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ON HIGHER SPIN Uq(sl2)-INVARIANT R-MATRICES

A. G. BYTSKO

Dedicated to Professor L. D. Faddeev on the occasion of his 70th birthday

Abstract. The spectral decomposition of regular Uq(sl2)-invariant solutions of the
Yang–Baxter equation is studied. An algorithm for the search of all possible spin
s solutions is developed, also allowing reconstruction of the R-matrix by a given
nearest neighbor spin chain Hamiltonian. The algorithm is based on reduction of
the Yang–Baxter equation to certain subspaces. As an application, a complete list
of nonequivalent regular Uq(sl2)-invariant R-matrices is obtained for generic q and

spins s ≤ 3
2
. Some further results about spectral decompositions for higher spins

are also proved. In particular, it is shown that certain types of regular sl2-invariant
R-matrices have no Uq(sl2)-invariant counterparts.

§1. Preliminaries

The quantum Lie algebra Uq(sl2) is defined as a universal enveloping algebra over C

with identity element e and with generators S±, Sz that obey the following defining
relations [1, 2]:

(1) [S+, S−] = [2Sz]q, [Sz, S±] = ±S±,

where [t]q = (qt − q−t)/(q − q−1). The algebra Uq(sl2) can be equipped with a Hopf
algebra structure [3, 4, 5]. In particular, the comultiplication (a coassociative linear
homomorphism) is defined by

(2) ∆(S±) = S± ⊗ q−Sz

+ qSz ⊗ S±, ∆(Sz) = Sz ⊗ e + e ⊗ Sz.

For generic q, the algebra (1), (2) has the same structure of representations as the
undeformed algebra sl2 [6]. In particular, the irreducible highest weight representations
Vs are parameterized by a nonnegative integer or half-integer s (referred to as the spin)
and are (2s+1)-dimensional. We use the standard notation |k〉, k = −s, . . . , s, for the
basis vectors of Vs such that Sz|k〉 = k|k〉, 〈k′|k〉 = δkk′ .

Let E denote the identity operator on V ⊗2
s . Consider operator-valued functions R(λ) :

C �→ EndV ⊗2
s that have the following properties:

regularity: R(0) = E,(3)

unitary property: R(λ)R(−λ) = E,(4)

spectral decomposition: R(λ) =
2s∑

j=0

rj(λ)P j ,(5)

normalization: r2s(λ) = 1.(6)
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Here P j is the projection onto the spin j subspace Vj in V ⊗2
s , and rj(λ) is a scalar

function. Property (5) is equivalent to the requirement of Uq(sl2)-invariance, i.e.,

(7) [R(λ), ∆(ξ)] = 0, ξ ∈ Uq(sl2).

In order that (3)–(4) be true, the coefficients rj(λ) must satisfy the relations

rj(0) = 1, rj(λ)rj(−λ) = 1.(8)

In what follows it will be assumed that the rj(λ) are analytic in some neighborhood
of λ = 0. The normalization condition (6) is imposed in order to eliminate the inessential
freedom of rescaling R(λ) by an arbitrary analytic function preserving conditions (8).

For a function R(λ) satisfying (3) and (4), we define the Yang–Baxter (YB) operator
Y (λ, µ) : C2 �→ EndV ⊗3

s as follows:

Y (λ, µ) = R12(λ)R23(λ + µ)R12(µ) − R23(µ)R12(λ + µ)R23(λ).(9)

Here and below we use the standard notation—the subscripts specify the components
of the tensor product V ⊗3

s . We say that R(λ) is a (Uq(sl2)-invariant) R-matrix if the
corresponding YB operator vanishes on V ⊗3

s ,

Y (λ, µ) = 0.(10)

An advantage of treating the YB equation (10) as a condition of vanishing for the YB
operator is that, as will be shown below, conditions of vanishing of the YB operator
on some subspaces of V ⊗3

s involve fewer coefficients rj(λ). Moreover, the rj(λ) found by
resolving such a condition for a given subspace can further be used in order to write down
and solve conditions of vanishing of the YB operator on other subspaces. A recursive
procedure of this type will be presented in the next section.

Remark 1. Equations (8) and (10) are preserved under rescaling of the spectral param-
eter,

λ → γλ,(11)

by an arbitrary finite constant γ. R-matrices related by such a transformation with a
finite nonzero γ will be regarded as equivalent.

Remark 2. Conditions (3) and (6) along with the YB equation ensure the unitary prop-
erty of an R-matrix (see Appendix A).

For q = 1, four different types of sl2-invariant R-matrices are known [7, 8, 9, 10, 11]:

R(λ) = (1 − λ)−1(E − λP),(12)

R(λ) = P 2s +
2s−1∑
j=0

( 2s∏
k=j+1

k + λ

k − λ

)
P j ,(13)

R(λ) = (1 − λ)−1
(
E − λP +

βλ

λ − α
P 0

)
,(14)

α = s + 1
2 + (−1)2s+1, β = (2s + 1)(−1)2s+1,

R(λ) = E + (b2 + 1)
1 − eλ

eλ − b2
P 0, b + b−1 = 2s + 1,(15)

where

P =
2s∑

j=0

(−1)2s−jP j(16)
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is the permutation operator in Vs⊗Vs. Observe that for all but the last type of solutions
we have

R(±∞) = P.(17)

For s = 1
2 , the R-matrices (13) and (14) degenerate into (12), and the fourth solution

(15) is absent. For s = 1, the R-matrices (13) and (14) are equivalent. For q = 1 and
s = 3, there is an additional solution, which is not of the form (12)–(15). It is given (see
[12]) by the formula

(18) R(λ) = P 6 +
1 + λ

1 − λ
P 5 + P 4 +

4 + λ

4 − λ
P 3 + P 2 +

1 + λ

1 − λ
P 1 +

1 + λ

1 − λ

6 + λ

6 − λ
P 0.

Numerical, computer-based checks [12] suggest that equations (12)–(15) and (18) exhaust
the list of sl2-invariant R-matrices, but no classification theorem has yet been proved.

