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NOVIKOV HOMOLOGY, TWISTED ALEXANDER POLYNOMIALS,
AND THURSTON CONES

A. V. PAJITNOV

Abstract. Let M be a connected CW complex, and let G denote the fundamental
group of M . Let π be an epimorphism of G onto a free finitely generated Abelian
group H, let ξ : H → R be a homomorphism, and let ρ be an antihomomorphism
of G to the group GL(V ) of automorphisms of a free finitely generated R-module V
(where R is a commutative factorial ring).

To these data, we associate the twisted Novikov homology of M , which is a module
over the Novikov completion of the ring Λ = R[H]. The twisted Novikov homology
provides the lower bounds for the number of zeros of any Morse form whose coho-
mology class equals ξ ◦ π. This generalizes a result by H. Goda and the author.

In the case when M is a compact connected 3-manifold with zero Euler charac-
teristic, we obtain a criterion for the vanishing of the twisted Novikov homology of
M in terms of the corresponding twisted Alexander polynomial of the group G.

We discuss the relationship of the twisted Novikov homology with the Thurston
norm on the 1-cohomology of M .

The electronic preprint of this work (2004) is available from the ArXiv.

§1. Introduction

Let M be a closed manifold, f : M → S1 a circle-valued Morse function on M .
Let mk(f) denote the number of critical points of f of index k. The Morse–Novikov
theory provides lower bounds for the numbers mk(f) that are computable in terms of
the homotopy type of M and the homotopy class of f . The general method of obtaining
such bounds is outlined as follows (see [19, 6, 21, 23]). Consider a regular covering
P : M̄ → M with structure group G such that the function f ◦P : M̄ → S1 is homotopic
to zero (or equivalently, f lifts to a Morse function M̄ → R). The induced homomorphism
f∗ : π1(M) → Z can be factored through a homomorphism ξ = ξ(f) : G → Z.

Applying the standard method of counting gradient flow lines (see [39]), one obtains
a chain complex N∗ (the Novikov complex ) over a certain completion L̂ξ of the group
ring L = Z[G].1 The Novikov complex is freely generated over L̂ξ by the critical points
of ω, and its homology is isomorphic to the homology of the tensor product

(1) Ĉ∗(M̄, ξ) = L̂ξ ⊗L C∗(M̄),

where C∗(M̄) is the cellular chain complex of the covering M̄ . In particular, if the chain
complex (1) is not contractible, the function f must have at least one critical point.
Developing this observation further, one can obtain lower bounds for the numbers mk(f)
in terms of the numerical invariants of the homology of the chain complex (1).

Let us discuss different possible choices of the covering P. Certainly, the universal
covering M̃ → M contains the maximum amount of information. The disadvantage is
that the corresponding ring L̂ξ, being a completion of the group ring of the fundamental
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group, may be very complicated, and it can be difficult to extract the necessary numerical
data.

Another obvious possibility is the infinite cyclic covering

Pf : M̄f → M

induced by f from the universal covering R → S1. Here the ring L̂ξ is a principal ideal
domain, and the explicit lower bounds for the numbers of the critical points are easy to
deduce (see Subsection 2.1 for more details).

An intermediate choice is the maximal free abelian covering

Pab : Mab → M.

The structure group of this covering is equal to H1(M)/Tors. In this case, the Novikov
ring is a completion of the Laurent polynomial ring in several variables, and, in general,
its homology properties are rather complicated. But this choice has an advantage that
for any function f : M → S1 the function f ◦ Pab is homotopic to zero. This allows us
to study the dependence of the Novikov homology on the class

ξ = ξ(f) ∈ Hom(H1(M)/Tors, Z) ≈ H1(M, Z).

In particular, one can get some information about the set of all ξ such that the Novikov
homology

Ĥab
∗ (M, ξ) = H∗

(
Ĉ∗(Mab, ξ)

)
vanishes and, therefore, obtain information about the set of classes in H1(M, Z) = [M, S1]
representable by fibrations.

Definition 1.1. Let H be a finitely generated free Abelian group. Put

HR = H ⊗ R, H ′
R

= Hom(H, R) = Hom(H, Z) ⊗ R.

