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EXPONENTIAL GROWTH OF SPACES
WITHOUT CONJUGATE POINTS

N. D. LEBEDEVA

§1. Introduction

An n-dimensional polyhedral space is a length space M (with intrinsic metric) trian-
gulated into n-simplexes with smooth Riemannian metrics. In the definitions below, we
assume that the triangulation is fixed.

The boundary of M is the union of the (n− 1)-simplexes of the triangulation that are
adjacent to only one (n− 1)-simplex.

As usual, a geodesic in M is a naturally parametrized locally shortest curve defined
on an interval. We say that M has no conjugate points if any two points in the universal
covering space M̃ of M are joined by a unique geodesic.

We say that the volume entropy of M̃ is positive if the volume of metric balls in M̃

has at least exponential growth.
Now, we state the main result of this paper.

Theorem 1. Let M be an n-dimensional compact polyhedral space without boundary
and without conjugate points. If the triangulation of M contains three n-simplexes with
a common (n− 1)-face, then the volume entropy of M̃ is positive.

Corollary 1. Under the assumptions of Theorem 1, the fundamental group π1(M) of M

has at least exponential growth.

§2. Geodesics in M: G, SM, etc.

A geodesic in M is complete if it is defined on the entire real line R. A geodesic is
generic if it intersects no (n−2)-simplexes and intersects (n−1)-simplexes transversally.
We denote by G the set of complete generic geodesics in M and consider the geodesic
flow transformation (GFT)

ϕt : G→ G, ϕtγ(s) = γ(t+ s).

We observe that a generic geodesic γ : [a, b] → M with γ(b) /∈ Mn−1 is uniquely
continued beyond b. If γ(b) belongs to a common (n−1)-face F of n-simplexes ∆1, . . . ,∆l,
then γ is continued beyond b in l− 1 different ways (uniquely into each of the remaining
l − 1 simplexes by the rule “the angle of incidence is equal to the angle of reflection”).

The tangent space TxM of M at a point x ∈ M is the tangent cone of M at x. If
x ∈M \Mn−1, then TxM is isometric to Rn.
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128 N. D. LEBEDEVA

If x belongs to an (n − 1)-simplex F that is a common (n − 1)-face of n-simplexes
∆1, . . . ,∆l, then TxM is the union of the half-spaces Tx∆i with common boundary
hyperplane TxF . We say that the vectors in Tx∆i \ TxF go in the direction of ∆i.

For each unit vector e ∈ TxM\TxF , there exists a geodesic γ with γ′(0) = e. Observe
that if we “glue together” two geodesic segments with initial velocity vectors making an
angle of π, then we obtain a geodesic segment.

In what follows, we consider only tangent vectors at points in M \Mn−2. For x ∈M,
we let Sx ⊂ TxM be the set of unit tangent vectors in TxM. For any set K ⊂ M, we
define SK :=

⋃
x∈K Sx. Thus, SM is the space of all unit tangent vectors of M.

§3. The Liouville measure µL

Let M be a polyhedral space. A canonical measure µL on the space SM is defined
in a standard way as the product of two measures: the Riemannian volume on M and
Lebesgue measure λx on the unit (n − 1)-sphere Sx, x ∈ M. This measure is called
Liouville measure.

Let A = {γ : [a, b]→M} be a set of generic geodesics. We define

A′(t) := {γ′(t) | γ ∈ A} ⊂ SM, t ∈ [a, b].

The multiset A†(t) is the pair (A′(t),1A†(t)), where

1A†(t) : SM→ {0} ∪N
is the “indicator function” acting by the rule

e 7→ #{γ ∈ A | γ′(t) = e}.
The measure µL(A†(t)) of A†(t) is the integral of 1A†(t):

µL(A†(t)) :=
∫
SM

1A†(t)dµL.

