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Abstract. The discrete spectrum in the spectral gaps is studied in the case of a two-
dimensional periodic elliptic second order operator perturbed by a decaying potential.
The main goal is to find asymptotics (for the large coupling constant) of the number
of eigenvalues that have been “born” (or have “died”) at the edges of the gap. The
high-energy (Weyl) asymptotics and the threshold asymptotics are distinguished. At
the right edge of the gap, a competition between the Weyl contribution and the

threshold contribution may occur. The case of a semiinfinite gap was studied in part
I of the paper.

Introduction

1. Let A be an elliptic periodic second order operator in L2(Rd), d ≥ 2, given by the
expression A = − div g(x)∇ + p(x), and let V be the operator of multiplication by a
function V (x) ≥ 0 that tends to zero at infinity. Suppose an interval (λ−, λ+) is a gap
in the spectrum of A. We put

A±(α) = A∓ αV (x), α > 0.

Let N+(α, λ+) denote the number of eigenvalues of the operator A+(t) that have been
“born” at the point λ+ as the coupling constant t has been growing from 0 to α. The
function N−(α, λ−) is defined similarly for the operator A−. We are interested in the
asymptotics of these functions as α → ∞ (in the large coupling constant limit). The
corresponding asymptotics (which may be fairly diverse, depending both on A and V )
were studied in a number of papers. We mention [B3], [B5], [BL] and especially the survey
[B4] and the references therein. Another approach to the problems under discussion was
proposed in [Iv].

Usually, for the study of the functions N±(α, λ±) in an internal gap of A, certain
conditions on the structure of the edges of the gap are imposed (see Conditions 1.3(±)
below). The asymptotic behavior of the functions N±(α, λ±) depends on the dimension
d, the character of decay of V , and also the signs “±”. The case where d ≥ 3 is rather
well studied ([B3]–[B5]). If d ≥ 3 and V ∈ Ld/2(Rd), then the function N+(α, λ+) has
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the Weyl asymptotics

(0.1) N+(α, λ+) ∼ (2π)−dωdαd/2
∫
V d/2(det g)−1/2 dx, α→∞;

here ωd is the volume of the unit ball in Rd. If V 6∈ Ld/2(Rd), then the estimate
N+(α, λ+) = O(αd/2) fails, and N+(α, λ+) may have an arbitrary order of growth greater
than d/2. Essentially, the asymptotics (0.1) has a “high-energy” origin, while the be-
havior of N+(α, λ+) with V 6∈ Ld/2(Rd) is determined by the “threshold effect” near the
edge of the gap of the unperturbed operator (see the discussion in [B4, §2]).

2. If d = 2, the situation is much more complicated. Already for A = −∆ in the case of
the semiinfinite gap (−∞, 0), the condition V ∈ L1(R2) does not ensure an asymptotics
of the form (0.1). Due to the threshold effects, N+(α, 0) may have an arbitrary order
of growth greater than d/2. Moreover, it may happen that N+(α, 0) = O(α), but the
asymptotics is not of Weyl type. In the latter case the asymptotic coefficient is the sum
of the Weyl term and the “threshold” term. Thus, for d = 2 a “competition” between
the Weyl contribution and the threshold contribution is possible; this competition cannot
occur for d ≥ 3. A “special channel” is responsible for the threshold effect, by which
we mean the problem on the semiaxis that is obtained by restricting −∆ − αV to the
subspace of functions depending only on |x|. At the same time, the potential V is
averaged over the polar angle. These effects were investigated in [BL] in detail. At the
level of estimates, the special channel was discovered in [S].

In [BLSu] (i.e., in part I of the present paper), the same phenomena were analyzed
in the case where A is a periodic elliptic operator of the form A = − div g(x)∇ + p(x).
Adding an appropriate constant to p allows us to assume that the lower edge of the
spectrum is the point λ = 0. In [BLSu], the negative discrete spectrum of the operatorA−
αV , i.e., the case of the semiinfinite gap (−∞, 0) in the spectrum of A, was studied. The
description of the special channel was given in terms of the Floquet–Bloch decomposition
for the unperturbed operator A. The answer involves the so-called tensor of effective
masses at the edge of the spectrum and a positive periodic solution ϕ of the equation
Aϕ = 0. The function ϕ can be eliminated from the answer under a certain additional
“regularity” condition imposed on V .

The present paper is a continuation of [BLSu], but now we study the case of an internal
gap in the spectrum of A. For this, we need to change the technique of investigation
considerably. The presentation is independent of [BLSu]. At the same time, we use some
technical results from [BLSu].

3. As has already been mentioned, for the study of the asymptotics of N±(α, λ±) as
α → ∞ in an internal gap of A, we are forced to impose certain restrictions on the
structure of the edges of the gap (see Conditions 1.3(±) below). (For the lower edge of
the spectrum λ = 0, these conditions are fulfilled automatically.) The answers are given
in terms of the model operators, which are simpler than A±(α). The model operators
involve the tensors of effective masses at the edges of the gap, and the corresponding
eigenfunctions. As in the case of the semiinfinite gap, it is possible to eliminate the
eigenfunctions from the answer under an additional “regularity” condition imposed on
V . The main results are formulated in Theorems 2.2(±) and 2.5(±). On the right (but
not on the left) edge of the gap the Weyl contribution and the threshold contribution to
the asymptotics may compete.

The asymptotics of N+(α, λ+) at the right edge λ+ of the gap can be obtained by
the same method as in [BLSu]. However, this method fails in the case of N−(α, λ−),
i.e., for the left edge of the gap λ−. Therefore, we modify the approach so as to make it
applicable for both edges of the gap.
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5. Notation. In what follows, Q2 is an open unit square in R2. The symbol 〈·, ·〉m
stands for the standard inner product in Cm; sometimes we omit the index m. Further,
1m = 1 is the unit (m ×m)-matrix. The symbol � means a two-sided estimate. Any
integral without indication of the integration domain is over R2. Further, ∇ = grad,
∇∗ = − div. We denote by Hs, s ≥ 0, the Sobolev classes. The operator of multiplication
by a function f is denoted either by the same symbol f , or by the symbol [f ], depending
on the context. Various constants in estimates are denoted by C or c, possibly, with
indices. For a sequence of operators in a Hilbert space, (s)-lim, (u)-lim, and (S)-lim
denote (respectively) the strong limit, the limit in the operator norm, and the limit
relative to a norm in some symmetrically (quasi)normed ideal S (see [GoKr]) of compact
operators.

Many statements and formulas contain the double indices ±. Unless otherwise is
stated explicitly, the upper and the lower index versions should be read independently.

§1. Setting of the problem. Preliminaries

1. Differential operators. By an unperturbed operator we mean a periodic elliptic
second order operator in R2. There is no loss of generality in assuming that the lattice
of periods is Z2. Let g be a (2 × 2)-matrix-valued function, and let p be a real-valued
function; we assume that

(1.1)
g = g > 0, p = p, g + g−1 ∈ L∞(R2), p ∈ L∞(R2),

g(x + n) = g(x), p(x + n) = p(x), x ∈ R2, n ∈ Z2.

Formally, an unperturbed operator A is given by the differential expression

(1.2) Au = ∇∗g∇u+ pu.

The precise definition of A as a selfadjoint operator in the Hilbert space L2(R2) is given
in terms of the closed semibounded quadratic form

(1.3) a[u, u] =
∫

(〈g∇u,∇u〉+ p|u|2) dx, u ∈ H1(R2).

Adding an appropriate constant to p allows us to assume that

(1.4) inf specA = 0.

Under condition (1.4), in H1(R2) the form a[u, u] + γ
∫
|u|2 dx, γ > 0, determines a

metric equivalent to the standard one.
A perturbation is introduced as the operator of multiplication by a function V such

that

(1.5) V (x) ≥ 0, x ∈ R2.

We impose the following condition on V (cf., e.g., [BL]).

Condition 1.1. For some σ > 1,

(1.6)
(∫
|x|≤1

|V |σ dx
)1/σ

+
∑
k≥1

(∫
ek−1≤|x|≤ek

|V |σ|x|2(σ−1) dx
)1/σ

<∞, σ > 1.
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It should be mentioned at once that (1.6) implies that

(1.7) ((V ))σ :=
∑
n∈Z2

(∫
Q2+n

V σ dx
)1/σ

<∞, σ > 1,

and, moreover,
V ∈ L1(R2).

Consider the quadratic form

v[u, u] =
∫
V |u|2 dx.

Under condition (1.7) (and, moreover, under condition (1.6)), this form is compact in
H1(R2). Consequently, the form

a±(α)[u, u] := a[u, u]∓ αv[u, u], u ∈ H1(R2), α > 0,

is lower semibounded and closed in L2(R2). The form a±(α) gives rise to a selfadjoint
operator A±(α) in L2(R2). Thus, in the sense of form-sums,

(1.8) A±(α) = A∓ αV, α > 0.

Formally, the operator A±(α) corresponds to the differential expression

A±(α)u = ∇∗g∇u+ pu∓ αV u.
The spectrum of A±(α) in the spectral gaps of A is discrete.

First, we recall a result for a semiinfinite gap. Let

N+(α, λ;A, V ), α > 0, λ ≤ 0,

denote the number of eigenvalues of the operator A+(α) that lie to the left of the point
λ. For the Weyl asymptotic coefficient we introduce the notation

(1.9) J(V, g) := (4π)−1

∫
V (det g)−1/2 dx.

Proposition 1.2. Under condition (1.7), we have

N+(α, λ;A, V ) ≤ Cα((V ))σ, C = C(g, p, σ, λ), σ > 1, λ < 0,(1.10)

lim
α→∞

α−1N+(α, λ;A, V ) = J(V, g), λ < 0.(1.11)

Comments on Proposition 1.2 and the necessary references can be found in [BLSu].
For λ = 0, the Weyl asymptotics (1.11) may fail even under condition (1.6) because

of spectral “threshold” effects. These phenomena were studied in [BL] for the operator
−∆ − αV and in [BLSu] in the general case of a periodic operator (1.2). In the sequel
we shall impose yet another condition on V (see Condition 2.1(q)), which ensures that
N+(α, 0;A, V ) = O(αq), α → ∞, q ≥ 1. In the present paper we treat the discrete
spectrum of the operators A±(α) in the internal gaps of A.

2. The Floquet decomposition. As usual, for the spectral analysis of periodic op-
erators we employ partial diagonalization (the Floquet–Bloch theory). Here we recall
the necessary facts. Let H̃1(Q2) be the subspace formed by the functions in H1(Q2)
such that their Z2-periodic extensions belong to the class H1

loc(R2). Next, we denote by
H̃1
ξ (Q2) the subspace of functions of the form

(1.12) u(x) = ei〈x,ξ〉ũ(x), ũ ∈ H̃1(Q2), ξ ∈ R2.

In L2(Q2), we consider the family of quadratic forms

(1.13) aξ[u, u] =
∫
Q2

(〈g∇u,∇u〉+ p|u|2) dx, u ∈ H̃1
ξ (Q2), ξ ∈ R2.
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The selfadjoint operator in L2(Q2) generated by the form (1.13) is denoted by A(ξ).
The operator A(ξ) corresponds to the expression (1.2) with (ξ)-quasiperiodic boundary
conditions. Translating ξ by a vector of the lattice (2πZ)2 turns the operator A(ξ)
into a unitarily equivalent one. Therefore, usually it suffices to consider ξ ∈ T2 =
R2/(2πZ)2. The parameter ξ is called the quasimomentum. All operators A(ξ) have
discrete spectrum. Let Ek(ξ), k ∈ N, be the consecutive eigenvalues (counted with
multiplicities) of the operator A(ξ), and let ψk(x, ξ) be the corresponding eigenfunctions
normalized in L2(Q2). Then

0 ≤ E1(ξ) ≤ E2(ξ) ≤ · · · ≤ Ek(ξ) ≤ · · · .

The functions Ek are continuous and (2πZ)2-periodic. The spectrum of A coincides with
the union of the intervals (bands) that are the ranges of the functions Ek. By (1.12), the
eigenfunctions ψk admit representation in the form

ψk(x, ξ) = ei〈x,ξ〉ϕk(x, ξ), ϕk(·, ξ) ∈ H̃1(Q2).

The functions ψk, ϕk are Hölder continuous with respect to x.
Now we consider the integral operators

(1.14) (Ψku)(ξ) = (2π)−1

∫
ψk(x, ξ)u(x) dx, k ∈ N.

The mappings
Ψk : L2(R2)→ L2(T2)

are partially isometric and surjective. The operators Ψ∗kΨk, k ∈ N, are orthoprojections
in L2(R2). They are pairwise orthogonal and∑

k∈N
Ψ∗kΨk = I.

The operators (1.14) provide a partial diagonalization of the operator A. Namely, denot-
ing by [Ek] the operator of multiplication by the function Ek(ξ) in L2(T2), we obtain

A =
∑
k∈N

Ψ∗k[Ek]Ψk.

3. A gap. The spectrum of A may have gaps other than the semiinfinite gap (−∞, 0).
Let Λ = (λ−, λ+) be a gap; we assume that λ± ∈ specA. Clearly,

λ+ = min
ξ∈T2

El(ξ),(1.15+)

λ− = max
ξ∈T2

El−1(ξ)(1.15−)

for some number l ∈ N. As usual (cf., e.g., [B3]–[B5]), we impose some “regularity”
conditions on the edges λ+, λ− of the gap. The conditions for λ+ look like this.

Condition 1.3(+). a) minξ∈T2 El+1(ξ) > λ+; b) the minimum in (1.15+) is only at-
tained at finitely many points ξ(+)

j ∈ T2, j = 1, . . . ,m+, each being a nondegenerate
minimum point for El(·).

Remark 1.4. For the semiinfinite gap (−∞, 0), Condition 1.3(+) at λ+ = 0 is fulfilled
automatically with l = 1, m+ = 1, and ξ(+)

1 = 0. This fact was used in [BLSu].

