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SEPARATION OF SINGULARITIES OF ANALYTIC FUNCTIONS
WITH PRESERVATION OF BOUNDEDNESS

V. P. KHAVIN

Dedicated to Mikhail Shlemovich Birman on the occasion of his 75th birthday

Abstract. For which pairs (O1, O2) of open sets on the complex plane is it true
that the operator

J : (f1, f2) �→ (f1 + f2)|(O1 ∩ O2)

from H∞(O1)×H∞(O2) to H∞(O1∩O2) is a surjection? In the first part of the pa-
per, a method is indicated for constructing pairs without this property. In the second
part, for some classes of pairs (O1, O2) a right inverse for J is constructed explicitly.
The paper continues the previous studies of the author jointly with A. H. Nersessian
and J. Ortega Cedrá.

Introduction

Let O be an open subset of the extended complex plane Ĉ. The space of all functions
holomorphic in O will be denoted by Hol(O), and the symbol H∞(O) will denote the set
of all bounded functions f ∈ Hol(O).

Let S1 and S2 be relatively closed subsets of O, and let S := S1∪S2. Suppose that an
arbitrary function f ∈ H∞(O\S) coincides in O\S with f1+f2, where fj ∈ H∞(O\Sj),
j = 1, 2. Then the pair (S1, S2) is said to admit separation in O.

Sometimes, when saying that a pair (S1, S2) of closed subsets of C (which are not
necessarily subsets of O) admits separation in O, we mean that so does the pair (S1 ∩O,
S2 ∩O) in O.

Our aim in this paper is to look for geometric criteria of separation.
Alice Roth’s well-known fusion lemma [4, 5, 6]) answers a question of this kind. The

separation problem arises in connection with interpolation by bounded analytic functions
in multidimensional domains [15, 14]. In the author’s opinion, this problem is also
interesting in itself.

Passing to the complements Gj = O \ Sj , j = 1, 2, G = O \ S, we can formulate the
separation problem as follows: describe the pairs (G1, G2) of open sets (Gj ⊂ Ĉ) such
that an arbitrary function f ∈ H∞(G), G := G1∩G2, decomposes in G in the sum f1+f2
with fj ∈ H∞(Gj). In 1983, P. L. Polyakov [15] considered this version of the problem in
connection with interpolation questions mentioned above. For G1 = {|z| < 1, Im z > 0},
G2 = {|z| < 1,Re z > 0} he proved that every f ∈ H∞(G) coincides in G with f1 + f2,
where fj is analytic in Gj and bounded in Gj ∩ {|z| < 1/2}, j = 1, 2.

Systematically, the separation problem was treated in the papers [10, 11]; the present
paper is a continuation of them.
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We preface the survey of the results of [10, 11] by the remark that if we discard
boundedness and only retain analyticity in the definition of pairs that admit separation,
then we arrive at a much simpler question, which was answered long ago. Poincaré [13]
was the first to study it in the course of a discussion of analytic continuation with Borel
(see [16, Chapter 3, §21] about that). With the help of quite an elegant construction,
Poincaré showed that every f ∈ Hol(C \ R) is the sum of the restrictions to C \ R of
two functions analytic in C \ [−1, 1] and C \ ((−∞,−1]∪ [1,+∞)), respectively (we note
that the pair (S1, S2), where S1 = [−1, 1], S2 = R \ S1, does not admit separation in C;
see [10]). Later, separation of singularities for (arbitrary) analytic functions was studied
by Fréchet [3]. The problem was solved completely by Aronszajn [1]. His result reads
as follows: for every pair of open sets G1, G2 ⊂ Ĉ, every function f ∈ Hol(G1 ∩ G2)
is representable as the sum of two functions analytic in G1 and G2, respectively. The
papers [13, 3, 1] have sunk into oblivion by now (which is unjust to a certain extent),
and the Aronszajn theorem occurs without reference in the monographs [2, pp. 225] and
[18] as an illustration (of little interest) to sheaf ∂-methods. The papers [8, 9, 12, 7] were
devoted to various aspects of separation of singularities in the spirit of [13, 3, 1].

Returning to our topic, we can say that in the present article a quantitative version
of the Aronszajn theorem is discussed (as was also in [10, 11]): assuming that a function
f ∈ Hol(O \ S) is bounded, we want to find conditions of geometric nature ensuring
that always (i.e., for an arbitrary bounded f) the summands f1 and f2 in the Aronszajn
decomposition can be chosen bounded in O \ S1 and O \ S2, respectively.

In a sense, the separation problem is local. Let O ⊂ C be a bounded open set, and
let K1 and K2 be closed in Ĉ. Putting k := K1 ∩ K2 and taking an arbitrarily small
neighborhood v of k, we define kj = Clos(v∩Kj), j = 1, 2. Then the following localization
theorem can be proved (see [10, p. 156]) with the help of the Vitushkin operator [19, 4],
which is well known in approximation theory: if the pair (k1, k2) admits separation in
O, then the pair (K1,K2) also admits separation in O. Thus, only the “germs” of K1

and K2 near k are responsible for the property of the pair (K1,K2) to admit separation.
As in [10, 11], in the present paper principal attention is paid to the case of a finite set
k, which reduces easily to k = {0}.

We observe that if K1 and K2 are compact in C and K1 ∩K2 = ∅, then the Cauchy
integral formula shows immediately that (K1,K2) admits separation in C. The more
general case where K1 \ k and K2 \ k are at a positive distance from each other is less
obvious. However, (K1,K2) admits separation in C even under this condition (this is a
version of the A. Roth lemma mentioned above; see [10, p. 157]).

The property of (K1,K2) to admit separation in O is conformally invariant in the
sense that the pair (ϕ(K1), ϕ(K2)) still admits separation in ϕ(O) for every conformal
homeomorphism ϕ of O. This observation justifies the interest to the separation prop-
erty for certain “model” triples (K1,K2, O). Below, special attention will be paid to
separation for pairs (K1,K2) in the upper half-plane C+ := {Im z > 0}.

As has already been mentioned, mainly we shall be busy with sets K1 and K2 that
“meet” at a unique point (k = {0}). In [10] it was shown that if these sets meet
transversally, then the pair (K1,K2) nearly admits separation in C. We give the precise
statement.

A compact set κ ⊂ C is said to be regular if
(a) κ ⊂ Γ1 ∪Γ2 ∪ · · · ∪ΓN , where the Γj are simple compact rectifiable arcs such that

the sets Γj \ {0} are mutually disjoint; and
(b) s(κ ∩ rD) = O(r) as r → 0, where D is the open unit disk and s stands for length.
In order to state the result about near separation for sets meeting transversally (see

[10, Theorem 4.2]), we consider the ray L := {p + teiψ : t ≥ 0} originating at a point
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p ∈ C. We denote by A(L, δ) the angle with vertex at p, with bisector L, and of opening
2δ. The ray L is said to be tangent to E at p if for every ε > 0 there exists σ > 0 such
that E ∩ D(p, σ) ⊂ A(L, ε) (here D(p, σ) := p+ σD).

Now, consider a family Γ = {γ1, . . . , γN} of compact sets such that 0 ∈ γj , j =
1, . . . , N , and the differences γj \ {0} are mutually disjoint. Suppose γj has a tangent
ray Lj at the origin and Li �= Lj for i �= j (this means that γi and γj meet transversally
at the origin), and the germs of the sets γj at the origin are regular, i.e., all the sets
γj ∩ {|z| ≤ ∆} are regular for some ∆ > 0.

For instance, these conditions are satisfied by any family Γ of simple smooth arcs
emanating from the origin and forming nonzero angles with one another. By abuse of
language (an arc to be confused with its equation), we may say that the γj are one-
to-one complex C1-functions such that γj(0) = 0, γ′j does not vanish, and the numbers
γ′j(0)/γ′i(0) are not positive reals for i �= j (transversality).

Returning from arcs to the general setting, consider a compact circular sector Σ with
vertex at the origin and such that

Σ ∩ (γj \ {0}) = ∅, j = 1, . . . , N.

Theorem 0.1. For every f ∈ H∞(C \ (γ1 ∪ · · · ∪ γN )) there exist functions fj ∈
H∞(C \ (γj ∪ Σ)), j = 1, . . . , N , such that

(∗) f = f1 + f2 + · · · + fN in C \ (γ1 ∪ · · · ∪ γN ∪ Σ).

Formula (∗) “nearly separates” the singularities of f with preservation of boundedness.
This is done at the expense of a slight expansion (arbitrarily small) of the singular set for
fj compared to the desired outcome: instead of γj , the summand fj has singularities in
γj ∪Σ, where Σ is a small circular sector having no points in common with γ1 ∪ · · · ∪ γN
in C \ {0}. Simple examples show that, in general, it is impossible to discard the sector
Σ and make the fj to be elements of H∞(C\γj). However, in some domains formula (∗)
does yield complete separation of singularities (with preservation of boundedness). For
instance, with the help of (∗) it is easy to see that the operator (f1, f2) �→ (f1 + f2)|G
is surjective if, e.g., G1 and G2 are two disks. Surely, the same is true for a much wider
class of pairs of domains: the only requirement is that the “crescent” G be formed with
transversal intersection of the boundaries (see [10, p. 165]; see also Figure 4 in Subsection
3.4.3 at the end of §I.4 of the present paper).

It should be noted that some smoothness conditions on the sets γj in Theorem 0.1
make it possible to replace the sector Σ by a smaller set (e.g., by an arbitrarily short
segment emanating from the origin and not intersecting γj \ {0} for j = 1, . . . , N ; see
[10, pp. 166–169]).