If for any two geodesics γ1, γ2 ∈ A we have γ′1(t) 6= γ′2(t), then A†(t) may be regarded
as the usual set A′(t), and 1A†(t) is the usual indicator function of A′(t) (equal to 1 on
A′(t) and vanishing outside A′(t)): 1A†(t) = 1A′(t). Obviously, in this case, we have

µL(A†(t)) = µL(A′(t)).

We say that two generic geodesics defined on the segment [a, b] have one combinatorial
type if they traverse the simplexes in the same succession. (In particular, they pass the
branchings in the same way.)

Claim. Let A = {γ : [a, b] → M} be a set of generic geodesics of one combinatorial
type. Then

(3.1) µL(A′(a)) = µL(A′(b)),

i.e., the “transformation of the geodesic flow along A” preserves Liouville measure.

To see this, it suffices to prove that Liouville measure is preserved in a neighborhood
of a point of any (n− 1)-simplex adjacent exactly to two n-simplexes. We give a precise
statement.

Lemma 1. Let F be a common (n − 1)-face of two n-simplexes ∆1 and ∆2. Let U ⊂
∆1∪∆2 be an open ball with center in F , and let B = {γ : [0, c]→ U} be a set of generic
geodesics. Then

µL(B′(0)) = µL(B′(c)).
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Proof. The set B is a countable union of sets Bk such that each geodesic in Bk intersects
F at an angle greater than 1/k. It suffices to prove that µL(B′k(0)) = µL(B′k(c)) for each
k. Therefore, we may assume that each geodesic in B intersects F once.

Let dx be the volume element on F . We consider the measure µF on SF with the
density

dµF (v) = | cosα(v)|dλx(v)dx,
where α(v) is the angle between v and the normal to F (see [1] and [4, Chapter 6]). For
C ⊂ SF , µF (C) is equal to the flux across C of the vector field generating the geodesic
flow on U .

Let tγ be the value of the parameter for which γ ∈ B intersects F : {tγ} = γ−1(F ).
The mapping

B′(0)→ SF × [0, c], γ′(0) 7→ (γ′(tγ), tγ),
determines coordinates (v, t) on B′(0).

Since the Liouville measure µL is preserved within one simplex, the density of µL in
the coordinates (v, t) has the form dµL(v, t) = dµF (v)dt (see [4, Chapter 6]). Under
the passage from B′(0) to B′(c), the vector v ∈ SF changes to the opposite one, and
the parameter along the flow changes by a constant. Hence, the Liouville measure µL is
preserved. �

Proposition 1. Let A = {γ : [a, b]→M} be a set of generic geodesics. Then

(3.2) µL(A†(a)) = µL(A†(b)).

Proof. 1) First, suppose that the geodesics in A have one combinatorial type. Then the
velocity vector at t uniquely determines a geodesic in A, so that 1A†(t) = 1A′(t) for each
t ∈ [a, b], whence

µL(A†(a)) = µL(A′(a))
(∗)
= µL(A′(b)) = µL(A†(b)).

2) In the general case, A splits into countably many subsets Ak in each of which the
geodesics have one combinatorial type. For each k, we have

µL(A†k(a)) = µL(A†k(b)).

Summing these relations, we obtain (3.2). �

§4. Proof of Theorem 1

Let X be an (n − 1)-simplex that is a common hyperface of n-simplexes Υ1, . . . ,Υd,
where d ≥ 3.

Notation. Let γ : (a, b) → M be a generic geodesic. Suppose that γ passes from an
n-simplex ∆1 to an n-simplex ∆2 and intersects their common (n − 1)-face at a point
γ(c), c ∈ (a, b). We define

