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ANTIMONOTONE QUADRATIC FORMS
AND PARTIALLY ORDERED SETS

L. A. NAZAROVA, A. V. ROĬTER, AND M. N. SMIRNOVA

Abstract. Representations of partially ordered sets (posets) and quivers are an
important part of the theory of matrix problems and algebra representations. Along
with chains (linearly ordered sets), a special role is played by certain special posets;
in this paper it is shown that they are in one-to-one correspondence with the rational
numbers that are greater than or equal to 1.

A wattle 〈n1, . . . , nt〉 is a union of nonintersecting chains Zi (|Zi| = ni) such
that the minimal element of Zi is smaller than the maximal element of Zi+1 (i =
1, . . . , t − 1) (and these are the only possible comparisons). The known lists of
critical (i.e., minimal) infinitely representable and wild posets consist of cardinal
chains, with the exception of one poset in the first list (namely, 〈2, 2〉+ Z4) and one
in the second (namely, 〈2, 2〉 + Z5). At the same time, the authors have assigned a
rational number P (S) to each poset S in such a way that P (S) < 4 if and only if S
is finitely representable and P (S) = 4 if and only if S is tame. A poset S is said to
be P -faithful if P (S′) < P (S) whenever S′ ⊂ S.

From the work of Zel′dich, Sapelkin, and the authors it follows that the P -faithful
posets are cardinal sums of r-sets, i.e., they are wattles of a special type (chains can
be regarded as a partial case of r-sets).

In the present paper, the notion of an antimonotone poset is introduced, and a
criterion for a poset to be antimonotone is presented under the assumption that the
quadratic form

P

si≤sj
xixj (S = {s1, . . . , sn}) is positive semidefinite. At the same

time, we manage to substantially simplify the proof of the criterion for a poset to be
P -faithful, avoiding an item-by-item examination of several dozens of various cases.
Also, simple explicit formulas for calculation of P (S) are obtained, which lead in an
elementary way to the lists of critical posets (originally, they arose as a result of a
cumbersome and complex argument).

Let P be a bounded set in the n-dimensional space Rn, and let f(x1, . . . , xn) = f(x)
(x ∈ Rn) be a continuous function. By the well-known second Weierstrass theorem,
inf{f(P )} (= infP f(x)) is attained. We say that a function f is P -faithful if inf{f(P )}
is not attained on P \ P and inf{f(P )} > 0 (i.e., f is positive on P ). Observe that if
n = 1 and P = (a, b), then any P -faithful function is not monotone.

In what follows we assume that P = Pn = {(x1, . . . , xn) | 0 < xi ≤ 1, i = 1, . . . , n, x1+
· · · + xn = 1}. If n > 1, then xi < 1, i = 1, . . . , n. Then P = {(x1, . . . , xn) | 0 ≤ xi ≤ 1,
i = 1, . . . , n, x1 + · · ·+xn = 1}. In this case the P -faithfulness of f depends substantially
on the behavior of f on the hyperplane Hn = {(x1, . . . , xn) | x1 + · · · + xn = 0}.

For a differentiable function f we put C−(f) = {h ∈ Hn \ {0} | ∂f
∂xi

(h) ≤ 0, i =
1, . . . , n}, C+(f) = {h ∈ Hn \ {0} | ∂f

∂xi
(h) ≥ 0, i = 1, . . . , n}, C(f) = C+(f)∪C−(f). A

function f is said to be antimonotone if C(f) = ∅. If n = 1, then P1 = (1), H1\{0} = ∅,
and any function is antimonotone.
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In Subsection 3 (see Proposition 1) we prove that any P -faithful quadratic form is an-
timonotone; therefore, in this case antimonotonicity is a generalization of P -faithfulness.

Example 1. A linear function f =
∑n

i=1 aixi, n > 1, is antimonotone if and only if
ai > 0, aj < 0 for some i, j. The quadratic forms x2

1 + x2
2 and x2

1 + x2
2 + x1x2 are

antimonotone, but the forms x2
1 − x2

2 and x2
1 + x2

2 + x2
3 + x1x2 + x1x3 are not.

Apparently, the problem of obtaining an efficient criterion for antimonotonicity is hard
even for quadratic forms.

In this paper we solve this problem for the quadratic forms fS corresponding to (finite)
partially ordered sets (posets) S = {s1, . . . , sn}: fS(x1, . . . , xn) =

∑
si≤sj

xixj (see [2])
under the additional requirement that fS be positive semidefinite (i.e., fS(x) ≥ 0). The
posets with antimonotone form generalize the P -faithful posets, defined in [3] and studied
in [3]–[7], and (as is shown below) coincide with them not only for positive definite forms,
but also for positive semidefinite ones.

An explicit construction of a vector belonging to C(fS) allows us to simplify the
proof of the P -faithfulness criterion (see [3] and [5]–[7]), avoiding consideration of many
different cases.

We also deduce an explicit formula for the calculation of inf{fS(P )} for P -faithful S;
on the basis of this formula, we give simple proofs of the criteria for finite representativity
(see [8] and also [9]) and tameness (see [10] and also [11]) of partially ordered sets.

1. In this subsection, f is a differentiable function defined on Rn. The elements of Rn

will be called vectors.
We put R

+
n = {x ∈ Rn | xi > 0, i = 1, . . . , n}, R

+

n = {x = (x1, . . . , xn) ∈ Rn | 0 ≤
xi, i = 1, . . . , n; x �= 0}; then Pn = Pn ∩ R

+
n (R+ = R

+
1 ).

If f1 and f2 are defined on Rm and on Rn (respectively), we put (f1 ⊕ f2)(x1, . . . , xm,
xm+1, . . . , xn+m) = f1(x1, . . . , xm) + f2(xm+1, . . . , xm+n).

We say that a twice differentiable function f is concave if
a) ∂f

∂xi
(0) = 0, i = 1, . . . , n, and

b) ∂2f
∂xi∂xj

≥ 0, i, j = 1, . . . , n, and f is q-concave, q ∈ R
+, if, in addition,

c) ∂2f
∂x2

i
≥ q, i = 1, . . . , n.

In particular, the quadratic form fS corresponding to S is 2-concave.

Remark 1. By the Lagrange theorem, for d ≥ 0, b) implies I), and c) implies IIq):
I) ∂f

∂xi
(x1, . . . , xj−1, xj + d, xj+1, . . . , xn) ≥ ∂f

∂xi
(x1, . . . , xn), i, j ∈ {1, . . . , n}.

IIq) ∂f
∂xi

(x1, . . . , xi−1, xi + d, xi+1, . . . , xn) ≥ ∂f
∂xi

(x1, . . . , xn) + qd, i = 1, . . . , n.

We put Ĉ−(f) =
{
x ∈ Rn \ {0} |

∑n
i=1 xi ≥ 0, ∂f

∂xi
(x) ≤ 0, i = 1, . . . , n

}
and Ĉ+(f) ={

x ∈ Rn \ {0} |
∑n

i=1 xi ≤ 0, ∂f
∂xi

(x) ≥ 0, i = 1, . . . , n
}
.

Lemma 1. If f is concave, then f is antimonotone if and only if Ĉ+(f) ∪ Ĉ−(f) = ∅.

Proof. Let x ∈ Ĉ−(f) (the case of x ∈ Ĉ+(f) is similar), and let
∑d

i=1 xi = d ∈ R
+.