The transversality condition is essential in Theorem 0.1. Suppose two compact and
smooth simple arcs γ1, γ2 lie in a domain O except for their common end p that belongs
to ∂O; next, suppose γ1 ∩ γ2 ∩O = ∅ and the arcs γ1 and γ2 have a common tangent at
p. Separation for such pairs is the principal topic of the present paper (in distinction to
the paper [10] devoted entirely to “transversal” pairs); tangent pairs were also treated
(with different tools) in the paper [11], about which I shall report later in more detail.

In particular, we shall see that, for arcs γ1 and γ2 as above, separation depends on
the relationship between the velocity of their mutual approach near the tangency point
p and the velocity of their approach to ∂O near p.

In the first part of the paper, a general method will be developed for constructing pairs
that do not admit separation in a given domain. In particular, we shall describe some
pairs of arcs that meet tangentially at a boundary point and do not admit separation.

For a pair (S1, S2) in G, separation may be “good” or “bad”. In §I.1 we introduce the
quantity b(S1, S2, O), which indicates the “quality of separation”. This quantity (called
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the “separation constant of (S1, S2) in O”) becomes smaller when separation improves;
by definition, the identity b(S1, S2, O) = +∞ means that the pair (S1, S2) fails to admit
separation in O.

The main result of the first part is Theorem 1 in §I.3. It provides a lower estimate
for the separation constant b(K1,K2, O) of disjoint continua in O in terms of metric
characteristics of their size and closeness. In §§I.1 and I.2 we prepare the statement and
the proof of Theorem 1.

On the basis of Theorem 1, some pairs of sets not admitting separation are described
in Theorem 2. The latter theorem is illustrated by specific examples of nonseparability
in the upper half-plane C+ realized by pairs of arcs with common tangent at the origin
(Theorems 3 and 4). In the case of C1+ε-arcs, the conditions obtained in Theorems 3 and
4 and sufficient for the absence of separation differ by a certain logarithmic factor from the
necessary and sufficient conditions obtained in [11]. From [11] it follows that log y can be
removed from formula (32) of the present paper and that the function l(x) in (35) may in
fact be an arbitrary infinitesimal as x→ 0 (without the condition l(x) = o(1/| logϕ1(x)|).
These (extraneous) logarithmic factors are the payment for generality: Theorems 2 and
3 apply not only to pairs of smooth arcs, in distinction to [11].

In the second part of the paper it is shown that certain pairs of arcs with common
tangent ray [0,+∞) at the origin admit separation. The main result of the second
part is Theorem 5, which gives a fairly simple sufficient condition of separation for such
pairs in C+. This condition coincides with the necessary one (found in [11] by differ-
ent techniques—see the discussion in Subsection 2.4 of the first part) and has a simple
geometric meaning: the hyperbolic width of the “corridor” whose “walls” are formed
by the arcs in question must be bounded away from zero. The second part ends with
some specific examples, of which we mention only Example 4 related to the Poincaré
pair (S+, S−) (S+ = [0,+∞], S−(−[∞, 0]); see the beginning of the Introduction). This
pair fails to admit separation in C, but Theorems 5 and 5′ imply that every function
f ∈ H∞(C+) coincides in C+ with f+ + f−, where f± ∈ H∞(C \ S±).

This paper is intimately related to [10, 11]. In some respects, its results are cruder
then those in [11], but otherwise they are finer. The “negative” results of the first part
(about the failure of separation), i.e., Theorems 2 and 3, concern highly more general
sets than the corresponding “negative” results in [11], which are applicable only to arcs
in C+ (moreover, unlike the present paper, the arcs must be of class C1+ε). The stronger
assumptions in [11] make it possible to get rid of the logarithms in (32) and (35); however,
the estimates in Theorem 1 may turn out to be sharp in the class of proper continua
considered here.

As for “positive” results (i.e., conditions ensuring separation in C+), the progress
achieved in [11] is fundamental. Both for transversal and for tangent intersection, the
separation criteria obtained in [11] are applicable to much more general classes of sets
than in [10] or in the present paper. The success is due to the invocation of B. Berndtson’s
deep theorems about bounded solutions of the ∂-problem in C+. However, the mere fact
that a pair (S1, S2) admits separation does not finish the story in the problem in question:
also of interest is a linear operator f �→ (f1, f2) (f ∈ H∞(O \ S), fj ∈ H∞(O \ Sj)) that
realizes separation of singularities. A natural, explicit , and very simple construction of
such an operator was presented in [10] (informally, it will be discussed in Subsection 1.3 of
§II.1), and this construction does not involve the ∂-problem. Invented in the “transversal”
paper [10], this construction is applicable also in the “tangent” setting of Theorem 5.

The applicability of the simple splitting operator in the paper [10] to separation of
tangent pairs is a new result, which cannot be found in [11]. Besides simplicity and
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elementary character, our operator has yet another merit: as was shown in [20], it is
suitable for separation of singularities with preservation of continuity up to the boundary.

Acknowledgement. The first version of this paper was written during my two visits
to Trondheim University (NTNU) in 1998 and 2001. I am grateful to the university for
hospitality and excellent working environment. I am grateful to A. N. Nersessian for
numerous useful discussions.

I. NEGATIVE RESULTS

The main results of this part are Theorems 1 and 2 in §I.3. They are accompanied by
several examples (in the same section). The first two sections are devoted to technical
preparations to the proof of Theorem 1.

§I.1. Separation of a pair of sets and uniform approximation by analytic

functions with prescribed singularities

In this section, by O we denote an open set in C, and by S1 and S2 its relatively closed
subsets; we put

S := S1 ∪ S2, s := S1 ∩ S2.

1.1. The separation constant of the pair (S1, S2) (definition).

Lemma 1. If (S1, S2) admits separation in O, then there exists a nonnegative constant
c = c(S1, S2, O) such that every function f ∈ H∞(O \ S) can be represented on O \ S in
the form

(1) f = f1 + f2, fj ∈ H∞(O \ Sj), where ‖fj‖∞,O\Sj
≤ c‖f‖∞,O\S, j = 1, 2.

Proof. By assumption, the linear operator (f1, f2) �→ (f1 + f2)|(O \ S) is a surjection
of H∞(O \ S1) ⊕ H∞(O \ S2) onto H∞(O \ S). By the Banach theorem, the claim
follows. �

The Montel theorem shows that the infimum of the constants c occurring in (1) is
their minimum. This minimum will be called the separation constant of the pair (S1, S2)
in O, and it will be denoted by b(S1, S2, O). If (S1, S2) does not admit separation in O,
we put b(S1, S2, O) = +∞ by definition.

Our principal aim in §§1 and 2 is to estimate the separation constant from below in
terms of metric characteristics responsible for the mutual closeness of the sets that form
the pair in question.

1.2. Some lower bounds for separation constants. We associate with a function
ϕ ∈ Hol(O \ S1), its best uniform approximation by elements of Hol(O \ S2), i.e., we
consider the quantity

d(ϕ,O, S2) := inf ‖ϕ− h‖∞,O\S ,

where the infimum is taken over all h ∈ Hol(O \S2). Let d(ϕ,O) denote d(ϕ,O,∅). The
following lemma yields an estimate for the separation constant of the pair (S1, S2) in
terms of the best approximations by functions with prescribed singularities.

Lemma 2. For every Φ ∈ Hol(O \ S1), we have

d(Φ, O, s) ≤ b(S1, S2, O)d(Φ, O, S2).
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Proof. If δ > d(Φ, O, S2), then there exists h ∈ Hol(O \S2) such that ‖Φ− h‖∞,O\S < δ.
Then Φ − h = ϕ1 + ϕ2 in O \ S, where ϕj ∈ H∞(O \ Sj), ‖ϕj‖∞,O\Sj

≤ b(S1, S2, O)δ,
j = 1, 2. But

ϕ1 − Φ = −h− ϕ2 in O \ S,
and we can define a function H ∈ Hol(O \ s) by

H(ζ) = ϕ1(ζ) − Φ(ζ) for ζ ∈ O \ S1,

H(ζ) = −h(ζ) − ϕ2(ζ) for ζ ∈ O \ S2,

so that

d(Φ, O, s) ≤ ‖Φ +H‖∞,O\S1 = ‖ϕ1‖∞,O\S1 ≤ b(S1, S2, O)δ. �

1.3. A lower estimate of d(ϕ, g) for a cell g. By a cell we mean a bounded Jordan
domain g with rectifiable boundary ∂g. Let |∂g| denote the length of the boundary. For
ζ ∈ g, the quantity

ρg(ζ) :=
2π dist(ζ, ∂g)

|∂g|
will be called the rotundity of g relative to ζ (often, we call ζ a center of g). It is easily
seen that ρg(ζ) ≤ 1 (this pictorially obvious inequality is a consequence of the identity
1 = (2πi)−1

∫
∂g

dz
z−ζ , or of the isoperimetric inequality). The rotundity of a cell is equal

to 1 if and only if g is a disk and ζ is its usual center.
In what follows, we shall deal with infinite families of cells g with marked centers and

with rotundities uniformly bounded away from zero. In the simplest case, these cells will
be disks with usual centers (so that ρg(ζ) ≡ 1), but sometimes it will also be convenient
to consider rectangles g with ratios of the side lengths uniformly bounded and bounded
away from zero (again, with usual centers).

For some functions ϕ ∈ Hol(g \K), where K ⊂ g is a compact set, the best approxi-
mation d(ϕ, g) by functions analytic in g admits a lower estimate in terms of |ϕ(ζ)| and
ρg(ζ).

Lemma 3. Suppose ϕ ∈ H∞(Ĉ \K), ϕ(∞) = 0, and ζ ∈ g \K. Then

(2) ρg(ζ)|ϕ(ζ)| ≤ 2d(ϕ, g).