By Condition 1.3(+), λ+ is a simple eigenvalue of the operator A(ξ) with ξ = ξ
(+)
j ,

j = 1, . . . ,m+. It follows that, for some (sufficiently small) δ > 0, the eigenvalue El(ξ),



254 T. A. SUSLINA

|ξ−ξ(+)
j | ≤ δ, is simple. This implies the real analyticity of El(ξ) in these neighborhoods

of the points ξ(+)
j , j = 1, . . . ,m+. Then Condition 1.3(+), b) means that

El(ξ)− λ+ = b
(+)
j (ξ − ξ(+)

j ) +O(|ξ − ξ(+)
j |3),

|ξ − ξ(+)
j | ≤ δ, j = 1, . . . ,m+,

(1.16+)

where b
(+)
j is a positive definite quadratic form.

The conditions on λ− are similar.

Condition 1.3(−). a) maxξ∈T2 El−2(ξ) < λ−; b) the maximum in (1.15−) is only
attained at finitely many points ξ(−)

j ∈ T2, j = 1, . . . ,m−, each being a nondegenerate
maximum point for El−1(·).

We note that condition a) makes sense only for l > 2. Like (1.16+), Condition 1.3(−),
b) means that

λ− − El−1(ξ) = b
(−)
j (ξ − ξ(−)

j ) +O(|ξ − ξ(−)
j |3),

|ξ − ξ(−)
j | ≤ δ, j = 1, . . . ,m−,

(1.16−)

where b
(−)
j is a positive definite quadratic form.

We agree that the points ξ(±)
j ∈ T2 are represented as points of the half-open cube

(1.17±) ξ
(±)
j ∈ [−π, π)2, j = 1, . . . ,m±.

Accordingly, the points ξ ∈ T2 close to ξ± are realized as points of R2-neighborhoods of
the points (1.17±).

In terms of the inner product 〈·, ·〉, the form b
(±)
j (ξ − ξ(±)

j ) can be written as

b
(±)
j (ξ − ξ(±)

j ) = 〈b(±)
j (ξ − ξ(±)

j ), ξ − ξ(±)
j 〉 = |β(±)

j (ξ − ξ(±)
j )|2,

β
(±)
j = (b(±)

j )1/2, j = 1, . . . ,m±,
(1.18±)

where b(±)
j is a constant positive definite (2×2)-matrix. (The matrix (b(±)

j )−1 determines

the so-called tensor of effective masses for the point ξ(±)
j .)

We put E+ := El, E− := El−1, ψ(+) := ψl, ϕ(+) := ϕl, ψ(−) := ψl−1, ϕ(−) := ϕl−1.
The functions ψ(±), ϕ(±) can be chosen as real-analytic H1(Q2)-valued functions of ξ for
|ξ − ξ(±)

j | ≤ δ, j = 1, . . . ,m±. The functions ψ(±), ϕ(±) are Hölder continuous in x. We
shall use the notation

(1.19±) ψ
(±)
j (x) := ψ(±)(x, ξ(±)

j ), ϕ(±)
j (x) := ϕ(±)(x, ξ(±)

j ), j = 1, . . . ,m±.

Remark 1.5. In the recent paper [He], the following was shown for the operator −h2∆ +
V (x) with d = 2 and orthogonal lattice of periods (under certain restrictions on V ).
For any j ∈ N and any sufficiently small h ∈ (0, h0(j)], there are at least j gaps in the
spectrum; moreover, the edges of these gaps are regular and m± = 1.

4. Suppose that an “observation point” λ lies in the gap Λ: λ− < λ < λ+. We denote
by

(1.20) N±(α, λ;A, V ), α > 0, λ ∈ Λ,

the number of eigenvalues of A±(t) that have crossed the point λ as t has been growing
from 0 to α. Note that, as t grows, the eigenvalues of A+(t) move from the right to the
left, while the eigenvalues ofA−(t) move from the left to the right. Therefore, the function
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λ 7→ N+(α, λ;A, V ) is monotone nondecreasing, and the function λ 7→ N−(α, λ;A, V ) is
monotone nonincreasing (for α > 0 fixed).

The following statement was proved in [B2] (see also Theorem 3.2 in the survey [B4]).

Proposition 1.6. Under condition (1.7), we have

lim
α→∞

α−1N+(α, λ;A, V ) = J(V, g), λ ∈ Λ,(1.21)

lim
α→∞

α−1N−(α, λ;A, V ) = 0, λ ∈ Λ.

Thus, if the observation point λ lies inside the gap, then N+ has the Weyl asymptotics
(1.21). For λ = λ+ the asymptotics (1.21) may fail even under condition (1.6). Later we
impose an additional condition (Condition 2.1(q)) on V that ensures that the following
limits are finite:

N±(α, λ+;A, V ) = lim
λ→λ+−0

N±(α, λ;A, V ),(1.22+)

N±(α, λ−;A, V ) = lim
λ→λ−+0

N±(α, λ;A, V ).(1.22−)

We are interested in the behavior of the functions (1.22±) as α→∞.

5. On compact operators. Here we collect the necessary facts about compact oper-
ators. Let H, G be separable Hilbert spaces. The space of continuous linear operators
is denoted by R, and that of compact operators by S∞. If necessary, we write in more
detail: R(H), S∞(H,G), etc. Let T ∈ S∞, and let sk(T ) be the singular numbers of T ,
i.e., the consecutive eigenvalues (counted with multiplicities) of the operator (T ∗T )1/2.
We denote

n(s, T ) := card{k : sk(T ) > s}, s > 0.

If T = T ∗, we put 2T± = |T | ± T and

n±(s, T ) := n(s, T±), s > 0.

Clearly, n+(·, T ) is the counting function for the sequence {λ(+)
k (T )} of positive eigen-

values of T . For the sequence {λ(−)
k (T )} a similar role is played by n−(·, T ), where

λ
(−)
k (T ) = λ

(+)
k (−T ). We have n(s, T ) = n+(s, T ) + n−(s, T ), s > 0. If T1 = T ∗1 ∈ S∞,

T2 = T ∗2 ∈ S∞, then

n±(λ+ µ, T1 + T2) ≤ n±(λ, T1) + n±(µ, T2), λ > 0, µ > 0.

We denote by Σq, 0 < q <∞, the space (ideal) of compact operators distinguished by
the condition

T
q

q := sup
s>0

sqn(s, T ) <∞, q > 0.

The space Σq is complete in the quasinorm · q; for q > 1 it is normable. The space Σq
is nonseparable. We introduce the separable subspace (ideal)

Σ0
q = {T ∈ Σq : n(s, T ) = o(s−q), s→ 0}.

On the space Σq, we consider the functionals

∆q(T ) := lim sup
s→0

sqn(s, T ),(1.23)

δq(T ) := lim inf
s→0

sqn(s, T ).(1.24)

For T = T ∗ ∈ Σq, we put

(1.25) ∆(±)
q (T ) := ∆q(T±), δ(±)

q (T ) := δq(T±).



256 T. A. SUSLINA

Let Dq be any of the functionals (1.23)–(1.25). The following inequality can be found in
[BS1]:

(1.26) |(Dq(T2))τ − (Dq(T1))τ | ≤ (∆q(T2 − T1))τ , τ = (q + 1)−1.

In particular, (1.26) implies the following statement.

Proposition 1.7. All six functionals (1.23)–(1.25) are continuous on Σq. They do not
change under adding a summand of class Σ0

q to T . In other words, these functionals
are well defined on the factor-space Σq/Σ0

q. They are continuous with respect to the
factor-quasinorm (∆q(·))1/q on Σq/Σ0

q.

We shall also use the following simple statement.

Proposition 1.8. Let Tj , T̃j ∈ Σ2q, j = 1, . . . , N , and let T :=
∑N
j=1 T̃jTj. Then T ∈ Σq

and

(∆q(T ))2 ≤ C(q,N)
N∑
j=1

∆2q(T̃j)∆2q(Tj).

As usual,

Sq :=
{
T ∈ S∞ :

∑
k

sqk(T ) <∞
}
, 0 < q <∞.

Note that Sq ⊂ Σ0
q. The class S2 is formed by the Hilbert–Schmidt operators, and the

class S1 by the nuclear operators.
If T ∗ = T ∈ S∞(H) and t[u, u] = (Tu, u)H, then the numbers λ(+)

k (T ) (the numbers
(−λ(−)

k (T ))) coincide with the consecutive positive maxima (respectively, the consecutive
negative minima) of the ratio of quadratic forms

(1.27) t[u, u]
/
‖u‖2H , u ∈ H.

Passage from T to the ratio (1.27) facilitates application of variational arguments. There-
fore, we shall use the simpler notation n±(s, (1.27)) in place of n±(s, T ), (1.27)

q
in place

of T q, Dq(1.27) in place of Dq(T ), etc.
We shall also need the following easy technical fact about convergence in symmetrically

normed ideals.

Lemma 1.9. Suppose that a sequence of operators Xn converges strongly:

(s)-lim
n→∞

Xn = X0 ∈ R.

Let T ∈ S, where S is some separable symmetrically normed ideal. Then

(S)-lim
n→∞

XnT = X0T, (S)-lim
n→∞

TX∗n = TX∗0 .

6. An auxiliary problem on the semiaxis. The following auxiliary problem on the
semiaxis will be used below. Let f = f ∈ L1,loc(R+). For some R ≥ 1, we consider the
ratio of quadratic forms

(1.28)
∫ ∞
R

f(r)|z(r)|2r dr
/∫ ∞

R

|z′(r)|2r dr, z(R) = 0, R ≥ 1.

The ratio (1.28) is considered for all functions z that are absolutely continuous on R+

and such that the integral in the denominator is finite. On f we impose the following
“implicit” condition: for some q > 1/2

(1.29q) (1.28) q <∞, q > 1/2.
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This condition is fulfilled (or not fulfilled) simultaneously for all R ≥ 1. Moreover, under
condition (1.29q) all six functionals Dq(1.28) are independent of R ≥ 1.

We can give (see [BL], and also [BS2], [BLSu]) an elementary sufficient condition for
(1.29q). This condition becomes necessary for the nonnegative f . Namely, we put

ζ0(f) :=
∫ 1

0

|f(et)|e2t dt,

ζn(f) :=
∫ en

en−1
t|f(et)|e2t dt, n ∈ N,

ζ(f) := {ζn(f)}, n ∈ Z+,

and introduce the notation

‖ζ(f)‖qq,∞ := sup
s>0

sq card{n : ζn(f) > s}, 2q > 1,

∆q(ζ(f)) := lim sup
s→0

sq card{n : ζn(f) > s}, 2q > 1,

δq(ζ(f)) := lim inf
s→0

sq card{n : ζn(f) > s}, 2q > 1.

Proposition 1.10. a) Assume that

(1.30q) ‖ζ(f)‖q,∞ <∞, 2q > 1.

Then (1.29q) is true and

∆q(1.28) ≤ C(q)∆q(ζ(f)), 2q > 1.

b) Assume that f(r) ≥ 0, r ≥ R0, for some R0 ≥ 1. Then (1.29q) implies (1.30q) and
also the inequalities

∂q(1.28) ≥ c(q)∂q(ζ(f)), ∂ = ∆, δ, 2q > 1.

Remark 1.11. An elementary criterion for the spectrum of the ratio (1.28) to be discrete
can be found, e.g., in [BS3]. We shall not use it.

§2. Formulation of the main results

1. Our goal is to study the asymptotics of N±(α, λ+;A, V ) and N±(α, λ−;A, V ) (see
(1.22±)) as α→∞. We introduce the following quantities:

∆(±)
q (λ+;A, V ) := lim sup

α→∞
α−qN±(α, λ+;A, V ), q ≥ 1,(2.1+)

δ(±)
q (λ+;A, V ) := lim inf

α→∞
α−qN±(α, λ+;A, V ), q ≥ 1,(2.2+)

∆(±)
q (λ−;A, V ) := lim sup

α→∞
α−qN±(α, λ−;A, V ), q ≥ 1,(2.1−)

δ(±)
q (λ−;A, V ) := lim inf

α→∞
α−qN±(α, λ−;A, V ), q ≥ 1.(2.2−)

Relation (1.21) shows that there is no point in considering q < 1 (at least, for N+).
For a function F (x), x ∈ R2, we put Fβ(x) = F (βx), where β is a positive constant

matrix. Let (r, θ) be the polar coordinates of a point x ∈ R2; we write F (x) = F (r, θ).
By 〈F 〉 we denote the “mean value of F over the angle”:

〈F 〉(r) = (2π)−1

∫ π

−π
F (r, θ) dθ.

Also, we shall use the composition 〈Fβ〉 of the above transformations.
Along with Conditions 1.1 and (1.5), we impose the following condition on V :
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Condition 2.1(q). For some q ≥ 1,

(2.3q) (1.28) q <∞ for f = 〈V 〉, q ≥ 1.

By Proposition 1.10 and condition (1.5), relation (2.3q) is equivalent to the condition

‖ζ(〈V 〉)‖q,∞ <∞.

Examples (for any q ≥ 1) demonstrating that Conditions 1.1 and 2.1(q) are compatible
can be found in [BL] and [BLSu, §8].

Let β be a constant positive matrix, and let ϕ(x), x ∈ R2, be a bounded function.
We introduce the notation

fβ,ϕ := 〈(|ϕ|2V )β〉.
Let

(2.4) ∆(+)
q (V, β, ϕ), δ(+)

q (V, β, ϕ), q ≥ 1,

denote the functionals ∆(+)
q (1.28) and δ(+)

q (1.28) for f = fβ,ϕ. We mention that condition
(2.3q) with f = 〈V 〉 is equivalent to the same condition with f = fβ,ϕ. Moreover, we
have

(2.5) ∆(+)
q (V, β, ϕ) ≤ C∆(+)

q (V,1, 1), q ≥ 1.

This can be checked in an elementary way with the help of Proposition 1.10. In what
follows, we shall use the quantities (2.4) with β = β

(±)
j (see (1.18±) and ϕ = ϕ

(±)
j (see

(1.19±) or ϕ = 1.
We also note that the functionals (2.4) coincide for potentials V that are asymptoti-

cally close as |x| → ∞ (see Proposition 2.2 in [BLSu]).

2. In [BLSu] it was shown that if V satisfies Conditions 1.1 and 2.1(q), then

(2.6) N+(α, 0;A, V ) = O(αq), α→∞,

and the corresponding asymptotic formulas were established. Earlier the same results
were obtained in [BL] in the case where A = −∆.