Then {x1 − d, x2, . . . , xn} ∈ C(f) (by I)) unless x = (d, 0, . . . , 0). But in the latter case
we have (d,−d, 0, . . . , 0) ∈ C(f). If y ∈ C(f), then, clearly, y ∈ Ĉ+(f) ∪ Ĉ−(f). �

Lemma 2. If f1 and f2 are concave, then the function f1 ⊕ f2 is antimonotone if and
only if f1 and f2 are.

Proof. We must prove that C(f1⊕f2) �= ∅ if and only if either C(f1) �= ∅ or C(f2) �= ∅.
If (x1, . . . , xn1 , y1, . . . , yn2) ∈ C(f1 ⊕ f2), then either (x1, . . . , xn1) ∈ Ĉ+(f1) ∪ Ĉ−(f1)



ANTIMONOTONE QUADRATIC FORMS AND PARTIALLY ORDERED SETS 1017

or (y1, . . . , yn2) ∈ Ĉ+(f2) ∪ Ĉ−(f2), and by Lemma 1, C(f1) �= ∅ in the first case and
C(f2) �= ∅ in the second case.

If x = (x1, . . . , xn1) ∈ C(f1), then (x1, . . . , xn1 , 0, . . . , 0︸ ︷︷ ︸
n2

) ∈ C(f1 ⊕ f2) by a); if

(y1, . . . , yn2) ∈ C(f2), then (0, . . . , 0︸ ︷︷ ︸
n1

, y1, . . . , yn2) ∈ C(f1 ⊕ f2). �

We say that a nonzero vector d ∈ Zn is m-Dynkin (1 ≤ m ≤ n) for a q-concave
function f if 1) 0 ≤ ∂f

∂xm
(d) ≤ q, and 2) ∂f

∂xj
(d) = 0 for j �= m, j = 1, . . . , n.

We say that a function f is m-isolated if ∂f
∂xk

(sm) = 0 for 1 ≤ k ≤ n, k �= m,
sm = (0, . . . , 0︸ ︷︷ ︸

m−1

, 1, 0, . . . , 0).

Lemma 3. Let f be q-concave and not m-isolated. If it admits an m-Dynkin vector,
then C(f) �= ∅.

Proof. Let
∑n

i=1 di = d. If d ≤ 0, then d ∈ Ĉ+(f) and C(f) �= ∅ by Lemma 1. Let d > 0.
Putting uj = dj if j �= m and um = dm − d, we prove that u = (u1, . . . , un) ∈ C(f).
Clearly, u ∈ Hn. We have ∂f

∂xj
(u) ≤ 0 for j �= m by I) and 2), and ∂f

∂xm
(u) ≤ 0 by IIq)

and 1).
It remains to show that u �= 0. If u = 0, then d = λsm, λ �= 0 (because d �= 0), which

implies that ∂f
∂xk

(d) �= 0, k �= m, because f is not m-isolated. �

Example 2. Let S = {s1, s2, s3, s4, s5 | s1 < si, i = 2, . . . , 5}; then fS =
∑5

i=1 x2
i +

x1

∑5
j=2 xj , and d = (−2, 1, 1, 1, 1) is an i-Dynkin vector for fS (i = 1, . . . , 5). The vec-

tors (−2, 1, 1, 1,−1), (−2, 1, 1,−1, 1), (−2, 1,−1, 1, 1), (−2,−1, 1, 1, 1), and (−4, 1, 1, 1, 1)
belong to C(fS).

We turn to P -faithfulness. We denote St(f) = {a ∈ R
+
n | ∂f

∂xi
(a) = ∂f

∂xj
(a), i, j =

1, . . . , n}; St+(f) = {a ∈ St | ∂f
∂xi

(a) > 0}.
We say that a vector u ∈ Pn is P -faithful for f if f(u) > 0 and w ∈ Pn implies

f(u) ≤ f(w); moreover, if w �∈ Pn, then f(u) < f(w).
Let S̃t(f) denote the set of P -faithful vectors for f . The P -faithfulness of f is equiv-

alent to the fact that S̃t(f) �= 0.

Lemma 4. S̃t(f) ⊆ St(f) for any f .

Proof. Let n > 1. We write xn = 1−
∑n−1

i=1 xi and consider the function f̂(x1, . . . , xn−1) =
f(x1, . . . , xn−1, 1 −

∑n−1
i=1 xi). If u = (u1, . . . , un) is a P -faithful vector for f , then f̂(û)

attains its minimum at the point û = (u1, . . . , un−1). We have ∂f̂
∂xi

= ∂f
∂xi

+ ∂f
∂xn

· ∂xn

∂xi
,

xn = 1 −
∑n−1

i=1 xi, ∂xn

∂xi
= −1 (i = 1, . . . , n − 1). Therefore, ∂f̂

∂xi
= ∂f

∂xi
− ∂f

∂xn
= 0. �

Let f be a homogeneous function of degree k (i.e., f(λx1, . . . , λxn) = λkf(x1, . . . , xn)).
For such f , if k �= 1 and inf{f(P )} > 0, we put P (f) = inf{f(P )} 1

1−k . In particular,
P (f) = inf{f(P )}−1 for k = 2.

Lemma 5. Suppose f1(x1, . . . , xn1) and f2(xn1+1, . . . , xn2) are two homogeneous func-
tions of degree k, n1 + n2 = n, inf{fj(Pnj

)} > 0, j = 1, 2. Then P (f1 ⊕ f2) =
P (f1) + P (f2).
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Proof. The values of a homogeneous function f on R
+

n are determined by its values on
Pn, namely, for y ∈ R

+

n we have f(y) = λkf(u), where u ∈ Pn, λ =
∑n

i=1 yi, u = λ−1y.
Therefore,

inf{(f1 ⊕ f2)(Pn)} = inf
0≤λ≤1

[
λk inf{f1(Pn1)} + (1 − λ)k inf{f2(Pn2)}

]
.

We put inf{f1(Pn1)} = a, inf{f2(Pn2)} = b.
Consider the function Φab(λ) = aλk +b(1−λ)k, a > 0, b > 0; we find inf0≤λ≤1 Φab(λ).

The derivative of Φab(λ) with respect to λ (u and v are viewed as constants) is (Φab(λ))′λ =
kaλk−1 − kb(1 − λ)k−1 . Let λ be a positive root of the equation (Φab(λ))′λ = 0.

Then aλ
k−1

= b(1 − λ)k−1, whence a 1
k−1λ = b

1
k−1 (1 − λ) and λ = b

1
k−1

a
1

k−1 +b
1

k−1
. Thus,

inf0≤λ≤1 Φab(λ) = min{Φab(0), Φab(1), Φab(λ)} = min{a, b, Φab(λ)}.
We show that Φab(λ) < Φab(0) = b. Indeed, aλ

k−1
= b(1 − λ)k−1 and Φab(λ) =

aλ
k

+ b(1− λ)k = b(1− λ)k−1λ + b(1− λ)k = b(1− λ)k−1 < b, because a > 0, b > 0, and
0 < λ < 1; similarly, Φab(λ) = aλ

k−1
< Φab(1) = a. Therefore, inf{(f1 ⊕ f2)(Pn)} =

Φab(λ) = ab(
a

1
k−1 +b

1
k−1

)k−1 .