Proof. If δ > d(ϕ, g), then there exists a function h ∈ Hol(g) with ‖ϕ− h‖∞,g\K < δ. In
particular, h ∈ H∞(g), whence it follows that h is representable by the Cauchy formula
(see [17]; h(z) denotes the nontangential boundary value of h at the point z ∈ ∂g):

h(ζ) =
1

2πi

∫
∂g

h(z) dz
z − ζ

=
1

2πi

∫
∂g

h(z) − ϕ(z)
z − ζ

dz, ζ ∈ g

(the second identity follows from the fact that ϕ(∞) = 0). Therefore, |h(ζ)| ≤ (ρg(ζ))−1δ,
and if ζ ∈ g \K, then

|ϕ(ζ)| ≤ |h(ζ)| + |ϕ(ζ) − h(ζ)| ≤ (ρg(ζ))−1δ + δ,

The claim follows from the estimate ρg(ζ) ≤ 1. �

Corollary. If K, g, and ϕ satisfy the assumptions of Lemma 3, and A ∈ ∂K, then

(3) ρg(A)limA|ϕ| ≤ 2d(ϕ, g).
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1.4. Separation constant and interference between large functions. Now, we
turn to lower estimates of the separation constant of a pair (K1,K2), where the sets K1,
K2 ⊂ O are compact and disjoint.

Lemma 4. Let g be a cell included in O, and let K1 ⊂ g, K2 ⊂ O. Suppose K1 and
K2 are compact, K1 ∩ K2 = ∅, and A ∈ ∂K1. Put K = K1 ∪ K2. Then for every
function ψ1 ∈ Hol(Ĉ \ K1) vanishing at infinity and every function ψ2 ∈ Hol(O \ K2)
with ψ1 − ψ2 ∈ H∞(O \K) we have

(4) 2‖ψ1 − ψ2‖∞,O\Kb(K1,K2, O) ≥ ρg(A)limA|ψ1|.

Proof. Clearly, ψ1 ∈ H∞(Ĉ \K1) (the boundedness of ψ1 follows from that of ψ1 − ψ2

and ψ2 near K1 and from the maximum principle). Comparing (3) (with ϕ = ψ1) and
Lemma 2, we obtain

ρg(A)limA|ψ1| ≤ 2d(ψ1, g) ≤ 2d(ψ1, O) ≤ 2b(K1,K2, O)d(ψ1, O,K2).

But d(ψ1, O,K2) ≤ ‖ψ1 − ψ2‖∞,O\K . �

By Lemma 4, in order to show that the quantity b(K1,K2, O) is large, it suffices to
construct a pair (ψ1, ψ2) of functions such that ψ1 ∈ Hol(Ĉ \K1), ψ1(∞) = 0, and ψ1 is
very large near a point A ∈ ∂K1, whereas ψ2 ∈ Hol(O \K2) and the difference ψ1 − ψ2

is uniformly small in O \K by the reason of interference between ψ1 and ψ2. If this is
done, a satisfactory lower estimate for b(K1,K2, O) follows from (4) provided that the
rotundity (relative to A) of a cell g ⊂ O that includes K1 is not too small.

1.5. A lower estimate of the separation constant of a pair of sets in terms
of the separation constant of a pair of their compact subsets. We return to the
sets S1, S2, and O (see the beginning of this section).

Lemma 5. Suppose S1 ∩ S2 = ∅, and let Kj ⊂ Sj be compact sets, j = 1, 2. Then

1 + b(S1, S2, O) ≥ b(K1,K2, O);

if the Sj have empty interior, then

b(S1, S2, O) ≥ b(K1,K2, O).

Proof. We put K = K1 ∪ K2, S = S1 ∪ S2. If f ∈ H∞(O \ K), then f = f1 + f2
in O \ S, fj ∈ H∞(O \ Sj), ‖fj‖∞,O\Sj

≤ b(S1, S2, O)‖f‖∞,O\S (we assume that the
pair (S1, S2) admits separation in O), j = 1, 2. The function fj on O \ Sj coincides
with a function analytic in O \ Kj . Indeed, the functions f1 and f − f2 for instance,
which are analytic in O \ S, fuse to yield a function analytic in O \K1. If S1 is nowhere
dense in O, then ‖f1‖∞,O\K1 = ‖f1‖∞,O\S1 ≤ b(S1, S2, O)‖f‖∞,O\K . In the general
case, |f1(ζ)| ≤ b(S1, S2, O)‖f‖∞,O\K for ζ ∈ O \ S1, and |f1(ζ)| ≤ |f(ζ)| + |f2(ζ)| ≤
(1 + b(S1, S2, O))‖f‖∞,O\K for ζ ∈ S1 \K1. �

Lemma 5 suggests a method that allows us to decide whether a given disjoint pair
(S1, S2) admits separation in O. For this, it suffices to be able to construct pairs (K1,K2)
of compact subsets in S1 and S2 (respectively) with arbitrarily large b(K1,K2, O). In its
turn, to do this we need pairs (ψ1, ψ2) of mutually interfering functions as in Lemma 4.
In §I.2 we shall show that such functions exist if K1 and K2 are sufficiently close to each
other and are “proper”; additionally, it is required that there exist a sufficiently rotund
cell g ⊂ O including one of these sets.
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§I.2. Proper continua; the functions ψq

The results of this section will be applied to very simple sets S1 and S2 (smooth arcs).
However, our approach works for much more general pairs (S1, S2). To better understand
the essence, here we proceed under less restrictive assumptions than in the final §I.3.

2.1. Some logarithmic functions. In this section, K will always denote a compact
connected subset of C (a bounded continuum) with connected complement Ĉ \K.

The symbol log will denote the principal branch of the logarithm: the function log is
defined in C \ (−∞, 0] and

eRe log ζ = |ζ|, Im log ζ ∈ (−π, π] (ζ ∈ C \ (−∞, 0]).

The domain Ĉ\K is simply connected. Therefore, for every A, B ∈ K with A �= B there
exists a function LK,A,B ∈ Hol(Ĉ \K) such that

expLK,A,B(ζ) =
B − ζ

A− ζ
, ζ ∈ C \K, LK,A,B(∞) = 0.

Clearly,

LK,A,B(ζ) = log
B − ζ

A− ζ

for all sufficiently large |ζ|.
2.2. Proper continua. We formulate two condition to be imposed on the continuum
K.

Condition 1. There is a number T > 1 such that for every A, B ∈ K with A �= B we
have

(5) LK,A,B(ζ) = log
B − ζ

A− ζ
if |ζ −A| > T |B −A| and ζ /∈ K.

The inequality |ζ − A| > |B − A| implies the estimate |(ζ − A)/(ζ − B) − 1| < 1, so
that the right-hand side of (5) makes sense.

Condition 2. The function ImLK,A,B is bounded in C \ K uniformly in all pairs A,
B ∈ K with A �= B.

In other words, in Condition 2 we require the existence of a constant T such that

| ImLK,A,B(ζ)| ≤ T

for every ζ ∈ C \K and every A, B ∈ K, A �= B.

Definition. If a continuum K satisfies Conditions 1 and 2 (with one and the same
constant T in both cases), then K is called T -proper (or proper if the value of T is
immaterial).

2.3. Lipschitz graphs are proper.

Lemma 6. Let K be a Lipschitz graph (relative to some orthogonal basis in R2). Then
K is a proper continuum.

Proof. There is no loss of generality in assuming that

K = {t+ if(t) : α ≤ t ≤ β},
where f is a real function satisfying |f(t′) − f(t′′)| ≤ L|t′ − t′′| for some L > 0 and
arbitrary t′, t′′ ∈ [α, β]. We shall assume that L > 1.
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To verify Condition 1 in Subsection 2.2 for K, we put A = a + if(a), B = b + if(b),
α ≤ a < b ≤ β, l = |B −A| and consider the rectangle

Π = [a− l, a+ l] × [f(a) − Ll, f(a) + Ll],

which contains the graph of f |[a− l, a+ l] so that K \Π is the union of at most two arcs of
K (of the graphs of f |[α, a− l) and f |(a+ l, β]). Clearly, the set Ĉ\ (Π∩K) is connected.
The function z �→ log B−z

A−z is analytic in Ĉ \ Π because {|z − A| ≤ l} ⊂ Π. Next, this
function coincides with LK,A,B near infinity and hence everywhere in Ĉ \ (Π ∪K). We
can put T =

√
1 + L2, because Π ⊂ {|z −A| ≤ T l}.

We turn to Condition 2. Note that

LK,A,B(ζ) =
∫
KA,B

dz

z − ζ
, ζ ∈ Ĉ \K,

where KA,B is the graph of f |[a, b]. Indeed, the right-hand side J of this identity vanishes
at infinity and expJ = (z − B)/(z − A) everywhere in C \ KA,B, which can easily be
verified by differentiation. Consequently,

ImLK,A,B(ζ) =
∫ b

a

f ′(t)(t− x) + f(t) − y

(t− x)2 + (f(t) − y)2
dt, ζ = x+ iy ∈ C \K.

For t �= x the integrand coincides with (arctan((f(t) − y)/(t− x)))′, whence

| ImLK,A,B(ζ)| ≤ 2π for every A,B ∈ K and ζ /∈ K. �

2.4. The functions ψq (definition). The functions ψ mentioned at the end of §I.1 will
be labeled by quintuplets

q = (K,A,B,C,D),
where K is the continuum in question, and A, B, C, D are pairwise different points in
K. We shall need the following linear functions λA,B:

λA,B :=
z −A

B −A
, A,B ∈ C, A �= B.