For q �= 1, counterparts of (13) and (15) are given by

R(λ) = P 2s +
2s−1∑
j=0

( 2s∏
k=j+1

[k + λ]q
[k − λ]q

)
P j ,(19)

R(λ) = E + (b2 + 1)
1 − eλ

eλ − b2
P 0, b + b−1 = [2s + 1]q(20)

(see [13, 11]).
Our aim in the present paper is to study Uq(sl2)-invariant solutions of the Yang–Baxter

equation for a generic q (i.e., q is not a root of unity and q �= 0,∞) and to develop a
systematic method of finding all possible sets of rj(λ) for a given spin s. In particular,
we shall prove that (12), (14), and (18) have no regular Uq(sl2)-invariant counterparts.
Our approach is based on the fact that the Uq(sl2)-invariance of an R-matrix implies
that the corresponding YB operator commutes with the action of Uq(sl2) on V ⊗3

s . This
action is defined as follows:

Sz
123 = (∆ ⊗ id)∆Sz = Sz

1 + Sz
2 + Sz

3 ,(21)

S±
123 = (∆ ⊗ id)∆S± = S±

12q
−Sz

3 + qSz
12S±

3 = qSz
1S±

23 + S±
1 q−Sz

23 .(22)

The assertion

(23) [Y (λ, µ), Sz
123] = [Y (λ, µ), S±

123] = 0

follows from the fact that the P j are functions of ∆C, where C is the Casimir element
of Uq(sl2). From (21)–(22) it is clear that the P j

l , l = {12}, {23} commute with Sz
123

and S±
123.

§2. Reduced Yang–Baxter equations

2.1. Hecke–Temperley–Lieb algebra in YB. Interrelations between Hecke algebras,
braid groups, and constant (independent of the spectral parameter λ) solutions of the
YB equation are well known. In the case of nontrivial spectral parameter dependence, a
construction of an R-matrix employing the Temperley–Lieb algebra [14] generators was
introduced by Baxter in [11]. For the purposes of the present paper, we shall need the
following slightly more general version of this construction.

Lemma 1. Consider an associative algebra over C with unit element E and generators
Ul labeled by l = {12}, {23} and obeying the following Hecke-type relations (where η0 and
η1 are scalar constants, Re η0 ≥ 0):

U2
l = η0Ul + η1E,(24)

U12U23U12 − U23U12U23 = U12 − U23.(25)
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Let g(λ) be a function analytic in a neighborhood of λ = 0 and satisfying the condition
g(0) = 0. Then Rl(λ) = E + g(λ)Ul satisfies the YB equation (10) if and only if

(26) g(λ) =

{
2γλ

1−γλ if η0 = 2;
b 1−eγλ

eγλ−b2
, b + b−1 = η0 if η0 �= 2.

Here γ is an arbitrary finite constant.

Remark 3. The R-matrices (12) and (15) provide two examples where the Ul are elements
of EndV ⊗3

s given by

U12 = U ⊗ e, U23 = e ⊗ U,(27)

where U = E + P, η0 = 2 and U = P 0, η0 = 2s+1, respectively, and e is the unit
element on Vs. However, we emphasize that, in general, the hypotheses of Lemma 1 do
not require that the Ul be of the form (27) with U ∈ EndV ⊗2. In fact, below we shall
apply Lemma 1 in the cases where the underlying linear space is not of the form V ⊗3.

Proof. For completeness of exposition, we give the proof of the lemma. Substituting Rl(λ)
in (10) and employing (24), (25), we reduce the YB equation to the form (· · · )(U12 −
U23) = 0, where (· · · ) is a scalar factor. Therefore, the YB equation is satisfied if and
only if this factor vanishes, which is equivalent to the requirement that g(λ) satisfy the
functional relation

g(λ − µ)g(λ)g(µ) + η0g(λ − µ)g(µ) + g(λ − µ) − g(λ) + g(µ) = 0.(28)

Differentiating (28) with respect to µ, setting µ = λ, and taking the condition g(0) = 0
into account, we derive the differential equation

g′(λ) = g′(0)
(
(g(λ))2 + η0g(λ) + 1

)
.(29)

Its solution is given by (26), and it is easily verified that this solution does satisfy (28). �
Remark 4. The analysis of (28) changes if we drop the condition g(0) = 0. In this case,
by setting µ = λ, equation (28) is reduced to an algebraic equation, namely,

(g(λ))2 + η0g(λ) + 1 = 0,(30)

which implies that g(λ) is a constant function. The possible values of the constant, i.e.,
the roots of (30), are given by formula (26) in the limit as γλ → ±∞.

Now, we apply Lemma 1 in order to obtain some information about the spectral
resolution of a regular Uq(sl2)-invariant R-matrix.

Proposition 1. Suppose a Uq(sl2)-invariant solution R(λ) of the YB equation (10) on
V ⊗3

s satisfies (6) and (8). Then the second highest coefficient in its spectral resolution
is given by

(31) r2s−1(λ) =

{
1+γλ
1−γλ if q = 1;
[2s+γλ]q
[2s−γλ]q

if q �= 1,

where γ is an arbitrary finite constant.

Proof. Let W̃1 denote the subspace of V ⊗3
s that is the linear span of the vectors

(32) |1〉123 = |s − 1〉1|s〉2|s〉3, |2〉123 = |s〉1|s − 1〉2|s〉3, |3〉123 = |s〉1|s〉2|s − 1〉3.
From (23) and the Clebsch–Gordan (CG) decomposition of V ⊗2

s ,

|2s, 2s − 1〉 = αs|s〉|s − 1〉 + βs|s − 1〉|s〉,(33)

|2s − 1, 2s − 1〉 = βs|s〉|s − 1〉 − αs|s − 1〉|s〉,(34)

αs = qs(q2s + q−2s)−
1
2 , βs = q−s(q2s + q−2s)−

1
2(35)
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(see [15, 16] for an explicit form of the CG coefficients), we infer that W̃1 is an invariant
subspace of the YB operator for the R-matrix under consideration. Notice that the
restrictions of P j

l , l = {12}, {23}, to W̃1 vanish if j < 2s − 1. Thus,

(36) Rl(λ)
∣∣
W̃1

= P 2s
l + r2s−1(λ)P 2s−1

l .