Returning to P (f1 ⊕ f2), P (f1), and P (f2), we have P (f1) = a
1

1−k , P (f2) = b
1

1−k ,

P (f1 ⊕ f2) =
(

ab(
a

1
k−1 +b

1
k−1

)k−1

) 1
1−k = b

1
1−k + a

1
1−k . �

Corollary 1. Under the conditions of Lemma 5, f1 ⊕ f2 is P -faithful if and only if f1

and f2 are.

2. In what follows, f =
∑n

i,j=1 aijxixj (aij = aji) is a quadratic form over the field R;

A = (aij) is the symmetric matrix of f . We have ∂2f
∂xi∂xj

= 2aij , and f is 2-concave if
aii ∈ N, aij + aji ∈ N0 (i, j = 1, . . . , n). Fixing f , for x = (x1, . . . , xn) ∈ Rn we put

x′
i =

∂f

∂xi
(x1, . . . , xn) = 2

n∑
j=1

ajixj , x′ = (x′
1, . . . , x

′
n) = 2xA.

We need the following identity, which can easily be checked:

f(u + v) = f(u) + f(v) +
n∑

i=1

u′
ivi, u, v ∈ Rn,(1)

whence
n∑

i=1

u′
ivi =

n∑
i=1

v′iui, f(u + εv) = f(u) + ε2f(v) + ε

n∑
i=1

uiv
′
i, ε ∈ R.(2)

Putting u = v in (1), we obtain (cf. [1, Subsection 178])

(3) f(u) =
1
2

n∑
i=1

uiu
′
i.

Using (3), we can reformulate Lemma 4 as follows.

Lemma 4′. For any quadratic form f , we have S̃t(f) ⊂ St+(f).

We denote C̃(f) = {(v1, . . . , vn) ∈ C(f) | (v′1, . . . , v
′
n) �= 0}. Since ∂f

∂xi
(−x) =

− ∂f
∂xi

(x), the relation C(f) �= ∅ implies that C−(f) �= ∅ and C+(f) �= ∅. Therefore,
choosing a vector v ∈ C(f) �= ∅, in the sequel we assume that v ∈ C−(f).
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Proposition 1. For any quadratic form f , 1) at least one of the sets St(f) and C̃(f) is
empty, and 2) at least one of the sets C(f) and S̃t(f) is empty.

Proof. 1) Suppose u ∈ St(f), v ∈ C̃(f). Then
∑n

i=1 u′
ivi = u′

1

∑n
i=1 vi = 0. On the

other hand, if v′j < 0, then
∑n

i=1 uiv
′
i < 0 (because v′i ≤ 0, ui > 0, i = 1, . . . , n), which

contradicts (2).
2) Suppose u ∈ S̃t(f), v ∈ C(f). If v ∈ C̃(f), then 1) implies the claim. Let

v ∈ C(f) \ C̃(f), i.e., v′i = 0 for i = 1, . . . , n. Then f(v) = 0 (e.g., by (3)), whence
f(u + εv) = f(u) for any ε. We put |ε| = mini

ui

|vi| and take the sign of ε to be opposite
to the sign of one of the vi at which the minimum is attained. Then u + εv ∈ Pn \ Pn,
which contradicts the P -faithfulness of u. �
Corollary 2. Any P -faithful quadratic form is antimonotone.

Example 3. Let f =
∑4

i=1 x2
i + (x1 + x2)(x3 + x4). Then

A =

⎛
⎜⎜⎜⎝

1 0 1
2

1
2

0 1 1
2

1
2

1
2

1
2 1 0

1
2

1
2 0 1

⎞
⎟⎟⎟⎠ , St(f) 
 (1, 1, 1, 1), C(f) 
 (1, 1,−1,−1).

Proposition 1 implies that S̃t(f) = ∅ and C̃(f) = ∅.

In this example, |A| = 0.

Proposition 2. If |A| �= 0, then one of the sets C(f) and St(f) is not empty, but the
other is empty.

Proof. First, suppose that ∅ �= C(f) 
 v and ∅ �= St(f) 
 u. If v ∈ C̃(f), then
St(f) = ∅ by Proposition 1. If v ∈ C(f) \ C̃(f), then v′ = 0 and vA = 1

2v′ = 0.
Therefore, v = 0, which contradicts the fact that v ∈ Hn \ {0} (see the definition of
C(f)).

Now we prove that either St(f) �= ∅ or C(f) �= ∅. Let en = (1, . . . , 1) ∈ Rn, and let
y = enA−1, yA = en. If y ∈ R

+
n or −y ∈ R

+
n , then y ∈ St(f). If {y,−y} ∩ R

+
n = ∅, then

either yk = 0 for some k or ys < 0 and yt > 0 for some s and t. It is easily seen that in both
cases there exists w ∈ R

+

n such that wyT
(

=
∑n

i=1 wiyi

)
= 0 (in the first case we can put

wk > 0, wi = 0 for i �= k, and in the second case ws = yt, wt = −ys, wi = 0 for i �∈ {s, t},
i = 1, . . . , n). We prove that v = −wA−1 ∈ C(f). We have −v′ = wA−1A = w ∈ R

+

n ,
whence v′i ≤ 0. Next, v �= 0 because w �= 0 and |A| �= 0. It remains to check that v ∈ Hn,
which is equivalent to veT

n = 0. We have veT
n = −wA−1eT

n and yT = (A−1)T eT
n = A−1eT

n

(because AT = A). Therefore, −wA−1eT
n = −wyT = 0. �

Proposition 3 (see [7, Part II, Remark to Theorem 1]). 1) If S̃t(f) �= ∅, then f is
positive definite. 2) If f is positive definite, then S̃t(f) = St(f) ∩ Pn (thus, S̃t(f) = ∅ if
and only if St(f) = ∅).

Proof. 1) Suppose the contrary: f(v) ≤ 0 (v �= 0), u ∈ S̃t(f). a) First, we assume that
v ∈ Hn, i.e.,

∑n
i=1 vi = 0 and f(v) < 0. Then f(u + εv) = f(u) + ε2f(v) + ε

∑n
i=1 u′

ivi.
We have u ∈ St(f) by Lemma 4′, whence ε

∑n
i=1 u′

ivi = 0, i.e., f(u+εv) = f(u)+ε2f(v).
Since f(v) < 0, it follows that f(u + εv) < f(u), which contradicts the P -faithfulness
of u.

b) Now, let v ∈ Hn, f(v) = 0. Then f(u + εv) = f(u) for any ε. Put ε = mini
ui

|vi| .
The sign of ε is opposite to the sign of one of the vi for which this minimum is attained.
Then u + εv ∈ Pn \ Pn, again contradicting the P -faithfulness of u.
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c) Finally, let
∑n

i=1 vi �= 0. We may assume that
∑n

i=1 vi = 1. Put w = u−v. Formula
(2) with ε = −1 and Lemma 4 imply f(w) = f(u) + f(v) − u′, u′ = u′

i, i = 1, . . . , n.
Formula (3) yields f(u) = u′

1
2 , whence f(w) = f(v) − u′

1
2 . Since u′ > 0 by Lemma 4′, we

have f(w) < 0; w ∈ Hn. Also, w �= 0, because if w = 0, then u = v by (3), but f(v) ≤ 0.
Thus, c) reduces to a).

