EXPONENTIAL GROWTH OF SPACES WITHOUT CONJUGATE POINTS

N. D. LEBEDEVA

§1. Introduction

An n-dimensional polyhedral space is a length space \mathfrak{M} (with intrinsic metric) triangulated into n-simplexes with smooth Riemannian metrics. In the definitions below, we assume that the triangulation is fixed.

The boundary of \mathfrak{M} is the union of the (n-1)-simplexes of the triangulation that are adjacent to only one (n-1)-simplex.

As usual, a *geodesic* in \mathfrak{M} is a naturally parametrized locally shortest curve defined on an interval. We say that \mathfrak{M} has no conjugate points if any two points in the universal covering space $\widetilde{\mathfrak{M}}$ of \mathfrak{M} are joined by a unique geodesic.

We say that the volume entropy of $\widetilde{\mathfrak{M}}$ is positive if the volume of metric balls in $\widetilde{\mathfrak{M}}$ has at least exponential growth.

Now, we state the main result of this paper.

Theorem 1. Let \mathfrak{M} be an n-dimensional compact polyhedral space without boundary and without conjugate points. If the triangulation of \mathfrak{M} contains three n-simplexes with a common (n-1)-face, then the volume entropy of $\widetilde{\mathfrak{M}}$ is positive.

Corollary 1. Under the assumptions of Theorem 1, the fundamental group $\pi_1(\mathfrak{M})$ of \mathfrak{M} has at least exponential growth.

$\S 2$. Geodesics in \mathfrak{M} : \mathbf{G} , $\mathbb{S}\mathfrak{M}$, etc.

A geodesic in \mathfrak{M} is *complete* if it is defined on the entire real line \mathbb{R} . A geodesic is generic if it intersects no (n-2)-simplexes and intersects (n-1)-simplexes transversally. We denote by \mathbf{G} the set of complete generic geodesics in \mathfrak{M} and consider the geodesic flow transformation (GFT)

$$\varphi_t: \mathbf{G} \to \mathbf{G}, \quad \varphi_t \gamma(s) = \gamma(t+s).$$

We observe that a generic geodesic $\gamma:[a,b]\to\mathfrak{M}$ with $\gamma(b)\notin\mathfrak{M}^{n-1}$ is uniquely continued beyond b. If $\gamma(b)$ belongs to a common (n-1)-face F of n-simplexes Δ_1,\ldots,Δ_l , then γ is continued beyond b in l-1 different ways (uniquely into each of the remaining l-1 simplexes by the rule "the angle of incidence is equal to the angle of reflection").

The tangent space $T_x\mathfrak{M}$ of \mathfrak{M} at a point $x \in \mathfrak{M}$ is the tangent cone of \mathfrak{M} at x. If $x \in \mathfrak{M} \setminus \mathfrak{M}^{n-1}$, then $T_x\mathfrak{M}$ is isometric to \mathbb{R}^n .

²⁰⁰⁰ Mathematics Subject Classification. Primary 52B70.

 $[\]it Key\ words\ and\ phrases.$ Polyhedral space, volume entropy, conjugate points.

Partially supported by RFBR (grants nos. 02-01-00090 and 00-15-96024) and by CRDF (grant no. RM1-2381-ST-02).

If x belongs to an (n-1)-simplex F that is a common (n-1)-face of n-simplexes $\Delta_1, \ldots, \Delta_l$, then $T_x\mathfrak{M}$ is the union of the half-spaces $T_x\Delta_i$ with common boundary hyperplane T_xF . We say that the vectors in $T_x\Delta_i \setminus T_xF$ go in the direction of Δ_i .

For each unit vector $\mathbf{e} \in T_x \mathfrak{M} \setminus T_x F$, there exists a geodesic γ with $\gamma'(0) = \mathbf{e}$. Observe that if we "glue together" two geodesic segments with initial velocity vectors making an angle of π , then we obtain a geodesic segment.

In what follows, we consider only tangent vectors at points in $\mathfrak{M} \setminus \mathfrak{M}^{n-2}$. For $x \in \mathfrak{M}$, we let $\mathbb{S}_x \subset T_x\mathfrak{M}$ be the set of unit tangent vectors in $T_x\mathfrak{M}$. For any set $K \subset \mathfrak{M}$, we define $\mathbb{S}K := \bigcup_{x \in K} \mathbb{S}_x$. Thus, $\mathbb{S}\mathfrak{M}$ is the space of all unit tangent vectors of \mathfrak{M} .

§3. The Liouville measure μ_L

Let \mathfrak{M} be a polyhedral space. A canonical measure μ_L on the space $\mathfrak{S}\mathfrak{M}$ is defined in a standard way as the product of two measures: the Riemannian volume on \mathfrak{M} and Lebesgue measure λ_x on the unit (n-1)-sphere \mathbb{S}_x , $x \in \mathfrak{M}$. This measure is called Liouville measure.

Let $A = \{ \gamma : [a, b] \to \mathfrak{M} \}$ be a set of generic geodesics. We define

$$A'(t) := \{ \gamma'(t) \mid \gamma \in A \} \subset \mathbb{S}\mathfrak{M}, \quad t \in [a, b].$$

The multiset $A^{\dagger}(t)$ is the pair $(A'(t), \mathbf{1}_{A^{\dagger}(t)})$, where

$$\mathbf{1}_{A^{\dagger}(t)}: \mathbb{S}\mathfrak{M} \to \{0\} \cup \mathbb{N}$$

is the "indicator function" acting by the rule

$$\mathbf{e} \mapsto \#\{\gamma \in A \mid \gamma'(t) = \mathbf{e}\}.$$

The measure $\mu_L(A^{\dagger}(t))$ of $A^{\dagger}(t)$ is the integral of $\mathbf{1}_{A^{\dagger}(t)}$:

$$\mu_L(A^{\dagger}(t)) := \int_{\mathbb{S}\mathfrak{M}} \mathbf{1}_{A^{\dagger}(t)} d\mu_L.$$

If for any two geodesics $\gamma_1, \gamma_2 \in A$ we have $\gamma_1'(t) \neq \gamma_2'(t)$, then $A^{\dagger}(t)$ may be regarded as the usual set A'(t), and $\mathbf{1}_{A^{\dagger}(t)}$ is the usual indicator function of A'(t) (equal to 1 on A'(t) and vanishing outside A'(t)): $\mathbf{1}_{A^{\dagger}(t)} = \mathbf{1}_{A'(t)}$. Obviously, in this case, we have

$$\mu_L(A^{\dagger}(t)) = \mu_L(A'(t)).$$

We say that two generic geodesics defined on the segment [a, b] have one combinatorial type if they traverse the simplexes in the same succession. (In particular, they pass the branchings in the same way.)