A closed cone in H ′
R

is a closed subset C such that v ∈ C ⇒ λ · v ∈ C for every λ ≥ 0.
An open cone in H ′

R
is an open subset D such that v ∈ D ⇒ λ ·v ∈ D for every λ > 0.

An integral hyperplane of the vector space H ′
R

= Hom(H, R) is a vector subspace of
codimension 1 in H ′

R
having a basis formed by elements of Hom(H, Z).

A connected component of the complement to a given hyperplane Γ will be called the
open half-space corresponding to Γ. The closure of an open half-space will be called the
closed half-space corresponding to Γ.

A closed cone that is the intersection of a finite family of closed half-spaces corre-
sponding to integral hyperplanes is called a closed polyhedral cone.

An open cone that is the intersection of a finite family of open half-spaces correspond-
ing to integral hyperplanes is called an open polyhedral cone.

A subset C ⊂ H ′
R

is called an open polyhedral conical subset if it is empty, or equals
H ′

R
\ {0}, or is a finite disjoint union of open polyhedral cones.

A subset A ⊂ H ′
R

is called a quasipolyhedral conical subset if there is an open poly-
hedral conical subset C and a finite union D of integral hyperplanes such that D ∪ C =
D ∪ A.

The next theorem follows from the main theorem of my paper [22], it is based on
earlier results of J.-ClṠikorav (see [21]).

Theorem 1.2. The set of all classes ξ ∈ H1(M, Z) such that the Novikov homology
Ĥab

∗ (M, ξ) vanishes is the intersection with H1(M, Z) of a quasi-polyhedral conical subset
of H1(M, R).2

2The results of [21] and [22] pertain actually to a more general case of arbitrary homomorphisms
π1(M) → R, and not only homomorphisms π1(M) → Z; see the discussion below.
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Now we proceed to non-Abelian coverings. In the joint work with Goda [11], we intro-
duced a new version of the Novikov homology. We call it the twisted Novikov homology.
The input data for the construction is: a connected CW complex M , a homomorphism
ξ : π1(M) → Z, and an anti-homomorphism ρ : π1(M) → GL(n, Z). The resulting
twisted Novikov homology groups are modules over the principal ideal domain Z((t)), so
the numerical invariants are easily extracted from the homological data. On the other
hand, the non-Abelian homological algebra of the universal covering of M is encoded
in this homology via the representation ρ. The construction of the twisted Novikov ho-
mology is motivated by the notion of the twisted Alexander polynomial for knots and
links. (See the papers [15] of Lin and [37] of M. Wada for the definition and properties
of the twisted Alexander polynomials, and the paper [9] of Goda, T. Kitano, T. Morifuji
for applications of twisted Alexander polynomials to fibering obstructions for knots and
links.)

The definition of the twisted Novikov homology generalizes immediately to the case
of arbitrary cohomology classes ξ ∈ H1(M, R). The input data for this construction is as
follows. Let R be a commutative ring. Let V be a finitely generated free left R-module.
Denote by GLR(V ) the group of all automorphisms of V over R. Let ρ : G → GLR(V )
be an antihomomorphism (that is, ρ(ab) = ρ(b)ρ(a) for all a, b ∈ G; ρ will also be called
a right representation). Let π : G → H be an epimorphism of G onto a free finitely
generated Abelian group H. Let ξ : H → R be a group homomorphism.

To this data array, we associate the twisted Novikov homology as follows. Let Λ =
R[H]; put V H = Λ ⊗R V ; define a right representation ρπ : G → GLΛ(V H) by the
formula

(2) ρπ(g)
(∑

i

λi ⊗ vi

)
=

∑
i

(
π(g)λi

)
⊗ ρ(g)vi.

Form the tensor product of the cellular chain complex C∗(M̃) of the universal covering
with the right ZG-module V H :

C̃∗(M, ρπ) = V H ⊗ZG C∗(M̃).

This is a chain complex of left free Λ-modules (observe that

rkΛ(C̃k(M, ρπ)) = n · rk Ck(M̃),

where n is the rank of V over R). Apply the tensor product with Λ̂ξ to obtain the chain
complex

(3) Ĉ∗(M, ρπ, ξ) = Λ̂ξ ⊗Λ C̃∗(M, ρπ).