Below we formulate two theorems (Theorems 2.2(+) and 2.5(+)) on the asymptotics
of N±(α, λ+;A, V ) and two theorems (Theorems 2.2(−) and 2.5(−)) on the asymptotics
of N±(α, λ−;A, V ). In Theorems 2.2(±) the answers are formulated in terms of the model
Schrödinger operators with, generally speaking, matrix-valued potentials. In Theorems
2.5(±) the answers are formulated in terms of the auxiliary problem on the semiaxis, but
V is subject to an additional restriction.

The description of the model operators (cf. [B5]) involves the quadratic forms b
(±)
j (see

(1.16±) and the corresponding eigenfunctions ψ(±)
j (see (1.19)±). In the Hilbert space

H± = L2(R2;Cm±), we consider the following diagonal second order elliptic operator
with constant coefficients:

(2.7±) B±(D) = diag(b(±)
1 (D), . . . , b(±)

m±(D)), D = −i∇.

The expression (2.7±) gives rise to a positive selfadjoint operator B± in H±. Now, we
introduce the following row matrix and column matrix:

Π±(x) := {ψ(±)
j (x)}m±j=1, Π∗±(x) := col{ψ(±)

j (x)}m±j=1.

The square Hermitian matrix

P±(x) = Π∗±(x)Π±(x) = {ψ(±)
k (x)ψ(±)

j (x)}m±k,j=1
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is of rank 1. The trace of it coincides with its only nonzero eigenvalue:

(2.8±) trP±(x) =
m±∑
j=1

|ψ(±)
j (x)|2.

We denote
W (x) = (V (x))1/2

and define the nonnegative matrix potential

U±(x) := V (x)P±(x) = (W (x)Π±(x))∗W (x)Π±(x).

The function (2.8±) is bounded; therefore, the potential U±(x) admits a pointwise esti-
mate in terms of V (x).

In the space H±, we consider the quadratic form
m±∑
j=1

∫
〈b(±)
j ∇vj ,∇vj〉2 dx− α

∫
〈U±(x)v,v〉m± dx,

v = (v1, . . . , vm±) ∈ H1(R2;Cm±).

Under condition (1.7) (and, moreover, under condition (1.6)) on V , this form is lower
semibounded and closed in H±. The corresponding selfadjoint operator in H± (the model
operator) is denoted by B±(α). In the sense of form-sums,

(2.9±) B±(α) := B± − αU±, α > 0.

By N+(α, λ;B±,U±), α > 0, λ ≤ 0, we denote the number of eigenvalues of the operator
B±(α) that lie to the left of the point λ. Clearly, estimate (2.6) for A = −∆ can be
carried over to the operator (2.9±):

N+(α, 0;B±,U±) = O(αq), α→∞.
We consider the ratio of (finite-dimensional) forms

(2.10±)
〈U±(x)c, c〉m±
〈B±(η)c, c〉m±

, c ∈ Cm± ; x ∈ R2, η ∈ R2.

Let n(±)(µ; x,η) denote the number of eigenvalues of the ratio (2.10±) that are greater
than µ, where µ > 0. We introduce the following notation for the Weyl coefficient
corresponding to the operator (2.9±):

J̃(B±,U±) := (2π)−2

∫∫
n(±)(1; x,η) dx dη.

For λ < 0, the function N+(α, λ;B±,U±) has Weyl asymptotics:

(2.11±) lim
α→∞

α−1N+(α, λ;B±,U±) = J̃(B±,U±), λ < 0.

Moreover,

(2.12±) N+(α, λ;B±,U±) ≤ Cα((V ))σ, σ > 1, λ < 0.

We put

∆q(B±,U±) := lim sup
α→∞

α−qN+(α, 0;B±,U±), q ≥ 1,(2.13±)

δq(B±,U±) := lim inf
α→∞

α−qN+(α, 0;B±,U±), q ≥ 1,(2.14±)

∆̃1(B±,U±) := ∆1(B±,U±)− J̃(B±,U±),(2.15±)

δ̃1(B±,U±) := δ1(B±,U±)− J̃(B±,U±).(2.16±)
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Theorem 2.2(+). Let the operator A be generated by the form (1.3) under conditions
(1.1). Let (λ−, λ+) be a gap in the spectrum of the operator A, and let Condition 1.3(+)
be satisfied. Suppose that the potential V for the operators (1.8) satisfies condition (1.5)
and also Conditions 1.1, and 2.1(q). Then the following is true for the quantities (2.1+)
and (2.2+).

(a) If q = 1, then

∂
(+)
1 (λ+;A, V ) = J(V, g) + ∂̃1(B+,U+), ∂ = ∆, δ,(2.17)

∆(−)
1 (λ+;A, V ) = 0.(2.18)

Here J(V, g) is as in (1.9), and ∂̃1(B+,U+) is as in (2.15+), (2.16+).
(b) If q > 1, then

(2.19) ∂(+)
q (λ+;A, V ) = ∂q(B+,U+), ∂ = ∆, δ,

and (2.18) is valid. Here ∂q(B+,U+) is the quantity defined in (2.13+), (2.14+).
(c) For the validity of the Weyl asymptotics

(2.20) ∆(+)
1 (λ+;A, V ) = δ

(+)
1 (λ+;A, V ) = J(V, g)

it suffices that the following condition be fulfilled in addition to (2.3q) with q = 1:

∆(+)
1 (V,1, 1) = 0.

Here ∆(+)
1 (V,1, 1) is the quantity defined in (2.4).

Theorem 2.2(−). Let the operator A be generated by the form (1.3) under conditions
(1.1). Let (λ−, λ+) be a gap in the spectrum of A, and let Condition 1.3(−) be satisfied.
Suppose that the potential V for the operators (1.8) satisfies condition (1.5) and also
Conditions 1.1, and 2.1(q). Then the following is true for the quantities (2.1−) and
(2.2−).

(a) If q = 1, then

∆(+)
1 (λ−;A, V ) = δ

(+)
1 (λ−;A, V ) = J(V, g),(2.21)

∂
(−)
1 (λ−;A, V ) = ∂̃1(B−,U−), ∂ = ∆, δ.(2.22)

Here J(V, g) is as in (1.9), and ∂̃1(B−,U−) is as in (2.15−), (2.16−).
(b) If q > 1, then

∆(+)
1 (λ−;A, V ) = δ

(+)
1 (λ−;A, V ) = J(V, g),(2.23)

∂(−)
q (λ−;A, V ) = ∂q(B−,U−), ∂ = ∆, δ.(2.24)

Here ∂q(B−,U−) is as in (2.13−), (2.14−).

3. The model operator (2.9±) involves the forms b
(±)
j or, equivalently, the matrices

β
(±)
j (and, therefore, the tensors of effective masses at the points ξ(±)

j ), and also the

eigenfunctions ψ(±)
j . It is impossible to avoid the dependence on β(±)

j in the asymptotic
formulas (2.17), (2.19), (2.22) and (2.24). As to the more unpleasant dependence on the
functions ψ(±)

j , the situation is different. These functions can be eliminated from the
asymptotic formulas under some supplementary conditions of “regular” behavior of the
perturbation V . The problem is solved by Theorems 2.5(±) below; to state them, we
need some preparations.

In addition to condition (1.5) and Conditions 1.1, 2.1(q), we impose the following
condition on V (cf. Condition 2.4 in [BLSu]).
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Condition 2.3(±). There exists a function S = S satisfying conditions (1.5), (1.6)
(with V replaced by S) and such that

(2.25) V (x) = S(x)(1 + o(1)) as |x| → ∞.

Suppose that every point of the countable set

{ξ = 2πn, n ∈ Z2 \ {0}} ∪ {ξ = ξ
(±)
j − ξ(±)

k + 2πn, k, j = 1, . . . ,m±; j 6= k, n ∈ Z2}

possesses a neighborhood O such that the Fourier image ΦS of S has the following prop-
erty: for some κ > 1,

ΦS ∈ Hκ(O), κ > 1.

Condition 2.3(±) is implied by the following one, which is easier to verify.

Condition 2.4. There exists a function S = S satisfying (1.5), (1.6), and (2.25) and
such that the Fourier image ΦS of S has the following property: for some κ > 1 and
0 < ε < 1,

ΦS ∈ Hκ(R2 \Bε), κ > 1,

where Bε = {ξ ∈ R2 : |ξ| ≤ ε}.

Theorem 2.5(+). Under the assumptions of Theorem 2.2(+), suppose also that Con-
dition 2.3(+) (or the more restrictive Condition 2.4) is satisfied. Then the following is
true for the quantities (2.1+) and (2.2+).

(a) If q = 1, then (2.18) is fulfilled, and

(2.26) ∂
(+)
1 (λ+;A, V ) = J(V, g) +

m+∑
j=1

∂
(+)
1 (V, β(+)

j , 1), ∂ = ∆, δ.

Here J(V, g) is as in (1.9), and the quantities ∂(+)
1 (V, β(+)

j , 1) are defined in accordance
with (2.4).

(b) If q > 1, then (2.18) is fulfilled, and

(2.27) ∂(+)
q (λ+;A, V ) =

m+∑
j=1

∂(+)
q (V, β(+)

j , 1), ∂ = ∆, δ.

Theorem 2.5(−). Under the conditions of Theorem 2.2(−), suppose also that Condition
2.3(−) (or the more restrictive Condition 2.4) is satisfied. Then the following is true for
the quantities (2.1−) and (2.2−).

(a) If q = 1, then (2.21) is true, and

(2.28) ∂
(−)
1 (λ−;A, V ) =

m−∑
j=1

∂
(+)
1 (V, β(−)

j , 1), ∂ = ∆, δ.

(b) If q > 1, then (2.23) is true, and

(2.29) ∂(−)
q (λ−;A, V ) =

m−∑
j=1

∂(+)
q (V, β(−)

j , 1), ∂ = ∆, δ.

Remark 2.6. From (2.26) and (2.27) it is clear that the contributions of different points
ξ

(+)
j are independent of one another and enter the asymptotic formula additively. This

is not so in the “parallel” formulas (2.17) and (2.19). The same refers to the expressions
(2.28) and (2.29).
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§3. Model integral operators

The model integral operators responsible for the non-Weyl contribution to the asymp-
totic formulas (2.17), (2.19), (2.22) and (2.24) were studied in detail in [BLSu]. Here we
state the corresponding results.

Let W be a complex-valued function on R2 such that the function V := |W|2 satisfies
conditions (1.6) and (2.3q) (with V replaced by V). Next, let χ0(η) = χ0(|η|) denote
the characteristic function of the disk |η| ≤ δ with some δ > 0, and let G(γ;V) = G(γ)
be the following integral operator in L2(R2):

(3.1) (G(γ)v)(y) = (2π)−1W(y)
∫
ei〈y,η〉χ0(η)(|η|2 + γ2)−1/2v(η) dη, γ > 0.

The operator (3.1) has the same form as the operator (3.2) in [BLSu]; the only difference
is that in [BLSu] it was assumed thatW(y) ≥ 0, while in the present setting the function
W(y) may be complex-valued. Obviously, the results of [BLSu] can be carried over to
this case. The following statement is a consequence of [BLSu, Proposition 3.6].

Proposition 3.1. Under the above conditions on V , we have

G(γ) = Ĝ(γ) + Z(γ), rankZ(γ) = 1,

and the following limit exists:

(3.2) (u)-lim
γ→0

Ĝ(γ) =: Ĝ(0) ∈ Σ2q.

We have
Ĝ(γ) = Ĝ(γ)[χ0].

Remark 3.2. The operator Ĝ(0) depends on the coefficient W linearly (this follows from
the construction described in [BLSu, §3]).

Consider the operator
H = Ĝ(0)∗Ĝ(0).

As was shown in [BLSu, Proposition 3.7], the asymptotic functionals ∂(+)
q (H), ∂ = ∆, δ,

coincide with the functionals ∂(+)
q for the ratio

(3.3)
∫ ∞

1

〈V〉(r)|z(r)|2r dr
/∫ ∞

1

|z′(r)|2r dr, z(1) = 0.

The ratio (3.3) coincides with (1.28) for f = 〈V〉 and R = 1. Thus, the following
statement is true.

Proposition 3.3. Under the above conditions on V , we have

∂(+)
q (H) = ∂(+)

q (3.3), ∂ = ∆, δ.

Remark 3.4. If V1(y) = V2(y) for |y| ≥ N , then the difference between the corresponding
operators Ĝ(0;V1) and Ĝ(0;V2) is of class Σ0

2q. This follows from [BLSu, Proposition 2.2
and §3].

§4. Reduction to compact operators

1. We denote

G(λ) = W |A− λI|−1/2, λ ∈ Λ,(4.1)

X(λ) := G(λ)(sgn(A− λI))G(λ)∗ = W (A− λI)−1W, λ ∈ Λ.(4.2)
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Recall that W = V 1/2. The following observation (see [B1], [BS2]), which relates the
functions (1.20) and the counting functions for the spectrum of the operator X(λ), is
well known:

(4.3) N±(α, λ;A, V ) = n±(t,X(λ)), tα = 1, λ ∈ Λ.

In (4.3) we cannot pass to the limit as λ→ λ±, because the operators (4.1) and (4.2) do
not have limits. Therefore, we need an appropriate regularization.

Proposition 4.1(±). Suppose that, for λ close to λ±, the operator X(λ) is represented
in the form

(4.4±) X(λ) = Γ±(λ) + Y±(λ),

where (Γ±(λ))∗ = Γ±(λ), the limit

(u)-lim
λ→λ±

Γ±(λ) =: Γ±

exists, and (uniformly in λ)

(4.5±) rankY±(λ) ≤ r± <∞.
Suppose also that Γ± ∈ Σq for some q ≥ 1. Then

∂(+)
q (λ±;A, V ) = ∂(+)

q (Γ±),

∂(−)
q (λ±;A, V ) = ∂(−)

q (Γ±),
∂ = ∆, δ, q ≥ 1.

(4.6±)

Proof. We prove the statement for λ+. Relations (4.3), (4.4+) and (4.5+) imply that

(4.7+) |N±(α, λ;A, V )− n±(t,Γ+(λ))| ≤ r+, tα = 1,

for λ close to λ+. In (4.7+), we can pass to the limit as λ → λ+, at least at the points
of continuity of the functions n±(·,Γ+). We obtain

(4.8+) |N±(α, λ+;A, V )− n±(t,Γ+)| ≤ r+, tα = 1.