γ′+(c) := γ′(c) ∈ Tγ(c)∆2 ⊂ Tγ(c)M and γ′−(c) := γ̄′(−c) ∈ Tγ(c)∆1 ⊂ Tγ(c)M,

where γ̄(t) = γ(−t).
A tangent vector v at a point of an (n− 1)-simplex F is said to be almost orthogonal

to F if v makes an angle less than π/10 with one of the normals of F .
We denote by (M̃, ρ̃) a universal cover of (M, ρ), where ρ̃ is the lifting of the metric ρ.
Let Ω ⊂ X be a (sufficiently small) region. We denote by Ω̃ the preimage of Ω in M̃.
We recall that M is isometric to the quotient space M̃/Γ, where Γ is a subgroup of

the group of isometries of M̃ isomorphic to π1(M). We denote by M0 a fundamental
domain in M̃.
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4.1. A special set. For convenience, we introduce a certain subset Greg ⊂ G within
which all geodesics extend uniquely in both directions, except the branching on Ω.

For this, we introduce the following structure. For each (n−1)-simplex F , we cyclically
order the n-simplexes adjacent to F . We say that a generic geodesic γ is regular if for
every x ∈ γ−1(Mn−1) one of the following two conditions is fulfilled:

1) γ(x) ∈ Ω, and the vector γ′−(x) is almost orthogonal to X ;
2) the point γ(x) belongs to a common (n− 1)-face F of n-simplexes ∆1, . . . ,∆l, and

γ′−(x) ∈ Tγ(x)∆i, γ′+(x) ∈ Tγ(x)∆i+1.

(As usual, we set ∆l+1 := ∆1.)
We denote by Greg the set of complete regular geodesics.

Remark 1. 1) For “almost every” unit tangent vector v ∈ SM, each regular geodesic with
initial velocity vector v can be continued to a generic regular complete geodesic. (Cf. the
Appendix.)

2) The set Greg is GFT-invariant.

For V ⊂ SM, we define

G(V ) := {γ ∈ G | γ′(0) ∈ V }, Greg(V ) := {γ ∈ Greg | γ′(0) ∈ V }.

4.2. A special measure on Greg. In the Appendix it is proved that there is a measure
m on G such that Greg has full measure in G and the following properties 1)–3) are
fulfilled (an invariant measure on G satisfying property 2) is described in detail in [1]):

1) the measure m is GFT-invariant;
2) if V ⊂ SM is a measurable subset, then m(Greg(V )) = µL(V );
3) let j ∈ {1, . . . , d}, and let Ψ = {γ : (−∞, xγ) →M} be a set of one-sided regular

geodesics such that for each γ ∈ Ψ we have γ(xγ) ∈ Ω, the vector γ′−(xγ) is almost
orthogonal to X , and γ′−(xγ) ∈ Tγ(xγ)Υj . Furthermore, we assume that none of the
geodesics in Ψ is a continuation of another geodesic. For i ∈ {1, . . . , d} \ {j}, let Ψi

denote the set of continuations of all geodesics in Ψ to the simplex Υi and further, in all
possible ways, up to complete regular geodesics in Greg, i.e.,

Ψi := {γ ∈ Greg : γ|(−∞,xγ) ∈ Ψ & γ′+(xγ) ∈ Tγ(xγ)Υi}.

Thus, Ψ :=
⋃
i Ψi is the set of all possible continuations of geodesics in Ψ to complete

geodesics in Greg. Then

m(Ψi) =
m
(
Ψ
)

d− 1
, i ∈ {1, . . . , d} \ {j}.

4.3. Estimating the measure of a set of geodesics. We denote by G̃ the space of
complete generic geodesics γ : R→ M̃, we denote by G̃reg the preimage of the set Greg

in G̃, and we let π : G̃reg → Greg be the projection map, which is a covering.
We say that a geodesic γ in M̃ is regular if γ is a lifting of a regular geodesic.
Let m̃ denote the lifting of the measure m to G̃reg under the covering π.
For a set A of regular generic geodesics in M̃ that are defined on segments, we denote