Its homology

(4) Ĥ∗(M, ρπ, ξ) = H∗(Ĉ∗(M, ρπ, ξ))

is called the twisted Novikov homology. The twisted Novikov homology of our paper [11]
corresponds to the particular case when H = Z, and the homomorphism ξ : H → R
above is the inclusion Z ↪→ R.

The present generalization simplifies the statements of several theorems below. It also
has a geometrical background; it corresponds to Morse forms, while the framework of
our paper [11] was related to circle-valued Morse functions. (Recall that a closed 1-form
on a manifold M is called a Morse form if locally it is a differential of a Morse function.)
Namely, we have the following theorem.

Theorem 1.3. Let ω be a Morse form on a closed connected manifold M . Assume that
the cohomology class [ω] ∈ H1(M, R) = Hom(π1(M), R) can be factored as [ω] = ξ ◦ π,
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where π : π1(M) → H is an epimorphism onto a free Abelian group, and ξ : H → R is a
homomorphism. Then there is a chain complex N ρ

∗ such that
1) N ρ

k is a free Λ̂ξ-module with n ·mk(ω) free generators in degree k (where mk(ω)
stands for the number of zeros of the form ω of index k);

2) N ρ
∗ is chain homotopy equivalent to Ĉ∗(M̃, ρπ, ξ).

In particular, if the cohomology class [ω] contains a nowhere vanishing 1-form, then
the twisted Novikov homology Ĥ∗(M, ρπ, ξ) equals zero.

The most natural choice of the epimorphism π : π1(M) → H is the projection
π1(M) → H1(M)/tors onto the integral homology group of M modulo its torsion sub-
group. The corresponding twisted Novikov homology will be denoted by Ĥ∗(M, ρ, ξ).

Definition 1.4. A nonzero homomorphism

ξ ∈ Hom(H1(M), R) = Hom(H1(M)/Tors, R) = H1(M, R)

is called ρ-acyclic if the ρ-twisted Novikov homology Ĥ∗(M, ρ, ξ) vanishes. The set of all
ρ-acyclic classes will be denoted by Valg(M, ρ).

The reason for studying the ρ-acyclic classes is that any class ξ containing a nowhere
vanishing closed 1-form is ρ-acyclic for any representation ρ. An immediate generalization
of Theorem 1.2 leads to the following result about the algebraic structure of the set of
ρ-acyclic classes.

Theorem 1.5. For a given right representation ρ of π1(M), the set Valg(M, ρ) of all
ρ-acyclic classes ξ is a quasipolyhedral conical subset.

In general we do not know whether the set of all ρ-acyclic classes is an open polyhedral
conical subset. In other words, we can describe the structure of the set of all ρ-acyclic
classes only up to some finite union of hyperplanes in H1(M, R). However, in the case
when M is a 3-manifold, we have a much stronger assertion, which is the main result of
the present paper (see §5).

Theorem 1.6. Let M be a connected compact three-dimensional manifold (maybe with
nonempty boundary) such that χ(M) = 0. Let ρ be a right representation of π1(M). The
following statements are true.

1. The set Valg(M, ρ) of all ρ-acyclic classes ξ is an open polyhedral conical subset.
2. This subset is entirely determined by the twisted Alexander polynomial associated

with the group π1(M) and the representation ρ.

The open polyhedral cones forming the subset Valg(M, ρ) will be called ρ-acyclicity
cones. The theorem above implies that the set of all ρ-acyclic classes depends only on
the group π1(M) and the representation ρ.

Along with the twisted Alexander polynomials, the proof of the above theorem involves
additional polynomial invariants of the chain complexes, which we introduce in §3 and
call the Fitting invariants. These invariants are defined as the GCDs of the minors of
the second boundary operator of the chain complex (3). We show that they are directly
related to the Novikov homology, and in many cases the Novikov homology in degree one
can be computed from the sequence of the Fitting invariants. The twisted Alexander
polynomial is a much more sophisticated invariant, but it turns out that the image of
the twisted Alexander polynomial in the Novikov completion Λ̂ξ is essentially the image
of the corresponding Fitting invariant.