Multiplying (4.8+) by α−q = tq and passing to the limit as α → ∞, we arrive at
(4.6+). �

Note that relations (4.6±) are preserved under adding an operator of class Σ0
q to Γ±.

2. Let ζN (x) denote the characteristic function of the disk |x| ≤ N , N > 0, and let
ζ̃N (x) := 1− ζN (x). We put

WN (x) := ζN (x)W (x), W̃N (x) := ζ̃N (x)W (x),

VN (x) := ζN (x)V (x), ṼN (x) := ζ̃N (x)V (x).

The operator X(λ) can be represented as

(4.9) X(λ) = LN (λ) +KN (λ) + 2 ReMN (λ),

where

LN(λ) := WN (A− λI)−1WN ,(4.10)

KN(λ) := W̃N (A− λI)−1W̃N ,(4.11)

MN(λ) := W̃N (A− λI)−1WN .(4.12)

We are going to regularize the operators (4.10)–(4.12) separately and to examine the
contribution of each of them to the limit quantities (2.1±) and (2.2±).
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3. Now, we fulfill this program for the model operator (2.9±). We introduce the operators

G±(γ) := WΠ±(B± + γ2I)−1/2, γ > 0,

acting from H± = L2(R2;Cm±) to L2(R2), and the operators

(4.13±) X±(γ) := G±(γ)(G±(γ))∗ = WΠ±(B± + γ2I)−1Π∗±W, γ > 0,

acting in L2(R2). The role of λ is played by −γ2. We have

N±(α,−γ2;B+,U+) = n±(t,X+(γ)), tα = 1, γ > 0,(4.14+)

N±(α,−γ2;B−,U−) = n±(t,X−(γ)), tα = 1, γ > 0.(4.14−)

Suppose that, for sufficiently small γ, the operator X±(γ) is represented as

(4.15±) X±(γ) = Γ̂±(γ) + Y±(γ),

where (Γ̂±(γ))∗ = Γ̂±(γ), the limit

(u)-lim
γ→0

Γ̂±(γ) =: Γ̂±

exists, and (uniformly in γ) rankY±(γ) ≤ r̂± <∞. Suppose also that Γ̂± ∈ Σq for some
q ≥ 1. Then

(4.16±) ∂q(B±,U±) = ∂(+)
q (Γ̂±), ∂ = ∆, δ, q ≥ 1.

The operator X±(γ) can be written as

(4.17±) X±(γ) = L(±)
N (γ) + K(±)

N (γ) + 2 ReM(±)
N (γ),

where

L(±)
N (γ) := WNΠ±(B± + γ2I)−1Π∗±WN ,(4.18±)

K(±)
N (γ) := W̃NΠ±(B± + γ2I)−1Π∗±W̃N ,(4.19±)

M(±)
N (γ) := W̃NΠ±(B± + γ2I)−1Π∗±WN .(4.20±)

In §5 we consider the operators (4.10) and (4.18±), in §6 the operators (4.11) and
(4.19±), and in §7 the operators (4.12) and (4.20±).

§5. The operators LN(λ) and L(±)
N (γ)

1. We put LN(−1) := WN (A + I)−1WN . Obviously, LN(−1) ≥ 0. By (4.3) and (1.11)
(with W replaced by WN ), condition (1.7) implies the Weyl asymptotics

(5.1) ∆1(LN (−1)) = δ1(LN (−1)) = J(VN , g).

Consider the difference

(5.2) LN (λ)− LN(−1) = (λ+ 1)WN (A− λI)−1(A+ I)−1WN .

Let δ > 0 be small enough that E±(ξ) is a simple eigenvalue of the operator A(ξ) for
all ξ lying in the ellipses

E(±)
j := {ξ : |β(±)

j (ξ − ξ(±)
j )| ≤ δ}, j = 1, . . . ,m±,

and E(±)
j ∩ E(±)

k = ∅ for j 6= k. Let χ(±)
j denote the characteristic function of the ellipse

E(±)
j . We put

χ(±)(ξ) :=
m±∑
j=1

χ
(±)
j (ξ), χ̃(±)(ξ) := 1− χ(±)(ξ)
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and introduce the projections

(5.3±) Ξ(±) := Ψ∗±[χ(±)]Ψ±, Ξ̃(±) := I − Ξ(±),

which commute with A. Here Ψ+ := Ψl, Ψ− := Ψl−1. We write the operator (5.2) as

(5.4±) LN(λ) − LN(−1) = (λ + 1)(Z(±)
N (λ) + Z̃

(±)
N (λ)),

where

Z
(±)
N (λ) := WN (A− λI)−1Ξ(±)(A+ I)−1WN ,(5.5±)

Z̃
(±)
N (λ) := WN (A− λI)−1Ξ̃(±)(A+ I)−1WN .(5.6±)

Proposition 5.1(±). The following limit exists:

(5.7±) (Σ1)-lim
λ→λ±

Z̃
(±)
N (λ) =: Z̃(±)

N (λ±) ∈ Σ0
1.

Proof. We write the operator (5.6±) as

Z̃
(±)
N (λ) = (WN (A+ I)−1)F (±)(λ)(WN (A+ I)−1)∗,

where F (±)(λ) := (A+ I)(A− λI)−1Ξ̃(±). It is easy to see that the limit

(u)-lim
λ→λ±

F (±)(λ) = (A+ I)(A − λ±I)−1Ξ̃(±) =: F (±)(λ±) ∈ R

exists. As was shown in [BLSu, §4], we have

WN (A+ I)−1 ∈ Σ0
2.

Hence, the limit

(Σ1)-lim
λ→λ±

Z̃
(±)
N (λ) = (WN (A+ I)−1)F (±)(λ±)(WN (A+ I)−1)∗ ∈ Σ0

1

also exists. �

2. We introduce the operators

(5.8±) G
(±)
N (λ) := WN |A− λI|−1/2Ξ(±) = WNΨ∗±[χ(±)|E± − λ|−1/2]Ψ±

and write the operator (5.5±) as

(5.9±) Z
(±)
N (λ) = ±G(±)

N (λ)(A + I)−1(G(±)
N (λ))∗.

Proposition 5.2(±). For any N > 0, we have

G
(±)
N (λ) = Ĝ

(±)
N (λ) + Ǧ

(±)
N (λ), rank Ǧ(±)

N (λ) = m±,

and the limit

(S2)-lim
λ→λ±

Ĝ
(±)
N (λ) =: Ĝ(±)

N (λ±) ∈ SS2

exists.
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Proof. Since the operator G(±)
N (λ) has the form (5.8±), temporarily we can ignore the

operator Ψ± on the right. Thus, we study the integral operator with the kernel

m±∑
j=1

WN (x)ψ(±)(x, ξ)χ(±)
j (ξ)|E±(ξ)− λ|−1/2

=
m±∑
j=1

WN (x)
(
ψ(±)(x, ξ)− ψ(±)(x, ξ(±)

j )
)
χ

(±)
j (ξ)|E±(ξ)− λ|−1/2

+
m±∑
j=1

WN (x)ψ(±)(x, ξ(±)
j )χ(±)

j (ξ)|E±(ξ)− λ|−1/2.

The second sum on the right corresponds to an operator of rank m±. Each term of the
first sum on the right can be written as(

WN (x)
(
ψ(±)(x, ξ)− ψ(±)(x, ξ(±)

j )
)
χ

(±)
j (ξ)|E±(ξ)− λ±|−1/2

)
×
(
χ

(±)
j (ξ)|E±(ξ)− λ±|1/2|E±(ξ)− λ|−1/2

)
.

(5.10±)

The second bracketed expression in (5.10±) represents an operator family strongly con-
verging to the operator [χ(±)

j ] as λ → λ±. The first bracketed expression corresponds
to a Hilbert–Schmidt kernel. This follows from the relations WN ∈ L2(R2) and (1.16±),
combined with the estimate∣∣ψ(±)(x, ξ)− ψ(±)(x, ξ(±)

j )
∣∣ ≤ C(N)

∣∣ξ − ξ(±)
j

∣∣,
|x| ≤ N,

∣∣β(±)
j (ξ − ξ(±)

j )
∣∣ ≤ δ.(5.11±)

In order to prove (5.11±), we use the representation

(5.12±)
ϕ(±)(x, ξ)− ϕ(±)(x, ξ(±)

j ) = 〈ξ − ξ(±)
j , e1〉ϑ1(x, ξ) + 〈ξ − ξ(±)

j , e2〉ϑ2(x, ξ),∣∣β(±)
j (ξ − ξ(±)

j )
∣∣ ≤ δ,

where {e1, e2} is the standard basis in C2, and the functions ϑ1, ϑ2 are uniformly bounded
(see [B5] for the details). Then∣∣ψ(±)(x, ξ)− ψ(±)(x, ξ(±)

j )
∣∣

≤
∣∣ϕ(±)(x, ξ)− ϕ(±)(x, ξ(±)

j )
∣∣+
∣∣ϕ(±)(x, ξ(±)

j )
∣∣∣∣ei〈x,ξ〉 − ei〈x,ξ(±)

j 〉∣∣.
Combining this with (5.12±), we obtain estimate (5.11±). It remains to use Lemma
1.9. �

Relation (5.9±) and Proposition 5.2(±) directly imply the following statement.

Proposition 5.3(±). For any N > 0, we have

Z
(±)
N (λ) = Ẑ

(±)
N (λ) + Ž

(±)
N (λ), rank Ž(±)

N (λ) ≤ 2m±,

and the following limit exists:

(S1)-lim
λ→λ±

Ẑ
(±)
N (λ) =: Ẑ(±)

N (λ±) ∈ S1.
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3. The following statement is a consequence of relations (5.1) and (5.4±) and Proposi-
tions 5.1(±) and 5.3(±).

Proposition 5.4(±). For any N > 0, the following representation is valid:

LN(λ) = L̂
(±)
N (λ) + Ľ

(±)
N (λ), rank Ľ(±)

N (λ) ≤ 2m±,

where the limit

(5.13±) (Σ1)-lim
λ→λ±

L̂
(±)
N (λ) =: L̂(±)

N (λ±) ∈ Σ1

exists. We have

∆(+)
1 (L̂(±)

N (λ±)) = δ
(+)
1 (L̂(±)

N (λ±)) = J(VN , g),(5.14±)

∆(−)
1 (L̂(±)

N (λ±)) = 0,(5.15±)

and

(5.16±) L̂
(±)
N (λ±) = ζN L̂

(±)
N (λ±)ζN .

For the proof it suffices to put

L̂
(±)
N (λ) = LN (−1) + (λ+ 1)(Ẑ(±)

N (λ) + Z̃
(±)
N (λ)),

Ľ
(±)
N (λ) = (λ+ 1)Ž(±)

N (λ).

4. The operator L(±)
N (γ) (see (4.18±)) is analyzed by analogy with LN(λ). By (4.14±)

and (2.11±) with γ = 1, we have the Weyl asymptotics

(5.17±) ∆1(L(±)
N (1)) = δ1(L(±)

N (1)) = J̃(B±,U (N)
± ),

where U (N)
± (x) := VN (x)P±(x). Consider the difference

(5.18±) L(±)
N (γ)− L(±)

N (1) = (1− γ2)WNΠ±(B± + γ2I)−1(B± + I)−1Π∗±WN .

Since B± is a differential operator with constant coefficients, it follows that, in the Fourier
representation, B± turns into multiplication by the matrix-valued symbol B±(η):

B± = Φ∗[B±]Φ.

For (B± + γ2I)−1, we have

(B± + γ2I)−1 = Φ∗[R±(γ)]Φ,

where
R±(γ;η) := diag{(b(±)

j (η) + γ2)−1}m±j=1.

Let ρ(±)
j (η) denote the characteristic function of the ellipse {η : |β(±)

j η| ≤ δ}. We put

ρ(±)(η) := diag{ρ(±)
1 (η), . . . , ρ(±)

m±(η)}, ρ̃(±)(η) := 1m± − ρ(±)(η)

and introduce the projections Ξ(±)
0 = Φ∗[ρ(±)]Φ, Ξ̃(±)

0 = I − Ξ(±)
0 in the space H± =

L2(R2;Cm±). The operator (5.18±) is represented as

(5.19±) L(±)
N (γ)− L(±)

N (1) = (1− γ2)(Z(±)
N (γ) + Z̃(±)

N (γ)),

where

Z(±)
N (γ) := WNΠ±(B± + γ2I)−1Ξ(±)

0 (B± + I)−1Π∗±WN ,(5.20±)

Z̃(±)
N (γ) := WNΠ±(B± + γ2I)−1Ξ̃(±)

0 (B± + I)−1Π∗±WN .(5.21±)

The operators (5.20±) and (5.21±) are studied by the same method as the operators
(5.5±) and (5.6±). In order to avoid repetition of similar arguments, we omit the proofs
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of the following statements, which are analogs of Propositions 5.1(±) and 5.3(±). Note
that the proofs become simpler somewhat, because, instead of the operators Ψ±, we now
deal with the simpler Fourier operator Φ. At the same time, the matrix character of the
operators (5.20±) and (5.21±) does not add serious difficulties.

Proposition 5.5(±). The following limit exists:

(Σ1)-lim
γ→0

Z̃(±)
N (γ) =: Z̃(±)

N (0) ∈ Σ0
1.

Proposition 5.6(±). For any N > 0, we have

Z(±)
N (γ) = Ẑ(±)

N (γ) + Ž(±)
N (γ), rank Ž(±)

N (γ) ≤ 2m±,

and the limit
(S1)-lim

γ→0
Ẑ(±)
N (γ) =: Ẑ(±)

N (0) ∈ S1

exists.

5. The following statement is a consequence of relations (5.17±) and (5.19±) and Propo-
sitions 5.5(±) and 5.6(±).

Proposition 5.7(±). For any N > 0, the following representation is valid:

L(±)
N (γ) = L̂(±)

N (γ) + Ľ(±)
N (γ), rank Ľ(±)

N (γ) ≤ 2m±.