by m̃(A) the m̃-measure of the set of all possible continuations of the geodesics in A to
complete geodesics in G̃reg. If for γ ∈ A we have γ(a) ∈ M0, then the projection of A
to the space of geodesics in M is injective, and the measure µ̃L(A†(a)) of the multiset
A†(a) is well defined as the measure of the projection. The following lemma relates the
measure m̃(A) of some set A of geodesics defined on a segment to µ̃L(A†).
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Lemma 2. Let l ∈ N, and let A = {γ : [a, b]→ M̃} be a set of regular generic geodesics
with initial points in a fundamental domain M0. Suppose that for every γ ∈ A there exist
parameters t1(γ) < · · · < tl(γ) ∈ (a, b) such that γ(ti(γ)) ∈ Ω̃ for each i, and γ′−(ti(γ))
is almost orthogonal to X̃ and goes in the direction of Υ̃1. Then

(∗) m̃(A) ≤ µ̃L(A†(a))
(d− 1)l

=
µ̃L(A†(b))
(d− 1)l

.

(The identity µ̃L(A†(a)) = µ̃L(A†(b)) was proved earlier.)

Proof. At a point ts(γ), the geodesic γ ∈ A passes to one of the simplices Υ̃2, . . . , Υ̃d.
With each geodesic γ ∈ A we associate a sequence {i1, . . . , il} so that γ passes to Υ̃ik

at the point tk(γ). Since the number of such sequences is finite, A splits into finitely
many subsets Ai such that for each i the geodesics in Ai determine one and the same
sequence. �

Claim. The subsets Ai satisfy the required inequality, namely,

(∗i) m̃(Ai) ≤
µ̃L(A′i(a))
(d− 1)l

for each i.

We denote by Ai,s the set consisting of all complete geodesics in G̃reg that are contin-
uations of the restrictions of the geodesics γ ∈ Ai to the interval (a, ts(γ)) (this interval
is specific for each geodesic γ):

Ai,s := {γ|(a,ts(γ)) : γ ∈ G̃reg}.
Since the initial points of the geodesics in A lie in M0, it follows that the projection
π|A : A → Greg is an injective mapping, whence m(π(A)) = m̃(A). Therefore, by
property 3) of the measure m, where we put Ψi := Ai,s+1 and Ψ := Ai,s, we have

m̃(Ai,s+1) ≤ m̃(Ai,s)
d− 1

, s = 1, . . . , l.

Property 2) of the measure m implies that

m̃(Ai,1) ≤ µ̃L(A′i(a)).

Combining the above l + 1 inequalities, we obtain

m̃(Ai,l) ≤
µ̃L(A′i(a))
(d− 1)l

.

Since m̃(Ai) ≤ m̃(Ai,l), we arrive at (∗i).
Summing the inequalities (∗i), i ∈ N, we obtain

m̃(A) ≤ 1
(d− 1)l

∑
i

µ̃L(A′i(a)).

Since A =
⋃
iAi, we have∑

i

1A′i(a)(e) ≤ 1A†(a)(e), e ∈ SM.

Integration over SM yields ∑
i

µ̃L(A′i(a)) ≤ µ̃L(A†(a)),

which proves (∗).
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4.4. The set Aε of often-branching geodesics. The next step of the proof is con-
struction of the set of sufficiently-often-branching geodesics, to which we apply Lemma 2.

We describe an auxiliary subset of Greg. Let Θ ⊂ SΩ be the set of all unit tangent
vectors at points in Ω that go in the direction of Υ1 and are almost orthogonal to X .
We assume that the closure of Ω lies strictly inside X .

There exists δ0 > 0 such that for every e ∈ Θ there exists a unique geodesic γe : [0, δ0]
→M with γ(0) = e, i.e., γe does not intersect the (n− 1)-simplexes on which branching
is possible. We define

g0 := {−γ′e(t) | e ∈ Θ, 0 < t < δ0} ⊂ SM
and set

G0 := Greg(g0).
We have µL(g0) 6= 0. Then property 2) of the measure m and Remark 2 imply

that m(G0) 6= 0. For γ ∈ Greg and k > 0, we let Nγ(k) be the number of connected
components of the set [0, k] ∩ (γ′)−1(g0), i.e., Nγ(k) is the number of comings of γ into
G0 under the action of the geodesic flow transformation within the time k.