Claim. Let $A = \{\gamma : [a,b] \to \mathfrak{M}\}$ be a set of generic geodesics of one combinatorial type. Then

(3.1)
$$\mu_L(A'(a)) = \mu_L(A'(b)),$$

i.e., the "transformation of the geodesic flow along A" preserves Liouville measure.

To see this, it suffices to prove that Liouville measure is preserved in a neighborhood of a point of any (n-1)-simplex adjacent exactly to two n-simplexes. We give a precise statement.

Lemma 1. Let F be a common (n-1)-face of two n-simplexes Δ_1 and Δ_2 . Let $U \subset \Delta_1 \cup \Delta_2$ be an open ball with center in F, and let $B = \{\gamma : [0,c] \to U\}$ be a set of generic geodesics. Then

$$\mu_L(B'(0)) = \mu_L(B'(c)).$$

Proof. The set B is a countable union of sets B_k such that each geodesic in B_k intersects F at an angle greater than 1/k. It suffices to prove that $\mu_L(B'_k(0)) = \mu_L(B'_k(c))$ for each k. Therefore, we may assume that each geodesic in B intersects F once.

Let dx be the volume element on F. We consider the measure μ_F on $\mathbb{S}F$ with the density

$$d\mu_F(\mathbf{v}) = |\cos \alpha(\mathbf{v})| d\lambda_x(\mathbf{v}) dx,$$

where $\alpha(\mathbf{v})$ is the angle between \mathbf{v} and the normal to F (see [1] and [4, Chapter 6]). For $C \subset \mathbb{S}F$, $\mu_F(C)$ is equal to the flux across C of the vector field generating the geodesic flow on U.

Let t_{γ} be the value of the parameter for which $\gamma \in B$ intersects $F: \{t_{\gamma}\} = \gamma^{-1}(F)$. The mapping

$$B'(0) \to \mathbb{S}F \times [0, c], \quad \gamma'(0) \mapsto (\gamma'(t_{\gamma}), t_{\gamma}),$$

determines coordinates (\mathbf{v}, t) on B'(0).

Since the Liouville measure μ_L is preserved within one simplex, the density of μ_L in the coordinates (\mathbf{v},t) has the form $d\mu_L(\mathbf{v},t) = d\mu_F(\mathbf{v})dt$ (see [4, Chapter 6]). Under the passage from B'(0) to B'(c), the vector $\mathbf{v} \in \mathbb{S}F$ changes to the opposite one, and the parameter along the flow changes by a constant. Hence, the Liouville measure μ_L is preserved.

Proposition 1. Let $A = \{\gamma : [a,b] \to \mathfrak{M}\}$ be a set of generic geodesics. Then

(3.2)
$$\mu_L(A^{\dagger}(a)) = \mu_L(A^{\dagger}(b)).$$

Proof. 1) First, suppose that the geodesics in A have one combinatorial type. Then the velocity vector at t uniquely determines a geodesic in A, so that $\mathbf{1}_{A^{\dagger}(t)} = \mathbf{1}_{A'(t)}$ for each $t \in [a, b]$, whence

$$\mu_L(A^{\dagger}(a)) = \mu_L(A'(a)) \stackrel{(*)}{=} \mu_L(A'(b)) = \mu_L(A^{\dagger}(b)).$$

2) In the general case, A splits into countably many subsets A_k in each of which the geodesics have one combinatorial type. For each k, we have

$$\mu_L(A_k^{\dagger}(a)) = \mu_L(A_k^{\dagger}(b)).$$

Summing these relations, we obtain (3.2).

§4. Proof of Theorem 1

Let X be an (n-1)-simplex that is a common hyperface of n-simplexes $\Upsilon_1, \ldots, \Upsilon_d$, where $d \geq 3$.

Notation. Let $\gamma:(a,b)\to\mathfrak{M}$ be a generic geodesic. Suppose that γ passes from an n-simplex Δ_1 to an n-simplex Δ_2 and intersects their common (n-1)-face at a point $\gamma(c), c\in(a,b)$. We define

$$\gamma'_+(c) := \gamma'(c) \in T_{\gamma(c)}\Delta_2 \subset T_{\gamma(c)}\mathfrak{M} \quad \text{and} \quad \gamma'_-(c) := \bar{\gamma}'(-c) \in T_{\gamma(c)}\Delta_1 \subset T_{\gamma(c)}\mathfrak{M},$$
 where $\bar{\gamma}(t) = \gamma(-t)$.

A tangent vector \mathbf{v} at a point of an (n-1)-simplex F is said to be almost orthogonal to F if \mathbf{v} makes an angle less than $\pi/10$ with one of the normals of F.

We denote by $(\mathfrak{M}, \widetilde{\rho})$ a universal cover of (\mathfrak{M}, ρ) , where $\widetilde{\rho}$ is the lifting of the metric ρ . Let $\Omega \subset X$ be a (sufficiently small) region. We denote by $\widetilde{\Omega}$ the preimage of Ω in $\widetilde{\mathfrak{M}}$.