The limit

(5.22±) (Σ1)-lim
γ→0

L̂(±)
N (γ) =: L̂(±)

N (0) ∈ Σ1

exists, and

∆(+)
1 (L̂(±)

N (0)) = δ
(+)
1 (L̂(±)

N (0)) = J̃(B±,U (N)
± ),(5.23±)

∆(−)
1 (L̂(±)

N (0)) = 0.

We have

(5.24±) L̂(±)
N (0) = ζN L̂(±)

N (0)ζN .

For the proof, it suffices to put

L̂(±)
N (γ) = L(±)

N (1) + (1− γ2)(Ẑ(±)
N (γ) + Z̃(±)

N (γ)),

Ľ(±)
N (γ) = (1− γ2)Ž(±)

N (γ).

§6. The operators KN (λ) and K(±)
N (γ)

1. The operator (4.11) can be written as

(6.1±) KN (λ) = Q
(±)
N (λ) + K̃

(±)
N (λ),

where

Q
(±)
N (λ) := W̃N (A− λI)−1Ξ(±)W̃N ,(6.2±)

K̃
(±)
N (λ) := W̃N (A− λI)−1Ξ̃(±)W̃N .(6.3±)

The projections Ξ(±) and Ξ̃(±) were introduced in (5.3±).
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Proposition 6.1(±). The limit

(6.4±) (Σ1)-lim
λ→λ±

K̃
(±)
N (λ) =: K̃(±)

N (λ±) ∈ Σ1

exists, and

∆(+)
1 (K̃(±)

N (λ±)) = δ
(+)
1 (K̃(±)

N (λ±)) = J(ṼN , g),(6.5±)

∆(−)
1 (K̃(±)

N (λ±)) = 0.(6.6±)

We have

(6.7±) K̃
(±)
N (λ±) = ζ̃NK̃

(±)
N (λ±)ζ̃N .

Proof. By Hilbert’s identity,

K̃
(±)
N (λ) = K̃

(±)
N (−1) + (λ+ 1)W̃N (A− λI)−1(A+ I)−1Ξ̃(±)W̃N .

Arguing as in the case of (5.7±), we easily check that the limit

(6.8±) (Σ1)-lim
λ→λ±

(K̃(±)
N (λ) − K̃(±)

N (−1)) ∈ Σ0
1

exists. We show that

(6.9±) K̃
(±)
N (−1)− W̃N (A+ I)−1W̃N ∈ Σ0

1.

Indeed,

K̃
(±)
N (−1)− W̃N (A+ I)−1W̃N = −W̃N (A+ I)−1Ξ(±)W̃N

= −(W̃N (A+ I)−1)((A+ I)Ξ(±))(W̃N (A+ I)−1)∗.

The relations (A+ I)Ξ(±) ∈ R and W̃N (A+ I)−1 ∈ Σ0
2 (see [BLSu, §4]) imply (6.9±).

By (4.3) with λ = −1 and the asymptotic formula (1.11), we have

(6.10) ∆(+)
1 (W̃N (A+ I)−1W̃N ) = δ

(+)
1 (W̃N (A+ I)−1W̃N ) = J(ṼN , g).

Obviously, ∆(−)
1 (W̃N (A + I)−1W̃N ) = 0. Now, (6.8±), (6.9±) and (6.10) imply (6.4±)–

(6.6±). Relation (6.7±) follows directly from (6.3±) and (6.4±). �
2. We write the operator (6.2±) as

(6.11±) Q
(±)
N (λ) = ±G̃(±)

N (λ)(G̃(±)
N (λ))∗,

where

(6.12±) G̃
(±)
N (λ) := W̃N |A− λI|−1/2Ξ(±).

Consider the operator

(6.13±) G̃
(±)
N (λ) = W̃NΨ∗±[χ(±)|E± − λ|−1/2]Ψ± =

m±∑
j=1

T
(±)
jN (λ)Ψ±,

where

(6.14±) T
(±)
jN (λ) := W̃NΨ∗±[χ(±)

j |E± − λ|−1/2], j = 1, . . . ,m±.

We start with the study of the operators (6.14±). The kernel of the integral operator
T

(±)
jN (λ) has the form

(6.15±) (2π)−1W̃N (x)χ(±)
j (ξ)|E±(ξ)− λ|−1/2ei〈x,ξ〉ϕ(±)(x, ξ).

Along with T
(±)
jN (λ), we consider the operator T̂ (±)

jN (λ) with a simpler kernel, namely,

(6.16±) (2π)−1W̃N (x)χ(±)
j (ξ)

∣∣± b
(±)
j (ξ − ξ(±)

j ) + λ± − λ
∣∣−1/2

ei〈x,ξ〉ϕ
(±)
j (x).
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Recall that b
(±)
j is the quadratic form introduced in (1.16±), and ϕ

(±)
j is the periodic

function defined in (1.19±). The following statement shows that, under regularization,
the operator T (±)

jN (λ) can be replaced by T̂ (±)
jN (λ).

Proposition 6.2(±). The following limit exists:

(6.17±) (S2)-lim
λ→λ±

(T (±)
jN (λ) − T̂ (±)

jN (λ)), j = 1, . . . ,m±.

Proof. We proceed in two steps. First, we replace the functions ϕ(±)(x, ξ) by ϕ(±)
j (x) =

ϕ(±)(x, ξ(±)
j ) in (6.15±). Here we use the representation (5.12±). The difference of the

corresponding kernels can be written as(
(2π)−1W̃N (x)χ(±)

j (ξ)ei〈x,ξ〉(ϕ(±)(x, ξ)− ϕ(±)
j (x))|E±(ξ)− λ±|−1/2

)
×
(
χ

(±)
j (ξ)|E±(ξ)− λ±|1/2|E±(ξ)− λ|−1/2

)
.

Here the first expression in parentheses corresponds to a kernel of the Hilbert–Schmidt
class. Indeed, W̃N ∈ L2(R2), and, by (5.12±), the function (ϕ(±)(x, ξ)− ϕ(±)

j (x)) elimi-

nates the singularity |E±(ξ)− λ±|−1/2 � |ξ − ξ(±)
j |−1. The second expression in paren-

theses represents the kernel of an operator family strongly converging to the operator
[χ(±)
j ] as λ → λ±. By Lemma 1.9, this yields (S2)-convergence. It remains to replace

E± by (λ± ± b
(±)
j ). Now, the difference of the corresponding kernels can be represented

as (
(2π)−1W̃N (x)χ(±)

j (ξ)ϕ(±)
j (x)ei〈x,ξ〉

)
×
(
χ

(±)
j (ξ)

(
|E±(ξ)− λ|−1/2 − | ± b

(±)
j (ξ − ξ(±)

j ) + λ± − λ|−1/2
))
.

Here, obviously, the first expression in parentheses represents an operator of class S2,
and the second generates a strongly convergent operator family (by (1.16±)). Referring
to Lemma 1.9 once again, we obtain (6.17±). �

3. It is elementary to reduce the operator T̂ (±)
jN (λ) to the operator G(γ) treated in §3,

with γ2 = ±(λ±−λ). Indeed, the change of variables η = β
(±)
j (ξ−ξ(±)

j ), y = (β(±)
j )−1x

in the kernel (6.16±) results in the kernel of the operator (3.1) with

W(y) =W(±)
j (y) = W̃N (β(±)

j y)ϕ(±)
j (β(±)

j y) exp(i〈β(±)
j y, ξ(±)

j 〉),(6.18±)

V(y) = ṼN (β(±)
j y)|ϕ(±)

j (β(±)
j y)|2 = (|ϕ(±)

j |2ṼN )
β

(±)
j

(y).(6.19±)

We recall that conditions (1.6) and (2.3q) for V imply similar conditions for V . Obvi-
ously, the corresponding operator G(γ) = G(±)

jN (γ), γ2 = ±(λ±−λ), is unitarily equivalent

to the operator T̂ (±)
jN (λ). Propositions 3.1 and 6.2(±) imply the following statement.

Proposition 6.3(±). 1◦. The following representations are valid:

T̂
(±)
jN (λ) = T̂ (±)

jN (λ) + Y
(±)
jN (λ), j = 1, . . . ,m±,

T
(±)
jN (λ) = T (±)

jN (λ) + Y
(±)
jN (λ), j = 1, . . . ,m±,

rankY (±)
jN (λ) = 1, j = 1, . . . ,m±,
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where the limits

(u)-lim
λ→λ±

T̂ (±)
jN (λ) =: T̂ (±)

jN (λ±) ∈ Σ2q, j = 1, . . . ,m±,

(u)-lim
λ→λ±

T (±)
jN (λ) =: T (±)

jN (λ±) ∈ Σ2q, j = 1, . . . ,m±,

exist, and

T (±)
jN (λ±) = T̂ (±)

jN (λ±) (mod Σ0
2q), j = 1, . . . ,m±.

2◦. The operator T̂ (±)
jN (λ±) is unitarily equivalent to the operator Ĝ(0) = Ĝ(±)

jN (0) defined

as in (3.2) with G(γ) = G(±)
jN (γ), i.e., in the case where (6.18±) is fulfilled.

3◦. We have

T (±)
jN (λ±) = ζ̃NT (±)

jN (λ±), T̂ (±)
jN (λ±) = ζ̃N T̂ (±)

jN (λ±),(6.20±)

T (±)
jN (λ±) = T (±)

jN (λ±)[χ(±)
j ], T̂ (±)

jN (λ±) = T̂ (±)
jN (λ±)[χ(±)

j ].

4. We turn to the operator (6.11±), which we write in the following form, in accordance
with (6.13±):

Q
(±)
N (λ) = ±

m±∑
j,k=1

T
(±)
jN (λ)Ψ±(T (±)

kN (λ)Ψ±)∗.

Simultaneously, we consider the operator

Q̂
(±)
N (λ) = ±

m±∑
j,k=1

T̂
(±)
jN (λ)Ψ±(T̂ (±)

kN (λ)Ψ±)∗.

Proposition 6.3(±) implies the following statement.

Proposition 6.4(±). We have

Q
(±)
N (λ) = Q

(±)
N (λ) + Y

(±)
N (λ), rankY (±)

N (λ) ≤ 2m±,

Q̂
(±)
N (λ) = Q̂

(±)
N (λ) + Ŷ

(±)
N (λ), rank Ŷ (±)

N (λ) ≤ 2m±,

where the limits

(u)-lim
λ→λ±

Q
(±)
N (λ) =: Q

(±)
N (λ±) ∈ Σq,

(u)-lim
λ→λ±

Q̂
(±)
N (λ) =: Q̂

(±)
N (λ±) = ±

m±∑
j,k=1

T̂ (±)
jN (λ±)Ψ±(T̂ (±)

kN (λ±)Ψ±)∗ ∈ Σq

exist, and

(6.21±) Q
(±)
N (λ±) = Q̂

(±)
N (λ±) (mod Σ0

q).

We have

(6.22±) Q
(±)
N (λ±) = ζ̃NQ

(±)
N (λ±)ζ̃N , Q̂

(±)
N (λ±) = ζ̃N Q̂

(±)
N (λ±)ζ̃N .

Observe that the operator Q
(+)
N (λ+) is nonnegative, and the operator Q

(−)
N (λ−) is

nonpositive, because

Q
(±)
N (λ±) = ±

( m±∑
j=1

T (±)
jN (λ±)Ψ±

)( m±∑
k=1

T (±)
kN (λ±)Ψ±

)∗
.
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Therefore,

n−(t,Q(+)
N (λ+)) = 0, t > 0,(6.23)

n+(t,Q(−)
N (λ−)) = 0, t > 0.(6.24)

5. Instead of Q̂
(±)
N (λ±), it is more convenient to study the operator ±Ψ∗±P

(±)
N (λ±)Ψ±

with the same nonzero spectrum. Here

(6.25±) P
(±)
N (λ±) :=

m±∑
j,k=1

(T̂ (±)
kN (λ±))∗T̂ (±)

jN (λ±).

Since the operators Ψ± are partially isometric and surjective, the nonzero spectra of the
operators Q̂

(±)
N (λ±) and ±P (±)

N (λ±) coincide. Hence,

∂(+)
q (Q̂(+)

N (λ+)) = ∂(+)
q (P (+)

N (λ+)), ∂ = ∆, δ,(6.26+)

∂(−)
q (Q̂(−)

N (λ−)) = ∂(+)
q (P (−)

N (λ−)), ∂ = ∆, δ.(6.26−)

By Proposition 6.3(±), 2◦, the operator T̂ (±)
jN (λ±) is unitarily equivalent to the oper-

ator Ĝ(±)
jN (0). Therefore, Remark 3.4 implies that

T̂ (±)
jN1

(λ±) = T̂ (±)
jN2

(λ±) (mod Σ0
2q), N1, N2 > 0.

Consequently, the quantities ∂(+)
q (P (±)

N (λ±)), ∂ = ∆, δ, do not depend on N . Combining
this with (6.21±) and (6.26±), we obtain the following statement.

Proposition 6.5(±). The quantities

(6.27) ∂(+)
q (Q(+)

N (λ+)) =: ∂(+)
q (∗), ∂(−)

q (Q(−)
N (λ−)) =: ∂(−)

q (∗)

are independent of N .

We introduce the notation

(6.28±) H
(±)
jN := (T̂ (±)

jN (λ±))∗T̂ (±)
jN (λ±).

By (6.19±), Propositions 6.3(±) (item 2◦) and 3.3, and the definition of the quantities
(2.4), we obtain

∂(+)
q (H(±)

jN ) = ∂(+)
q (ṼN , β

(±)
j , ϕ

(±)
j ) = ∂(+)

q (V, β(±)
j , ϕ

(±)
j ),

∂ = ∆, δ, j = 1, . . . ,m±.
(6.29±)

We represent P (±)
N (λ±) as

P
(±)
N (λ±) = P̂

(±)
N (λ±) + P̌

(±)
N (λ±),(6.30±)

P̂
(±)
N (λ±) =

m±∑
j=1

H
(±)
jN ,(6.31±)

P̌
(±)
N (λ±) =

∑
j 6=k

(T̂ (±)
kN (λ±))∗T̂ (±)

jN (λ±).(6.32±)

By (6.21±), (6.26±) and (6.27) we have

(6.33) ∂(+)
q (∗) = ∂(+)

q (P (+)
N (λ+)), ∂(−)

q (∗) = ∂(+)
q (P (−)

N (λ−)).
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We calculate ∂(+)
q (P̂ (±)

N (λ±)). By (6.20±) and (6.28±), the summands in (6.31±) are
pairwise orthogonal. Therefore, by (6.29±),

(6.34±) ∂(+)
q (P̂ (±)

N (λ±)) =
m±∑
j=1

∂(+)
q (H(±)

jN ) =
m±∑
j=1

∂(+)
q (V, β(±)

j , ϕ
(±)
j ), ∂ = ∆, δ.