Furthermore, taking (33) and (34) into account and introducing g̃(λ) = r2s−1(λ)− 1, we
observe that (36) can be rewritten in the form

(37) Rl(λ)
∣∣
W̃1

= E + g̃(λ)πl,

where the πl are projections, π2
l = πl, given in the basis (32) by

π12 = α2
s|1〉 〈1| − αsβs|1〉 〈2| − αsβs|2〉 〈1| + β2

s |2〉 〈2|,(38)

π23 = α2
s|2〉 〈2| − αsβs|2〉 〈3| − αsβs|3〉 〈2| + β2

s |3〉 〈3|.(39)

Now, observing that

(40) π12π23π12 = (αsβs)2π12, π23π12π23 = (αsβs)2π23,

we see that the conditions of Lemma 1 are fulfilled for (37) upon identification Ul =
(αsβs)−1πl, g(λ) = αsβsg̃(λ), and η0 = (αsβs)−1. Substituting this value of η0 in (26)
and recalling that g̃(λ) = r2s−1(λ)− 1, we obtain (31), where we have replaced eγλ with
q2γλ for the sake of convenience of comparison with the q = 1 limit. Since we require
that R(λ) be regular, the constant γ must be finite. �

2.2. Invariant subspaces. The proof of Proposition 1 demonstrates that the reduction
of the YB operator to some invariant subspace facilitates finding the coefficients rj(λ) of
the R-matrix. In what follows we shall develop this approach further, exploiting available
knowledge about the CG decomposition of tensor products of representations of Uq(sl2).
Along the way, we shall derive systems of coupled functional equations similar to (28)
and show that the corresponding necessary conditions are provided by a set of coupled
algebraic equations.

In Proposition 1 we used the fact that the YB operator (9) commutes with Sz
123. Now

we are going to use the fact that Y (λ, µ) commutes with S±
123 as well.

Let 
t� denote the integral part of t.
For n = 0, 1, . . . , 
3s�, we define a subspace W

(s)
n ⊂ V ⊗3

s as the linear span of the
highest weight vectors of spin 3s − n, i.e.,

W (s)
n = {ψ ∈ V ⊗3

s | S+
123ψ = 0, Sz

123ψ = (3s − n)ψ}.(41)

Consider the following two orthonormal bases in W
(s)
n (here and below,

[
· · ·· · ·

]
q

and{
· · ·· · ·

}
q

stand, respectively, for the CG coefficients and 6j-symbols of Uq(sl2)):

|n; k〉123 =
∑
m

|m〉1|2s − k, 3s − n − m〉23

[
s 2s − k 3s − n
m 3s − n − m 3s − n

]
q
,(42)

|n; k〉′123 =
∑
m

|2s − k, 3s − n − m〉12|m〉3
[

2s − k s 3s − n
3s − n − m m 3s − n

]
q
.(43)

The basis vectors of W
(s)
n are enumerated by k ∈ I

(s)
n , where

(44) I(s)
n =

{
0 ≤ k ≤ n for 0 ≤ n ≤ 2s;
n − 2s ≤ k ≤ 4s − n for 2s ≤ n ≤ 
3s�.

Summation in (42)–(43) runs over those m for which the CG coefficients on the right-hand
side of (42), (43) do not vanish, i.e., s − n + k ≤ m ≤ min

(
s, 5s − n − k

)
.
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Let A(s,n) be the transition matrix from the basis (42) to the basis (43), i.e., the
orthogonal matrix whose entries are the scalar products

A
(s,n)
kk′ = 〈n; k | n; k′〉′.(45)

The transition matrix is q-dependent, but for short we shall not write the argument q
explicitly unless this is required by the context.

Proposition 2.
i) The entries of A(s,n) are expressed in terms of 6j-symbols of Uq(sl2) as follows:

A
(s,n)
kk′ = (−1)2s−n

√
[4s − 2k + 1]q[4s − 2k′ + 1]q

{
s s 2s − k
s 3s − n 2s − k′

}
q
.(46)

ii) A(s,n) is self-dual in q,

A(s,n)
q = A

(s,n)
q−1 .(47)

iii) A(s,n) is orthogonal, symmetric, and coincides with its inverse (t denotes the matrix
transposition):

A(s,n) =
(
A(s,n)

)t =
(
A(s,n)

)−1
.(48)

As a consequence, the only eigenvalues of A(s,n) are ±1.
iv) The transition matrices enjoy the following “spin-level duality” relations:

A(s,1)
q = A

( 1
2 ,1)

q2s ,(49)

A(s,n)
q = A

(2s−n
2 ,6s−2n)

q ,(50)

where n ≤ 2s.

Explicit formulas for the entries of the matrix A(s,n) and the proof of its properties
listed above are given in Appendices B and C.

Remark 5. From iii) and iv) it follows that 1
2

(
E ± A(s,n)

)
are projections of ranks n±.

In particular, for n ≤ 2s we have n+ = 
n
2 + 1�, n− = 
n+1

2 �.

The properties of the transition matrix given in Proposition 2 make it an efficient
tool for dealing with restrictions of Uq(sl2)-invariant operators to subspaces W

(s)
n . As a

simple example, we prove the following well-known statement.

Lemma 2. The following identity is fulfilled on V ⊗3
s :

P 0
23P

j
12P

0
23 =

[2j + 1]q
[2s + 1]2q

P 0
23.(51)

Proof. Observe that P 0
12

∣∣
W

(s)
n

and P 0
23

∣∣
W

(s)
n

vanish for all n except n = 2s. Thus, it

suffices to prove (51) when it is restricted to W
(s)
2s . Denote pj = P j

23

∣∣
W

(s)
2s

. In the basis

(42), we have pj
ab = δa,2s−jδb,2s−j . Therefore, in this basis, the left-hand side of (51)

takes the form

p0A(s,2s)pjA(s,2s)p0 =
(
A

(s,2s)
2s−j,2s

)2

p0.(52)

The value of A
(s,2s)
2s−j,2s is easily computable (see formula (97) in Appendix B), and its

square yields the scalar coefficient on the right-hand side of (51).
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2.3. Reduced Yang–Baxter equations. Equations (23) imply that W
(s)
n is an in-

variant subspace for the YB operator (9). We introduce the reduced YB operator:
Yn(λ, µ) = Y (λ, µ)|

W
(s)
n

(the restriction of Y (λ, µ) to W
(s)
n ). Notice that the restric-

tions of P j
l to W

(s)
n are diagonal in the bases (43) and (42) for l = {12} and l = {23},

respectively. Moreover, they vanish unless

(53) |2s − n| ≤ j ≤ min(2s, 4s − n).