The set g0 is chosen so that the duration of the stay of a geodesic in the set G0 under
the action of the geodesic flow be at least δ0. Then, by the definition of Nγ(k), we have

(4.1) Nγ(k)δ0 ≥
∫ k

0

1G0(ϕsγ)ds.

Lemma 3. For any ε > 0, there is a set Aε ⊂ Greg and positive numbers N and δ with
the following properties:

1) m(Aε) 6= 0;
2) diam(Aε(0)) < ε. (Here and below, we use the natural notation Aε(0) := {γ(0) |

γ ∈ Aε} ⊂M, etc.);
3) Nγ(k) > δk for all k > N and all γ ∈ Aε.

Proof. We use a general result for measure spaces, the proof of which involves the ergodic
theorem. �

Proposition 2. Suppose D is a space with a measure m and {Tt} is a one-parametric
semigroup of measure-preserving transformations of D, where t takes nonnegative real
values and Ts+t = Ts · Tt. Furthermore, suppose that

D × R≥0 → D, (x, t) 7→ Tt(x)

is a measurable mapping.
Then for every set ∆ ⊂ D of nonzero finite measure there is a set D0 ⊂ D of nonzero

measure such that for the points in D0 the average duration of the stay in ∆ under the
action of the transformation Tt during the time t is uniformly bounded away from zero
as t→∞. This means that there exist s0 > 0 and ε0 > 0 such that for any x ∈ D0 and
any s > s0 we have

1
s

∫ s

0

1∆(Ttx)dt > ε0.

Proof. Let Ave∆(x) denote the average value of 1∆ on the trajectory of the geodesic flow
with initial value x:

Ave∆(x) := lim
t→∞

1
t

∫ t

0

1∆(Ts(x))ds.

Applying the ergodic theorem, we obtain∫
D

Ave∆(x)dm(x) =
∫
D

1∆(x)dm(x) = m(∆) > 0.
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Consequently, there is ε2 > 0 and a set D1 ⊂ D of nonzero measure such that Ave∆(x) >
ε2 for each x ∈ D1. Then there exist numbers s0 > 0 and ε0 > 0 and a set D0 ⊂ D1

such that for all x ∈ D0 and s > s0 we have

1
s

∫ s

0

1∆(Ttx)dt > ε0.

�

Since the measure m is invariant under the geodesic flow on Greg, and m(G0) 6= 0,
we can apply Proposition 2 to the case where

(D,m,∆, Tt) := (Greg,m,G0, ϕt).

Thus, there is a set A0 ⊂Greg of nonzero measure and positive numbers s0 and ε0 such
that

1
T

∫ T

0

1G0(ϕsγ)ds > ε0

for any γ ∈ A0 and any T > s0. Applying inequality (4.1) and letting δ = ε0/δ0

and N = s0, we see that Nγ(k) > δk for each geodesic γ ∈ A0 and each k > N .
Moreover, passing if necessary to a subset of A0 of nonzero measure, we may assume
that diam(A0(0)) < ε. Lemma 3 is proved.

Proposition 3. If the volume entropy of M̃ is zero, then for every ε > 0 there are
two complete generic geodesics γ1 and γ2 in M̃ and a number t0 > 1 with the following
properties:

1) ρ̃(γ1(0), γ2(0)) < ε;
2) γ1(t0) = γ2(t0) ∈ Ω̃;
3) γ1

′
+(t0) = γ2

′
+(t0), and the vector γ1

′
+(t0) is almost orthogonal to X̃ and goes in

the direction of Υ̃j for some j ∈ {1, . . . , d};
4) at the point t0, the geodesics γ1 and γ2 pass to Υ̃j from distinct n-simplexes adjacent

to X̃, i.e., γ−1 (t0) 6= γ−2 (t0).