Now, we introduce functions ψq ∈ Hol(Ĉ \K) by the formula

(6) ψq := λA,BLK,A,B + LK,B,C + λD,CLK,D,C ,
ψq(∞) = 0. Next, we put

(7)
ψ∗
q := λA,B ReLK,A,B + ReLK,B,C + λD,C ReLK,D,C ,

ψ∗∗
q := ψq − ψ∗

q = i(λA,B ImLK,A,B + ImLK,B,C + λD,C ImLK,D,C).

The functions (7) are defined (but not analytic) in Ĉ \ K (ψ∗
q makes sense even in

Ĉ \ {A,B,C,D}).
Our choice of ψq is dictated by the following considerations. In the simplest case where

K is a segment in R and A, B, C, D are points of K (A < B < C < D), the function
ψq is representable by a Cauchy-type integral:

ψq(ζ) =
∫ D

A

f(x) dx
x− ζ

, ζ ∈ C \K,
where f is the piecewise-linear function depicted in Figure 1.

It is easily seen that ψq ∈ H∞(Ĉ\K) because f is Lipschitzian and f(A) = f(D) = 0.
Moreover, ψq(∞) = 0 and the absolute value |ψq(A)| grows unboundedly as B → A (and
C, D remain fixed). Thus, if B ≈ A, then ψq possesses the properties of the function
ψ1 (the latter was discussed at the end of §I.1) for K1 = K. Putting K2 = K + iε with
small ε > 0, and then q′ = (K2, A + iε, B + iε, C + iε,D + iε), we may expect that ψq′
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Figure 1.

will play the part of the “quenching” function ψ2 that compensates for the growth of ψ1

near A, so that |ψ1 − ψ2| becomes uniformly bounded in Ĉ \ (K1 ∪K2).
The function ψq can be defined by a Cauchy-type integral with a trapezoid-like den-

sity f not only for a segment K but also for every rectifiable arc. This approach was
chosen in [11], and it has some advantages. However, here we shall act in accordance
with the definition (6), which does not involve integrals and, therefore, is applicable to
arbitrary proper continua K rather than rectifiable arcs only. It should be noted that
some additional assumptions about the smoothness of these arcs were required in [11].

The functions ψ∗
q are more convenient to work with than ψq: the logarithms involved

in ψ∗
q obey the rule logXY = logX + logY , which allows us to express ψ∗

q in a very
simple way in terms of the following function l:

(8) l(ζ) := ζ log |ζ| (ζ ∈ C \ {0}), l(0) := 0.

Namely,

(9) ψ∗
q (ζ) =

l(ζ −A)
A−B

+
l(ζ −B)
B −A

+
l(ζ − C)
D − C

+
l(ζ −D)
C −D

, ζ ∈ C \K.

2.5. Preliminary estimates of |ψq|, |ψ∗∗
q |. For a quintuplet q = (K,A,B,C,D) and

a number T > 1, put

(10) Dq := {|z −A| > T |B −A|} ∩ {|z −B| > T |C −B|} ∩ {|z − C| > T |D− C|}.
Lemma 7. If the continuum K is T -proper, then

(i) the function |ψq| is bounded in Dq \K by a constant depending only on T ;
(ii) the function |ψ∗∗

q | is bounded in Ĉ \K by a constant depending only on T .

Proof. (i) By (5), we have

LK,B,C(ζ) = log
(

1 +
C −B

B − ζ

)
if ζ ∈ Dq \ K because |ζ − B| > T |B − C|, so that the absolute value of the second
summand in (6) at ζ does not exceed max{| logw| : |w − 1| ≤ 1/T }. If ζ ∈ Dq \K, then
|ζ −A| > T |B −A|, and by (5) we have∣∣λA,B(ζ)LK,A,B(ζ)

∣∣ =
∣∣∣∣ ζ −A

B −A
log

(
1 +

A−B

ζ −A

)∣∣∣∣
≤ max{|w log(1 + w−1)| : |w| ≥ T } =: c(T ).

(11)

The third summand in (6) is estimated in the same way.
(ii) Now we use Condition 2 in Subsection 2.2. It ensures the boundedness (by T in

Ĉ \K) of the absolute value of the second summand in the expression for ψ∗∗
q in (7). We
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turn to the first summand: if ζ /∈ K and |ζ − A| ≤ T |B − A|, then |λA,B(ζ)| ≤ T , and
Condition 2 yields |λA,B(ζ)|| ImLK,A,B(ζ)| ≤ T 2. If |ζ −A| > T |B −A|, then by (5) we
have ∣∣λA,B(ζ)

∣∣∣∣ ImLK,A,B(ζ)
∣∣ ≤ ∣∣∣∣λA,B(ζ) log

ζ −B

ζ −A

∣∣∣∣ ≤ c(T )

(see (11)). The third summand in (7) is estimated in the same way. �

2.6. The modules of continuity of l. In the next lemma we shall need the following
remark: if M > 0 and 0 < x < 1/e, then

(12) |l(Mx)| ≤M |l(x)| +M | logM |x ≤ (M +M | logM |)|l(x)|,
because | log x| > 1.

Lemma 8. If w1, w2 ∈ C and |wj | < 1/100, j = 1, 2, then

(13) |l(w1) − l(w2)| ≤ c|l(|w1 − w2|)|,
where c is an absolute constant.

Proof. The function x �→ |l(x)| increases on [0, 1/e], and the function x �→ | log x| de-
creases on (0, 1]. Furthermore, | log |1 + u|| ≤ 2|u| for u ∈ C with |u| ≤ 1

2 .
Let |w1| ≤ 2|w1 − w2|. Then |w2| ≤ 3|w1 − w2| and

∆ := |l(w1) − l(w2)| ≤ |l(|w1|)| + |l(|w2|)| ≤ 2|l(3|w1 − w2|)|.
Thus, (13) follows from (12). If |w1| > 2|w1 − w2|, then

|w2|
∣∣∣∣ log

∣∣∣∣w2

w1

∣∣∣∣
∣∣∣∣ = |w2|

∣∣∣∣ log
∣∣∣∣1 +

w1 − w2

w2

∣∣∣∣
∣∣∣∣ ≤ 2|w1 − w2|

and

∆ = |w1 log |w1| − w2 log |w2|| ≤ |w1 − w2|| log |w1|| + |w2|
∣∣∣∣ log

|w2|
|w1|

∣∣∣∣
≤ |w1 − w2|| log(2|w1 − w2|)| + 2|w1 − w2|.

So, (13) follows from (12) and the inequality |w1−w2| < 1
e (i.e., | log |w1 −w2|| > 1). �

2.7. Closeness of ψ∗
q and ψ∗

q′ for q ≈ q′ (a local estimate). Consider two quintuplets

(14) q = (K,A,B,C,D), q′ = (K ′, A′, B′, C′, D′),

where K, K ′ are continua with connected complements, A, B, C, D ∈ K, and A′, B′,
C′, D′ ∈ K ′. The points A′, B′, C′, D′ are viewed as close to the points with similar
notation without primes if

(15) max(|A−A′|, |B −B′|, |C − C′|, |D −D′|) < β,

where

(16) 0 < β < |A−B|/4.
Fixing T > 1, we assume that

(17) |A− C| = |A−D|/2 =: a < (5000T )−1, |A−B| < a/2.

Put

(18) U = {|z −A| < 4T |B −A|} ∪ {|z −B| < 4T |C −B|} ∪ {|z − C| < 4T |D − C|}.
Lemma 9. Under conditions (15)–(17), for ζ ∈ U we have

(19) |ψ∗
q (ζ) − ψ∗

q′(ζ)| ≤ C(T )
[ |l(β)|
|A−B| +

|l(a)|β
|A−B|2

]
.
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Proof. Let m denote the maximal among the eight quantities |ζ − A|, |ζ − B|, . . . ,
|ζ −A′|, . . . , |ζ −D′|, where ζ ∈ U . From (15), (17) and the inequality |D − C| ≤ 3a we
deduce that

(20) m ≤ 50Ta < 1/100.

Let X(ζ) := |ψ∗
q (ζ) − ψ∗

q′(ζ)|. By (9) and (13), the identity

l(ζ − P )
Q− P

− l(ζ − P ′)
Q′ − P ′ =

l(ζ − P ) − l(ζ − P ′)
Q− P

+ l(ζ − P ′)
(P − P ′) + (Q−Q′)
(Q− P )(Q′ − P ′)

implies

X(ζ) ≤ c|l(β)|
[

1
|A−B| +

1
|D − C|

]
+

|l(ζ −A′)|2β
|A−B||A′ −B′|

+
|l(ζ −B′)| · 2β
|A−B||A′ −B′| +

|l(ζ − C′)|2β
|D − C||D′ − C′| +

|l(ζ −D′)|2β
|D − C||D′ − C′| .

But |D − C| ≥ 2|A − B|, |A′ − B′| ≥ |A − B| − 2β ≥ |A − B|/2, and |D′ − C′| ≥
|D − C| − 2β ≥ 2a− a/2 ≥ 3|A−B|/2.

These estimates and (20) show that

(21) X(ζ) ≤ c′
|l(β)|

|A−B| + c′′
|l(c(T )a)|β
|A−B|2

for ζ ∈ U , where c′, c′′ are absolute constants; now (19) is a consequence of (21) and
(12). �

2.8. A global estimate of |ψq − ψq′ | for q ≈ q′.

Lemma 10. Suppose that q and q′ satisfy the assumptions of Lemma 9 and that the two
continua K and K ′ are T -proper. Then for every ζ ∈ C \ (K ∪K ′) we have

(22) |ψq(ζ) − ψq′ (ζ)| ≤ c(T )
[ |l(β)|
|A−B| +

|l(a)|β
|A−B|2 + 1

]
.