We recall that \mathfrak{M} is isometric to the quotient space \mathfrak{M}/Γ , where Γ is a subgroup of the group of isometries of $\widetilde{\mathfrak{M}}$ isomorphic to $\pi_1(\mathfrak{M})$. We denote by \mathfrak{M}_0 a fundamental domain in $\widetilde{\mathfrak{M}}$.

4.1. A special set. For convenience, we introduce a certain subset $G_{reg} \subset G$ within which all geodesics extend uniquely in both directions, except the branching on Ω .

For this, we introduce the following structure. For each (n-1)-simplex F, we cyclically order the n-simplexes adjacent to F. We say that a generic geodesic γ is regular if for every $x \in \gamma^{-1}(\mathfrak{M}^{n-1})$ one of the following two conditions is fulfilled:

- 1) $\gamma(x) \in \Omega$, and the vector $\gamma'_{-}(x)$ is almost orthogonal to X;
- 2) the point $\gamma(x)$ belongs to a common (n-1)-face F of n-simplexes $\Delta_1, \ldots, \Delta_l$, and

$$\gamma'_{-}(x) \in T_{\gamma(x)}\Delta_i, \quad \gamma'_{+}(x) \in T_{\gamma(x)}\Delta_{i+1}.$$

(As usual, we set $\Delta_{l+1} := \Delta_1$.)

We denote by G_{reg} the set of complete regular geodesics.

Remark 1. 1) For "almost every" unit tangent vector $v \in S\mathfrak{M}$, each regular geodesic with initial velocity vector v can be continued to a generic regular complete geodesic. (Cf. the Appendix.)

2) The set \mathbf{G}_{reg} is GFT-invariant.

For $V \subset \mathbb{SM}$, we define

$$\mathbf{G}(V) := \{ \gamma \in \mathbf{G} \mid \gamma'(0) \in V \}, \quad \mathbf{G}_{reg}(V) := \{ \gamma \in \mathbf{G}_{reg} \mid \gamma'(0) \in V \}.$$

- **4.2.** A special measure on G_{reg} . In the Appendix it is proved that there is a measure m on G such that G_{reg} has full measure in G and the following properties 1)–3) are fulfilled (an invariant measure on G satisfying property 2) is described in detail in [1]):
 - 1) the measure **m** is GFT-invariant;
 - 2) if $V \subset SM$ is a measurable subset, then $\mathbf{m}(\mathbf{G}_{reg}(V)) = \mu_L(V)$;
- 3) let $j \in \{1, \ldots, d\}$, and let $\Psi = \{\gamma : (-\infty, x_{\gamma}) \to \mathfrak{M}\}$ be a set of one-sided regular geodesics such that for each $\gamma \in \Psi$ we have $\gamma(x_{\gamma}) \in \Omega$, the vector $\gamma'_{-}(x_{\gamma})$ is almost orthogonal to X, and $\gamma'_{-}(x_{\gamma}) \in T_{\gamma(x_{\gamma})}\Upsilon_{j}$. Furthermore, we assume that none of the geodesics in Ψ is a continuation of another geodesic. For $i \in \{1, \ldots, d\} \setminus \{j\}$, let Ψ_{i} denote the set of continuations of all geodesics in Ψ to the simplex Υ_{i} and further, in all possible ways, up to complete regular geodesics in \mathbf{G}_{reg} , i.e.,

$$\Psi_i := \{ \gamma \in \mathbf{G}_{\text{reg}} : \gamma|_{(-\infty, x_\gamma)} \in \Psi \& \gamma'_+(x_\gamma) \in T_{\gamma(x_\gamma)} \Upsilon_i \}.$$

Thus, $\overline{\Psi} := \bigcup_i \Psi_i$ is the set of all possible continuations of geodesics in Ψ to complete geodesics in \mathbf{G}_{reg} . Then

$$\mathbf{m}(\Psi_i) = \frac{\mathbf{m}(\overline{\Psi})}{d-1}, \quad i \in \{1, \dots, d\} \setminus \{j\}.$$

4.3. Estimating the measure of a set of geodesics. We denote by $\widetilde{\mathbf{G}}$ the space of complete generic geodesics $\gamma: \mathbb{R} \to \widetilde{\mathfrak{M}}$, we denote by $\widetilde{\mathbf{G}}_{reg}$ the preimage of the set \mathbf{G}_{reg} in $\widetilde{\mathbf{G}}$, and we let $\pi: \widetilde{\mathbf{G}}_{reg} \to \mathbf{G}_{reg}$ be the projection map, which is a covering.

We say that a geodesic γ in $\widetilde{\mathfrak{M}}$ is regular if γ is a lifting of a regular geodesic.

Let $\widetilde{\mathbf{m}}$ denote the lifting of the measure \mathbf{m} to $\widetilde{\mathbf{G}}_{reg}$ under the covering π .

For a set \mathcal{A} of regular generic geodesics in \mathfrak{M} that are defined on segments, we denote by $\widetilde{\mathbf{m}}(\mathcal{A})$ the $\widetilde{\mathbf{m}}$ -measure of the set of all possible continuations of the geodesics in \mathcal{A} to complete geodesics in $\widetilde{\mathbf{G}}_{\text{reg}}$. If for $\gamma \in \mathcal{A}$ we have $\gamma(a) \in \mathfrak{M}_0$, then the projection of \mathcal{A} to the space of geodesics in \mathfrak{M} is injective, and the measure $\widetilde{\mu}_L(\mathcal{A}^{\dagger}(a))$ of the multiset $\mathcal{A}^{\dagger}(a)$ is well defined as the measure of the projection. The following lemma relates the measure $\widetilde{\mathbf{m}}(\mathcal{A})$ of some set \mathcal{A} of geodesics defined on a segment to $\widetilde{\mu}_L(\mathcal{A}^{\dagger})$.