Proof. Applying Lemma 3, we obtain a set Aε ⊂Greg and numbers N and δ.
We fix a fundamental domain M0 ⊂ M̃ and a point x0 ∈M0. Let SBr(x0) denote the

set of unit tangent vectors at the points of the ball Br(x0), and let A be the set of the
geodesics in G̃reg that are the liftings of the geodesics in Aε with initial points in M0.

For k > N , we define
Ak := {γ|[0,k] : γ ∈ A}.

Assertion 3) of Lemma 3 implies that Nγ(k) ≥ δk for γ ∈ A. We apply Lemma 2 to the
set Ak, letting l := [δk] + 1. Lemma 3 and the inequality m̃(A) ≤ m̃(Ak) show that

(4.2) m̃(A) ≤ µ̃L(A†k(k))
(d− 1)δk

.

We assume that diam M0 < 1. Then the function 1A†k(k)(v) vanishes outside SBk+1(x0),
and (4.2) takes the form

1
(d− 1)δk

∫
SBk+1(x0)

1A†k(k)(v)dµ̃L ≥ m̃(A).

We define
f(k) := max{1A†k(k)(v) | v ∈ SBk+1(x0)}.
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Since the volume entropy of M̃ is zero, we have µ̃L(SBk+1(x0)) = o((d − 1)δk). Then

o((d− 1)δk)f(k)
(d− 1)δk

≥ m̃(A) =: c > 0,

whence

(4.3) f(k) ≥ c (d− 1)δk

o((d − 1)δk)
.

Estimate (4.3) implies the existence of k1 > N such that f(k1) ≥ f(N) + 1. This
means that A contains f(k1) geodesics that are distinct on the interval (0, k1) and have
equal velocity vectors at k1. At least two of them are distinct on the interval (N, k1).
(Indeed, otherwise there were f(k1) geodesics that are distinct on the interval (0, N) and
have equal velocity vectors at N . This would mean that f(N) ≥ f(k1), which contradicts
our choice of k1.) Consequently, these geodesics meet at a point t0 ∈ (N, k1]. These two
geodesics and the parameter t0 satisfy all the requirements of the proposition. �

4.5. End of the proof of Theorem 1. Suppose that the volume entropy of the
universal cover M̃ is zero. The remaining part of the proof proceeds in M̃. For short,
the distance function in M̃ is denoted by | · · |. For a, b ∈ M̃, we denote by [a, b] a unique
geodesic segment joining a and b. Since M̃ contains no conjugate points, the initial
velocity vector eab of [a, b] depends continuously on a and b. Furthermore, since [a, b] is
a shortest curve, the length of [a, b] is equal to |ab|.

Applying Proposition 3 to a sufficiently small ε, we obtain geodesics γ1 and γ2 and a
number t0. We define

c := γ1(t0) = γ2(t0),

a := γ1(0), b := γ2(0),

d := γ1(t0 + 1/2) = γ2(t0 + 1/2).

In this notation, the geodesic segments [a, d] and [b, d] are the restrictions of the geodesics
γ1 and γ2 to the interval [0, t0 + 1/2]. We have |ab| < ε.

Our purpose is to join a and d by a polygonal line of length less than |ad|, which is a
contradiction. More precisely, we find a point f∗ ∈ [a, b] such that |df∗| is less than |da|
by a constant depending only on the geometry of M̃. Now, we can make |af∗| arbitrarily
less than this constant by taking ε sufficiently small.

Consider geodesic segments [c, f ], where f ∈ [a, b]. The space Sc is the union of
(n− 1)-hemispheres glued together along their common (n− 2)-sphere. By assertion 4)
of Proposition 3, the vectors eca and ecb lie in distinct (n−1)-hemispheres. By continuity,
there is f∗ ∈ [a, b] such that ecf∗ ∈ Tf∗Ω̃, i.e., ecf∗ is tangent to an (n − 1)-simplex.
There is e ∈ [c, f∗] such that |ce| = 1/2. By compactness, there is a number q > 0
depending only on M̃ and Ω̃ and such that

|dc|+ |ce| − |de| > q.