6. We summarize the results for the operator KN (λ). We put

K̂
(±)
N (λ) = K̃

(±)
N (λ) + Q

(±)
N (λ).

The following statement is a consequence of (6.16±) and Propositions 6.1(±), 6.4(±),
and 6.5(±).

Proposition 6.6(±). We have

KN(λ) = K̂
(±)
N (λ) + Y

(±)
N (λ), rankY (±)

N (λ) ≤ 2m±,

where the limit

(6.35±) (u)-lim
λ→λ±

K̂
(±)
N (λ) =: K̂(±)

N (λ±) = K̃
(±)
N (λ±) + Q

(±)
N (λ±) ∈ Σq

exists. If q > 1, then

∂(+)
q (K̂(+)

N (λ+)) = ∂(+)
q (Q(+)

N (λ+)) =: ∂(+)
q (∗),(6.36+)

∂(−)
q (K̂(−)

N (λ−)) = ∂(−)
q (Q(−)

N (λ−)) =: ∂(−)
q (∗),(6.36−)

and the quantities (6.36±) do not depend on N . If q = 1, then

lim
N→∞

∂
(+)
1 (K̂(+)

N (λ+)) = ∂
(+)
1 (∗),(6.37+)

lim
N→∞

∂
(−)
1 (K̂(−)

N (λ−)) = ∂
(−)
1 (∗).(6.37−)

For q ≥ 1,

∆(−)
1 (K̂(+)

N (λ+)) = 0,(6.38+)

lim
N→∞

∆(+)
1 (K̂(−)

N (λ−)) = 0.(6.38−)

We have

(6.39±) K̂
(±)
N (λ±) = ζ̃NK̂

(±)
N (λ±)ζ̃N .

Proof. It remains to prove (6.38±) and (6.39±). Relation (6.38+) follows from (6.35+),
(6.6+) and (6.23). Next, relations (6.35−), (6.5−) and (6.24) imply the inequality

∆(+)
1 (K̂(−)

N (λ−)) ≤ ∆(+)
1 (K̃(−)

N (λ−)) = J(ṼN , g).

It remains to observe that the right-hand side tends to zero as N → ∞. This proves
(6.38−).

From (6.7±), (6.22±) and (6.35±) we deduce (6.39±). �

7. We pass to the operator (4.19±), which is represented in the form

(6.40±) K(±)
N (γ) = Q(±)

N (γ) + K̃(±)
N (γ),

where

Q(±)
N (γ) := W̃NΠ±(B± + γ2I)−1Ξ(±)

0 Π∗±W̃N ,(6.41±)

K̃(±)
N (γ) := W̃NΠ±(B± + γ2I)−1Ξ̃(±)

0 Π∗±W̃N .(6.42±)

The projections Ξ(±)
0 and Ξ̃(±)

0 were introduced in Subsection 5.4.
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Proposition 6.7(±). The limit

(Σ1)-lim
γ→0

K̃(±)
N (γ) =: K̃(±)

N (0) ∈ Σ1

exists. The following asymptotics is valid:

∆(+)
1 (K̃(±)

N (0)) = δ
(+)
1 (K̃(±)

N (0)) = J̃(B±, Ũ (N)
± ),

where Ũ (N)
± (x) = ṼN (x)P±(x). We have K̃(±)

N (0) = ζ̃N K̃(±)
N (0)ζ̃N .

Proof. Since the proof is similar to that of Proposition 6.1(±), we omit it in order to
avoid repetition. �

Obviously, the operator (6.42±) is nonnegative, so that

(6.43±) n−(t, K̃(±)
N (0)) = 0.

8. Now, we find a relationship between the operators Q(±)
N (λ) and Q(±)

N (γ). Denote

(6.44±) T̂
(±)
N (λ) :=

m±∑
j=1

T̂
(±)
jN (λ),

where T̂ (±)
jN (λ) is the integral operator with the kernel (6.16±). Then

(T̂ (±)
N (λ)f)(x)

= (2π)−1

m±∑
j=1

W̃N (x)

×
∫
χ

(±)
j (ξ)

(
b

(±)
j (ξ − ξ(±)

j ) + γ2
)−1/2

ei〈x,ξ〉ϕ
(±)
j (x)f(ξ) dξ,

(6.45±)

where γ2 = ±(λ±−λ). We transform (6.45±), making the change of variables η = ξ−ξ(±)
j

in the jth summand and introducing the notation f(η + ξ(±)
j ) =: h(±)

j (η). Then

(T̂ (±)
N (λ)f)(x)

= (2π)−1

m±∑
j=1

W̃N (x)

×
∫
ρ

(±)
j (η)

(
b

(±)
j (η) + γ2

)−1/2
ei〈x,η〉ei〈x,ξ

(±)
j 〉ϕ

(±)
j (x)h(±)

j (η) dη.

Let h(±) = col{h(±)
j }

m±
j=1 =: Υ(±)f . Clearly,

(6.46±) T̂
(±)
N (λ)f = W̃NΠ±Φ∗[ρ(±)(R±(γ))1/2]h(±) = G̃

(±)
N (γ)Φ∗[ρ(±)]Υ(±)f,

where

(6.47±) G̃
(±)
N (γ) := W̃NΠ±(B± + γ2I)−1/2Ξ(±)

0 .

It is easy to check that

(6.48±) Φ∗[ρ(±)]Υ(±)(Υ(±))∗[ρ(±)]Φ = Ξ(±)
0 .

Then (6.41±) and (6.46±)–(6.48±) imply that

Q(±)
N (γ) = G̃

(±)
N (γ)(G̃(±)

N (γ))∗ = T̂
(±)
N (λ)(T̂ (±)

N (λ))∗, γ2 = ±(λ± − λ).

Proposition 6.3(±) and relation (6.44±) yield the following statement.
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Proposition 6.8(±). The following representation is true:

Q(±)
N (γ) = Q̂(±)

N (γ) + Y(±)
N (γ), rankY(±)

N (γ) ≤ 2m±,

where the limit
(u)-lim
γ→0

Q̂(±)
N (γ) =: Q̂(±)

N (0) ∈ Σq

exists, and

(6.49±) Q̂(±)
N (0) = T̂ (±)

N (λ±)(T̂ (±)
N (λ±))∗,

where

T̂ (±)
N (λ±) :=

m±∑
j=1

T̂ (±)
jN (λ±).

We have Q̂(±)
N (0) = ζ̃N Q̂(±)

N (0)ζ̃N .

From (6.49±) and (6.25±) we deduce that

∂(+)
q (Q̂(±)

N (0)) = ∂(+)
q (T̂ (±)

N (λ±)(T̂ (±)
N (λ±))∗) = ∂(+)

q (P (±)
N (λ±)).

Taking (6.21±) and (6.26±) into account, we arrive at the relations

∂(+)
q (Q(+)

N (λ+)) = ∂(+)
q (Q̂(+)

N (λ+)) = ∂(+)
q (Q̂(+)

N (0)),(6.50+)

∂(−)
q (Q(−)

N (λ−)) = ∂(−)
q (Q̂(−)

N (λ−)) = ∂(+)
q (Q̂(−)

N (0)).(6.50−)

Obviously, the operator (6.49±) is nonnegative, whence

(6.51±) n−(t, Q̂(±)
N (0)) = 0.

9. We summarize the results for the operator K(±)
N (γ). We put

K̂(±)
N (γ) = K̃(±)

N (γ) + Q̂(±)
N (γ).

Relation (6.40±), Propositions 6.5(±), 6.7(±) and 6.8(±), and also relations (6.43±),
(6.50±) and (6.51±) yield the following statement.

Proposition 6.9(±). The following representation is valid:

K(±)
N (γ) = K̂(±)

N (γ) + Y(±)
N (γ), rankY(±)

N (γ) ≤ 2m±,

where the limit
(u)-lim
γ→0

K̂(±)
N (γ) =: K̂(±)

N (0) ∈ Σq

exists. If q > 1, then

∂(+)
q (K̂(+)

N (0)) = ∂(+)
q (∗),(6.52+)

∂(+)
q (K̂(−)

N (0)) = ∂(−)
q (∗).(6.52−)

If q = 1, then

lim
N→∞

∂
(+)
1 (K̂(+)

N (0)) = ∂
(+)
1 (∗),(6.53+)

lim
N→∞

∂
(+)
1 (K̂(−)

N (0)) = ∂
(−)
1 (∗).(6.53−)

We have

n−(t, K̂(±)
N (0)) = 0,

K̂(±)
N (0) = ζ̃N K̂(±)

N (0)ζ̃N .(6.54±)
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§7. The operators MN(λ) and M(±)
N (γ)

1. We represent the operator (4.12) as follows:

(7.1±) MN(λ) = M
(±)
N (λ) + M̃

(±)
N (λ),

where

M
(±)
N (λ) := W̃N (A− λI)−1Ξ(±)WN ,(7.2±)

M̃
(±)
N (λ) := W̃N (A− λI)−1Ξ̃(±)WN .

Then

(7.3±) M̃
(±)
N (λ) := Θ̃(±)

N (λ)(Θ(±)
N (λ))∗,

where

Θ̃(±)
N (λ) := W̃N |A− λI|−1/2Ξ̃(±),(7.4±)

Θ(±)
N (λ) := WN |A− λI|1/2(A− λI)−1Ξ̃(±).

Proposition 7.1(±). The limits

(Σ2)-lim
λ→λ±

Θ̃(±)
N (λ) =: Θ̃(±)

N (λ±) ∈ Σ2,(7.5±)

(Σ2)-lim
λ→λ±

Θ(±)
N (λ) =: Θ(±)

N (λ±) ∈ Σ2(7.6±)

exist, and

lim
N→∞

∆2(Θ̃(±)
N (λ±)) = 0,(7.7±)

∆2(Θ(±)
N (λ±)) ≤ C((V ))σ .

Proof. The operator (7.4±) can be written as

Θ̃(±)
N (λ) =

(
W̃N (A+ I)−1/2

)(
(A+ I)1/2|A− λI|−1/2Ξ̃(±)

)
.

The second expression in parentheses converges in the operator norm to the bounded
operator

(A+ I)1/2|A− λ±I|−1/2Ξ̃(±)

as λ → λ±. By (4.3) and (1.10) (with λ = −1), we have W̃N (A + I)−1/2 ∈ Σ2. This
implies (7.5±) and the estimate

∆2(Θ̃(±)
N (λ±)) ≤ C1∆2(W̃N (A+ I)−1/2) ≤ C2((ṼN ))σ .

Obviously, ((ṼN ))σ → 0 as N →∞. This proves (7.7±). Relation (7.6±) and the estimate

∆2(Θ(±)
N (λ±)) ≤ C((VN ))σ ≤ C((V ))σ

are proved in a similar way. �

The following statement is a consequence of (7.3±) and Proposition 7.1(±).

Proposition 7.2(±). The limit

(Σ1)-lim
λ→λ±

M̃
(±)
N (λ) =: M̃ (±)

N (λ±) ∈ Σ1

exists, and
lim
N→∞

∆1(M̃ (±)
N (λ±)) = 0.
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2. In accordance with (5.8±) and (6.12±), we write the operator (7.2±) in the form

(7.8±) M
(±)
N (λ) = ±G̃(±)

N (λ)(G(±)
N (λ))∗.

Using (7.8±), Propositions 5.2(±) and 6.3(±), and relation (6.13±), we obtain the fol-
lowing statement.

Proposition 7.3(±). We have

M
(±)
N (λ) = M̂

(±)
N (λ) + M̌

(±)
N (λ), rank M̌ (±)

N (λ) ≤ 2m±,

and the following limit exists:

(u)-lim
λ→λ±

M̂
(±)
N (λ) =: M̂ (±)

N (λ±) ∈ Σ0
q.

We put

M
(±)
N (λ) := M̂

(±)
N (λ) + M̃

(±)
N (λ).

By (7.1±) and Propositions 7.2(±) and 7.3(±), we obtain the following statement.

Proposition 7.4(±). We have

MN (λ) = M
(±)
N (λ) + M̌

(±)
N (λ), rank M̌ (±)

N (λ) ≤ 2m±,

and the limit

(u)-lim
λ→λ±

M
(±)
N (λ) =: M

(±)
N (λ±) ∈ Σq

exists. If q > 1, then

(7.9±) M
(±)
N (λ±) ∈ Σ0

q, q > 1.

If q = 1, then

(7.10±) lim
N→∞

∆1(M(±)
N (λ±)) = 0.

3. The operator (4.20±) can be studied by analogy with the operator (4.12). In order to
avoid repetition, we omit the details and formulate the result. The following statement
is an analog of Proposition 7.4(±).

Proposition 7.5(±). We have

M(±)
N (γ) = M̂

(±)
N (γ) + M̌(±)

N (γ), rankM̌(±)
N (γ) ≤ 2m±,

and the limit

(u)-lim
γ→0

M̂
(±)
N (γ) =: M̂

(±)
N (0) ∈ Σq

exists. If q > 1, then

(7.11±) M̂
(±)
N (0) ∈ Σ0

q, q > 1.

If q = 1, then

(7.12±) lim
N→∞

∆1(M̂(±)
N (0)) = 0.
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§8. Proof of Theorems 2.2(±)

1. Now everything is prepared for applying the general method of §4. In accordance
with (4.9), regularization of the operator X(λ) (see (4.2)) reduces to Propositions 5.4(±),
6.6(±) and 7.4(±). The operator X(λ) is representable as in (4.4±), with the operators

Γ(±)
N (λ) := L̂

(±)
N (λ) + K̂

(±)
N (λ) + 2 Re M

(±)
N (λ), N > 0,

Y
(±)
N (λ) := Ľ

(±)
N (λ) + Y

(±)
N (λ) + 2 Re M̌ (±)

N (λ), N > 0,

in the role of Γ±(λ) and Y±(λ).
We have

rank Y
(±)
N (λ) ≤ 6m±,

and the limit

(u)-lim
λ→λ±

Γ(±)
N (λ) =: Γ(±)

N (λ±) ∈ Σq

exists, where

(8.1±) Γ(±)
N (λ±) = L̂

(±)
N (λ±) + K̂

(±)
N (λ±) + 2 Re M

(±)
N (λ±).