Lemma 2. Let $l \in \mathbb{N}$, and let $\mathcal{A} = \{ \gamma : [a,b] \to \widetilde{\mathfrak{M}} \}$ be a set of regular generic geodesics with initial points in a fundamental domain \mathfrak{M}_0 . Suppose that for every $\gamma \in \mathcal{A}$ there exist parameters $t_1(\gamma) < \cdots < t_l(\gamma) \in (a,b)$ such that $\gamma(t_i(\gamma)) \in \widetilde{\Omega}$ for each i, and $\gamma'_-(t_i(\gamma))$ is almost orthogonal to \widetilde{X} and goes in the direction of $\widetilde{\Upsilon}_1$. Then

$$(*) \qquad \qquad \widetilde{\mathbf{m}}(\mathcal{A}) \leq \frac{\widetilde{\mu}_L(\mathcal{A}^\dagger(a))}{(d-1)^l} = \frac{\widetilde{\mu}_L(\mathcal{A}^\dagger(b))}{(d-1)^l}.$$

(The identity $\widetilde{\mu}_L(\mathcal{A}^{\dagger}(a)) = \widetilde{\mu}_L(\mathcal{A}^{\dagger}(b))$ was proved earlier.)

Proof. At a point $t_s(\gamma)$, the geodesic $\gamma \in \mathcal{A}$ passes to one of the simplices $\widetilde{\Upsilon}_2, \ldots, \widetilde{\Upsilon}_d$. With each geodesic $\gamma \in \mathcal{A}$ we associate a sequence $\{i_1, \ldots, i_l\}$ so that γ passes to $\widetilde{\Upsilon}_{i_k}$ at the point $t_k(\gamma)$. Since the number of such sequences is finite, \mathcal{A} splits into finitely many subsets \mathcal{A}_i such that for each i the geodesics in \mathcal{A}_i determine one and the same sequence.

Claim. The subsets A_i satisfy the required inequality, namely,

$$\widetilde{\mathbf{m}}(\mathcal{A}_i) \le \frac{\widetilde{\mu}_L(\mathcal{A}_i'(a))}{(d-1)^l}$$

for each i.

We denote by $\mathcal{A}_{i,s}$ the set consisting of all complete geodesics in \mathbf{G}_{reg} that are continuations of the restrictions of the geodesics $\gamma \in \mathcal{A}_i$ to the interval $(a, t_s(\gamma))$ (this interval is specific for each geodesic γ):

$$\mathcal{A}_{i,s} := \overline{\{\gamma|_{(a,t_s(\gamma))} : \gamma \in \widetilde{\mathbf{G}}_{\mathrm{reg}}\}}.$$

Since the initial points of the geodesics in \mathcal{A} lie in \mathfrak{M}_0 , it follows that the projection $\pi|_{\mathcal{A}}: \mathcal{A} \to \mathbf{G}_{reg}$ is an injective mapping, whence $\mathbf{m}(\pi(\mathcal{A})) = \widetilde{\mathbf{m}}(\mathcal{A})$. Therefore, by property 3) of the measure \mathbf{m} , where we put $\Psi_i := \mathcal{A}_{i,s+1}$ and $\overline{\Psi} := \mathcal{A}_{i,s}$, we have

$$\widetilde{\mathbf{m}}(\mathcal{A}_{i,s+1}) \leq \frac{\widetilde{\mathbf{m}}(\mathcal{A}_{i,s})}{d-1}, \quad s = 1, \dots, l.$$

Property 2) of the measure \mathbf{m} implies that

$$\widetilde{\mathbf{m}}(\mathcal{A}_{i,1}) \leq \widetilde{\mu}_L(\mathcal{A}'_i(a)).$$

Combining the above l+1 inequalities, we obtain

$$\widetilde{\mathbf{m}}(\mathcal{A}_{i,l}) \leq \frac{\widetilde{\mu}_L(\mathcal{A}'_i(a))}{(d-1)^l}.$$

Since $\widetilde{\mathbf{m}}(\mathcal{A}_i) \leq \widetilde{\mathbf{m}}(\mathcal{A}_{i,l})$, we arrive at $(*_i)$.

Summing the inequalities $(*_i)$, $i \in \mathbb{N}$, we obtain

$$\widetilde{\mathbf{m}}(\mathcal{A}) \leq \frac{1}{(d-1)^l} \sum_i \widetilde{\mu}_L(\mathcal{A}_i'(a)).$$

Since $\mathcal{A} = \bigcup_i \mathcal{A}_i$, we have

$$\sum_i \mathbf{1}_{\mathcal{A}_i'(a)}(\mathbf{e}) \leq \mathbf{1}_{\mathcal{A}^\dagger(a)}(\mathbf{e}), \quad \mathbf{e} \in \mathbb{S}\mathfrak{M}.$$

Integration over SM yields

$$\sum_i \widetilde{\mu}_L(\mathcal{A}_i'(a)) \leq \widetilde{\mu}_L(\mathcal{A}^\dagger(a)),$$

which proves (*).

4.4. The set A_{ε} of often-branching geodesics. The next step of the proof is construction of the set of sufficiently-often-branching geodesics, to which we apply Lemma 2.

We describe an auxiliary subset of \mathbf{G}_{reg} . Let $\Theta \subset \mathbb{S}\Omega$ be the set of all unit tangent vectors at points in Ω that go in the direction of Υ_1 and are almost orthogonal to X. We assume that the closure of Ω lies strictly inside X.

There exists $\delta_0 > 0$ such that for every $\mathbf{e} \in \Theta$ there exists a unique geodesic $\gamma_{\mathbf{e}} : [0, \delta_0] \to \mathfrak{M}$ with $\gamma(0) = \mathbf{e}$, i.e., $\gamma_{\mathbf{e}}$ does not intersect the (n-1)-simplexes on which branching is possible. We define

$$g_0 := \{ -\gamma'_{\mathbf{e}}(t) \mid \mathbf{e} \in \Theta, 0 < t < \delta_0 \} \subset \mathbb{S}\mathfrak{M}$$

and set

$$\mathbb{G}_0 := \mathbf{G}_{reg}(q_0).$$

We have $\mu_L(g_0) \neq 0$. Then property 2) of the measure **m** and Remark 2 imply that $\mathbf{m}(\mathbb{G}_0) \neq 0$. For $\gamma \in \mathbf{G}_{reg}$ and k > 0, we let $N_{\gamma}(k)$ be the number of connected components of the set $[0,k] \cap (\gamma')^{-1}(g_0)$, i.e., $N_{\gamma}(k)$ is the number of comings of γ into \mathbb{G}_0 under the action of the geodesic flow transformation within the time k.

