point zg € My. Let SB,(z) denote the
set of unit tangent vectors at the points of the ball B,.(x¢), and let A be the set of the

geodesics in (/“;; that are the liftings of the geodesics in A, with initial points in 9.
For k > N, we define

Ak = {'Y|[0,k] Ly € A}

Assertion 3) of Lemma 3 implies that N, (k) > 6k for v € A. We apply Lemma 2 to the
set Ay, letting [ := [0k] + 1. Lemma 3 and the inequality m(A) < m(Aj) show that

~ gt
. fir (Ag (k)
(4.2) m(A) < W.
We assume that diam 9y < 1. Then the function Lt (k) (v) vanishes outside SBj41(zo),
and (4.2) takes the form
1 . ~

(d—1)% /SBk+1(xo) 1A£(k) (V)dpig, > m(A).
We define

f(k) = max{lAL(k) (v) | v € SBpti(xo)}.
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Since the volume entropy of 9 is zero, we have I (SByy1(xo)) = o((d — 1)°F). Then

o((d — 1)%%) f(k ~
—(( (d—)l)‘s)’;f( )2m(A) =:¢>0,

whence

(43) Fr) > LU

o((d—1)%%)"

Estimate (4.3) implies the existence of k1 > N such that f(k1) > f(N) + 1. This
means that A contains f (k1) geodesics that are distinct on the interval (0, k1) and have
equal velocity vectors at k1. At least two of them are distinct on the interval (N, kq).
(Indeed, otherwise there were f(k1) geodesics that are distinct on the interval (0, N) and
have equal velocity vectors at N. This would mean that f(N) > f(k1), which contradicts
our choice of k;.) Consequently, these geodesics meet at a point ¢g € (N, k1]. These two
geodesics and the parameter t( satisfy all the requirements of the proposition. O

4.5. End of the proof of Theorem 1. Suppose that the volume entropy of the
universal cover I is zero. The remaining part of the proof proceeds in M. For short,
the distance function in 90 is denoted by |- -|. For a,b € 9, we denote by [a, b] a unique
geodesic segment joining a and b. Since M contains no conjugate points, the initial
velocity vector eq, of [a,b] depends continuously on a and b. Furthermore, since [a, b] is
a shortest curve, the length of [a, b] is equal to |ab|.

Applying Proposition 3 to a sufficiently small €, we obtain geodesics 71 and 72 and a
number t5. We define

¢ :=(to) = 72(to),
a = 71(0)7 b:= 72(0)a
d:=m(to+1/2) =2(to + 1/2).

In this notation, the geodesic segments [a, d] and [b, d] are the restrictions of the geodesics
~v1 and 2 to the interval [0,%o + 1/2]. We have |ab| < .

Our purpose is to join a and d by a polygonal line of length less than |ad|, which is a
contradiction. More precisely, we find a point f* € [a, b] such that |df*| is less than |da|
by a constant depending only on the geometry of . Now, we can make |af*| arbitrarily
less than this constant by taking e sufficiently small.

Consider geodesic segments [c, f], where f € [a,b]. The space S, is the union of
(n — 1)-hemispheres glued together along their common (n — 2)-sphere. By assertion 4)
of Proposition 3, the vectors e., and e lie in distinct (n—1)-hemispheres. By continuity,
there is f* € [a,b] such that eqp+ € Tf*fl, ie., ecs- is tangent to an (n — 1)-simplex.
There is e € [c, f*] such that |ce|] = 1/2. By compactness, there is a number ¢ > 0
depending only on 9 and Q and such that

|de| + |ce| — |de| > q.

In more detail, we consider the set 2 of triplets of points (z,y, z) belonging to Mty and
such that the following conditions 1)-3) are fulfilled:

1) z € Qand |zy| = |z2| = 1/2;

2) egy is almost orthogonal to )A(:;

3) e, is tangent to X.

The set 2 is compact. Therefore, the function |zy| + |zz| — |yz| attains a minimum,
which is positive because of the absence of conjugate points (since x ¢ [yz]).
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So, in Proposition 3 we put € := ¢/4. The inequality |dc| + |ce| — |de| > ¢ and the
triangle inequality for Adef* imply that

|df*| <ldc| + |ef*[ —q.
By our choice of € in Proposition 3, we have |ab| < ¢/4, and |af*| < q/4 because f* € ab.
By the triangle inequality,
lef*| < lac| + L.
4
Adding the last two inequalities, we obtain
3
lac| + |dc| > |df*| + 79
Again by the triangle inequality,
q
df*| > |ad| — <.
4f*| > Jad| - 4
Adding the two inequalities obtained, we get
Jac| + |de| > |ad| + 3,

i.e., a, ¢, and d do not lie on one shortest curve. Therefore, v, is not a geodesic, a
contradiction. Theorem 1 is proved.

§5. APPENDIX

5.1. Notation. Two tangent vectors at one point are opposite if they make an angle of
.
o
We set "1 .= on—1\ on—2,
Let A(9) C SO denote the set of all unit vectors tangent to 9 strictly inside the
(n — 1)-faces and transversal to these faces, and let D C A(901) x A(9) be the set of all
pairs of opposite vectors.

