CORRECTIONS TO "ON THE RIEMANN-HILBERT-BIRKHOFF INVERSE MONODROMY PROBLEM AND THE PAINLEVÉ EQUATIONS"

A. ITS AND A. KAPAEV

In our joint paper with A. A. Bolibrukh [1] there is a technical mistake in the proof of Lemma 2. The lemma itself is correct, while its proof should be modified. First, in the definition of the norm of the space H_{+}on page 142 [English page 124], $|\lambda f(\lambda, x)|$ should be replaced with $|(1+|\lambda|) f(\lambda, x)|$. Second, the part of the text containing Proposition 1 and its proof should be altered as follows.

Proposition 1. The operators $P_{ \pm}[\cdot \stackrel{\circ}{g}]$, where $\stackrel{\circ}{g}(\lambda, x) \equiv g(\lambda, x)-I$, are bounded operators from H to $H_{ \pm}$.

Proof of the proposition (an adaptation of the technique of [2]). Each ω_{k} can be represented as the union of the domains ω_{k}^{+}and ω_{k}^{-}, in accordance with Figure 6. Assume that $\lambda \in \Omega_{+} \backslash \bigcup_{k} \omega_{k}^{+}$; then

$$
\frac{|\lambda|}{\operatorname{dist}}\left\{\lambda, \gamma_{+}\right\} \leq C_{\epsilon}
$$

for some positive constant C_{ϵ}. We have

$$
\begin{gathered}
\lambda P_{+}[f \stackrel{\circ}{g}](\lambda, x)=\frac{\lambda}{2 \pi i} \int_{\gamma^{+}} \frac{f(\mu, x) \stackrel{\circ}{g}(\mu, x)}{\mu-\lambda} \mu, \\
\left|\lambda P_{+}[f \stackrel{\circ}{g}](\lambda, x)\right| \leq \frac{|\lambda|}{2 \pi}\|f\|_{H}\|\stackrel{\circ}{g}\|_{H} \int_{\gamma^{+}} \frac{|d \mu|}{|\mu|^{2}|\mu-\lambda|} \\
\leq \frac{|\lambda|}{2 \pi \operatorname{dist}\left\{\lambda, \gamma_{+}\right\}}\|f\|_{H}\|\stackrel{\circ}{g}\|_{H} \int_{\gamma^{+}} \frac{|d \mu|}{|\mu|^{2}} \\
\leq \frac{C_{\epsilon}}{2 \pi}\|f\|_{H}\|\stackrel{\circ}{g}\|_{H} \int_{\gamma^{+}} \frac{|d \mu|}{|\mu|^{2}} \equiv C_{+} \cdot\|f\|_{H} .
\end{gathered}
$$

Similarly, if $\lambda \in \Omega_{-} \backslash \bigcup_{k} \omega_{k}^{-}$, then

$$
\begin{equation*}
\left|\lambda P_{-}[f \stackrel{\circ}{g}](\lambda, x)\right| \leq C_{-} \cdot\|f\|_{H} \tag{54}
\end{equation*}
$$

Suppose now that $\lambda \in \omega_{k}^{+}$. Then we can use identity (53) and rewrite $\lambda P_{+}\left[f_{g}^{\circ}\right](\lambda, x)$ as

$$
\begin{equation*}
\lambda P_{+}\left[f f^{\circ}\right](\lambda, x)=\lambda f(\lambda, x) \stackrel{\circ}{g}(\lambda, x)-\lambda P_{-}\left[f f_{g}^{\circ}\right](\lambda, x) \tag{55}
\end{equation*}
$$

On the other hand, $\lambda \in \omega_{k}^{+} \Longrightarrow \lambda \in \Omega_{-} \backslash \bigcup_{k} \omega_{k}^{-}$, so that we can use (54) on the right hand side of (55). Therefore (cf. [2] and the proof of Lemma A. 1 in [1, Appendix 1]), we obtain

$$
\left|\lambda P_{+}[f g](\lambda, x)\right| \leq C_{+}^{\prime} \cdot\|f\|_{H}
$$

if $\lambda \in \omega_{k}^{+}$. In other words, we have the inequality

$$
\left|\lambda P_{+}\left[f^{\circ} g\right](\lambda, x)\right| \leq C^{\prime \prime} \cdot\|f\|_{H}, \quad C^{\prime \prime}:=\max \left\{C_{+}, C_{+}^{\prime}\right\}
$$

for all $(\lambda, x) \in \overline{\Omega_{+}} \times \mathcal{K}$. Together with the estimate

$$
\begin{aligned}
\left|\left(P_{+}^{g} f\right)(\lambda, x)\right| & \leq \frac{1}{2 \pi}\|f\|_{H}\left\|\odot_{g}\right\|_{H} \int_{\gamma^{+}} \frac{|d \mu|}{|\mu|^{2}|\mu-\lambda|} \\
& \leq \frac{1}{2 \pi \operatorname{dist}\left\{\lambda, \gamma_{+}\right\}}\|f\|_{H}\|\stackrel{\circ}{g}\|_{H} \int_{\gamma^{+}} \frac{|d \mu|}{|\mu|^{2}} \equiv \tilde{C}_{+} \cdot\|f\|_{H}, \quad|\lambda| \leq \frac{\rho}{2}
\end{aligned}
$$

this implies

$$
\left\|P_{+}[f \stackrel{\circ}{g}]\right\|_{H_{+}} \leq C \cdot\|f\|_{H}, \quad C:=\max \left\{C^{\prime \prime}, \tilde{C}_{+}\right\}
$$

Similarly,

$$
\left\|P_{-}[f g]\right\|_{H_{-}} \leq C^{\prime} \cdot\|f\|_{H}
$$

and the proposition is proved.
The rest of the proof of Lemma 2 is unchanged. It is though worth noticing that $P_{+} \stackrel{\circ}{g} \in H_{+}$. This fact follows from the existence of the asymptotic expansion of the function $\stackrel{\circ}{g}(\lambda, x)$ over λ^{-1} as $\lambda \rightarrow \infty, \lambda \in \Omega_{0}$.

We have also noticed the following misprints in the text of the paper.
(1) In the definition of $M(\lambda, x)$ on the top of page 138 [English page 121], the matrix product $S_{k-1} \cdots S_{1}$ should be replaced by $S_{k-1}^{-1} \cdots S_{1}^{-1}$.
(2) In Figure 3, the shaded domain includes the circular hole in the middle of the picture (there should be no hole).
(3) Equation (48) on page 141 [English page 123] is, in fact, the equation for the matrix $g^{-1}(\lambda, x)$. Accordingly, in equation (49) on same page, the matrix $G_{k}(\lambda, x)$ should be replaced by its inverse.
(4) In Figure 7, the symbol $g_{k}^{-1}(\lambda, x)$ on the right part of the picture should be replaced by $g_{k-1}^{-1}(\lambda, x)$.

References

[1] A. A. Bolibruch, A. R. Its, and A. A. Kapaev, On the Riemann-Hilbert-Birkhoff inverse monodromy problem and the Painlevé equations, Algebra i Analiz 16 (2004), no. 1, 121-162; English transl., St. Petersburg Math. J. 16 (2005), 105-142. MR2069003 (2005d:34194)
[2] D. V. Anosov, A. A. Bolibrukh, The Riemann-Hilbert problem, Aspects Math., vol. E 22, Friedr. Vieweg, Braunschweig, 1994. MR 1276272 (95d:32024)