The set g_0 is chosen so that the duration of the stay of a geodesic in the set \mathbb{G}_0 under the action of the geodesic flow be at least δ_0 . Then, by the definition of $N_{\gamma}(k)$, we have

$$(4.1) N_{\gamma}(k)\delta_0 \ge \int_0^k \mathbf{1}_{\mathbb{G}_0}(\varphi_s \gamma) ds.$$

Lemma 3. For any $\varepsilon > 0$, there is a set $A_{\varepsilon} \subset \mathbf{G}_{reg}$ and positive numbers N and δ with the following properties:

- 1) $\mathbf{m}(A_{\varepsilon}) \neq 0$;
- 2) diam $(A_{\varepsilon}(0)) < \varepsilon$. (Here and below, we use the natural notation $A_{\varepsilon}(0) := \{\gamma(0) \mid \gamma \in A_{\varepsilon}\} \subset \mathfrak{M}$, etc.);
 - 3) $N_{\gamma}(k) > \delta k$ for all k > N and all $\gamma \in A_{\varepsilon}$.

Proof. We use a general result for measure spaces, the proof of which involves the ergodic theorem. \Box

Proposition 2. Suppose D is a space with a measure m and $\{T_t\}$ is a one-parametric semigroup of measure-preserving transformations of D, where t takes nonnegative real values and $T_{s+t} = T_s \cdot T_t$. Furthermore, suppose that

$$D \times \mathbb{R}_{>0} \to D$$
, $(x,t) \mapsto T_t(x)$

 $is\ a\ measurable\ mapping.$

Then for every set $\Delta \subset D$ of nonzero finite measure there is a set $D_0 \subset D$ of nonzero measure such that for the points in D_0 the average duration of the stay in Δ under the action of the transformation T_t during the time t is uniformly bounded away from zero as $t \to \infty$. This means that there exist $s_0 > 0$ and $\varepsilon_0 > 0$ such that for any $x \in D_0$ and any $s > s_0$ we have

$$\frac{1}{s} \int_0^s \mathbf{1}_{\Delta}(T_t x) dt > \varepsilon_0.$$

Proof. Let $Ave_{\Delta}(x)$ denote the average value of $\mathbf{1}_{\Delta}$ on the trajectory of the geodesic flow with initial value x:

$$\operatorname{Ave}_{\Delta}(x) := \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \mathbf{1}_{\Delta}(T_{s}(x)) ds.$$

Applying the ergodic theorem, we obtain

$$\int_{D} \operatorname{Ave}_{\Delta}(x) dm(x) = \int_{D} \mathbf{1}_{\Delta}(x) dm(x) = m(\Delta) > 0.$$

Consequently, there is $\varepsilon_2 > 0$ and a set $D_1 \subset D$ of nonzero measure such that $\text{Ave}_{\Delta}(x) > \varepsilon_2$ for each $x \in D_1$. Then there exist numbers $s_0 > 0$ and $\varepsilon_0 > 0$ and a set $D_0 \subset D_1$ such that for all $x \in D_0$ and $s > s_0$ we have

$$\frac{1}{s} \int_0^s \mathbf{1}_{\Delta}(T_t x) dt > \varepsilon_0.$$

Since the measure **m** is invariant under the geodesic flow on \mathbf{G}_{reg} , and $\mathbf{m}(\mathbb{G}_0) \neq 0$, we can apply Proposition 2 to the case where

$$(D, m, \Delta, T_t) := (\mathbf{G}_{reg}, \mathbf{m}, \mathbb{G}_0, \varphi_t).$$

Thus, there is a set $A_0 \subset \mathbf{G}_{reg}$ of nonzero measure and positive numbers s_0 and ε_0 such that

$$\frac{1}{T} \int_0^T \mathbf{1}_{\mathbb{G}_0}(\varphi_s \gamma) ds > \varepsilon_0$$

for any $\gamma \in A_0$ and any $T > s_0$. Applying inequality (4.1) and letting $\delta = \varepsilon_0/\delta_0$ and $N = s_0$, we see that $N_{\gamma}(k) > \delta k$ for each geodesic $\gamma \in A_0$ and each k > N. Moreover, passing if necessary to a subset of A_0 of nonzero measure, we may assume that $\operatorname{diam}(A_0(0)) < \varepsilon$. Lemma 3 is proved.

Proposition 3. If the volume entropy of $\widetilde{\mathfrak{M}}$ is zero, then for every $\varepsilon > 0$ there are two complete generic geodesics γ_1 and γ_2 in $\widetilde{\mathfrak{M}}$ and a number $t_0 > 1$ with the following properties:

- 1) $\widetilde{\rho}(\gamma_1(0), \gamma_2(0)) < \varepsilon$;
- 2) $\gamma_1(t_0) = \gamma_2(t_0) \in \widetilde{\Omega}$;
- 3) $\gamma_{1+}(t_0) = \gamma_{2+}(t_0)$, and the vector $\gamma_{1+}(t_0)$ is almost orthogonal to \widetilde{X} and goes in the direction of $\widetilde{\Upsilon}_j$ for some $j \in \{1, \ldots, d\}$;
- 4) at the point t_0 , the geodesics γ_1 and γ_2 pass to $\widetilde{\Upsilon}_j$ from distinct n-simplexes adjacent to \widetilde{X} , i.e., $\gamma_1^-(t_0) \neq \gamma_2^-(t_0)$.