Therefore, in the basis (43), Rl(λ)|
W

(s)
n

are represented as

R12(λ)
∣∣
W

(s)
n

= A(s,n)D(λ)
(
A(s,n)

)−1
, R23(λ)

∣∣
W

(s)
n

= D(λ),(54)

Dkk′(λ) = δkk′r2s−k(λ),(55)

where k ∈ I
(s)
n , as specified in (44). Therefore, taking (48) into account, we conclude

that Yn(λ, µ) takes the following form in the basis (43):

Yn(λ, µ) = A(s,n)D(λ − µ)A(s,n)D(λ)A(s,n)D(µ)

− D(µ)A(s,n)D(λ)A(s,n)D(λ − µ)A(s,n).
(56)

The corresponding reduced YB equation reads

(57) A(s,n)D(λ − µ)A(s,n)D(λ)A(s,n)D(µ) = D(µ)A(s,n)D(λ)A(s,n)D(λ − µ)A(s,n).

This is the vanishing condition for the YB operator (9) on W
(s)
n . Observe that (48) implies

that the reduced YB operator is antisymmetric,
(
Yn(λ, µ)

)t = −Yn(λ, µ). Therefore, (57)
contains the following independent relations:∑

i,j∈I
(s)
n

r2s−i(λ − µ)r2s−j(λ)A(s,n)
ij

×
(
r2s−a(µ)A(s,n)

aj A
(s,n)
ib − r2s−b(µ)A(s,n)

ai A
(s,n)
jb

)
= 0, a < b, a, b ∈ I(s)

n .

(58)

We emphasize that, since the YB operator commutes with S−
123, equations (58) at the

level n ensure the vanishing of the YB operator not only on the subspace W
(s)
n but also

on the larger subspace that is spanned by all vectors obtained by the action of (S−
123)m,

m = 0, . . . , 6s−2n on W
(s)
n . (This picture resembles closely the structure of eigenvectors

in the algebraic Bethe Ansatz ; see the survey [18].) Thus, the set of reduced YB equations
(58), n = 1, . . . , 
3s�, is less overdetermined than the initial YB equation (10) containing
dimV ⊗3

s = (2s + 1)3 functional equations (although, in general, some of them are not
independent). However, even this set of equations remains overdetermined. Indeed, (58)
at the level n ≤ 2s involves rj(λ) with j = 2s − n, . . . , 2s. Therefore, it suffices to
solve (58) for n = 1, . . . , 2s to determine all coefficients rj(λ) of the R-matrix. But these
coefficients must also satisfy the remaining reduced YB equations for n = 2s+1, . . . , 
3s�.

Remark 6. For s = 1
2 we have 2s = 
3s� = 1, and therefore the corresponding set of

reduced YB equations is not overdetermined. Indeed, in this case (58) contains only
one independent equation. A slightly less trivial remark is that the set of reduced YB
equations is not overdetermined for s = 1 as well (see the proof of Proposition 5).

Now, as an immediate application of the reduced YB equation technique, we prove
the following statement.

Proposition 3. Let R(λ) be a Uq(sl2)-invariant solution of the YB equation (10) on V ⊗3
s

for a spin s ≥ n
2 , n ∈ Z+, satisfying (6) and (8). Suppose that the n highest coefficients
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in its spectral resolution coincide, r2s(λ) = r2s−1(λ) = · · · = r2s−n+1(λ) = 1. Then

(59) r2s−n(λ) = 1 + η0g(λ),

where g(λ) is given by (26) with

(60) η0 =
[2s − n]!

[2s]!
[4s − n + 1]!
[4s − 2n + 1]!

.

Here the q-factorial is defined as follows: [n]! =
∏n

k=1[k]q for n ∈ Z+ and [0]! = 1.

Proof. The corresponding reduced YB equation (with n in (57) being the same as in (59))
multiplied from the left by A(s,n) can be regarded as the YB equation (10) for R12(λ) =
D(λ) and R23(λ) = A(s,n)D(λ)A(s,n). Furthermore, we notice that

D(λ) = E + g̃(λ)π, A(s,n)D(λ)A(s,n) = E + g̃(λ)π′,(61)

where g̃(λ) = r2s−n(λ) − 1, π is a matrix such that πab = δanδbn, a, b = 0, . . . , n,
and π′ = A(s,n)πA(s,n). Obviously, π and π′ are projections of rank one. Moreover, a
computation similar to (52) shows that

(62) ππ′π = η−2
0 π, π′ππ′ = η−2

0 π′, η0 =
∣∣A(s,n)

nn

∣∣−1
.

Hence, (59) follows by invoking Lemma 1 upon the identification U12 = η0π, U23 = η0π
′,

and g̃(λ) = η0g(λ). The explicit form of η0 given in (60) is easily obtained from (97). �

This proposition generalizes both Lemma 1 and Proposition 1. For n = 1, formula (60)
yields η0 = q2s + q−2s, and we recover the case of Proposition 1. For n = 2s, (60)
yields η0 = [2s + 1]q; the corresponding R-matrix is given by (20), which is a particular
example covered by Lemma 1 (cf. Remark 3). It is not clear whether an example of an
R-matrix with coefficients rj(λ) as described in Proposition 3 exists for n �= 1 and n �= 2s.
Nevertheless, this proposition is useful for the analysis of solutions of the YB equation
(see the next section). Another statement useful for this analysis reads as follows.

Proposition 4. Let R(λ) be a Uq(sl2)-invariant solution of the YB equation (10) on
V ⊗3

s for a half-integral spin s ≥ 3
2 satisfying (6) and (8). Then the coefficients rs− 1

2
(λ)

and rs+ 1
2
(λ) in its spectral decomposition are related as follows:

(63)
rs− 1

2
(λ)

rs+ 1
2
(λ)

=

⎧⎨
⎩

1+γλ
1−γλ if q = 1;
[s+ 1

2+γλ]q
[s+ 1

2−γλ]q
if q �= 1,

where γ is an arbitrary finite constant.