The parameter N will play an important role in what follows. We write relations
(4.6±) for the operator Γ(±)

N (λ±):

∂(+)
q (λ±;A, V ) = ∂(+)

q (Γ(±)
N (λ±)), ∂ = ∆, δ,(8.2±)

∂(−)
q (λ±;A, V ) = ∂(−)

q (Γ(±)
N (λ±)), ∂ = ∆, δ.(8.3±)

Since the left-hand side is independent of N , so is the right-hand side. Moreover, the
right-hand side does not change under adding an operator of class Σ0

q to Γ(±)
N (λ±).

2. For the model operator, by (4.17±), regularization of X±(γ) in (4.13±) reduces to
Propositions 5.7(±), 6.9(±) and 7.5(±). The operator X±(γ) is representable as in
(4.15±), with

Γ̂(±)
N (γ) := L̂(±)

N (γ) + K̂(±)
N (γ) + 2 Re M̂

(±)
N (γ), N > 0,

Ŷ
(±)
N (γ) := Ľ(±)

N (γ) + Y(±)
N (γ) + 2 ReM̌(±)

N (γ), N > 0,

in the role of Γ̂±(γ) and Y±(γ). We have

rank Ŷ
(±)
N (γ) ≤ 6m±,

and the limit

(u)-lim
γ→0

Γ̂(±)
N (γ) =: Γ̂(±)

N (0) ∈ Σq

exists, where

(8.4±) Γ̂(±)
N (0) = L̂(±)

N (0) + K̂(±)
N (0) + 2 Re M̂

(±)
N (0).

We write relations (4.16±) for Γ̂(±)
N (0):

(8.5±) ∂q(B±,U±) = ∂(+)
q (Γ̂(±)

N (0)), ∂ = ∆, δ.
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3. It is convenient to start the proof of Theorems 2.2(±) with checking statement (b)
(the case of q > 1). In this case, from (8.1±), (5.13±) and (7.9±) it follows that

Γ(±)
N (λ±)− K̂(±)

N (λ±) ∈ Σ0
q , q > 1.

Hence, by (8.2+) and (8.3−),

∂(+)
q (λ+;A, V ) = ∂(+)

q (K̂(+)
N (λ+)), ∂ = ∆, δ,(8.6+)

∂(−)
q (λ−;A, V ) = ∂(−)

q (K̂(−)
N (λ−)), ∂ = ∆, δ.(8.6−)

For the model operator, relations (8.4±), (5.22±) and (7.11±) imply that

Γ̂(±)
N (0)− K̂(±)

N (0) ∈ Σ0
q , q > 1.

Then, by (8.5±),

∂q(B+,U+) = ∂(+)
q (K̂(+)

N (0)), ∂ = ∆, δ,(8.7+)

∂q(B−,U−) = ∂(+)
q (K̂(−)

N (0)), ∂ = ∆, δ.(8.7−)

By (8.7±) and (6.52±), we have

(8.8±) ∂q(B±,U±) = ∂(±)
q (∗).

Comparing (8.6±), (8.7±) and (8.8±) with (6.36±), we obtain (2.19) and (2.24).
Relations (2.18) and (2.23) will be proved below in Subsection 8.5.

4. Proof of statement (a) (the case of q = 1). For q = 1, in (8.18±) the terms
L̂

(±)
N (λ±), K̂(±)

N (λ±), M
(±)
N (λ±) are of class Σ1. Thus,

∂
(±)
1 (Γ(+)

N (λ+)) = ∂
(±)
1 (L̂(+)

N (λ+) + K̂
(+)
N (λ+) + 2 Re M

(+)
N (λ+)), ∂ = ∆, δ,(8.9+)

∂
(±)
1 (Γ(−)

N (λ−)) = ∂
(±)
1 (L̂(−)

N (λ−) + K̂
(−)
N (λ−) + 2 Re M

(−)
N (λ−)), ∂ = ∆, δ.(8.9−)

In (8.9±) we pass to the limit as N → ∞. As has already been mentioned, the terms
on the left-hand side of (8.9±) do not depend on N . Relation (7.10±) allows us to
apply Proposition 1.7. Next, we take into account that, by (5.6±) and (6.39±), the
contributions of L̂(±)

N (λ±) and K̂
(±)
N (λ±) to ∂(±)

1 can be added. Then, using (8.2±) and
(8.3±), we obtain

∂
(±)
1 (λ+;A, V ) = lim

N→∞
∂

(±)
1 (L̂(+)

N (λ+)) + lim
N→∞

∂
(±)
1 (K̂(+)

N (λ+)),

∂
(±)
1 (λ−;A, V ) = lim

N→∞
∂

(±)
1 (L̂(−)

N (λ−)) + lim
N→∞

∂
(±)
1 (K̂(−)

N (λ−)).

Now (5.14±), (5.15±), (6.37±) and (6.38±) imply that

∂
(+)
1 (λ+;A, V ) = J(V, g) + ∂

(+)
1 (∗), ∂ = ∆, δ,(8.10)

∆(−)
1 (λ+;A, V ) = 0,

∆(+)
1 (λ−;A, V ) = δ

(+)
1 (λ−;A, V ) = J(V, g), ∂ = ∆, δ,(8.11)

∂
(−)
1 (λ−;A, V ) = ∂

(−)
1 (∗), ∂ = ∆, δ.(8.12)

For the model operator, if q = 1, then the terms in (8.4±) are of class Σ1. Then, by
(8.4±), (8.5±), (7.12±), (5.24±) and (6.54±), we have

∂1(B±,U±) = lim
N→∞

∂
(+)
1 (L̂(±)

N (0)) + lim
N→∞

∂
(+)
1 (K̂(±)

N (0)).
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Combining this with (5.23±) and (6.53±), we arrive at the relations

∂1(B+,U+) = J̃(B+,U+) + ∂
(+)
1 (∗), ∂ = ∆, δ,(8.13+)

∂1(B−,U−) = J̃(B−,U−) + ∂
(−)
1 (∗), ∂ = ∆, δ.(8.13−)

Comparing (8.10) and (8.13+), and also (8.12) and (8.13−), and recalling (2.15±) and
(2.16±), we obtain (2.17) and (2.22). Relation (8.11) implies (2.21). Relation (2.18) will
be proved in Subsection 8.5.

5. Now we prove (2.18) and (2.23). Since N−(α, λ;A, V ) is a monotone nonincreasing
function of λ ∈ Λ (with α fixed), from (1.22+) it follows that

N−(α, λ+;A, V ) ≤ N−(α, λ;A, V ), λ ∈ Λ.

Combining this with Proposition 1.6, we obtain (2.18) (with q ≥ 1).
Similarly, N+(α, λ;A, V ) is a monotone nonincreasing function of λ ∈ Λ (with α fixed).

Then (1.22−) yields the inequality

N+(α, λ−;A, V ) ≤ N−(α, λ;A, V ), λ ∈ Λ.

Combining this with (1.21), we obtain the estimate

∆(+)
1 (λ−;A, V ) ≤ J(V, g).

Next, observe that the potential VN satisfies the conditions of Theorem 2.2(−) with
q = 1. Therefore, by (2.21) with V = VN ,

∆(+)
1 (λ−;A, VN ) = δ

(+)
1 (λ−;A, VN ) = J(VN , g).

Since VN (x) ≤ V (x), we have

N+(α, λ−;A, VN ) ≤ N+(α, λ−;A, V ).

Thus,

J(VN , g) = δ
(+)
1 (λ−;A, VN ) ≤ δ(+)

1 (λ−;A, V ) ≤ ∆(+)
1 (λ−;A, V ) ≤ J(V, g).

Letting N →∞, we arrive at (2.23).

6. Proof of statement (c) of Theorem 2.2(+). Let q = 1. Relation (2.17) shows
that the Weyl asymptotics (2.20) occurs if and only if

∆̃1(B+,U+) = δ̃1(B+,U+) = 0.

By (2.15+) and (2.16+), this is equivalent to the Weyl asymptotics for the model oper-
ator:

(8.14) ∆1(B+,U+) = δ1(B+,U+) = J̃(B+,U+).

By (8.13+), relation (8.14) is equivalent to

(8.15) ∆(+)
1 (∗) = 0.

Next, (6.33) shows that (8.15) is equivalent to the relation

(8.16) P
(+)
N (λ+) ∈ Σ0

1,

where P (+)
N (λ+) is the operator defined by (6.25+). For the proof of (8.16), it suffices to

check that
T̂ (+)
jN (λ+) ∈ Σ0

2, j = 1, . . . ,m+,

or, equivalently,

(8.17) H
(+)
jN ∈ Σ0

1, j = 1, . . . ,m+.
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The operators H(+)
jN are defined by (6.28+). By (6.29+), condition (8.17) means that

(8.18) ∆(+)
1 (V, β(+)

j , ϕ
(+)
j ) = 0, j = 1, . . . ,m+.

Finally, from (2.5) it is clear that the condition ∆(+)
1 (V,1, 1) = 0 ensures (8.18), and,

consequently, also (2.20). The proof of Theorems 2.2(±) is complete.

§9. Proof of Theorems 2.5(±)

1. By (8.8±) and (8.13±), Theorems 2.5(±) will follow directly from Theorems 2.2(±)
if we prove the relations

∂(+)
q (∗) =

m+∑
j=1

∂(+)
q (V, β(+)

j , 1), ∂ = ∆, δ, q ≥ 1,(9.1+)

∂(−)
q (∗) =

m−∑
j=1

∂(+)
q (V, β(−)

j , 1), ∂ = ∆, δ, q ≥ 1.(9.1−)

We recall that the quantities ∂(±)
q (∗) were introduced in (6.27). By (6.33), (6.30±),

(6.31±) and (6.34±), for the proof of (9.1±) it suffices to establish the following two
propositions.

Proposition 9.1(±). Let

P
(±)
kjN (λ±) := (T̂ (±)

kN (λ±))∗T̂ (±)
jN (λ±).

Under the conditions of Theorem 2.5(±), we have

(9.2±) ∆q(P
(±)
kjN (λ±)) = 0, j 6= k.

Proposition 9.2(±). Under the conditions of Theorem 2.5(±), we have

∂(+)
q (V, β(±)

j , ϕ
(±)
j ) = ∂(+)

q (V, β(±)
j , 1), ∂ = ∆, δ, j = 1, . . . ,m±.

Proposition 9.2(±) follows from [BLSu, Lemma 7.1].

2. All of what follows is devoted to the proof of Proposition 9.1(±). We recall that
the operator T̂ (±)

jN (λ) was introduced in Subsection 6.2 as the integral operator with the

kernel (6.16±), and the operator T̂ (±)
jN (λ±) was introduced in Proposition 6.3(±) as the

result of the regularization of T̂ (±)
jN (λ).

We introduce some new notation in order to reflect the dependence of operators on the
coefficients explicitly. Let W(x) be a function on R2 such that |W|2 satisfies conditions
(1.6) and (2.3q) (with V replaced by |W|2), and let ϕ(x) be a continuous periodic function
on R2. By T

(±)
j (γ; W, ϕ) we denote the integral operator with the kernel (cf. (6.16±))

(2π)−1W(x)ϕ(x)χ(±)
j (ξ)(b(±)

j (ξ − ξ(±)
j ) + γ2)−1/2ei〈x,ξ〉,

j = 1, . . . ,m±, γ > 0.
(9.3±)

From Proposition 3.1 it follows (cf. Proposition 6.3(±)) that

T
(±)
j (γ; W, ϕ) = T̂

(±)
j (γ; W, ϕ) + Ť

(±)
j (γ; W, ϕ), j = 1, . . . ,m±,(9.4±)

rank Ť
(±)
j (γ; W, ϕ) = 1,(9.5±)

and the limit

(9.6±) (u)-lim
γ→0

T̂
(±)
j (γ; W, ϕ) = T̂

(±)
j (0; W, ϕ) ∈ Σ2q
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exists. Remark 3.2 shows that the operator T̂
(±)
j (0; W, ϕ) depends linearly both on W

and on ϕ.
Let ψ be a function satisfying the same conditions as ϕ. We put

(9.7±) P
(±)
kj (γ; W, ϕ, ψ) := (T(±)

k (γ; W, ϕ))∗T(±)
j (γ; W, ψ), k, j = 1, . . . ,m±.

Relations (9.4±)–(9.6±) imply that

(9.8±) P
(±)
kj (γ; W, ϕ, ψ) = P̂

(±)
kj (γ; W, ϕ, ψ) + Z

(±)
kj (γ;W , ϕ, ψ),

where

(9.9±) P̂
(±)
kj (γ; W, ϕ, ψ) = (T̂(±)

k (γ; W, ϕ))∗T̂(±)
j (γ; W, ψ), k, j = 1, . . . ,m±.

We have

(9.10±) rank Z
(±)
kj (γ; W, ϕ, ψ) ≤ 2,

and the limit

(9.11±) (u)-lim
γ→0

P̂
(±)
kj (γ; W, ϕ, ψ) = P̂

(±)
kj (0; W, ϕ, ψ) ∈ Σq

exists. Next,

(9.12±) P̂
(±)
kj (0; W, ϕ, ψ) = (T̂(±)

k (0; W, ϕ))∗T̂(±)
j (0; W, ψ), k, j = 1, . . . ,m±.

By Proposition 3.3 with k = j and ϕ = ψ, we obtain (cf. (6.28±) and (6.29±))

(9.13±) ∂(+)
q (P̂(±)

jj (0; W, ϕ, ϕ)) = ∂(+)
q (|W|2, β(±)

j , ϕ), ∂ = ∆, δ, j = 1, . . . ,m±.

3. In accordance with the new notation,

T̂ (±)
jN (λ±) = T̂

(±)
j (0; W̃N , ϕ

(±)
j ), j = 1, . . . ,m±,(9.14±)

P
(±)
kjN (λ±) = P̂

(±)
kj (0; W̃N , ϕ

(±)
k , ϕ

(±)
j ), k, j = 1, . . . ,m±.