Proof. Applying Lemma 3, we obtain a set $A_{\varepsilon} \subset \mathbf{G}_{reg}$ and numbers N and δ .

We fix a fundamental domain $\mathfrak{M}_0 \subset \widetilde{\mathfrak{M}}$ and a point $x_0 \in \mathfrak{M}_0$. Let $\mathbb{S}B_r(x_0)$ denote the set of unit tangent vectors at the points of the ball $B_r(x_0)$, and let \mathcal{A} be the set of the geodesics in $\widetilde{\mathbf{G}}_{reg}$ that are the liftings of the geodesics in A_{ε} with initial points in \mathfrak{M}_0 .

For k > N, we define

$$\mathcal{A}_k := \{ \gamma |_{[0,k]} : \gamma \in \mathcal{A} \}.$$

Assertion 3) of Lemma 3 implies that $N_{\gamma}(k) \geq \delta k$ for $\gamma \in \mathcal{A}$. We apply Lemma 2 to the set \mathcal{A}_k , letting $l := [\delta k] + 1$. Lemma 3 and the inequality $\widetilde{\mathbf{m}}(\mathcal{A}) \leq \widetilde{\mathbf{m}}(\mathcal{A}_k)$ show that

(4.2)
$$\widetilde{\mathbf{m}}(\mathcal{A}) \le \frac{\widetilde{\mu}_L(\mathcal{A}_k^{\dagger}(k))}{(d-1)^{\delta k}}.$$

We assume that diam $\mathfrak{M}_0 < 1$. Then the function $\mathbf{1}_{\mathcal{A}_k^{\dagger}(k)}(\mathbf{v})$ vanishes outside $\mathbb{S}B_{k+1}(x_0)$, and (4.2) takes the form

$$\frac{1}{(d-1)^{\delta k}}\int_{\mathbb{S}B_{k+1}(x_0)}\mathbf{1}_{\mathcal{A}_k^{\dagger}(k)}(\mathbf{v})d\widetilde{\mu}_L\geq \widetilde{\mathbf{m}}(\mathcal{A}).$$

We define

$$f(k) := \max\{\mathbf{1}_{\mathcal{A}_{h}^{\dagger}(k)}(\mathbf{v}) \mid \mathbf{v} \in \mathbb{S}B_{k+1}(x_0)\}.$$

Since the volume entropy of $\widetilde{\mathfrak{M}}$ is zero, we have $\widetilde{\mu}_L(\mathbb{S}B_{k+1}(x_0)) = o((d-1)^{\delta k})$. Then

$$\frac{o((d-1)^{\delta k})f(k)}{(d-1)^{\delta k}} \ge \widetilde{\mathbf{m}}(\mathcal{A}) =: c > 0,$$

whence

$$(4.3) f(k) \ge c \frac{(d-1)^{\delta k}}{o((d-1)^{\delta k})}.$$

Estimate (4.3) implies the existence of $k_1 > N$ such that $f(k_1) \ge f(N) + 1$. This means that \mathcal{A} contains $f(k_1)$ geodesics that are distinct on the interval $(0, k_1)$ and have equal velocity vectors at k_1 . At least two of them are distinct on the interval (N, k_1) . (Indeed, otherwise there were $f(k_1)$ geodesics that are distinct on the interval (0, N) and have equal velocity vectors at N. This would mean that $f(N) \ge f(k_1)$, which contradicts our choice of k_1 .) Consequently, these geodesics meet at a point $t_0 \in (N, k_1]$. These two geodesics and the parameter t_0 satisfy all the requirements of the proposition.

4.5. End of the proof of Theorem 1. Suppose that the volume entropy of the universal cover $\widetilde{\mathfrak{M}}$ is zero. The remaining part of the proof proceeds in $\widetilde{\mathfrak{M}}$. For short, the distance function in $\widetilde{\mathfrak{M}}$ is denoted by $|\cdot\cdot|$. For $a,b\in\widetilde{\mathfrak{M}}$, we denote by [a,b] a unique geodesic segment joining a and b. Since $\widetilde{\mathfrak{M}}$ contains no conjugate points, the initial velocity vector \mathbf{e}_{ab} of [a,b] depends continuously on a and b. Furthermore, since [a,b] is a shortest curve, the length of [a,b] is equal to |ab|.

Applying Proposition 3 to a sufficiently small ε , we obtain geodesics γ_1 and γ_2 and a number t_0 . We define

$$\begin{aligned} c &:= \gamma_1(t_0) = \gamma_2(t_0), \\ a &:= \gamma_1(0), \quad b := \gamma_2(0), \\ d &:= \gamma_1(t_0 + 1/2) = \gamma_2(t_0 + 1/2). \end{aligned}$$

In this notation, the geodesic segments [a, d] and [b, d] are the restrictions of the geodesics γ_1 and γ_2 to the interval $[0, t_0 + 1/2]$. We have $|ab| < \varepsilon$.

Our purpose is to join a and d by a polygonal line of length less than |ad|, which is a contradiction. More precisely, we find a point $f^* \in [a,b]$ such that $|df^*|$ is less than |da| by a constant depending only on the geometry of \mathfrak{M} . Now, we can make $|af^*|$ arbitrarily less than this constant by taking ε sufficiently small.

Consider geodesic segments [c, f], where $f \in [a, b]$. The space \mathbb{S}_c is the union of (n-1)-hemispheres glued together along their common (n-2)-sphere. By assertion 4) of Proposition 3, the vectors \mathbf{e}_{ca} and \mathbf{e}_{cb} lie in distinct (n-1)-hemispheres. By continuity, there is $f^* \in [a, b]$ such that $\mathbf{e}_{cf^*} \in T_{f^*}\widetilde{\Omega}$, i.e., \mathbf{e}_{cf^*} is tangent to an (n-1)-simplex. There is $e \in [c, f^*]$ such that |ce| = 1/2. By compactness, there is a number q > 0 depending only on $\widetilde{\mathfrak{M}}$ and $\widetilde{\Omega}$ and such that

$$|dc| + |ce| - |de| > q.$$

In more detail, we consider the set \mathfrak{A} of triplets of points (x, y, z) belonging to \mathfrak{M}_0 and such that the following conditions 1)-3) are fulfilled:

- 1) $x \in \Omega$ and |xy| = |xz| = 1/2;
- 2) \mathbf{e}_{xy} is almost orthogonal to X;
- 3) \mathbf{e}_{xz} is tangent to X.