In more detail, we consider the set A of triplets of points (x, y, z) belonging to M0 and
such that the following conditions 1)–3) are fulfilled:

1) x ∈ Ω̃ and |xy| = |xz| = 1/2;
2) exy is almost orthogonal to X̃ ;
3) exz is tangent to X̃ .
The set A is compact. Therefore, the function |xy| + |xz| − |yz| attains a minimum,

which is positive because of the absence of conjugate points (since x /∈ [yz]).
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So, in Proposition 3 we put ε := q/4. The inequality |dc| + |ce| − |de| > q and the
triangle inequality for 4def∗ imply that

|df∗| < |dc|+ |cf∗| − q.

By our choice of ε in Proposition 3, we have |ab| < q/4, and |af∗| < q/4 because f∗ ∈ ab.
By the triangle inequality,

|cf∗| < |ac|+ q

4
.

Adding the last two inequalities, we obtain

|ac|+ |dc| > |df∗|+ 3
4
q.

Again by the triangle inequality,

|df∗| > |ad| − q

4
.

Adding the two inequalities obtained, we get

|ac|+ |dc| > |ad|+ q

2
,

i.e., a, c, and d do not lie on one shortest curve. Therefore, γ1 is not a geodesic, a
contradiction. Theorem 1 is proved.

§5. Appendix

5.1. Notation. Two tangent vectors at one point are opposite if they make an angle of
π.

We set
◦
Mn−1 := Mn−1 \Mn−2.

Let Λ(M) ⊂ SM denote the set of all unit vectors tangent to M strictly inside the
(n− 1)-faces and transversal to these faces, and let D ⊂ Λ(M)× Λ(M) be the set of all
pairs of opposite vectors.

5.2. Definitions. 1) A measurable function

p : D → [0, 1]

is called a transition probability function if it possesses the following property: if v1 ∈ Λ
is a tangent vector at a point of an (n − 1)-face to which m faces of dimension n are
adjacent, and v2, . . . , vm are all the vectors opposite to the vector v1, then

p(v1, v2) + · · ·+ p(v1, vm) = 1 = p(v2, v1) + · · ·+ p(vm, v1).

2) We say that p is single-valued on a subset D0 ⊂ D ⊂ Λ× Λ if p(D0) ⊂ {0, 1}.
3) We say that a geodesic γ obeys p if for each point γ(c) of transversal intersection

with an (n− 1)-face we have p(γ′−(c), γ′+(c)) 6= 0.

Proposition 4. Let D0 ⊂ D be the subset consisting of all pairs of vectors such that
the angle that they make with the corresponding (n− 1)-faces is less than some positive
constant θ, and of all pairs of tangent vectors at the points lying in the τ-neighborhood
of the (n− 2)-skeleton for some τ > 0.

Suppose that p : D → [0, 1] is a transition function single-valued on D0.
Then the set of unit vectors v for which there exists a nongeneric geodesic with the

initial velocity vector v and obeying the transition function p has zero Liouville measure
in SM.
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This is similar to the corresponding fact of the theory of billiard dynamical systems,
and we do not present a complete proof here. To prove this fact it suffices to estimate
the measure of the ε-neighborhood of the tangent vectors of (n− 1)-faces starting at the
points of (n− 2)-faces (this measure is O(ε2)) and the duration of nongeneric geodesics
in this neighborhood (it is at least const · ε).

Theorem 2. Let p be as in Proposition 4. Then there exists a measure mp on G with
the following properties:

1). The measure mp is GFT-invariant.
2). If V ⊂ SM is a measurable subset, then mp(G(V )) = µL(V ).
3). Let Ψ = {γ : (−∞, xγ) → M} be a set of one-sided geodesics none of which is

a continuation of another geodesic, where γ(xγ) ∈
◦
Mn−1. Suppose that for each vector

γ′−(xγ) one opposite vector γ′+(xγ) is chosen. Furthermore, suppose that for all γ ∈ Ψ
we have

p(γ′−(xγ), γ′+(xγ)) = const = p′.