Proof. The matrix D(λ) in the reduced YB equation can be multiplied by an arbitrary
function ϕ(λ) analytic in a neighborhood of λ = 0 and satisfying ϕ(λ)ϕ(−λ) = 1. There-

fore, in (57) for n = 3s − 1
2 , we can choose D(λ) = diag(1, g(λ)), where g(λ) =

r
s− 1

2
(λ)

r
s+1

2
(λ) .

Next, by the duality relation (50), we have A(s,3s− 1
2 ) = A( s

2+ 1
4 ,1) for half-integral spins

s ≥ 3
2 . Applying Proposition 1, we conclude that g(λ) = r2s′−1(λ), where s′ = s

2 + 1
4 . �

2.4. Necessary conditions. Differentiating (58) with respect to µ, setting µ = λ, and
taking the regularity condition D(0) = E into account, we derive the following system of
equations (the prime denotes the derivative with respect to the spectral parameter):∑

i,j∈I
(s)
n

r′2s−i(0)r2s−j(λ)A(s,n)
ij

(
r2s−a(λ)A(s,n)

aj A
(s,n)
ib − r2s−b(λ)A(s,n)

ai A
(s,n)
jb

)

= A
(s,n)
ab

(
r′2s−a(λ)r2s−b(λ) − r′2s−b(λ)r2s−a(λ)

)
, a < b, a, b ∈ I(s)

n .

(64)
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Here we have carried out summation on the right-hand side and used the relation(
A(s,n)A(s,n)

)
ab

= δab. It is important to note that, although equations (64) contain
derivatives, they are actually linear algebraic equations for rj(λ) with j �= a, b.

It is easy to check that system (64) is satisfied trivially for λ = 0. Therefore, we look
at the higher-order terms in the expansion of (64) about λ = 0. Denote r′2s−a(0) ≡ ξa.
In the first order in λ, summation over i, j can be carried out, leading to the conditions

A
(s,n)
ab

(
r′′2s−a(0) − r′′2s−b(0)

)
= A

(s,n)
ab

(
ξ2
a − ξ2

b

)
,(65)

which are always satisfied, because the unitary property (4) implies that

r′′2s−a(0) = ξ2
a.(66)

In the second order in λ, equations (64) turn into a system of algebraic equations∑
i,j∈I

(s)
n

ξiξ
2
j A

(s,n)
ij

(
A

(s,n)
aj A

(s,n)
ib − A

(s,n)
ai A

(s,n)
jb

)

+
(
ξa − ξb

) ∑
i,j∈I

(s)
n

ξiξjA
(s,n)
ij

(
A

(s,n)
aj A

(s,n)
ib + A

(s,n)
ai A

(s,n)
jb

)

= A
(s,n)
ab

(
r′′′2s−a(0) − r′′′2s−b(0) − ξ3

a + ξ3
b + ξ2

aξb − ξ2
b ξa

)
, a < b, a, b ∈ I(s)

n .

(67)

Remarkably, equations (64) and (67) can be solved explicitly by recursion. We provide
the corresponding algorithm. We start with the level n = 1, where we have r2s(λ) = 1
and r2s−1(λ) is given by (31). Now, suppose we have found the rj(λ), j = 2s−n, . . . , 2s,
that solve (64) for a level n < 2s. Then (64) and (67) at the level n+1 allow us to express
r2s−n−1(λ) algebraically in terms of the rj(λ) found previously. Indeed, since we already
know ξj for j = 0, . . . , n, equations (67) for 2s − n ≤ a < b ≤ n turn into quadratic
equations with respect to ξn+1. Solving them and substituting the resulting values of
ξn+1 in (64) for 2s−n ≤ a < b ≤ n, we obtain a system of linear equations for r2s−n−1(λ).
Finding all possible solutions of this system completes the (n + 1)st step of recursion.
Continuing this procedure up to n = 2s, we shall obtain all possible solutions for all rj(λ)
and thus construct all possible Ansätze for the regular Uq(sl2)-invariant R-matrices of
spin s. Next, since formula (64) provides necessary but not sufficient conditions, we need
to check which of these Ansätze indeed satisfy the YB equation (10) or, alternatively,
the reduced YB equations (58) for all n up to 
3s�.

2.5. Spin chain Hamiltonians and reconstruction of R-matrices. The utmost
importance of the YB equation in the quantum inverse scattering method (see the sur-
veys [17, 18]) is due to the fact that its solutions can be used to construct families of
quantum integrals of motion in involution. In particular, regular solutions of the YB
equation make it possible to construct local integrals of motion for lattice models. For
the R-matrix of type (5), the first of these integrals,

(68) H =
∑

k

Hk,k+1, H = ∂λR(λ)
∣∣
λ=0

=
2s−1∑
j=0

ξ2s−jP
j ,

is usually regarded as a Hamiltonian of a spin s magnetic chain with the nearest neighbor
interaction. Here H ∈ EndV ⊗2

s and H ∈ End V ⊗L
s , where L is the number of lattice sites.

Notice that in (68) we took the normalization condition (6) into account, which implies
ξ0 = 0 (this fixes the choice of the additive constant in the Hamiltonian). R-matrices
equivalent in the sense of transformation (11) yield Hamiltonians related simply by rescal-
ing H → γH; we regard such Hamiltonians as equivalent.
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It is important to remark that, as was observed in [12], for regular solutions of the YB
equation different Hamiltonians correspond to nonequivalent R-matrices. In the present
context this statement can be formulated as follows.

Lemma 3. Let R(1)(λ) and R(2)(λ) be two solutions of the YB equation (10) on V ⊗3
s

satisfying (5), (6), and (8). The corresponding Hamiltonians given by (68) coincide,
H(1) = H(2), if and only if R(1)(λ) = R(2)(λ).