Proof. Let ζ ∈ U \ (K ∪K ′) (see (18)). Then

(23) |ψq(ζ) − ψq′(ζ)| ≤ |ψ∗
q (ζ) − ψ∗

q′(ζ)| + |ψ∗∗
q (ζ)| + |ψ∗∗

q′ (ζ)|,

and (22) follows from Lemma 9 and Lemma 7 (ii). If ζ ∈ C\ (U∪K∪K ′), then ζ belongs
to Dq′ (i.e., to the complement of the union of three disks centered at A′, B′, C′ and with
radii T |B′−A′|, T |B′−C′|, and T |D′−C′|; see (10)). Indeed, if |ζ−A′| < T |B′−A′|, then
|ζ−A| ≤ |ζ−A′|+ |A′−A| < T |A′−B′|+β ≤ T (|A−B|+2β)+β < T |A−B|+3Tβ <
4T |A− B|, whence ζ ∈ U ; if |ζ − B′| < T |D′ − C′|, then |ζ − B| < T |B − C| + 3Tβ ≤
T |B − C| + 3T |A− B|, but |B − C| ≥ |C − A| − |B − A| ≥ a− a/2 > |B − A|, whence
it follows that |ζ − T | < 4T |C − B| and ζ ∈ U ; if |ζ − C′| < T |D′ − C′|, then |ζ − C| <
T |D−C|+3Tβ ≤ T |C−D|+3Ta ≤ 4T |C−D|, so that |C−D| ≥ |A−D|− |A−C| = a,
and again ζ ∈ U . Thus, if ζ /∈ U ∪K ∪K ′, then ζ /∈ Dq ∪ Dq′ , and Lemma 7 applied to
q and q′ yields in combination with (23):

|ψq(ζ) − ψq′(ζ)| ≤ |ψ∗
q (ζ)| + |ψ∗

q′(ζ)| + |ψ∗∗
q (ζ)| + |ψ∗∗

q′ (ζ)| ≤ c̃(T ). �
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§I.3. Main theorems. Examples

Now we are in a position to prove the main technical result of the first part, namely,
a lower estimate for b(K,K ′, O) in purely geometric terms. We assume that K ⊂ g ⊂ O,
where g is a cell with center A ∈ ∂K. The lower estimate for b(K,K ′, O) will involve the
rotundity ρg(A) (see Subsection 1.3), the “amplitude” a of K:

(24) a :=
1
2

max{|ζ −A| : ζ ∈ K},
and a positive number β(a) describing the closeness of K ′ and K:

(25) max{dist(ζ,K ′) : ζ ∈ K} < β(a).

Anticipating the precise statements, we reveal at once that β(a) will be taken negligibly
small compared to a:

(26) β(a) � a.

We specify this in the next subsection.

3.1. The smallness of β(a). Now β denotes a function defined on (0, b).
It would be natural to interpret (26) as β(a) = o(a) (a → 0), but I do not know if this

matches our purposes (specifically, it is not clear whether Theorem 2 is true under this
assumption). Although the results of [11] give hope for a positive answer, here we must
assume that

(27) β(a) = o(a/| log a|), a→ 0,

i.e., that

(28) β(a) = aε(a)/| log a|, 0 < a < b, ε(a) = o(1), a→ 0.

We observe that

(29)
√
ε(a)a|l(β(a))| = o(|l(a)|β(a)), a→ 0,

which is a consequence of the relation√
ε(a)(| log a| + log | log a|) = o(| log a|), a→ 0.

In what follows, O denotes a domain in C; K, K ′, g, A, and β were defined at the
beginning of the section and in Subsection 3.1.

Theorem 1. There exist positive constants c(T ) and a(β, T ) such that for every two
T -proper continua K, K ′ ⊂ O and every number a in the interval (0, a(β, T )) satisfying
(25), we have

(30) b(K,K ′, O) ≥ c(T )ρg(A) log
1
ε(a)

.

For example, by Lemma 6 we may take Lipschitz graphs (without common points) for
K and K ′. In this case c(T ) will depend on the Lipschitz constants of these graphs in
the long run.

Proof (reduction to Lemma 4). We deduce (30) from (4) with a special choice of ψ1 = ψq,
ψ2 = ψq′ .

There is a point D ∈ K with |A − D| = 2a. Since K is connected, there is a point
C ∈ K with |C −A| = a. If a < a(β), then ε(a) < 1, and for some B ∈ K we have

|A−B| = a
√
ε(a).

Then we find four pairwise distinct points A′, B′, C′, D′ in K ′ in such a way that (15)
is fulfilled with β = β(a) (see (25)). Clearly, β(a) = o(a

√
ε(a)) as a → 0 (see (28)).
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Therefore, for sufficiently small a(β), the inequality 0 < a < a(β) implies (16) and
(17), so that the quintuplets q = (K,A,B,C,D) and q′ = (K ′, A′, B′, C′, D′) satisfy the
assumptions of Lemma 9, and Lemma 10 yields (22) for ζ ∈ O \ (K ∪K ′):

‖ψq − ψq′‖∞,O\(K∪K′) ≤ c(T )
[ |l(β(a))|
a
√
ε(a)

+
|l(a)|β(a)
a2ε(a)

+ 1
]

< 3c(T ) if 0 < a < a(β),
(31)

because by (29) the first summand in (31) is smaller than the second, and the second is
equal to 1 (see (28)).

On the other hand, ψq ∈ Hol(Ĉ \K), ψq(∞) = 0, and for ζ ∈ C \K we have

|ψq(ζ)| ≥ |ψ∗
q (ζ)| − c′(T )

by Lemma 7(ii). Letting ζ ∈ C \K tend to A, we obtain

|ψ∗
q (ζ)| ≥ log

|C − ζ|
|B − ζ| −

|ζ −A|
|B −A| log

|B − ζ|
|A− ζ| −

|ζ − C|
|C −D| log

|ζ −D|
|ζ − C|

−−−→
ζ→A
ζ/∈K

log
|C −A|
|B −A| −

|A− C|
|C −D| log

|A−D|
|C −A| ,

so that
limA|Ψq| ≥ log

1√
ε(a)

− (log 2)/2 − c′(T ) >
1
4

log
1
ε(a)

if 0 < a < a(β, T ). It remains to apply Lemma 4 and obtain (30). �
3.3. Some pairs for which separation fails. Again, we consider relatively closed
subsets S, S′ of O with S′ ∩ S = ∅. Suppose that β satisfies (28). Invoking the
discussion at the end of Subsection 1.5, we construct two families (Kγ)γ∈Γ and (K ′

γ)γ∈Γ

of continua Kγ ⊂ gγ ∩ S, K ′
γ ⊂ S′, where (gγ)γ∈Γ is a family of cells in O centered at

Aγ ∈ ∂Kγ , γ ∈ Γ.
We put

aγ :=
1
2

max{|ζ −Aγ | : ζ ∈ Kγ}
(cf. (24)). The next result follows from Theorem 1 and Lemma 5 (see Subsection 1.5).

Theorem 2. Suppose that for some T > 1 and r > 0 the following conditions are
fulfilled:

(i) for every γ ∈ Γ the two continua Kγ and K ′
γ are T -proper, and ρgγ (Aγ) ≥ r;

(ii) for every γ ∈ Γ the pair (K,K ′), where K := Kγ , K ′ = K ′
γ , satisfies the assump-

tions of Theorem 1 with gi = gγ , A := Aγ. Then

b(S, S′, O) = +∞,

so the pair (S, S′) does not admit separation in O.

3.4. Examples. In this subsection, we present specific applications of Theorem 2.

3.4.1. Let k be a positive function defined on (0, b) and satisfying

(32) k(y) = o(y/| log y|), u→ 0.

For the role of the domain O, we take the upper half-plane C+ = {Im z > 0}. Consider
real Lipschitz functions ϕ1, ϕ2 on [0, b] with

(33) −k(y) < ϕ1(y) < ϕ2(y) < k(y), y ∈ [0, b],

and their graphs (related to the y-axis): Sj := {zj(y) : 0 < y ≤ b}, j = 1, 2, where
zj(y) := ϕj(y) + iy (see Figure 2).
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Figure 2.

Figure 3.

Theorem 3. The pair (S1, S2) does not admit separation in C+.

Remark. In [11] it was shown that if ϕ1, ϕ2 ∈ C1+ε([0, b]), then the claim remains true
under the condition k(y) = o(y) (y → 0).

Proof. We put Ky := S1 ∩ {y ≤ Im z ≤ 2y}, K ′
y := S2 ∩ {y ≤ Im z ≤ 2y}, and

gy = (−y, y) × (0, 3y), Ay := ϕ1(y) + iy for y ∈ (0, b]. Clearly,

(34) y ≤ ay ≤ c(L)y, 0 < y ≤ b,

where c(L) depends only on the Lipschitz constant for ϕ1. If η ∈ [y, 2y], then by (33) we
have

|z1(η) − z2(η)| = ϕ2(η) − ϕ1(η) ≤ 2k(η) = o(y/| log y|) = o(ay/| log ay|), y → 0

(the last estimate follows from (34)), so the continua K := Ky and K ′ := K ′
y satisfy

(25), and the function β satisfies (27). The continua Ky and K ′
y are T -proper, where

T depends only on the Lipschitz constant for ϕ1 and ϕ2 (by Lemma 6); the cells gy
are uniformly rotund. It remains to apply Theorem 2 to the families (Ky)0<y≤b and
(K ′

y)0<y≤b. �

3.4.2. This time, our Lipschitz functions ϕ1 and ϕ2 (defined on [0, b] as before) satisfy
the conditions

0 < ϕ1(x) < ϕ2(x), x ∈ (0, b]; ϕ1(0) = ϕ2(0) = 0.