Proposition 9.3(±). Let S be the function introduced in (2.25). Then

(9.15±) ∆q

(
P̂

(±)
kj (0; W̃N , ϕ, ψ)

)
= ∆q

(
P̂

(±)
kj (0;

√
S, ϕ, ψ)

)
.

Proof. By Proposition 1.8, we obtain(
∆q

(
P̂

(±)
kj (0; W̃N , ϕ, ψ)− P̂

(±)
kj (0;

√
S, ϕ, ψ)

))2

≤ Cq∆2q

(
T̂

(±)
k (0; W̃N , ϕ)

)
∆2q

(
T̂

(±)
j (0; W̃N , ψ)− T̂

(±)
j (0;

√
S, ψ)

)
+ Cq∆2q

(
T̂

(±)
j (0;

√
S, ψ)

)
∆2q

(
T̂

(±)
k (0; W̃N , ϕ)− T̂

(±)
k (0;

√
S, ϕ)

)
.

We have
T̂

(±)
j (0; W̃N , ψ)− T̂

(±)
j (0;

√
S, ψ) = T̂

(±)
j (0; W̃N −

√
S, ψ).

By (9.12±) and (9.13±),

∆2q

(
T̂

(±)
j (0; W̃N −

√
S, ψ)

)
= ∆q

(
P̂

(±)
jj (0; W̃N −

√
S, ψ, ψ)

)
= ∆(+)

q

(
|W̃N −

√
S|2, β(±)

j , ψ
)
.

Here the right-hand side is equal to zero (see the proof of Proposition 2.2 in [BLSu]).
Similarly,

∆2q

(
T̂

(±)
k (0; W̃N −

√
S, ϕ)

)
= 0.

As a result, we obtain

∆q

(
P̂

(±)
kj (0; W̃N , ϕ, ψ)− P̂

(±)
kj (0;

√
S, ϕ, ψ)

)
= 0.
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Combining this with (1.26), we arrive at (9.15±). �

Proposition 9.4(±). Let t(r)s (x), s ∈ N, r = 1, 2, be a sequence of periodic functions of
class L∞(R2) such that

(9.16±) lim
s→∞

‖t(1)
s − ϕ‖L∞ = 0, lim

s→∞
‖t(2)
s − ψ‖L∞ = 0.

Then

lim
s→∞

∆q

(
P̂

(±)
kj (0; W, t(1)

s , t(2)
s )
)

= ∆q

(
P̂

(±)
kj (0; W, ϕ, ψ)

)
.

Proof. By Proposition 1.8,(
∆q

(
P̂

(±)
kj (0; W, ϕ, ψ)− P̂

(±)
kj (0; W, t(1)

s , t(2)
s )
))2

≤ Cq∆2q

(
T̂

(±)
k (0; W, ϕ)

)
∆2q

(
T̂

(±)
j (0; W, ψ)− T̂

(±)
j (0; W, t(2)

s )
)

+ Cq∆2q

(
T̂

(±)
j (0; W, t(2)

s )
)

∆2q

(
T̂

(±)
k (0; W, ϕ)− T̂

(±)
k (0; W, t(1)

s )
)
.

We have

T̂
(±)
j (0; W, ψ)− T̂

(±)
j (0; W, t(2)

s ) = T̂
(±)
j (0; W, ψ − t(2)

s ).

By (9.12±) and (9.13±),

∆2q

(
T̂

(±)
j (0; W, ψ − t(2)

s )
)

= ∆q(|W|2, β(±)
j , ψ − t(2)

s ).

The definition of the quantities (2.4) and the standard variational arguments show that

∆q(|W|2, β(±)
j , ψ − t(2)

s ) ≤ ‖ψ − t(2)
s ‖

2q
L∞

∆q(|W|2, β(±)
j , 1).

By (9.16±), the right-hand side tends to zero as s→∞. Similarly,

∆2q

(
T̂

(±)
j (0; W, ϕ− t(1)

s )
)
→ 0 as s→∞.

The quantities ∆2q

(
T̂

(±)
j (0; W, t

(2)
s )
)

are dominated by ‖t(2)
s ‖2qL∞∆q(|W|2, β(±)

j , 1); there-
fore, they are uniformly bounded for s ∈ N. As a result, we see that

∆q

(
P̂

(±)
kj (0; W, ϕ, ψ)− P̂

(±)
kj (0; W, t(1)

s , t(2)
s )
)
→ 0 as s→∞.

It remains to refer to (1.26). �

The following proposition is a direct consequence of Propositions 9.3(±) and 9.4(±)
and relations (9.14±).

Proposition 9.5(±). Let S be a function satisfying (2.25). Suppose that for every
trigonometric polynomial of the form

(9.17) t(r)(x) =
∑

m∈Z2:|m|≤Mr

c(r)m e2πi〈m,x〉, r = 1, 2,

we have

(9.18±) ∆q

(
P̂

(±)
kj (0;

√
S, t(1), t(2))

)
= 0, j 6= k.

Then relations (9.2±) are valid.
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4. Now we attack the problem “from the other end”. For k 6= j, consider the operator
(9.7±) with W =

√
S, ϕ = t(1), ψ = t(2):

(9.19±) P
(±)
kj (γ) = P

(±)
kj (γ;

√
S, t(1), t(2)) = (T(±)

k (γ;
√
S, t(1)))∗T(±)

j (γ;
√
S, t(2)),

where t(1) and t(2) are trigonometric polynomials of the form (9.17). In this subsection,
to the operator (9.19±) we apply another method of regularization, different from that
used in Subsection 9.2. (Cf. [BLSu, §7].) By (9.3±), the kernel of the operator (9.19±)
has the form

(2π)−1(Φ(St(1)t(2)))(ξ − η)χ(±)
k (ξ)χ(±)

j (η)

× (b(±)
k (ξ − ξ(±)

k ) + γ2)−1/2(b(±)
j (η − ξ(±)

j ) + γ2)−1/2,
(9.20±)

where Φ(St(1)t(2)) is the Fourier image of the function St(1)t(2).
In what follows it is convenient to change some notation in (9.20±). Let Â be a

function defined in some neighborhood O(±)
kj of the point ξ(±)

k − ξ(±)
j and satisfying the

condition

(9.21) Â ∈ Hκ(O(±)
kj ), κ > 1.

We fix a sufficiently small number ε > 0 and put B(±)
kj (ε) := {ξ : |ξ − ξ(±)

k + ξ(±)
j | ≤ ε}.

Suppose that B(±)
kj (3ε) ⊂ O(±)

kj and that the number δ is so small that ξ − η ∈ B(±)
kj (ε)

for ξ ∈ suppχ(±)
k , η ∈ suppχ(±)

j . Next, let ϑ ∈ C∞0 (R2) be such that ϑ(ξ) = 1 for

ξ ∈ B
(±)
kj (2ε) and suppϑ ⊂ B

(±)
kj (3ε). In L2(R2), we consider the integral operator

I(±)
kj (γ) with the kernel

I(±)
kj (ξ,η; γ)

= (2π)−1Â(ξ − η)χ(±)
k (ξ)χ(±)

j (η)

× (b(±)
k (ξ − ξ(±)

k ) + γ2)−1/2(b(±)
j (η − ξ(±)

j ) + γ2)−1/2,

(9.22±)

γ > 0, k 6= j. We regularize the operator I(±)
kj (γ) in order to pass to the limit as γ → 0.

We put
ϑÂ = Â0, A0 = Φ∗Â0.

Then

(9.23) Â0 ∈ Hκ(R2), κ > 1,

and in the kernel (9.22±) it is possible to replace Â by Â0:

I(±)
kj (ξ,η; γ) = (2π)−1

Â0(ξ − η)χ(±)
k (ξ)χ(±)

j (η)

× (b(±)
k (ξ − ξ(±)

k ) + γ2)−1/2(b(±)
j (η − ξ(±)

j ) + γ2)−1/2,

γ > 0, k 6= j.

(9.24±)

We regularize the operator I(±)
kj (γ), replacing the kernel (9.24±) by the kernel

Î(±)
kj (ξ,η; γ)

= (2π)−1
(
Â0(ξ − η)− Â0(ξ − ξ(±)

j )− Â0(ξ(±)
k − η) + Â0(ξ(±)

k − ξ(±)
j )

)
× χ(±)

k (ξ)χ(±)
j (η)

× (b(±)
k (ξ − ξ(±)

k ) + γ2)−1/2(b(±)
j (η − ξ(±)

j ) + γ2)−1/2, γ > 0, k 6= j.

(9.25±)
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The corresponding operator is denoted by Î(±)
kj (γ). Clearly,

(9.26±) rank(I(±)
kj (γ)− Î(±)

kj (γ)) = 3.

The operator Î(±)
kj (γ) makes sense also for γ = 0. Moreover, the following statement is

true (cf. Proposition 7.2 in [BLSu]).

Proposition 9.6(±). If condition (9.21) is fulfilled, then the operator Î(±)
kj (0) is well

defined and

(9.27±) Î(±)
kj (0) ∈ S1,

(9.28±) (S1)-lim
γ→0

Î(±)
kj (γ) = Î(±)

kj (0).

Proof. For γ = 0, the kernel (9.25±) can be rewritten in the form

Î(±)
kj (ξ,η; 0) = (2π)−2χ

(±)
k (ξ)χ(±)

j (η)(b(±)
k (ξ − ξ(±)

k ))−1/2(b(±)
j (η − ξ(±)

j ))−1/2

×
∫

A0(x)(e−i〈x,ξ〉 − e−i〈x,ξ
(±)
k 〉)(ei〈x,η〉 − ei〈x,ξ

(±)
j 〉) dx.

Thus, the operator Î(±)
kj (0) is the composition of three operators:

Î(±)
kj (0) = (J (±)

k )∗[Ǎ0]J (±)
j .

Here J (±)
k and J (±)

j are the integral operators with the kernels

J (±)
k (x, ξ) = (2π)−1χ

(±)
k (ξ)(b(±)

k (ξ − ξ(±)
k ))−1/2|A0(x)|1/2(ei〈x,ξ〉 − ei〈x,ξ

(±)
k 〉),

J (±)
j (x,η) = (2π)−1χ

(±)
j (η)(b(±)

j (η − ξ(±)
j ))−1/2|A0(x)|1/2(ei〈x,η〉 − ei〈x,ξ

(±)
j 〉),

and Ǎ0(x) = A0(x)|A0(x)|−1 if A0(x) 6= 0, and Ǎ0(x) = 1 if A0(x) = 0. For the proof of
(9.27±), it suffices to check that J (±)

k ,J (±)
j ∈ S2. We have∫∫

|J (±)
k (x, ξ)|2 dx dξ

≤ π−2

∫
|A0(x)|

(∫
E(±)
k

(b(±)
k (ξ − ξ(±)

k ))−1 sin2(2−1x(ξ − ξ(±)
k )) dξ

)
dx

≤ C1

∫
(1 + log(1 + |x|))|A0(x)| dx.

Here E(±)
k = suppχ(±)

k is the ellipse introduced in Subsection 5.1. Thus, we arrive at the
condition

(9.29)
∫

(1 + log(1 + |x|))|A0(x)| dx <∞.

On the other hand, condition (9.23) means that

‖Â0‖2Hκ(R2) =
∫
|A0(x)|2(1 + |x|2)κ dx <∞, κ > 1.

Therefore, (9.29) is fulfilled and, moreover,

‖J (±)
k ‖S2 ≤ C2‖Â0‖1/2Hκ(R2) ≤ C2‖Â‖1/2

Hκ(O(±)
kj )

,

‖J (±)
j ‖S2 ≤ C2‖Â0‖1/2Hκ(R2) ≤ C2‖Â‖1/2

Hκ(O(±)
kj )

.

This yields (9.27±).
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We rewrite the kernel (9.25±) as follows:

Î(±)
kj (ξ,η; γ) =

(
(b(±)
k (ξ − ξ(±)

k ))1/2(b(±)
k (ξ − ξ(±)

k ) + γ2)−1/2χ
(±)
k (ξ)

)
Î(±)
kj (ξ,η; 0)

×
(

(b(±)
j (η − ξ(±)

j ))1/2(b(±)
j (η − ξ(±)

j ) + γ2)−1/2χ
(±)
j (η)

)
.

The first expression in parentheses represents the kernel of an operator family strongly
convergent to [χ(±)

k ] as γ → 0, and the second expression in parentheses is the kernel
of an operator family strongly convergent to [χ(±)

j ]. Combining this with (9.27±) and
applying Lemma 1.9, we obtain (9.28±). �

5. Now we compare the results of two different ways of regularization for the operator
(9.19±). One way was described in Subsection 9.2 (see (9.8±)–(9.12±)), and the other
in Subsection 9.4. The operator P

(±)
kj (γ) defined by (9.19±) has the kernel (9.20±),

which coincides with (9.22±) if A = St(1)t(2). The function t(1)t(2) is a trigonometric
polynomial of the form

t(1)(x)t(2)(x) =
∑

m∈Z2:|m|≤M
cme

2πi〈m,x〉.

Then the Fourier image of the function A is

Â(ξ) =
∑

m∈Z2:|m|≤M
cm(ΦS)(ξ − 2πm).

By Condition 2.3(±),
Â ∈ Hκ(O(±)

kj ), κ > 1, k 6= j,

where O(±)
kj is a neighborhood of the point ξ(±)

k − ξ(±)
j , k 6= j. Proposition 9.6(±) is

applicable.
By (9.8±), (9.10±) and (9.26±), we have

(9.30±) rank
(
P̂

(±)
kj (γ;

√
S, t(1), t(2))− Î(±)

kj (γ)
)
≤ 5, k 6= j.

Using (9.11±) and (9.28±) , in (9.30±) we can pass to the limit as γ → 0:

(9.31±) rank
(
P̂

(±)
kj (0;

√
S, t(1), t(2))− Î(±)

kj (0)
)
≤ 5, k 6= j.

Now (9.31±) and (9.27±) imply (9.18±). Applying Proposition 9.5(±), we obtain (9.2±).
The proof of Proposition 9.1(±) and, with it, of Theorem 2.5(±) is complete.
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