The set \mathfrak{A} is compact. Therefore, the function |xy| + |xz| - |yz| attains a minimum, which is positive because of the absence of conjugate points (since $x \notin [yz]$).

So, in Proposition 3 we put $\varepsilon := q/4$. The inequality |dc| + |ce| - |de| > q and the triangle inequality for $\triangle def^*$ imply that

$$|df^*| < |dc| + |cf^*| - q.$$

By our choice of ε in Proposition 3, we have |ab| < q/4, and $|af^*| < q/4$ because $f^* \in ab$. By the triangle inequality,

$$|cf^*| < |ac| + \frac{q}{4}.$$

Adding the last two inequalities, we obtain

$$|ac| + |dc| > |df^*| + \frac{3}{4}q.$$

Again by the triangle inequality,

$$|df^*| > |ad| - \frac{q}{4}.$$

Adding the two inequalities obtained, we get

$$|ac| + |dc| > |ad| + \frac{q}{2},$$

i.e., a, c, and d do not lie on one shortest curve. Therefore, γ_1 is not a geodesic, a contradiction. Theorem 1 is proved.

5.1. Notation. Two tangent vectors at one point are *opposite* if they make an angle of π .

We set $\mathfrak{M}^{n-1} := \mathfrak{M}^{n-1} \setminus \mathfrak{M}^{n-2}$.

Let $\Lambda(\mathfrak{M}) \subset \mathfrak{SM}$ denote the set of all unit vectors tangent to \mathfrak{M} strictly inside the (n-1)-faces and transversal to these faces, and let $D \subset \Lambda(\mathfrak{M}) \times \Lambda(\mathfrak{M})$ be the set of all pairs of opposite vectors.

5.2. Definitions. 1) A measurable function

$$p: D \to [0,1]$$

is called a transition probability function if it possesses the following property: if $v_1 \in \Lambda$ is a tangent vector at a point of an (n-1)-face to which m faces of dimension n are adjacent, and v_2, \ldots, v_m are all the vectors opposite to the vector v_1 , then

$$p(v_1, v_2) + \dots + p(v_1, v_m) = 1 = p(v_2, v_1) + \dots + p(v_m, v_1).$$

- 2) We say that p is single-valued on a subset $D_0 \subset D \subset \Lambda \times \Lambda$ if $p(D_0) \subset \{0,1\}$.
- 3) We say that a geodesic γ obeys p if for each point $\gamma(c)$ of transversal intersection with an (n-1)-face we have $p(\gamma'_{-}(c), \gamma'_{+}(c)) \neq 0$.

Proposition 4. Let $D_0 \subset D$ be the subset consisting of all pairs of vectors such that the angle that they make with the corresponding (n-1)-faces is less than some positive constant θ , and of all pairs of tangent vectors at the points lying in the τ -neighborhood of the (n-2)-skeleton for some $\tau > 0$.

Suppose that $p: D \to [0,1]$ is a transition function single-valued on D_0 .

Then the set of unit vectors v for which there exists a nongeneric geodesic with the initial velocity vector v and obeying the transition function p has zero Liouville measure in \mathbb{SM} .

This is similar to the corresponding fact of the theory of billiard dynamical systems, and we do not present a complete proof here. To prove this fact it suffices to estimate the measure of the ε -neighborhood of the tangent vectors of (n-1)-faces starting at the points of (n-2)-faces (this measure is $O(\varepsilon^2)$) and the duration of nongeneric geodesics in this neighborhood (it is at least const $\cdot \varepsilon$).

Theorem 2. Let p be as in Proposition 4. Then there exists a measure \mathbf{m}_p on \mathbf{G} with the following properties:

- 1). The measure \mathbf{m}_p is GFT-invariant.
- 2). If $V \subset SM$ is a measurable subset, then $\mathbf{m}_p(\mathbf{G}(V)) = \mu_L(V)$.
- 3). Let $\Psi = \{ \gamma : (-\infty, x_{\gamma}) \to \mathfrak{M} \}$ be a set of one-sided geodesics none of which is a continuation of another geodesic, where $\gamma(x_{\gamma}) \in \overset{\circ}{\mathfrak{M}}^{n-1}$. Suppose that for each vector $\gamma'_{-}(x_{\gamma})$ one opposite vector $\gamma'_{+}(x_{\gamma})$ is chosen. Furthermore, suppose that for all $\gamma \in \Psi$ we have

$$p(\gamma'_{-}(x_{\gamma}), \gamma'_{+}(x_{\gamma})) = \text{const} = p'.$$

Then

$$\mathbf{m}_p(\Psi_+) = p' \mathbf{m}_p\left(\overline{\Psi}\right),\,$$

where Ψ_+ is the set of all possible continuations of the geodesics $\gamma \in \Psi$ to complete generic geodesics that have the chosen velocity vectors $\gamma'_+(x_\gamma)$ at the points x_γ , and $\overline{\Psi}$ is the set of all possible continuations of the geodesics in Ψ to complete generic geodesics.