We put zj(x) = x+ iϕj(x), x ∈ [0, b], Sj := {zj(x) : 0 < x ≤ b}, j = 1, 2.
Figure 3 represents the most interesting case where the curves S1 and S2 have a

common tangent (the ray [0,+∞)) at the origin, though the next result is applicable
also in the case where ϕ′

1(0) = ϕ′
2(0) > 0.
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Figure 4.

Theorem 4. Suppose

(35) ϕ2(x) − ϕ1(x) ≤ ϕ1(x)l(x), x ∈ (0, b],

where l(x) = o(1/| logϕ1(x)|), x → 0. Then the pair (S1, S2) does not admit separation
in C+.

In [11] it was shown that if ϕ1, ϕ2 ∈ C1+ε([0, b]), then Theorem 4 remains true under
the condition l(x) = o(1) as x→ 0.

Proof. We put θ = 1/2L, where L is the Lipschitz constant of ϕ1, and

Ix := [x− θϕ1(x), x+ θϕ1(x)],

Kx := S1 ∩ {Re z ∈ Ix},
K ′
x := S2 ∩ {Re z ∈ Ix},
gx := (x− 2θϕ1(x), x + 2θϕ1(x)) × (0, 2ϕ1(x)),

Ax := x+ iϕ1(x), x ∈ (0, b].

Clearly, Kx ⊂ gx, because for ζ ∈ Ix we have

ϕ1(ζ) ≤ ϕ1(x) + Lθϕ1(x) = 3ϕ1(x)/2.

But
a2
x = max

ξ∈Ix

[(x− ξ)2 + (ϕ1(x) − ϕ1(ξ))2] ≤ 5(ϕ1(x))2/4,

so that

(36) θϕ1(x) ≤ ax ≤ 10ϕ1(x), x ∈ (0, b].

If ξ ∈ Ix, then

|z1(ξ) − z2(ξ)| = ϕ2(ξ) − ϕ1(ξ) ≤ ϕ1(ξ)l(ξ) ≤ 2ϕ1(x)l(ξ) ≤ 2Laxl(ξ),

and

l(ξ) =
ε(ξ)

| logϕ1(ξ)| ≤
sup{ε(ξ) : 0 < ξ ≤ x+ θϕ1(x)}

| log(ϕ1(x)/2)| = o
( 1
| logϕ1(x)|

)
= o

( 1
| log ax|

)
,

where ε(x) = o(1) as x → 0 (we have used the estimate ϕ1(ξ) ≥ ϕ1(x) − Lθϕ1(x) =
ϕ1(x)/2 in Ix, and also inequality (36)). The continua Kx, K ′

x under study are uniformly
proper (Lemma 6), and the cells gx are uniformly rotund. It remains to apply Theorem 2.

�
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3.4.3. Consider two Jordan domains G1 and G2 depicted in Figure 4, and their inter-
section G.

Suppose the curves ∂G1 and ∂G2 are piecewise C1-smooth and meet transversally at
the points S and N , i.e., every two among the four arcs 1, 2, 3, 4 (respectively, 1′, 2′, 3′,
4′) form a nonzero angle at S (respectively, at N). In [10] it was shown (see Example 4.1
in Subsection 4.6 therein) that for every f ∈ H∞(G) there exist fj ∈ H∞(Gj), j = 1, 2,
such that

(37) f = f1 + f2 in G.

Theorems 3 and 4 imply that the transversality condition cannot be dropped here (the
deduction of this statement from Theorems 3 and 4 can be found in [11]).

II. SEPARATION FOR TANGENT PAIRS

The main result of this part of the paper is Theorem 5 in § II.2, which describes some
pairs admitting separation in C+. In that theorem we shall deal with pairs of smooth
arcs in C+ for which R is a common tangent at the origin. As a positive statement,
Theorem 5 opposes Theorem 4 in the first part.

The first section of Part II is devoted to technical preparations to the proof of Theorem
5. At the end of §II.2, we give some examples illustrating Theorem 5.

We need the following notation: for a path γ : I → C, where I ⊂ R is an interval, we
put

CFγ (ζ) :=
1

2πi

∫
γ

F (z) dz
z − ζ

, ζ ∈ C \ γ(I).

Here we assume that γ is absolutely continuous, the domain of the complex function F
includes the trajectory γ(J), F ◦ γ is Lebesgue measurable, and∫

I

|F ◦ γ| |γ′| < +∞.

The principal value of the integral (2πi)−1
∫
γ
(F (z)/(z − ζ))dz, where ζ ∈ γ(I), will

be denoted by –CFγ (ζ); by definition, –CFγ (ζ) = CFγ (ζ) for ζ ∈ C \ γ(I).
The symbol γϕ will denote the graph of a real function ϕ defined on a subset E of R.

We treat γϕ as a mapping: γϕ(x) = x+ iϕ(x), x ∈ E (i.e., γϕ is viewed as a path if ϕ is
continuous and E is a segment). However, sometimes we perceive γϕ as the set γϕ(E).

§II.1. Pushing singularities to an auxiliary arc

1.1. The quad of arcs γj, j = −1, 0, 1, 2. Let ϕ1, ϕ2 be nonnegative functions defined
on [0, b] with b > 0 and such that

ϕ1(0) = ϕ2(0) = 0, ϕj(x) > 0 for x ∈ (0, b], j = 1, 2.

We shall assume that for some µ > 0 we have

(38) ϕ2(x) ≥ (1 + µ)ϕ1(x), 0 ≤ x ≤ b.

This means that the hyperbolic distance (relative to C+) between γϕ1(x) and γϕ2(x) is
bounded away from zero uniformly in x ∈ (0, b]. (It should be noted that precisely this
condition was violated in Theorem 4.) Furthermore, we cannot do without the following
smoothness conditions:

(39) ϕ1 ∈ C1+ε([0, b]) for some ε > 0, ϕ′
1(0) = 0, ϕ2 ∈ C1([0, b]).

Put γj := γϕj (j = 1, 2), γ0 := [−b, b], γ−1 := γ1.
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Figure 5.

1.2. The main lemma: the statement and the beginning of the proof. We
denote by A′ the complement C \A of a set A ⊂ C.

Lemma 11. Let f ∈ H∞((γ0 ∪ γ1 ∪ γ2)′), where the paths γ1 and γ2 satisfy (38) and
(39). Then there exist functions fj ∈ H∞((γ0 ∪ γj ∪ γ−1)′), j = 1, 2, such that

f = f1 + f2 in (γ−1 ∪ γ0 ∪ γ1 ∪ γ2)′.

Proof. We may assume that f(∞) = 0, so that

f = CFγ0 + CFγ1 + CFγ2 ,

where F ∈ L∞(γ0 ∪ γ1 ∪ γ2, s) (s stands for length; see Lemma 4.1 in [10]). We extend
F to γ−1:

F (x− iϕ1(x)) := F (x + iϕ1(x)), 0 < x ≤ b,

and put Cj := CFγj
, j = −1, 0, 1, 2; the principal values –Cj are defined similarly (we

recall that –Cj = Cj in γ′j). Finally, we put

(40) f1 := C1 − C−1 in (γ−1 ∪ γ1)′, f2 := C−1 + C0 + C2 in (γ−1 ∪ γ0 ∪ γ2)′,

so that f = f1 + f2 in (
⋃2
j=−1 γj)

′. It remains to show that

(41) f2 ∈ H∞((γ−1 ∪ γ0 ∪ γ2)′).

The boundedness of f1 in (γ−1 ∪ γ1)′ follows from (41) and the boundedness of f . �
1.3. A digression. The method outlined in Subsection 1.2 is parallel to the proof of
Theorems 4.1 and 5.1 in [10]. First, we split the Cauchy potential CFγ0∪γ1∪γ2 = f crudely
by the formula

f = C1 + [C0 + C2],
which separates singularities but destroys boundedness. To restore the latter, we intro-
duce the auxiliary arc γ−1 lying off C+, and try to ensure the boundedness of f1 and
f2 by subtraction of C−1 from C1 and addition of C−1 to C0 + C2. This procedure
does not create new singularities in C+ (they arise only in C′

+), and the boundedness
of f2 = C0 + C2 + C−1 becomes quite plausible. Indeed, the charge on γ−1 giving rise
to the potential C−1 is a twin copy of the initial charge on γ1 generating C1. But the
sum C0 +C2 +C1 was bounded, and the deviations of the points γ1(x) and γ−1(x) from
γ0(x) and γ2(x), respectively, are comparable (and are roughly equal to ϕ1(x)) by (39).
In other words, C−1 has no smaller capability of compensating for the growth of C0 +C2

than C1 are because the charges that lie on γ1 and γ−1 are identical, and the distances
|γ1(x) − γ0(x)| and |γ−1(x) − γ0(x)| (respectively, |γ2(x) − γ1(x)| and |γ2(x) − γ−1(x)|)
are comparable. The proof presented below justifies these heuristic arguments. As in
Subsection 5 of [10], the proof will involve the maximum of the modulus principle for
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Cauchy potentials, but the estimates will differ and, unfortunately, will require an addi-
tional smoothness condition on ϕ1 (see (39)), much stronger than in the “transversal”
setting treated in [10].

1.4. Continuation of the proof of Lemma 11. In order to prove (41), we apply
Lemma 5.1 and the material of Subsection 5.2 in [10]. We show the existence of a
constant M such that

(42) |–C−1(z0) + –C0(z0) + –C2(z0)| ≤M for s-almost every z0 ∈ γ0 ∪ γ−1 ∪ γ2.