2) Suppose u ∈ St(f) ∩ Pn, v ∈ Pn, v �= u. Then u �= 0 because u ∈ St(f), so that

f(u) > 0. We show that f(u) < f(v). We have 0 < f(u−v)
(2)
= f(u)+f(v)−

∑n
i=1 u′

ivi
(3)
=

u′

2 + f(v) − u′ = f(v) − u′

2 = f(v) − f(u), i.e., f(v) > f(u). �

3. In the sequel we shall consider the 2-concave form fS for a poset S = {s1, . . . , sn},
fS =

∑
si≤sj

xixj . Put C(S) = C(fS), St(S) = St(fS), and S̃t(S) = S̃t(fS). The poset
S is antimonotone if fS is antimonotone.

A poset S is P -faithful if S̃t(fS) �= ∅. (This is equivalent to the definition of P -
faithfulness given in [3].) In this case, C(S) = ∅ by Proposition 1. Observe that
inf{fS(P )} > 0 because aij ≥ 0, i, j = 1, . . . , n, A �= (0).

When talking of graphs, we always mean nonoriented graphs. Oriented graphs will be
called quivers. All graphs and quivers are assumed to be finite and not involving loops
and multiple edges or arrows (i.e., two edges or arrows between two given points). Every
quiver Q gives rise to the graph Γ(Q) in which all arrows are replaced by edges.

The Hasse quiver (orgraph) Q(S) of a poset S is a quiver whose vertices are elements
of S and two vertices are connected by an arrow si → sj if si < sj and no sk ∈ S satisfies
si < sk < sj . Drawing lines (edges) instead of arrows, we obtain the (nonoriented)
Hasse graph Γ(S) of the partially ordered set S. Usually, a finite poset S is depicted by
a diagram, i.e., by the graph Γ(S), assuming that lesser elements are drawn below the
greater ones.

The elements of the poset S and the corresponding elements of Q(S) and Γ(S) will
be denoted by the same symbols.

A path of length k (k ≥ 1) from s1 to sk+1 in a graph (quiver) is a sequence s1, . . . , sk+1

of vertices such that si and si+1 are joined by an edge (by an arrow starting at si and
terminating at si+1), i = 1, . . . , k. A path in a quiver Q is a path in the graph Γ(Q), but
the converse may fail; s1 is the origin and sk+1 is the end of a path.

A path s1, . . . , sk+1 in a graph Γ is called a cycle if the si are different for i = 1, . . . , k,
k > 2, and s1 = sk+1. A cycle is said to be simple (and is denoted by Ãk) if there are
no other edges joining sk, . . . , sk+1. A graph Γ and a poset S with Γ(s) = Γ are said
to by cyclic if Γ involves a cycle, and acyclic otherwise. It is easily seen that a cyclic
graph involves a simple cycle; accordingly, a cyclic poset S includes a subset S′ with
Γ(S′) = Ãm.

To a quiver Q with vertices s1, . . . , sn, we assign an (n×n)-matrix Q̃ such that Qij is
the number of arrows (0 or 1) from si to sj . Then (Q̃t)ij is the number of paths of length
t from si to sj . A path s1, . . . , sk+1 in a quiver is called an oriented cycle if s1 = sk+1.
Two paths s1, . . . , sk+1 and t1, . . . , tk+1 in a quiver Q are said to be parallel [12] if s1 = t1
and sk+1 = tk+1. If a quiver involves an oriented cycle, it also involves parallel paths.
The quiver Q(S) has no oriented cycles (because the relation ≤ is antisymmetric), but it
may have parallel paths. It is easily seen that if the graph Γ(Q) is acyclic, then Q has no
parallel paths. If Q has no oriented cycles, then the length of any path does not exceed
n and Q̃n = 0. If, moreover, there are no parallel paths, then the entries of Q̃t are equal
to 0 or 1. Moreover, if Q = Q(s), then the matrix A of the quadratic from fs is given by

A = E +
1
2
( n=1∑

i=1

Q̃i +
n−1∑
i=1

(Q̃T )i
)
.
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Let TS(x1, . . . , xn) =
∑n

i=1 x2
i −

∑
si−sj

xixj be the Tits quadratic form of the graph
Γ(S) (the second sum is taken over all edges of the graph Γ(S)). The matrix of the form
TS is denoted either by A or by A(S).

It is well known that the Tits form of Γ is positive definite (respectively, positive
semidefinite) if Γ is a Dynkin graph (respectively, extended graph), i.e. An, Dn, E6, E7,
E8 (respectively, Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8; see Subsection 4).

We put E − Q̃(s) = Q̂, |Q̂| = 1. It is easily seen that Q̂−1 = (E +
∑n−1

i=1 Q̂i),
A = 1

2 (Q̂−1 + (Q̂−1)T ), A = 1
2 (Q̂ + Q̂T ).

Proposition 4 (See [4])1. If there are no parallel paths in Q(S), then the forms TS and
fS are equivalent over Z.

Proof. Indeed, Q̂−1AT (Q̂−1)T = 1
2 Q̂−1(Q̂ + Q̂T )(Q̂−1)T = 1

2 [(Q̂−1)T + Q̂−1] = A. �

Propositions 1–4 imply the following statement.

Corollary 3. Suppose Γ(S) is an acyclic graph and at least one of the forms fS and TS

is positive definite (this is true if Γ(S) is a Dynkin graph, see Subsection 4). Then the
other form is also positive definite, and the following statements are equivalent:

a) S is antimonotone;
b) S is P -faithful;
c) St(S) �= ∅.

For si ∈ S, we denote by I(si) the number of edges of the graph Γ(S) that end at si.
We call si a terminal point if I(si) ≤ 1; si is a branch point if I(si) ≥ 3; si is a

junction point if it is either the end of at least two arrows or the origin of at least two
arrows of the quiver Q(S). We denote by S× the set of junction points.

Example 4.

S =

Here S× = S and C(S) ∪ S̃t(S) = ∅. Indeed, since the values of fS can be nega-
tive (fS(1, 1, 1,−1, −1,−1) = −2), we have S̃t(S) = ∅ by Proposition 3, but St(S) 

(1, 2, 1, 1, 2, 1), |A| = −48. Proposition 2 implies C(S) = ∅.

Throughout in what follows (except in the Appendix) we assume that the graph Γ(S)
is connected (any two points are joined by a path).

If Γ(S) = Γ(�S), then Q(�S) can be obtained from Q(S) by “reorientation” (i.e., by
changing the direction) of several arrows. If Γ(S) is acyclic and a quiver �Q is obtained
from Q(S) by reorientation of arrows, then there exists �S such that �Q = Q(�S).

A poset S and the quiver Q = Q(S) are said to be standard if I(si) = 2 implies that si

is the origin of one arrow and the end of one arrow, and I(si) �= 2 implies that si is either
the origin of I(si) arrows or the end of I(si) arrows (i = 1, . . . , n). It is easy to check that
exactly one standard poset corresponds to each acyclic graph (up to antiisomorphism).
If S∗ is antiisomorphic to S, then Γ(S) = Γ(S∗), and Q(S∗) is obtained from Q(S) by
reorientation of all arrows.

1In [6], Sapelkin called this statement the Zel′dich lemma. Zel′dich in [7] said that it is “important
and surprising”, with which the authors agree, in spite of the brevity of the proof.
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If ϕ is an arrow of Q(S), then we denote by S(ϕ) the poset obtained from S after
reorientation of the arrow ϕ, and by Aϕ the matrix of fS(ϕ). Obviously, A(S(ϕ)) = A(S).