Proof. The “if” part is obvious. Next, Theorem 3 in [12] asserts that if the Hamiltonians
corresponding to two regular R-matrices analytic in a neighborhood of λ = 0 coincide,
then R(1)(λ) = ϕ(λ)R(2)(λ), where the scalar function ϕ(λ) is analytic in a neighborhood
of λ = 0 and satisfies ϕ(0) = 1. In the case under consideration, the analyticity of rj(λ)
along with condition (6) implies that ϕ(λ) = 1. �

Remark 7. The algorithm described at the end of the preceding subsection complements
this lemma with a constructive procedure that allows us to recover the R-matrix by a
given Hamiltonian. Indeed, if we know a Hamiltonian in the form (68), i.e., we know
all ξj , then we can solve (64) recursively starting with r2s(λ) = 1, thus recovering all the
coefficients rj(λ) of the corresponding regular Uq(sl2)-invariant R-matrix. In contrast to
the general situation, Lemma 3 guarantees that the resulting set of rj(λ) will be unique.

§3. Analysis of reduced Yang–Baxter equations

3.1. Asymptotic solutions. We remark that the technique described above applies in
the limit as λ → ∞ as well. In this limit, assuming that Ř±1 = limλ→±∞ R(λ) exists,
the YB equation (10) turns into

Ř12Ř23Ř12 = Ř23Ř12Ř23.(69)

Denote dj = limλ→+∞ rj(λ), so that Ř =
∑2s

j=0 djP
j . Condition (6) implies that d2s = 1.

Taking the limit as λ → ∞ in (57), we obtain a set of algebraic equations for the
coefficients dj ,

(70) A(s,n)DA(s,n)DA(s,n)D = DA(s,n)DA(s,n)DA(s,n).

Here n = 1, . . . , 
3s�, and Dkk′ = δkk′d2s−k, where k ∈ I
(s)
n . As in the spectral dependent

case, the independent equations contained in (70) are

(da − db)
∑

i,j∈I
(s)
n

didjA
(s,n)
ij A

(s,n)
ai A

(s,n)
jb = 0, a < b, a, b ∈ I(s)

n .(71)

This system of equations can be solved in a recursive way with the help of the algorithm
described at the end of Subsection 2.4. In this context, it is worth noticing that one
particular solution is known a priori, namely

(72) dj = (−1)2s−jq2s(2s+1)−j(j+1),

which corresponds to (19) in the limit as qλ → ∞.

3.2. Reduced YB for n = 1 and n = 2. The explicit form of the transition matrix
for n = 1 is

(73) A(s,1) =
1

{2s}q

(
1

√
1 + {4s}q√

1 + {4s}q −1

)
,

where we denote {t}q = qt+q−t. In this case (64) contains only one equation. Taking the
fact that r2s(λ) = 1 into account and making the substitution r2s−1(λ) = 1 + {2s}qg(λ),
it is easy to show that this equation coincides with (29). Hence, we recover the same
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expression for r2s−1(λ) as in Proposition 1. Accordingly, equation (71) is either satisfied
trivially if d2s−1 = 1, or it represents a quadratic equation with roots d2s−1 = −q±4s.

The explicit form of the transition matrix for n = 2 is

(74) A(s,2) =

⎛
⎜⎜⎜⎜⎝

[2s−1]q
{2s}q [4s−1]q

ρs

√
[2]q[6s−1]q

{2s}q [4s−1]q
ρs

√
[6s−1]q[6s−2]q

[4s−1]q

ρs

√
[2]q[6s−1]q

{2s}q [4s−1]q
{4s − 1}q(ρs)2 −ρs

√
[2]q[6s−2]q

{2s−1}q [4s−1]q

ρs

√
[6s−1]q[6s−2]q

[4s−1]q
−ρs

√
[2]q [6s−2]q

{2s−1}q[4s−1]q

[2s]q
{2s−1}q [4s−1]q

⎞
⎟⎟⎟⎟⎠ ,

where ρs =
(
{2s − 1}q{2s}q

)− 1
2 . For computations, it is useful to observe the following

identities:

A
(s,2)
01 A

(s,2)
12 = A

(s,2)
02

(
A

(s,2)
11 − 1

)
, A

(s,2)
11 = 1 − [2]q(ρs)2.(75)

The analysis of (58) splits into two cases: r2s−1(λ) = 1 and r2s−1(λ) �= 1. The former
case is covered by Proposition 3, which yields

r2s−2(λ) =
b2eλ − 1
b2 − eλ

, b + b−1 =
[4s − 1]q{2s − 1}q

[2s]q
.(76)

In the latter case, without loss of generality we can choose γ = 1 in (31), which corre-
sponds to

(77) r2s−1(λ) =
[2s + λ]q
[2s − λ]q

, d2s−1 = −q4s, ξ1 = κq
{2s}q

[2s]q
, κq ≡ 2 log q

q − q−1
.

In this case, it is easily seen that the three equations contained in (71) for n = 2 have
only one common root, namely

d2s−2 = q8s−2.(78)

Substituting ξ0 = 0 and ξ1 given by (77) in (67), we obtain a quadratic equation for ξ2

with the roots

ξ2 =
2κq[4s − 1]q
[2s − 1]q[2s]q

, ξ2 = κq(q − q−1)2
[4s − 1]q
{4s − 1}q

.(79)

The corresponding solutions of (64) are given by

r2s−2(λ) =
[2s + λ]q
[2s − λ]q

[2s − 1 + λ]q
[2s − 1 − λ]q

, r2s−2(λ) =
{4s − 1 + λ}q

{4s − 1 − λ}q
.(80)

It is straightforward to verify that both these solutions satisfy the n = 2 level reduced
YB equation (58).