Then

mp(Ψ+) = p′mp

(
Ψ
)
,

where Ψ+ is the set of all possible continuations of the geodesics γ ∈ Ψ to complete
generic geodesics that have the chosen velocity vectors γ′+(xγ) at the points xγ , and Ψ is
the set of all possible continuations of the geodesics in Ψ to complete generic geodesics.

Proof. Suppose that A ⊂ G is an open subset. We define

mp(A) =
∫
SM

hA(v)dµL(v),

where hA is the function with values in [0, 1] and defined µL-almost everywhere on SM
as follows. Let v ∈ S(M \

◦
Mn−1) be a vector such that every complete geodesic γ in M

with γ′(0) = v and obeying the transition function p is generic. (See Proposition 4.) We
fix some lifting of v to M̃, which we also denote by v, and consider the set Gv ⊂ G̃ of
all generic geodesics with initial velocity vector v. The support (the union of the images
of geodesics) Tv of Gv is a tree with an oriented distinguished edge e0.

The function p (more precisely, a lifting of p to M̃) is defined at the points of intersec-
tion of the geodesics in Gv with Mn−1. Therefore, for all paths in Tv passing through e0

in the given direction there are probabilities p(w,w′) of the passage from an edge w ⊂ Tv

to the subsequent edge w′. For a path W = w1 · · ·wk ⊂ Tv containing e0, let PW ⊂ Gv

be the set of all paths containing W . We define

mp,v(PW ) := p(w1, w2) · · · p(wk−1, wk).

The properties of p imply that mp,v is canonically extended to a probability measure on
the space Gv of paths in Tv; this extension is also denoted by mp,v.

Every geodesic γ ∈ A with γ′(0) = v is lifted to Tv canonically as one of the paths
described above. Let Av ⊂ Gv be the set of such liftings for all corresponding geodesics
in A. We set hA(v) = mp,v(Av).

We check the properties of the measure mp.
1. Let t > 0, let ∆1 and ∆1 be two neighboring n-simplices, and let A be the set

of the geodesics γ with γ(0) ∈ ∆1 and γ(t) ∈ ∆2. We assume that the geodesics in A
intersect Mn−1 once. If γ ∈ A and vt := γ′(t), then hA(v0) = hϕtA(vt). Now, since the
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Liouville measure is GFT-invariant, we obtain∫
SM

hA(v)dµL(v) =
∫
S∆1

hA(v)dµL(v)

=
∫
S∆2

hϕtA(vt)dµL(vt)

=
∫
SM

hϕtA(v)dµL(v),

whence
mp(A) = mp(ϕtA).

In the general case, we prove the invariance of the measure mp by splitting A and the
parameter along the flow.

2. If V ⊂ SM, then hG(V ) is the indicator function of V . This implies property 2) of
the measure mp.

3. We may assume that xγ > 0 for all γ ∈ Ψ. Fixing a vector v ∈ SM, we put
Ψv := {Ψ∩G({v}). The set Ψv splits into a countable number of subsets Ψi

v such that
the point γ(xγ) and the vector γ′+(xγ) are the same for the geodesics γ ∈ Ψi

v. For each
i, by the definition of the measure mp,v, we have

h(Ψiv)+ = p′h(Ψiv)′ .

Since none of the geodesics in Ψ is a continuation of another geodesic, it follows that the
sets (Ψi

v)′ are disjoint, whence
hΨ+ = p′hΨ′ .

This implies property 3) of mp. �
In order to apply this theorem in our case (see Subsection 4.2), it suffices to let the

function p be equal to 0, 1, and 1/(d− 1) at the corresponding points.
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