We say that a point sm ∈ S is a Dynkin point if there exists an m-Dynkin vector for
the form fS .

Remark 2. The function fS is m-isolated in the sense of Subsection 1 if sm is comparable
with no other point of S. Therefore, for connected S, the requirement that fS be not
m-isolated (in Lemma 3) is fulfilled automatically.

Lemma 6. Let Γ(S) be acyclic, and let si
ϕ−→ sj ∈ Q(S). Suppose d �= 0 is a vector

such that d′i = 2(dA)i = 0, d′j = 2(dA)j = 0. Then there exists a vector d̂ �= 0 such that
dA = d̂Aϕ.

Proof. The proof of Proposition 4 shows that Q̃−1A(Q̃−1)T = A, Q̃−1
ϕ Aϕ(Q̃−1

ϕ )T =
Aϕ, Q̃−1

ϕ Q̃AQ̃T (Q̃T
ϕ)−1 = Aϕ (Aϕ = A). Let d̂ = dQ̃−1Q̃ϕ (d̂ �= 0); then d̂Aϕ =

dQ̃−1Q̃ϕQ̃−1
ϕ Q̃AQ̃T (QT

ϕ)−1 = dAQ̃T (Q̃T
ϕ)−1.

Recalling that d′i = d′j = 0, we put dA =
∑

k �∈{i,j} αksk = b. We need to show that

bQ̃T (Q̃T
ϕ)−1 = b. This is equivalent to skQ̃T (Q̃T

ϕ)−1 = sk, i.e., to skQ̃T = skQ̃T
ϕ , which

follows from the definition of Q̃ and from the fact that k �∈ {i, j}. �

Lemma 7. If Γ(S) is acyclic and st is a Dynkin terminal point of S, then it is a Dynkin
point for the poset �S provided that Γ(�S) = Γ(S).

Proof. If �S = S(ϕ), then the claim follows from Lemma 6. Turning to the general case
(�S is not S(ϕ)), first we note that if S∗ and S are antiisomorphic, then fS = fS∗ and st

is a Dynkin point also for S∗.
Let ψ (respectively, ψ̂) denote a unique arrow of Q(S) (respectively, of Q(�S)) for which

st is either the end or the origin. Then the condition st �∈ {si, sj} is equivalent to ϕ �= ψ.
Without loss of generality we assume that ψ (in Q(S)) and ψ̂ (in Q(�S)) have the

same orientation (otherwise we pass to �S∗). Then we can pass from S to �S by reversing
several arrows different from ψ; therefore, the partial cases where �S = S(ϕ) (Lemma 6)
and �S = S∗ considered above imply the statement of the lemma. �

4. Let Γ be a connected acyclic graph with one branch point and three terminal points.
Γ is the union of three chains An1 , An2 , An3 intersecting at a branch point s1, Γ =
An1 ∪An2 ∪An3 , An1 ∩An2 = An1 ∩An3 = An2 ∩An3 = {s1}, and |Anj

| = nj , j = 1, 2, 3,
|Γ| = n1 +n2+n3−2. We shall denote such Γ by Γ(n1, n2, n3) (the graph will not change
if we permute the nj).

All Dynkin graphs except for An (i.e., Dn, E6, E7, E8) and the extended Dynkin
graphs Ẽ6, Ẽ7, Ẽ8 are of the form Γ(n1, n2, n3). It is well known that Γ(n1, n2, n3) is
a Dynkin graph if and only if n−1

1 + n−1
2 + n−1

3 > 1, and Γ(n1, n2, n3) is an extended
Dynkin graph if n−1

1 + n−1
2 + n−1

3 = 1.
Namely, Γ(n1, n2, n3) is E6, E7, E8, or Dn if (n1, n2, n3) = (3, 3, 2), (2, 4, 3), (2, 3, 5),

or (1, 1, n − 2), respectively. Γ(m1, m2, m3) is Ẽ6, Ẽ7, or Ẽ8 if (m1, m2, m3) = (3, 3, 3),
(2, 4, 4), or (2, 3, 6), respectively.

Here the numeration of mj and nj is fixed so that m1 ≤ m2 ≤ m3, and for En with
n = 6, 7, 8 we have n1 = m1, n2 = m2, n3 = m3 − 1.

Observe that in all cases m1 and m2 divide m3.

Proposition 5. If Γ(S) = Γ(n1, n2, n3) is a Dynkin graph or an extended Dynkin graph
(i.e., Dn, E6, E7, E8, Ẽ6, Ẽ7, or Ẽ8), then S contains a terminal Dynkin point.
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Proof. Lemma 7 shows that there is no loss of generality in assuming that S is standard.
For any Γ(m1, m2, m3) (I(s1) = 3) we construct a vector d̃ by putting d̃1 = −m3,

d̃i = m3
mj

for si ∈ Anj
, i �= 1. It is easily seen that d̃′i = 0 for i �= 1, and d̃′1 =

m3(1 − m−1
1 − m−1

2 − m−1
3 ). If, moreover, Γ(S) is an extended Dynkin graph, then

d̃ ∈ Zn and d̃′1 = 0, i.e., d̃ is an i-Dynkin vector for any i.
Let Γ(S) be En, |S| = n, and let S̃ be a standard poset such that Γ(S̃) = Ẽn,

|S̃| = n + 1, S ⊂ S̃, S̃ \ S = {sn+1} ⊂ An3 . We construct a Dynkin vector d for
S, modifying the Dynkin vector d̃ for Γ(S̃). We put di = d̃i for i < n and dn = 2
(= d̃n + d̃n+1), d′n = 1 (d′i = 0 for i = 1, . . . , n − 1).

Let

Γ(S) = Dn =

Then w = (w1, . . . , wn), where w1 = −2, w2 = w3 = 1, wn = 2, wi = 0 for i �∈ {1, 2, 3, n},
is an n-Dynkin vector sn (w′

n = 2). �

Dynkin vectors for the standard posets S such that Γ(S) = E6, E7, or E8 can be
written out explicitly:

Example 5. A Dynkin vector for the standard poset S such that Γ(S) = D̃n, n > 4 (for
n = 4 see Example 2) has the following form (all points are Dynkin points):

5. Consider the posets

V =
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and W 2k = {s−1 , . . . , s−k , s+
1 , . . . , s+

k | s−i < s+
i , s−i < s−i+1, s

−
k < s+

1 , i = 1, . . . , k}, k > 1;
in particular,

W 4 =

(see Example 3).

Lemma 8. If S is a cyclic poset and each S′ ⊂ S is acyclic, then S is either V or W 2k

(k ≥ 2).

Proof. Without loss of generality we may assume that Γ(S) is a simple cycle

Ãn = .

Let S \ S× 
 s. Then s− < s < s+ and in Γ(S) the vertices s− and s+ are connected
with s by edges. Let S′ = S \ {s}. If there is an edge s−—s+ in the graph Γ(S′), then
Γ(S′) is a cycle, which contradicts the condition of the lemma.