The Sokhotskĭı–Privalov formulas for the boundary values of Cauchy potentials together
with the boundedness of the density F ensure the boundedness a.e. of the nontangential
boundary values of f2 = C−1+C0+C2 on γ0∪γ−1∪γ2; in accordance with [10, Subsection
5.2], we arrive at (41).

1.5. In order to prove (42), we estimate the difference –C−1(z0)− –C1(z0) =: ∆(z0) at an
arbitrary point z0 = x0 + iy0, x0 ∈ [−b, b], y0 ∈ R. Putting Fj(x) = F (x + iϕj(x)), we
obtain

∆(z0) =
1

2πi
�

∫ b

0

F1(x)
( γ′1(x)
γ1(x)−z0 −

γ′1(x)
γ1(x)−z0

)
dx

=
1
π

�

∫ b

0

Im(γ′1(x)γ1(x))+z0 Im γ′1(x)
(γ1(x)−z0)(γ1(x)−z0) dx

=
1
π

�

∫ b

0

F1(x)
−ϕ′

1(x)(x−x0)+ϕ1(x)+iy0ϕ′
1(x)

[(x−x0)−i(ϕ1(x)+y0)][(x−x0)+i(ϕ1(x)−y0)]dx.

(43)

In the integrand’s numerator, we add and subtract ϕ1(x0). Under the agreement that
ϕ1(x0) = 0 for x0 ∈ [−b, 0], we get

(44) |∆(z0)| ≤ ‖F‖∞(a(z0) +B(z0) + C(z0)),

where

(45)
B(z0) = ϕ1(x0)

∫ b

0

dx

[|x − x0| + |ϕ1(x) + y0|][|x− x0| + |ϕ1(x) − y0|] ,

C(z0) = y0

∫ b

0

ϕ′
1(x) dx

[|x− x0| + |ϕ1(x) + y0|][|x− x0| + |ϕ1(x) − y0|] .

The quantity A(z0) can be defined and estimated as follows:

A(z0) :=
∫ b

0

|ϕ1(x) − ϕ1(x0) − ϕ′
1(x) · (x − x0)|

(x− x0)2
dx

=
∫ b

0

|ϕ′
1(c(x, x0)) − ϕ′

1(x)|
|x− x0| dx ≤

∫ b

0

k · |x− x0|ε
|x− x0| dx

(46)

(c(x, x0) is a point between x and x0). The last integral is bounded uniformly in x0 ∈
[−b, b] (we have used condition (39)).

Turning to (42), we consider the following particular cases:

(47) (I) z0 = x0 ∈ γ0; (II) z0 ∈ γ1 = γ−1; (III) z0 ∈ γ2.
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1.6. Case (I). For x0 ∈ γ0 we have

–C0(x0) + C−1(x0) + C2(x0) = [–C0(x0) + C1(x0) + C2(x0)] + ∆(x0);

as a function of x0, the expression in square brackets belongs to L∞([−b, b]) by the
boundedness of f and F and the Privalov–Sokhotskĭı formulas. Estimate (44) reduces to

|∆(x0)| ≤ (A(x0) +B(x0))‖F‖∞,
because y0 = 0 and C(x0) = 0. By (46), A ∈ L∞([0, b]). In order to estimate B(x0) for
0 < x0 < b, in (0, x0) we take the greatest solution x1 of the equation ϕ1(x1) = 1

2ϕ1(x0).
We have

ϕ1(x0)/2 = ϕ1(x0) − ϕ1(x1) = ϕ′
1(c)(x0 − x1)

for some c ∈ (x1, x0); ϕ1(x) ≥ ϕ1(x0)/2 for x ∈ (x1, b). Thus,

B(x0) ≤ ϕ1(x0)
∫ x1

−∞

dx

(x0 − x)2
+ ϕ1(x0)

∫ ∞

−∞

dx

(|x− x0| + ϕ1(x0)/2)2

=
ϕ1(x0)
x0 − x1

+ ϕ1(x0) · 2
∫ ∞

0

du

(u+ ϕ1(x0)/2)2
≤ max

[0,b]
|ϕ′

1| + 4.

If x ∈ [−b, 0], then B(x0) = 0.

1.7. Case (II). Let z0 = x0 − iϕ1(x0) ∈ γ−1, x0 ∈ [0, b]. We have

(48)
C0(z0) + –C−1(z0) + C2(z0) = [C0(z̄0) + –C1(z̄0) + C2(z̄0)] + α0 + α1 + α2;

αj := Cj(z0) − Cj(z̄0), j = 0, 2, α1 := –C−1(z0) − C1(z̄0).

As a function of z0, the expression in square brackets in (48) belongs to L∞(γ−1, s)
(because f and F are bounded). It remains to estimate α0, α1, and α2. But

|α0| =
1
π

∣∣∣∣
∫ b

0

F (x)
Im z0

|x− z0|2 dx
∣∣∣∣ ≤ ‖F‖∞;

|α1| =
∣∣∣∣ 1
2πi

�

∫ b

0

F1(x)
[

γ′1(x)
γ1(x) − z̄0

− γ′1(x)
γ1(x) − z0

]
dx

∣∣∣∣
=

1
π

∣∣∣∣ �

∫ b

0

F1(x)
Im[γ′1(x)(γ1(x) − z0)]

|γ1(x) − z0|2 dx

∣∣∣∣
=

1
π

∣∣∣∣
∫ b

0

F1(x)
ϕ′

1(x)(x − x0) − (ϕ1(x) − ϕ1(x0))
(x− x0)2 + (ϕ1(x) − ϕ1(x0))2

dx

∣∣∣∣
≤ ‖F1‖∞

∫ b

0

|ϕ′
1(x)(x − x0) − (ϕ1(x) − ϕ1(x0))|

(x− x0)2
dx;

the uniform boundedness (in x0 ∈ [0, b]) of the last integral was proved earlier (see (46)).
Next,

|α2| =
1
2π

∣∣∣∣
∫ b

0

F2(x)γ′2(x)
[

1
γ2(x) − z0

− 1
γ2(x) − z̄0

]
dx

∣∣∣∣
≤ ‖F‖∞‖γ′2‖∞

∫ b

0

| Im z0|
|γ2(x) − z0||γ2(x) − z̄0| dx

≤ 2‖F‖∞‖γ′2‖∞ϕ1(x0)
∫ b

0

dx

(|x− x0| + ϕ2(x) + ϕ1(x0))(|x − x0| + |ϕ2(x) − ϕ1(x0)|) .

We use the inequality
1

α+ β
≤ R

Rα+ β
, α, β > 0, R > 1.
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The result is

|α2| ≤ Kϕ1(x0)
∫ b

0

1
|x− x0| + ϕ1(x0)

· Rdx

R|x− x0| + |ϕ2(x) − ϕ(x0)| ,

where K := 2‖F‖∞‖γ′2‖∞. But, by (38), we have

|ϕ2(x) − ϕ1(x0)| ≥ |ϕ2(x0) − ϕ1(x0)| − |ϕ2(x) − ϕ2(x0)| ≥ µϕ1(x0) − ‖ϕ′
2‖∞|x− x0|.

Taking R = ‖ϕ′
2‖∞ + 1, we obtain

|α2| ≤ RKϕ1(x0)
∫ b

0

1
|x− x0| + ϕ1(x0)

· 1
|x− x0| + µϕ1(x0)

dx

≤ RKϕ1(x0)
∫ +∞

−∞

dx

(x− x0)2 + µ̃2ϕ2
1(x0)

= RKπ/µ̃,

where µ̃ := min(µ, 1). Therefore, Case (II) is exhausted.

1.8. Case (III). If z0 ∈ γ2, z0 = x0 + iϕ2(x0), x0 ∈ (0, b], then

C0(z0) + C−1(z0) + –C2(z0) = [C0(z0) + C1(z0) + –C2(z0)] + ∆(z0)

(see (44) and (45)). In the variable z0, the expression in square brackets is a function of
class L∞(γ2, s). Applying (44) and (45) with y0 = ϕ2(x0), we obtain

B(z0) = ϕ1(x0)
∫ b

0

dx

(|x− x0| + ϕ1(x) + ϕ2(x0))(|x − x0| + |ϕ1(x) − ϕ2(x0)|)
= ϕ1(x0)C(z0)/ϕ2(x0).

We recall that the quantity A(z0) is uniformly bounded and ϕ2(x0) < ϕ1(x0). Therefore,
it remains to prove that C(z0) is bounded uniformly in z0 ∈ γ2. As in Case (II) for R > 1,
we get

C(z0) ≤ ϕ2(x0)
∫ b

0

Rdx

(|x− x0| + ϕ2(x0))(R|x − x0| + |ϕ1(x) − ϕ2(x0)|) .

But |ϕ1(x)−ϕ2(x0)| ≥ (ϕ2(x0)−ϕ1(x0))−‖ϕ′
1‖∞|x−x0| = ϕ2(x0)(1−ϕ1(x0)/ϕ2(x0))−

‖ϕ′
1‖∞|x−x0| ≥ ϕ2(x0)µ/(1+µ)−‖ϕ′

1‖∞|x−x0| (we have used (38) once again). Putting
R = 1 + ‖ϕ′

1‖∞, we obtain

C(z0) ≤ Rϕ2(x0)
∫ b

0

dx

(|x− x0| + µ̃ϕ2(x0))2
≤ Rπ/µ̃, µ̃ = µ/(1 + µ).

Lemma 11 is proved. �

§II.2. Tangent pairs admitting separation: Sufficient conditions and

examples

2.1. Theorem 5. Let γj = γϕj , j = 1, 2, be the same arcs as in Lemma 11. Then the
pair (γ1, γ2) admits separation in C+.