5.2. Definitions. 1) A measurable function
p: D —[0,1]

is called a transition probability function if it possesses the following property: if v; € A
is a tangent vector at a point of an (n — 1)-face to which m faces of dimension n are
adjacent, and vo, ..., v,, are all the vectors opposite to the vector v, then

p(v1,v2) 4+ -+ p(v1,vm) = 1 = plvg,v1) + - + p(vm, v1).

2) We say that p is single-valued on a subset Dy C D C A x A if p(Dy) C {0, 1}.
3) We say that a geodesic v obeys p if for each point v(c¢) of transversal intersection
with an (n — 1)-face we have p(y' (c), v/ (c)) # 0.

Proposition 4. Let Dy C D be the subset consisting of all pairs of vectors such that
the angle that they make with the corresponding (n — 1)-faces is less than some positive
constant 0, and of all pairs of tangent vectors at the points lying in the T-neighborhood
of the (n — 2)-skeleton for some T > 0.

Suppose that p : D — [0,1] is a transition function single-valued on Dy.

Then the set of unit vectors v for which there exists a nongeneric geodesic with the

initial velocity vector v and obeying the transition function p has zero Liouville measure
in SON.
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This is similar to the corresponding fact of the theory of billiard dynamical systems,
and we do not present a complete proof here. To prove this fact it suffices to estimate
the measure of the e-neighborhood of the tangent vectors of (n — 1)-faces starting at the
points of (n — 2)-faces (this measure is O(g?)) and the duration of nongeneric geodesics
in this neighborhood (it is at least const - €).

Theorem 2. Let p be as in Proposition 4. Then there exists a measure m, on G with
the following properties:

1). The measure my, is GFT-invariant.

2). If V.C SO is a measurable subset, then m,(G(V)) = pr(V).

3). Let ¥ = {v : (—o0,zy) — M} be a set of one-sided geodesics none of which is
a continuation of another geodesic, where v(z,) € M1, Suppose that for each vector
v (xy) one opposite vector v (x~) is chosen. Furthermore, suppose that for all v € ¥
we have

p(Y.(24), 7} (x4)) = const = p'.
Then
mp(\II+) = p'mp (W) )

where Wy is the set of all possible continuations of the geodesics v € W to complete
generic geodesics that have the chosen velocity vectors !, (x~) at the points -, and ¥ is
the set of all possible continuations of the geodesics in W to complete generic geodesics.

Proof. Suppose that A C G is an open subset. We define
m,(4) = [ 1))
son

where h4 is the function with values in [0, 1] and defined yz-almost everywhere on S9N

[e]
as follows. Let v € S(9\ 9"~ 1) be a vector such that every complete geodesic y in 90
with 7/(0) = v and obeying the transition function p is generic. (See Proposition 4.) We
fix some lifting of v to 91, which we also denote by v, and consider the set Gy C G of
all generic geodesics with initial velocity vector v. The support (the union of the images
of geodesics) Ty of Gy is a tree with an oriented distinguished edge eq.

The function p (more precisely, a lifting of p to 91) is defined at the points of intersec-
tion of the geodesics in G with 9"~ 1. Therefore, for all paths in T} passing through eg
in the given direction there are probabilities p(w, w’) of the passage from an edge w C Ty
to the subsequent edge w’. For a path W = w;y - - - wy C T, containing e, let Py C Gy
be the set of all paths containing W. We define

m, (Pw) := p(wr, wz) - plwp—1, w).

The properties of p imply that m,, , is canonically extended to a probability measure on
the space Gy of paths in Ty ; this extension is also denoted by my, .

Every geodesic v € A with 7/(0) = v is lifted to T, canonically as one of the paths
described above. Let Ay, C Gy be the set of such liftings for all corresponding geodesics
in A. We set h4(v) = m, y(Ay).

We check the properties of the measure m,,.

1. Let t > 0, let A; and A; be two neighboring n-simplices, and let A be the set
of the geodesics v with y(0) € Ay and y(t) € Ay. We assume that the geodesics in A
intersect M™ ! once. If vy € A and v, := 7/(t), then h(vo) = h¥t4(v;). Now, since the
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Liouville measure is GFT-invariant, we obtain

[ wiwdu) = [ )
S

SA;

= / h‘PfA(vt)duL (Vi)
SA4

— [ h s o),
S

whence

my,(A) = my(prA).
In the general case, we prove the invariance of the measure m, by splitting A and the
parameter along the flow.

2. If V. SM, then hGV) is the indicator function of V. This implies property 2) of
the measure m,,.

3. We may assume that z, > 0 for all v € ¥. Fixing a vector v € S, we put
Uy := {¥NG({v}). The set ¥, splits into a countable number of subsets Wi such that
the point v(z,) and the vector v/ (z) are the same for the geodesics v € Wi For each
i, by the definition of the measure m,, ., we have

BT+ — p’h(‘l’i)'.

Since none of the geodesics in VU is a continuation of another geodesic, it follows that the
sets (P%)" are disjoint, whence

h\I/+ _ plh\P/ .
This implies property 3) of m,,. g

In order to apply this theorem in our case (see Subsection 4.2), it suffices to let the
function p be equal to 0, 1, and 1/(d — 1) at the corresponding points.
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