If s− and s+ are not connected by any edge in Γ(S′), then in S there is a point s̄ �= s
such that s− < s̄ < s+, s̄ >< s (i.e., s̄ and s are not comparable), because otherwise s−

and s+ would not be connected with s in Γ(S). Thus, {s−, s+, s, s̄} = V and S = V .
So, if S �= V , then S× = S, and then, since Γ(S) = Ãn, it is easy to check that

S = W 2k for some k > 1. �

Lemma 9. If S ⊇ V and S �⊃ W 4, then C(S) �= ∅.

Proof. An arbitrary vector v ∈ Rn can be viewed as a function on S with values in R.
Let v : S → R be such that v(h−) = v(h+) = −1, v(h1) = v(h2) = 1, v(t) = 0 for

t ∈ S\V ; then v ∈ Hn. We prove that v′(s) ≤ 0 for s ∈ S. We have v′(h−) = v′(h+) = −1
and v′(h1) = v′(h2) = 0. If t is comparable neither with h1 nor with h2, then, clearly,
v′(t) ≤ 0. If t is only comparable with one of h1, h2, then it is comparable either with
h− or with h+, and also v′(t) ≤ 0. Suppose t is comparable with h1 and h2. Let t < h1

(the case where t > h1 is similar); then t < h2 (h1 < t < h2 is impossible, so that
t < h+). Then if t is comparable with h− also, then v′(t) = 0, and otherwise we have
S ⊃ W 4 = {t, h2, h

−, h1}. �

Lemma 10. If S ⊇ W 2k (k ≥ 2) and the form fS is positive semidefinite, then C(S) �=
∅.

Proof. Let t ∈ T = S \ W 2k. Putting S−(t) = |{s−i | t < s−i } ∪ {s−i | t > s−i }| and
S+(t) = |{s+

i | t < s+
i }∪ {s+

i | t > s+
i }|, we prove that if fS is positive semidefinite, then

S−(t) = S+(t).
Indeed, let S−(t0) > S+(t0) for a fixed t0 ∈ T (the case where S−(t0) < S+(t0) is

similar). We consider x : S → Rn with x(s−i ) = −1, x(s+
i ) = 1 (i = 1, . . . , k), x(t0) = ε,

0 < ε < 1, and x(t) = 0 for t ∈ T \ {t0}. It is easily seen that fS(x) < 0.
Now, let v : S → Rn be a vector such that v(s−i ) = −1, v(s+

i ) = 1, v(t) = 0 for
t ∈ T . The relation S−1(t) = S+(t), t ∈ T , implies that v′(s) = 0 for any s ∈ S. Clearly,
v ∈ Hn, whence v ∈ C(S). �

Proposition 6. If S is an antimonotone poset and the form fS is positive semidefinite,
then Γ(S) = An.
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Proof. If S is cyclic, then Lemmas 8, 9, and 10 imply the statement. If S is acyclic, then
the Tits form TS is positive semidefinite by Proposition 4, so that Γ(S) is one of An,
Dn, E6, E7, E8, D̃n, Ẽ6, Ẽ7, or Ẽ8 (Γ(Ãn) is cyclic). If Γ(S) �= An, then Proposition 5,
Examples 2 and 5, and Lemma 7 imply the existence of a Dynkin point and, by Lemma 3
and Remark 2, C(S) �= 0. �

6. Now, let Γ(S) = An. In this case, up to antiisomorphism, the poset S is determined
by its order and by the subset S× of junction points (see Subsection 3). Clearly, S× = ∅

if and only if S is a chain.
Consider the posets W k,k+1 = {s−1 , . . . , s−k , s+

1 , . . . , s+
k+1 | s−i < s+

i , s−i < s+
i+1, i =

1, . . . , k} and W k+1,k = {s−1 , . . . , s−k+1, s
+
1 , . . . , s+

k | s+
i > s−i , s+

i > s−i+1, i = 1, . . . , k}.

Lemma 11. If Γ(S) = An and Γ(S) contains W of the form W k,k+1 (respectively,
W k+1,k), and moreover, s+

1 , s+
k+1 �∈ S× (respectively, s−1 , s−k+1 �∈ S×), then C(S) �= ∅.

Proof. For definiteness, let S ⊃ W k,k+1. Consider a vector v such that v(s−i ) = −2
for i = 1, . . . , k, v(s+

i ) = +2 for i = 2, . . . , k, v(s+
1 ) = v(s+

k+1) = 1, and v(t) = 0 for
t ∈ S \ W k,k+1. We prove that v ∈ C(f).

Indeed, v ∈ Hn and v′(s−1 ) = v′(s−k ) = −1, v′(s−i ) = 0 for i = 2, . . . , k − 1, and
v′(s+

i ) = 0 for i = 1, . . . , k + 1. The absence of branch points implies that if t �∈ W is
comparable with w ∈ W , then w ∈ {s+

1 , s+
k+1}. If t is comparable with both s+

1 and s+
k+1,

then S is cyclic. If s+
1 , s+

k+1 �∈ S×, then t > w. Therefore, each t either is comparable with
exactly one s−i and one s+

i or is not comparable with any w ∈ W , whence v′(t) ≤ 0. �

A poset ζ will be called a wattle [3] if it is a union of mutually disjoint chains Zi,
|Zi| ≥ 2, i = 1, . . . , t, t > 1, such that the minimal element of Zi is less than the maximal
element of Zi+1 and there are no other comparisons between elements of different Zi.
We have Γ(ζ) = An. In accordance with [3], we denote ζ = 〈n1, . . . , nt〉, where ni = |Zi|.

For a poset S, Γ(S×) can be viewed as a disconnected subgraph of Γ(S). Let S×
i

denote its connected components.

Lemma 12. A poset S with Γ(S) = An is either a chain or a wattle if (and only if) the
orders of all S×

i are even.

Proof. If S is a wattle, then the claim is evident (and we shall not use it). The converse
statement will be proved by induction on |S|. The induction base is evident. Let |S| =
n + 1. We write Γ(S) = · · · sn−1—sn—sn+1, where sn+1 is a terminal point (therefore,
sn+1 �∈ S×). For definiteness, we assume that sn > sn+1, so that sn+1 is minimal. Put
S′ = S \ {sn+1} and S′′ = S \ {sn+1, sn}. We have two possibilities: 1) sn−1 > sn and
2) sn−1 < sn.

1) sn �∈ S×, (S′)× = S×. By the inductive hypothesis, S′ is a wattle in which sn is
a minimal terminal point. Clearly, S is either a wattle or a chain. (If S′ = 〈n1, . . . , nt〉,
then S′ = 〈n1, . . . , nt + 1〉).

2) sn ∈ S× (S′ does not satisfy the inductive hypothesis), and sn ∈ S×
p , |S×

p | ≡ 0
(mod 2). Then sn−1 ∈ S×

p ⊂ S× and sn−1 is a terminal point of S′′, whence sn−1 �∈
(S′′)×. If S× =

⋃p
i=1 S×

i , then (S′′)× =
⋃p−1

i=1 S×
i ∪ (S×

p \ {sn, sn+1}).
Consequently, S′′ satisfies the inductive hypothesis, and hence, is either a chain or a

wattle in which sn−1 is the minimal point. If S′′ = 〈n1, . . . , nt〉, then S = 〈n1, . . . , nt, 2〉.
�

Proposition 7. If the form fS is positive semidefinite and C(S) = ∅, then S is either
a chain or a wattle.
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Proof. By Proposition 6, we have Γ(S) = An.
If S is neither a chain nor a wattle, then, by Lemma 12, there exists S×

p such that
|S×

p | ≡ 1 (mod 2). It is easily seen that S×
p is W k,k+1 or W k+1,k. For definiteness, let

S×
p = W k,k+1 = .