Proposition 5. For a generic q and spin s = 1, the nonequivalent regular Uq(sl2)-in-
variant solutions of the YB equation (10) satisfying condition (6) are exhausted by the
following three types:

R(λ) = P 2 + P 1 +
b2eλ − 1
b2 − eλ

P 0, b + b−1 = [3]q,(81)

R(λ) = P 2 +
[2 + λ]q
[2 − λ]q

P 1 +
[2 + λ]q
[2 − λ]q

[1 + λ]q
[1 − λ]q

P 0,(82)

R(λ) = P 2 +
[2 + λ]q
[2 − λ]q

P 1 +
{3 + λ}q

{3 − λ}q
P 0.(83)
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Proof. For n ≤ 2s we have dim W
(s)
n = (n + 1). As has already been mentioned, the

reduced YB equation (57) ensures that the YB operator vanishes at all vectors of the
form (S−

123)mW
(s)
n , i.e., on a subspace of dimension ∆(s)

n = (6s − 2n + 1) dimW
(s)
n . In

particular, we have ∆(1)
0 + ∆(1)

1 + ∆(1)
2 = 26, which means that the level n = 3 reduced

YB equation is satisfied automatically, because the corresponding subspace W
(1)
3 is one-

dimensional. Therefore, for s = 1, the n = 1, 2 reduced YB equations provide not only
necessary but also sufficient conditions. As we have shown above in this subsection,
the solutions of these equations are exhausted by (76) and (80), which for s = 1 yield
(81)–(83). �

Thus, for spin s = 1, all three inequivalent sl2-invariant R-matrices (15), (13), and
(12) have Uq(sl2)-invariant counterparts. Two of them belong to the well-known types
(19) and (20). The last one, (83), appears to be rather an exceptional case; it was found
previously [19, 20] by means of Baxterization of the Birman–Wenzl–Murakami algebra.

3.3. Reduced YB for n = 3. For n = 3 the transition matrix has 12 entries given by
(97)–(98), and the remaining four entries are

A
(s,3)
11 =

[2]q[2s − 1]q[6s − 2]q − ([2s − 2]q)2

{2s − 1}q[4s − 3]q[4s]q
,(84)

A
(s,3)
12 = A

(s,3)
21

=
[2s − 2]q
[4s − 2]q

(
[6s − 2]q − [2]q[2s − 1]q

)√ [2s − 1]q[6s − 3]q
[4s − 4]q[4s − 3]q[4s − 1]q[4s]q

,
(85)

A
(s,3)
22 =

[2s − 2]q − [2]q[6s − 3]q
{2s − 2}q{2s − 1}q[4s − 1]q

.(86)

Proposition 6. For a generic q and spin s = 3
2 , the nonequivalent regular Uq(sl2)-

invariant solutions of the YB equation (10) satisfying condition (6) are exhausted by the
two types given by (19) and (20).

Proof. We analyze the spectral resolution of possible spin 3
2 solutions to the reduced YB

equations for n = 1, 2, 3. The first possibility is r2(λ) = r1(λ) = 1, in which case r0(λ)
is determined by Proposition 3; the corresponding R-matrix is given by (20). Next, the
case where r2(λ) = 1, r1(λ) �= 1 is covered by the same proposition for n = 2, and r1(λ) is
given by (76). However, this case is ruled out, because (76) for s = 1 is incompatible with
the statement of Proposition 4, which requires b = q2. In the remaining case, r2(λ) �= 1,
without loss of generality we can choose γ = 1 in (31), which yields r2(λ) = [3+λ]q

[3−λ]q
, and,

in accordance with the analysis carried out in the preceding subsection, r1(λ) is given
by one of the expressions in (80). However, the second form in (80) is ruled out again,
being incompatible with Proposition 4. Thus, we are left with

(87) r2(λ) =
[3 + λ]q
[3 − λ]q

[2 + λ]q
[2 − λ]q

, ξ0 = 0, ξ1 = κq
{3}q

[3]q
, ξ2 = 2κq

[5]q
[2]q[3]q

.

Substituting these values in (67) for n = 3 and s = 3
2 , we obtain a system of three

quadratic equations for ξ3. A direct computation using (97)–(98) and (84)–(86) shows
that these equations have only one common root given by

ξ3 = κq
{2}q(5 + 3{2}q)

[2]q[3]q
,(88)

which is the value corresponding to (19) for s = 3
2 . By Lemma 3, an R-matrix determined

by (87) and (88) is unique; therefore, it is the one given by (19). �
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The proposition proved above shows that, unlike the case of spin s = 1, only two
out of four sl2-invariant R-matrices (12)–(15) have Uq(sl2)-counterparts for spin s = 3

2 .
Actually, analyzing the n = 3 reduced YB equations, we can extend this observation to
higher spins as well.

Proposition 7. Let R(λ) be a Uq(sl2)-invariant solution of the YB equation (10) on
V ⊗3

s for a spin s ≥ 2 satisfying (6) and (8). If r2s−1(λ) = [2s+λ]q
[2s−λ]q

, then

r2s−2(λ) =
[2s + λ]q
[2s − λ]q

[2s − 1 + λ]q
[2s − 1 − λ]q

.(89)

As a consequence, for s ≥ 2, there exist no Uq(sl2)-invariant regular R-matrices whose
limit as q → 1 coincides with (12) or (14).

Proof. Let q = 1+h, h � 1, so that [t]q = t+ t(t−1)h2/3+O(h3). Since A
(s,n)
q depends

on q smoothly, we have A
(s,n)
q = A

(s,n)
q=1 +O(h2). Consider the n = 3 reduced YB equations

(67), where ξ0 = 0, ξ1 is as in (77), and ξ2 is given by the second expression in (79).
Using (97)–(98) and (84)–(86), we find the following h-expansions of these equations for
(a, b) = (0, 1), (0, 2), and (1, 3), respectively:

0 = (5s2 − 3s)ξ2
3 + (3 − 6s)ξ3 + 1

(90)

− 2
3h2

(
(25s4 − 32s3 + 9s2)ξ2

3 + (78s3 − 81s2 + 21s)ξ3 − 47s2 + 35s − 3
)

+ O(h3),

0 = h2
(
(7s2 − 3s)ξ2

3 + (3 − 10s)ξ3 + 3
)

+ O(h3),
(91)

0 = (5s2 − 3s)ξ2
3 + (3 − 6s)ξ3 + 1

(92)

+ 4
3h2

(
(19s4−35s3+17s2−3s)ξ2

3 + (138s3−201s2+96s−15)ξ3 − 85s2 + 90s − 20
)

+ O(h3).

We see that, in the zeroth order in h, (91) is satisfied trivially, while (90) and (92) yield
one and the same quadratic equation, which has the following roots:

ξ3 = 1
s , ξ3 = 1

5s−3 .(93)

Thus, for q = 1, equations (90)–(92) are compatible (in particular, the first value in (93)
corresponds to solutions of type (12) and (14)).