Proof. Suppose that $A \subset \mathbf{G}$ is an open subset. We define

$$\mathbf{m}_p(A) = \int_{\mathbb{S}\mathfrak{M}} h^A(\mathbf{v}) d\mu_L(\mathbf{v}),$$

where h^A is the function with values in [0,1] and defined μ_L -almost everywhere on \mathfrak{SM} as follows. Let $\mathbf{v} \in \mathbb{S}(\mathfrak{M} \setminus \mathfrak{M}^{n-1})$ be a vector such that every complete geodesic γ in \mathfrak{M} with $\gamma'(0) = \mathbf{v}$ and obeying the transition function p is generic. (See Proposition 4.) We fix some lifting of \mathbf{v} to $\widetilde{\mathfrak{M}}$, which we also denote by \mathbf{v} , and consider the set $\mathbf{G}_{\mathbf{v}} \subset \widetilde{\mathbf{G}}$ of all generic geodesics with initial velocity vector \mathbf{v} . The support (the union of the images of geodesics) $T_{\mathbf{v}}$ of $\mathbf{G}_{\mathbf{v}}$ is a tree with an oriented distinguished edge e_0 .

The function p (more precisely, a lifting of p to \mathfrak{M}) is defined at the points of intersection of the geodesics in $\mathbf{G}_{\mathbf{v}}$ with \mathfrak{M}^{n-1} . Therefore, for all paths in $T_{\mathbf{v}}$ passing through e_0 in the given direction there are probabilities p(w,w') of the passage from an edge $w \subset T_{\mathbf{v}}$ to the subsequent edge w'. For a path $W = w_1 \cdots w_k \subset T_{\mathbf{v}}$ containing e_0 , let $\mathfrak{P}_W \subset \mathbf{G}_{\mathbf{v}}$ be the set of all paths containing W. We define

$$\mathbf{m}_{p,\mathbf{v}}(\mathfrak{P}_W) := p(w_1, w_2) \cdots p(w_{k-1}, w_k).$$

The properties of p imply that $\mathbf{m}_{p,\mathbf{v}}$ is canonically extended to a probability measure on the space $\mathbf{G}_{\mathbf{v}}$ of paths in $T_{\mathbf{v}}$; this extension is also denoted by $\mathbf{m}_{p,\mathbf{v}}$.

Every geodesic $\gamma \in A$ with $\gamma'(0) = \mathbf{v}$ is lifted to $T_{\mathbf{v}}$ canonically as one of the paths described above. Let $A_{\mathbf{v}} \subset \mathbf{G}_{\mathbf{v}}$ be the set of such liftings for all corresponding geodesics in A. We set $h^A(\mathbf{v}) = \mathbf{m}_{p,\mathbf{v}}(A_{\mathbf{v}})$.

We check the properties of the measure \mathbf{m}_{p} .

1. Let t > 0, let Δ_1 and Δ_1 be two neighboring *n*-simplices, and let A be the set of the geodesics γ with $\gamma(0) \in \Delta_1$ and $\gamma(t) \in \Delta_2$. We assume that the geodesics in A intersect \mathfrak{M}^{n-1} once. If $\gamma \in A$ and $\mathbf{v}_t := \gamma'(t)$, then $h^A(\mathbf{v}_0) = h^{\varphi_t A}(\mathbf{v}_t)$. Now, since the

Liouville measure is GFT-invariant, we obtain

$$\int_{\mathbb{SM}} h^{A}(\mathbf{v}) d\mu_{L}(\mathbf{v}) = \int_{\mathbb{S}\Delta_{1}} h^{A}(\mathbf{v}) d\mu_{L}(\mathbf{v})$$
$$= \int_{\mathbb{S}\Delta_{2}} h^{\varphi_{t}A}(\mathbf{v}_{t}) d\mu_{L}(\mathbf{v}_{t})$$
$$= \int_{\mathbb{SM}} h^{\varphi_{t}A}(\mathbf{v}) d\mu_{L}(\mathbf{v}),$$

whence

$$\mathbf{m}_p(A) = \mathbf{m}_p(\varphi_t A).$$

In the general case, we prove the invariance of the measure \mathbf{m}_p by splitting A and the parameter along the flow.

- 2. If $V \subset \mathfrak{SM}$, then $h^{\mathbf{G}(V)}$ is the indicator function of V. This implies property 2) of the measure \mathbf{m}_p .
- 3. We may assume that $x_{\gamma} > 0$ for all $\gamma \in \Psi$. Fixing a vector $\mathbf{v} \in \mathbb{S}\mathfrak{M}$, we put $\Psi_{\mathbf{v}} := \{\Psi \cap \mathbf{G}(\{\mathbf{v}\})\}$. The set $\Psi_{\mathbf{v}}$ splits into a countable number of subsets $\Psi_{\mathbf{v}}^{i}$ such that the point $\gamma(x_{\gamma})$ and the vector $\gamma'_{+}(x_{\gamma})$ are the same for the geodesics $\gamma \in \Psi_{\mathbf{v}}^{i}$. For each i, by the definition of the measure $\mathbf{m}_{p,\mathbf{v}}$, we have

$$h^{(\Psi_{\mathbf{v}}^i)_+} = p' h^{(\Psi_{\mathbf{v}}^i)'}.$$

Since none of the geodesics in Ψ is a continuation of another geodesic, it follows that the sets $(\Psi_{\mathbf{v}}^i)'$ are disjoint, whence

$$h^{\Psi_+} = p' h^{\Psi'}$$
.

This implies property 3) of \mathbf{m}_{p} .

In order to apply this theorem in our case (see Subsection 4.2), it suffices to let the function p be equal to 0, 1, and 1/(d-1) at the corresponding points.

REFERENCES

- W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. No. 82 (1995), 169–209 (1996). MR 97i:53049
- [2] C. Croke, Volumes of balls in manifolds without conjugate points, Internat. J. Math. 3 (1992), 455–467. MR 93e:53048
- [3] M. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 95m:20041
- [4] I. P. Kornfel'd, Ya. G. Sinaĭ, and S. V. Fomin, Ergodic theory, "Nauka", Moscow, 1980; English transl., Grundlehren Math. Wiss., vol. 245, Springer-Verlag, New York, 1982. MR 83a:28017
- St. Petersburg State University, Department of Mathematics and Mechanics, Universitetskiı pr. 28, St. Petersburg 198504, Russia

Received 2/SEP/2002

Translated by N. YU. NETSVETAEV