Proof. The arguments are based on the following observation: for every h ∈ H∞(C+ \
(γ1 ∪ γ2)) there exist f0 ∈ H∞(C+) and f0 ∈ H∞((γ0 ∪ γ1 ∪ γ2)′) such that

(49) h = f0 + f0 in C+ \ (γ1 ∪ γ2).

Applying Lemma 11 to f0, from (49) we deduce that

h = (f0 + f1) + f2 in C+ \ (γ1 ∪ γ2),

where f1 ∈ H∞((γ0∪γ1)′) and f2 ∈ H∞((γ0∪γ2)′), so (f0 +f1)|(C+ \γ1) ∈ H∞(C+ \γ1)
and f2|(C+ \ γ2) ∈ H∞(C+ \ γ2). This completes the proof of the theorem. �
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In order to verify (49), consider a linear-fractional mapping Φ satisfying Φ(D) = C+

(D is the unit disk), Φ(1) = 0, and put Γ := Φ−1[−b, b]. Let Γ̃ ⊂ Γ be an arc open
relative to the unit circle T and containing 1. We put k := Φ−1(γ1 ∪ γ2), g := h ◦ Φ in
D \ k, g := 0 in C \ (D ∪ T), so that g ∈ H∞((T ∪ k)′). But T ∪ k = (Γ ∪ k) ∪ (T \ Γ̃).
The pair (Γ ∪ k,T \ Γ̃) satisfies the assumptions of the “preseparation theorem” and its
Corollary 3.3 in [10], because T \ Γ and Γ̃ are at a positive distance from each other.
Therefore,

g = g1 + g2, g1 ∈ H∞((Γ ∪ k)′), g2 ∈ H∞((T \ Γ̃)′),
and (49) is fulfilled with f0 = (g2 ◦ Φ−1)|C+, f0 = g ◦ Φ−1. �

2.2. A generalization. We begin with a simple observation. Let O, Õ be domains, and
let K1, K2, K̃1, K̃2 be compact subsets of Ĉ. The triples (O,K1,K2) and (Õ, K̃1, K̃2)
are said to be (conformally) equivalent if there exists a conformal homeomorphism Φ of
O onto Õ that takes Kj ∩ O onto K̃j ∩ Õ, j = 1, 2. Clearly, the pair (K1,K2) admits
separation in O if and only if so does the pair (K̃1, K̃2) in Õ. (As in [10], in the case
where either K1 or K2 is not necessarily a subset of O, we say that the pair (K1,K2)
admits separation in O if so does the pair (K1 ∩O,K2 ∩O)).

Suppose that K1 ∩ K2 = {0}, and let v be a neighborhood of the origin. We put
κj := Clos(Kj ∩ v), j = 1, 2. Let ω be a domain in Ĉ.

Corollary (to Theorem 5). Suppose the triples (ω,κ1,κ2) and (C+, γ1, γ2) are equiv-
alent (γ1 and γ2 are the arcs occurring in Lemma 11). Then the pair (K1,K2) admits
separation in ω.

Proof. This follows from Corollary 3.2 in [10] and Lemma 11, combined with the remark
at the beginning of this subsection (about the separation property for the pair (κ1,κ2)
in ω). �
2.3. A “two-sided” version of Theorem 5. This version will be needed for con-
struction of examples.

Theorem 5′. Suppose that ϕ1 and ϕ2 are functions defined on the segment [−b, b],
ϕ1 ∈ C1+ε([−b, b]), ϕ2 ∈ C1([−b, b]), ϕ1(0) = ϕ2(0) = 0, ϕj(x) > 0 for x �= 0 (so that
ϕ′
j(0) = 0), j = 1, 2. If condition (38) is fulfilled for every x ∈ [−b, b], then the pair

(γϕ1 , γϕ2) of graphs admits separation in C+.

We could have inspected the proof of Theorems 5 to see that it would work under the
new assumptions. Instead, we prefer a formal reduction of Theorem 5′ to Theorem 5.

Proof. Putting ϕ+
j := ϕj |[0, b], ϕ−

j := ϕj |[−b, 0], γj := γϕj , γ
±
j := γϕ±

j
, j = 1, 2, we show

that

(50) the pair (γ+
1 ∪ γ+

2 , γ
−
1 ∪ γ−2 ) admits separation in C+.

Having proved (50), we shall be able to apply Theorem 5 to the pairs (γ+
1 , γ

+
2 ) and

(γ−1 , γ
−
2 ) separately. In order to verify (50), we consider a function h ∈ H∞(C+\(γ1∪γ2))

and use the representation h = f0 + f0 in C+ \ (γ1 ∪ γ2), where f0 ∈ H∞(C+), f0 ∈
H∞((γ0 ∪ γ1 ∪ γ2)′), γ0 := [−b, b], as we did in the proof of Theorem 5 in Subsection
2.1; we apply that proof to the new pair (γ1, γ2). Then we consider a compact triangle
T ⊂ C \ C+ with apex at the origin and symmetric with respect to the imaginary axis.
By [10, Theorem 6.2], we have

f0 = ψ+ + ψ− in C \ (γ1 ∪ γ2 ∪ T ),

where ψ± ∈ H∞(C \ (γ±1 ∪ γ±2 ∪ T )). Thus, h = (f0 +ψ+) +ψ− in C+ \ (γ1 ∪ γ2), where
f0 + ψ+ ∈ H∞(C+ \ (γ+

1 ∪ γ+
2 )) and ψ− ∈ H∞(C+ \ (γ−1 ∪ γ−2 )). �
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Figure 6.

The corollary of Theorem 5 in Subsection 2.2 admits an obvious counterpart in the
setting of Theorem 5′.

In conclusion of this subsection, we turn once again to Theorem 5′. Suppose that
ϕj ∈ C2([−b, b]), ϕj(0) = ϕ′

j(0) = 0, ϕj(x) > 0 for x �= 0, j = 1, 2. If, moreover,
ϕ′′

2 (0) > ϕ′′
1(0), then condition (38) is fulfilled for every x ∈ [−b, b]. Thus, if the curvatures

of the arcs γ1 and γ2 at the origin are different, then the pair (γ1, γ2) admits separation
in C+ (by Theorem 5′).

2.3. Some applications of Theorem 5′.

Example 1. Let K1, K2 be two (distinct) circles in C+ ∪{0} passing through the origin
and centered at imaginary points (Figure 6).

The pair (K1,K2) admits separation in C+. To see this, we consider a small square
v centered at the origin and apply the corollary of Theorem 5′ and the discussion at the
end of Subsection 2.2 about the separability in C+ of arcs with different curvatures at
the origin.

Example 2. For j = 1, 2, let ∆j denote an open disk with boundary Kj. We put
κ := {|z + iε| ≤ ε}, ε > 0 (see Figure 6). The pair (K1,K2) admits separation in the
domain C \ κ.

Recall that in C (and even in an arbitrary open disk centered at the origin), separation
fails for (K1,K2). Moreover, there exists a function f ∈ H∞(G), G := ∆2 \ (∆1 ∪K1),
nonrepresentable in the form

(51) f = f1 + f2 in G

with f1 ∈ H∞((∆1 ∪ K1)′), f2 ∈ H∞(∆2) (see [10, Subsection 2.3]). But an arbitrary
function f ∈ H∞(G) is representable as in (51) with f1 ∈ H∞((∆1 ∪ K1 ∪ κ)′), f2 ∈
H∞(∆2).

Proof. The triple (Ĉ\k,K1,K2) is equivalent to (C+, K̃1, K̃2) (we use a linear-fractional
function that maps Ĉ \ k onto C+); the K̃j are circles in C+ ∪ {0} passing through the
origin and centered at imaginary points. �

Example 3. Let G = {0 < Im z < 1}. We fix a positive number L. An arbitrary
function f ∈ H∞(G) can be represented as in (51) with

f1 ∈ H∞(C+), f2 ∈ H∞({−L < Im z < 1}).
We recall that, generally speaking, f2 /∈ H∞(C− + i); see [10, Subsection 2.3].
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Proof. The pair of lines R, R + i admits separation in C+ −Li since the triple (R,R + i,
C+ − Li) is equivalent to the triple in Example 2. �

Example 4 (“the Poincaré pair”; see the Introduction). Separation in C fails for the
pair (R−,R+), where R− = (−∞, 0], R+ = [0,+∞) (see [10]). However, an arbitrary
function f ∈ H∞(C+) coincides in C+ with the sum f+ + f−, where f± ∈ H∞(C \ R±).

Proof. Put ϕ(w) := f(expw), w ∈ Sπ := {0 < Imw < π}. By Example 3, for every
k > 0 we have a representation

ϕ = ϕ+ + ϕ− in Sπ,

where ϕ+ ∈ H∞(C+), ϕ− ∈ H∞({π − 2kπ < Imw < π}). Therefore,

f(z) = ϕ+(l+(z)) + ϕ−(l−(z)), z ∈ C+,

where l± denotes the branch of the logarithm analytic in C± and such that 0 < Im l± < π
in C+. Clearly, ϕ± ◦ l± ∈ H∞(C \ R±). Moreover, the function ϕ+ ◦ l+ admits analytic
continuation from C \ R+ to the “upper half” of the Riemann surface of the logarithm,
i.e., to the union of the sheets

Lj = {2πj < arg z ≤ 2π(j + 1)}, j = 0, 1, 2, . . . ,

and the function ϕ− ◦ l− admits analytic continuation “downward” to any finite union
of sheets

L′
j = {−π + 2πj ≤ arg z < π + 2πj}, j = 0, 1, . . . , k. �
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