In the second order in h, (91) has roots ξ3 = 1
s and ξ3 = 1

7s−3 . But, for (90) and (92),
the h2 corrections to the first value in (93) are

ξ3 = 1
s + h2

(
28
3 s − 6

)
+ O(h3), ξ3 = 1

s + h2
(

46
3 − 4

s − 12s
)

+ O(h3).(94)

Therefore, already in the second order in h, compatibility of (90)–(92) is lost. This
implies that the second expression in (80) for r2s−2(λ) is ruled out, and, as follows
from the analysis in the preceding subsection, the only possible form of r2s−2(λ) is the
first expression in (80). An R-matrix with such a spectral coefficient cannot be a q-
deformation of (12) or (14) for s ≥ 2, because the corresponding value of ξ2 does not
vanish in the limit as q → 1. �

Remark 8. Notice that the coefficient r3(λ) of the exceptional solution (18) corresponds
(after rescaling λ → λ/6) to the second value in (93). As we saw in the proof of Propo-
sition 7, this value is not a root of (91) for h �= 0. Therefore, we conclude that (18) has
no regular Uq(sl2)-invariant counterpart.
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Appendix A

Lemma 4. Let R(λ) be a Uq(sl2)-invariant solution of the YB equation (10) on V ⊗3
s

satisfying conditions (3) and (6). Then R(λ) is unitary, i.e., it satisfies (4) as well.

Proof. By (5), R(λ) commutes with R(µ). We introduce Xλ = R(λ)R(−λ). Then the
YB equation for µ = −λ implies that Xλ

12 = Xλ
23. Applying tr23 and tr3 to this equation

(along the lines of [12], where a less trivial equation X12−X23 = Z123 was considered), we
infer that Xλ = cE, with a scalar constant c. On the other hand, we have Xλ = P 2s+· · ·
by (6). Hence, c = 1 and Xλ = E. �

Appendix B

The comultiplication (2) determines the structure of the Clebsch–Gordan (CG) de-
composition of tensor products of irreducible representations. The corresponding CG co-
efficients and 6j-symbols were derived and studied in [15, 16]. The particular 6j-symbol
that appeared in (46) is given by
(95){

s s 2s − k
s 3s − n 2s − k′

}
q

= F s
kF s

k′

∑
l

(−1)l[l + 1]!
(
[l − 4s + k]![l − 4s + k′]!

× [l − 6s + n + k]![l − 6s + n + k′]!

× [6s − n − l]![6s − k − k′ − l]![8s − n − k − k′ − l]!
)−1

,

where

F s
k = [2s − k]!

( [k]![n − k]![2s − n + k]![4s − n − k]!
[4s − k + 1]![6s − n − k + 1]!

) 1
2
,(96)

and the q-factorial is defined as follows: [n]! =
∏n

k=1[k]q for n ∈ Z+ and [0]! = 1. Sum-
mation in (95) runs over all l for which the arguments of the q-factorials are nonnegative.

For n ≤ 2s and k′ = 0 or k′ = n, the sum on the right-hand side of (95) contains only
one term (l = 6s − n or l = 6s − n − k, respectively), and we obtain

A
(s,n)
k,n =

(−1)k
√

[4s − 2k + 1]q
[2s − n]!

×
( [n]![2s]![2s − n + k]![4s − n − k]![4s − 2n + 1]![6s − n − k + 1]!

[k]![n − k]![4s − k + 1]![4s − n + 1]![6s − 2n + 1]!

) 1
2
,

(97)

A
(s,n)
0,k = [2s]!

√
[4s − 2k + 1]q

×
( [n]![4s − n]![4s − n − k]![6s − n + 1]!

[k]![n − k]![2s − n + k]![2s − n]![4s]![4s − k + 1]![6s − n − k + 1]!

) 1
2
.

(98)

Appendix C

Proof of Proposition 2. i) Applying the CG decomposition to the {23} and {12} com-
ponents in (42) and (43), respectively, and using the orthonormality of the basis of Vs,
〈p|p′〉 = δpp′ , we find straightforwardly that the scalar product in (45) is given by

A
(s,n)
kk′ =

∑
m,m′

[
s 2s − k 3s − n
m 3s − n − m 3s − n

]
q

[
2s − k′ s 3s − n

3s − n − m′ m 3s − n

]
q

×
[

s s 2s−k
3s−n−m−m′ m′ 3s−n−m

]
q

[
s s 2s−k′

m 3s−n−m−m′ 3s−n−m′

]
q
.

(99)
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In order to carry out the summation over m, we invoke the following identity (see [15, 16]):∑
m

[
a b e
m m′ − m m′

]
q

[
b d f

m′ − m m′′ m′′ + m′ − m

]
q

[
a f c
m m′′ + m′ − m m′′ + m′

]
q

= (−1)a+b+c+d
√

[2e + 1]q[2f + 1]q
[

e d c
m′ m′′ m′′ + m′

]
q

{
a b e
d c f

}
q
.

(100)

After this, summation over m′ reduces to∑
m′

[
2s − k′ s 3s − n

3s − n − m′ m′ 3s − n

]2

q
= 〈n; k′|n; k′〉 = 1.(101)

The remaining factors in (100) yield the right-hand side of (46).
ii) The self-duality of the transition matrix with respect to the replacement q �→

q−1 follows from the fact that 6j-symbols are invariant with respect to this operation
(because, unlike the CG coefficients, they are expressed entirely in terms of q-numbers [15,
16]).

iii) The obvious invariance of (95) with respect to the replacement k ↔ k′ implies
that the transition matrix is symmetric. Since A

(s,n)
q is orthogonal by construction, we

conclude that A
(s,n)
q coincides with its inverse.

iv) Formula (49) is obvious from (73). In terms of matrix entries, the duality relation
(50) looks like this:

A
(s,n)
k,k′ = A

(s̃,ñ)

k̃,k̃′ ,(102)

s̃ = 2s − n
2 , ñ = 6s − 2n, k̃ = k − n + 2s, k̃′ = k′ − n + 2s,(103)

where 0 ≤ k, k′ ≤ n. The shifts in k̃, k̃′ are necessary in order to ensure (44) (notice that
2s−n = ñ− 2s̃ ≥ 0). Equation (102) is checked straightforwardly by making the change
of variables (103) in (46) and using the explicit expressions (95)–(96). This completes
the proof. �
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