Since s+
1 ∈ S× and S×

p is a connected component in S×, we see that there exists s−0 ∈
S \S× such that s−0 → s+

1 . Similarly, there exists s−k+1 ∈ S \ S× such that s−k+1 → s+
k+1.

Then S×
p ∪ {s−0 , s−k+1} = W k+2,k+1 and C(S) �= ∅ by Lemma 11. �

Example 4 in Subsection 3 shows that, generally speaking, the requirement that fS

be positive semidefinite cannot be lifted.

Conjecture. If S is acyclic and Γ(S) �= An, then C(S) �= ∅.

In some cases the existence of v ∈ C(f) for acyclic S is obvious. However, we present
a computer-made example of an acyclic poset S and v ∈ C(S).

Example 6.

7. Let ζ = 〈n1, . . . , nt〉 (t > 1) be a wattle, where ni = |Zi|,
∑t

i=1 ni = n, ni > 1,
i = 1, . . . , t.

In [3], the minimal points of the chains Zi, i = 1, . . . , t − 1, were denoted by z−i , and
the maximal points of the chains Zi, i = 2, . . . , t, were denoted by z+

i , z−i < z+
i+1. The

remaining (i.e., not junction) points were called common points (including the maximal
point of Z1 and the minimal point of Zt). They are only comparable to points within
their chains.

The width ω(S) of a partially ordered set S is the maximal number of its pairwise
incomparable elements. With each poset S, we associate the rational number r(S) =
n+1

t − 1, where n = |S| and t = ω(S). If S is a chain, then w(s) = 1 and r(S) = n.
Clearly, there exist many wattles with the same r. However, below we prove that

any noninteger r > 1 corresponds to exactly one (uniform in the sense of [3]) P -faithful
(= antimonotone; see Corollary 3) wattle ζ(r), which will be called the r-wattle.



ANTIMONOTONE QUADRATIC FORMS AND PARTIALLY ORDERED SETS 1027

For a positive rational a we put {a} = a− [a]. Let r be a positive nonintegral rational
number exceeding 1, and let q/t be the representation of {r} in the form of an irreducible
fraction. We indicate a sequence of integers n1, . . . , nt that will be the orders of the sets
Zi in ζ(r). Put n1 = nt = [r]+1 and ni = [ri]− [r(i−1)]+1 for i = 2, . . . , t−1. Clearly,
[{r}i]− [{r}(i− 1)] is either 1 or 0. Therefore, ni is either 1 + [r] or 2 + [r]. The number
of i for which ni = 2 + [r] is q − 1, and n = t([r] + 1) + q − 1, r(ζ(r)) = r.

Observe that the r-wattles are uniform in the sense of [3].
Thus, to each nonintegral rational number r > 1 we assigned a wattle ζ(r). The

integers numbers can also be considered if we agree that, for any integer r, ζ(r) is a
chain of length r. All posets of the form ζ(r), r ≥ 1 (i.e., the uniform wattles and
chains), will be called the r-sets.

Theorem. Suppose that the form fS is positive semidefinite (Γ(S) is connected). Then
C(S) = ∅ if and only if S is an r-set.

Proof. If r is an integer, then the statement is obvious (see [3]). Therefore, by Proposi-
tion 7, we only need to prove that C(ζ) = ∅ if and only if ζ is an r-wattle. �

For any r-wattle ζ(r), we consider a vector x : ζ → R
+ such that x(s) = 1 for

s ∈ ζ \ ζ×, x(z−i ) = {ir}, and x(z+
i ) = 1− x(z−i−1). Since (q, t) = 1, we have x(s) > 0 for

any s ∈ ζ(r).
The fact that x ∈ St(ζ) can be checked either directly, by using the definition of St(ζ),

or with the help of the following lemma.

Lemma 13 (See [3, Lemma 5]). The vector x : ζ → R belongs to St(ζ) if and only if
there exist positive numbers α and β such that

1) x(s) = α for s ∈ ζ \ ζ× (multiplying x by λ ∈ R
+, we can assume that α = 1);

2) x(z−i ) + x(z+
i+1) = α for i = 1, . . . , t − 1;

3)
∑

s∈Zi
x(s) = β, i = 1, . . . , t.

This lemma is almost evident. We only mention that first we prove 2), using the
relations ∂fS

∂z−
i

(x) = ∂fS

∂z+
i

(x), i = 2, . . . , t − 1, and then 1).

The vector x constructed above satisfies conditions 1) and 2) of Lemma 13. It is easy
to check (for α = 1) that ∑

s∈Zi

x(s) = r (i = 1, . . . , t),(4)

x′(s) = 1 + r,(5) ∑
s∈ζ(r)

x(s) = tr.(6)

Thus, x ∈ St(ζ), whence S̃t(ζ) �= ∅, and C(S) = ∅ by Corollary 3.
It remains to show that any P -faithful wattle ζ is an r-wattle (where [z] = |Z1| − 1,

{r} = x(z−1 )). This is a consequence of the next statement.

Lemma 14. Let ζ = 〈z1, . . . , zt〉 and ζ̂ = 〈ẑ1, . . . , ẑt〉 be two P -faithful wattles, and let
x ∈ St(ζ), x̂ ∈ St(ζ̂) (α̂ = α = 1). If Z1 = Ẑ1 and x(s) = x̂(s) for s ∈ Z1 = Ẑ1, then
ζ = ζ̂ and x(s) = x̂(s) for s ∈ ζ.

Proof. It suffices to check that if m ≤ max{t, t̂}, then zi = ẑi for i ≤ m and x(s) = x̂(s)
for s ∈

⋃m
i=1 Zi, and this follows from Lemma 13 by induction on m (see [3]). �

Now, we calculate P (ζ(r)). In [3], the numerical function ρ(r) = 1+ r−1
r+1 , where r ∈ N,

was introduced. We extend this definition to the case of an arbitrary rational r ≥ 1. Put
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ρ(r1, . . . , rt) =
∑t

i=1 ρ(ri). If Zn is a chain of order n, then P (Zn) = ρ(n) (see [3]). Let
ζ(r) be a wattle. By (6), the vector x = (tr)−1x belongs to Pn ∩ St(ζ(r)) (here x is the
vector constructed in the proof of the theorem). We have

P (ζ(r)) = f−1
ζ(r)(x) = (tr)2f−1

ζ(r)(x)
(3)
= 2(tr)2

( ∑
s∈ζ(r)

x′(s)x(s)
)−1

(5), (6)
=

2t2r2

(1 + r)tr

=
2tr

1 + r
= tρ(r).

The same formula is valid if t = 1 (i.e., in the case of a chain). For any positive
rational r = l

t ((l, t) = 1) we have tρ(r) = 2lt
l+t . We introduce the function P (r) = 2lt

l+t

(P (n) = ρ(n) for n ∈ N). Thus, for any r ≥ 1 we have

(7) P (ζ(r)) = tρ(r) = P (r).

Appendix

We say that a poset S is connected if the graph Γ(S) is connected. The theorem and
Corollary 3 imply that a connected poset S is P -faithful if and only if it is an r-set. On
the other hand, the results of [3]–[7] imply our theorem only if fS is positive definite (not
merely positive semidefinite). Characterization of disconnected antimonotone posets with
positive semidefinite fS and of P -faithful posets reduces to connected posets by Lemmas
2 and 5.

We say a few words about the role played by P -faithful posets in representation
theory. We write S = S1 � S2 if S = S1 ∪ S2, S1 ∩ S2 = ∅, and the elements of S1 are
not comparable to the elements of S2. A poset S = Z1 � · · · � Zp is primitive if the Zi

are chains, i = 1, . . . , p. We denote such S by (n1, . . . , np) if ni = |Zi|.
Any poset can be represented as S =

⊔p
i=1 Si, where the Si are connected com-

ponents. By Lemma 5, we have P (S) =
∑p

i=1 P (Si), and if S is primitive, then
P (S) =

∑p
i=1 ρ(ni) = ρ(n1, . . . , nt).

The role of quadratic forms in the theory of representations of quivers and posets is
well known (see [12]).

The norm of a relation, ‖S,≤ ‖ = infu∈P n
fS(u), was introduced in [2] in terms of the

form fS . Lemma 5 shows that, instead of ‖S,≤ ‖, it is natural to consider the function
P (S) = ‖S,≤ ‖−1. The following statement was proved in [2].

Proposition 8. S has finite (respectively, tame) type if and only if P (S) < 4 (respec-
tively, P (S) = 4).

With this viewpoint, Kleiner’s list of critical posets (see [8]) is the list of P -faithful
posets Si for which P (S) = 4.

Four posets of Kleiner’s list are primitive:

(I) (1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5),

and the fifth is
(4) � K,

where

K = = 〈2; 2〉 = ζ
(
1
1
2

)
.

It is easily seen that any chain is P -faithful, and Subsection 7 implies that K is also
P -faithful (P (K) = 2, 4). By Lemma 5, a disconnected poset is P -faithful if and only if
all its components are.
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The list of critical sets presented in [10],

(II) (1, 1, 1, 1, 1), (1, 1, 1, 2), (2, 2, 3), (1, 3, 4), (1, 2, 6), (6) � K,

can be characterized as the list of all S with the following properties:
1) P (S) > 4;
2) if S′ ⊂ S, then P (S′) ≤ 4.
The following statement plays a key role in the theory of representations of posets (see

[8, 10]).
A poset S is finitely represented (respectively, tame) if and only if S contains no subsets

of the form I (respectively, II).
It seemed natural to conjecture that all P -faithful posets are either chains or belong

to a collection for which K is the least representative. This was a reason for introducing
the notion of a P -faithful poset [3].

Now we show how the lists (I), (II) can be obtained from the characterization of the
(connected) P -faithful sets and formula (7). It is easy to check that P (S) = 4 for S ∈ I
and P (S) > 4 for S ∈ II (we recall Lemma 5 and formula (7)).

We say that a P -faithful poset S is utmost if P (S) ≥ 4 and P (S′) ≤ 4 for any S′ ⊂ S
(here S′ can be assumed to be P -faithful).

Lemma 15. Any nonprimitive utmost S is of the form K �Zm with m equal to 4 or 5.

Proof. Suppose S contains a connected component ζ(r), where {r} = q
t , t > 1, q < t,

(q, t) = 1. The characterization of the P -faithful posets implies that ω(S) < 4, because
otherwise S ⊃ S′ = (2, 1, 1, 1), ρ(2, 1, 1, 1) = 4 1

3 > 4. Consequently, t ≤ 3, and moreover,
if t = 3, then ζ(r) = S.

Let t = 3, and let 1 ≤ q ≤ 2. If [r] ≥ 2, then S ⊃ S′ = S \ {z−1 , z+
3 }. S′ is a primitive

poset containing (2, 3, 2), ρ(2, 2, 3) = 4 1
6 , ρ(S′) > 4. If [r] = 1, then either r = 1 1

3 or
r = 1 2

3 . We see that ρ(r) ≤ 1 1
4 , and then P (S) = 3ρ(r) < 4 (see (7)).

Let t = 2, and let S �= ζ(1 1
2 ) � Ŝ. If S = ζ(r), then P (S) = 2ρ(r) < 4 because

ρ(r) < 2 for any r. So, S = ζ(r) � Ŝ, r > 1 1
2 , i.e., r ≥ 2 1

2 , ζ(r) ⊃ {ζ(r) \ z−1 } ⊇ (2, 3). If
|Ŝ| > 1, then we can find S′ contained in S, containing (2, 2, 3) or (1, 1, 2, 3), and such
that P (S′) > 4. Hence, |Ŝ| = 1. Then [r] < 3, because otherwise ζ(r) ⊃ S′ = ζ(r)\z−1 ⊇
(3, 4), and P (S′�(1)) > 4 because ρ(3, 4, 1) > 4. For [r] = 2 we obtain P (S) < 4 because
P (ζ(2 1

2 )) = 2 · 1 3
7 , P (ζ(2 1

2 ) � (1)) = 26
7 + 1 (Lemma 5).

Finally, let S = ζ(1 1
2 ) + Ŝ (S �= ζ(1 1

2 ) because P (ζ(1 1
2 )) = 2, 4). If w(Ŝ) > 1, then

S ⊃ S′ = {ζ(1, 1
2 ) \ z−1 } � (1, 1) = (2, 1, 1, 1), ρ(S′) > 4. If Ŝ = Zm, then for m < 4

we have ρ(m) < 1, 6, and P (S) < 4, and for m > 5 we have S ⊃ S′ = (ζ(1 1
2 ) � Z5),

ρ(S′) > 4, P (K � Z4) = 4, P (K � Z5) = 4 1
15 . �

Proposition 9. A P -faithful S is utmost if and only if S ∈ I ∪ II.

Proof. If S is not primitive, then the claim follows from Lemma 15. Let S be primitive.
Then w(S) > 2 and S �∈ {(1, 1, n), (1, 2, 2), (1, 2, 3), (1, 2, 4)} (otherwise P (n1, . . . , nt) =
ρ(n1, . . . , nt) < 4). In the remaining cases direct inspection shows that if S �∈ I∪ II, then
S ⊃ S′ ∈ II, and if S ∈ I ∪ II, then S �⊃ S′ ∈ II. �

Since P (S) = 4 for S ∈ I and P (S) > 4 for S ∈ II, Propositions 8 and 9 imply the
main theorems of [8] and [10].

The P -faithful posets for which P = 4 play an important role in representation theory.
We do not know whether the same can be said about P -faithful posets with P = n > 4.
The primitive posets with P = 5 were listed in [14]. As a (probably unique) example of
a nonprimitive poset S with P (S) = 5 we mention ζ(3 1

2 ) � (17) (see (7) and Lemma 3).
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Example 4 in Subsection 3 presents a poset S such that C(S) = ∅ but S is not P -
faithful. We hope that the study of C(S) can be of interest for representation theory.
We note that in [2] the norm ‖P‖ of an arbitrary binary relation P (on a finite set) and
the corresponding notion of a P -faithful set were introduced (these notions can be used
for locally scalar representations (see [9]) in Hilbert spaces). However, in this case the
structure of the collection of all P -faithful sets is more complicated, and obtaining a full
description of such sets seems a difficult and interesting problem.
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