Theorem 1.6 is related to Thurston’s famous theorem [34], which implies that the set
V(M) of all classes ξ ∈ H1(M, R) representable by closed nowhere vanishing 1-forms is
a finite union of open polyhedral cones, namely the cones on certain faces of the unit
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ball of the Thurston norm on H1(M, R). We shall call these cones Thurston cones. For
every right representation ρ of π1(M) in GL(Zn), the set V(M) is contained in the set
Valg(M, ρ) of all ρ-acyclic classes:

V(M) ⊂ Valg(M, ρ),

so each Thurston cone is contained in a ρ-acyclicity cone. The ρ-acyclicity cones are
computable in terms of the twisted Alexander polynomial, which is in its turn computable
in terms of the Alexander matrix associated with any finite presentation of the group
π1(M). Thus, in a sense, the set Valg(M, ρ) is a computable upper bound for the set
V(M). Let

Valg(M) =
⋂
ρ

Valg(M, ρ),

where ρ ranges over the set of all right representations ρ of π1(M) in GL(Zn). Then we
have

(5) V(M) ⊂ Valg(M).

It is an interesting problem to investigate the relationship between the two sets, and in
particular answer the following question:

Question. For which manifolds does the identity V(M) = Valg(M) hold true?

We do not know examples of manifolds for which V(M) 
= Valg(M). On the other
hand, it is easy to construct manifolds for which

V(M) 
=
⋂

ρ∈Rf

Valg(M, ρ),

where Rf is the set of all right representations of G over finite fields (see Subsection 5.3).
For such manifolds, the right representations over finite fields are not sufficient to detect
all the cohomology classes representable by nonsingular 1-forms.

A certain amount of computation will be necessary to clarify the relationship between
V(M) and Valg(M) and answer the question above. The recent progress in the software
related to the computations of invariants of knots and links, especially Kodama’s KNOT
program, allows us to hope that such computations can be carried out.

Electronic version. The e-print of the present paper (2004) is available at the ArXiv
(math.GT/0406498).

Notes on the terminology. Ring means an associative ring with a unit. For a ring
R, we denote by R• the multiplicative group of all invertible elements of R. Module
always means a left module if the contrary is not stated explicitly. The homology of a
space X with integral coefficients will be denoted by H∗(X). For a left module V over
a commutative ring R, we denote by GLR(V ) the group of all R-automorphisms of V .
When the ring R is clear from the context, we use the abbreviated notation GL(V ).
For a ring R, the symbol GL(n, R) denotes the multiplicative group of all invertible
(n × n)-matrices with coefficients in R.

§2. Twisted Novikov homology

2.1. Novikov homology.

Definition 2.1. Let G be a group, and let R be a commutative ring with a unit. Put

L = R[G]. Let ξ : G → R be a group homomorphism. Let ̂̂L be the set of all formal
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linear combinations (infinite in general) of the form λ =
∑

g∈G ngg, where ng ∈ R. For

λ ∈ ̂̂L and C ∈ R, put

sup (λ, C) = {g ∈ G | ng 
= 0, ξ(g) > C}.
The Novikov ring is defined as follows:

L̂ξ = {λ ∈ ̂̂L | sup (λ, C) is finite for every C ∈ R}.

(It is easy to show that the subset L̂ξ ⊂ ̂̂L has indeed a natural structure of a ring
containing L as a subring.)

Example 2.2. Let G be an Abelian finitely generated group. A homomorphism ξ :
G → R is called rational if ξ = λ · ξ0, where ξ0 : G → Z is a homomorphism and λ ∈ R.
Equivalently, ξ is rational if ξ = 0 or ξ(G) ≈ Z. When ξ is nonzero and rational, we have
an isomorphism

L̂ξ ≈ K[[t]][t−1], where K = R[Ker ξ],

so that the ring L̂ξ is a localization of the ring K[[t]] of power series. In particular, L̂ξ is
Noetherian.

Example 2.3. Let G be a free Abelian finitely generated group. In this case, L = R[G]
is isomorphic to the ring of Laurent polynomials in k variables (where k = rkG) with
coefficients in R.

When ξ : G → R is injective (such homomorphisms are also called totally irrational),
the algebraic properties of the ring L̂ξ are surprisingly simple.

Theorem 2.4. If ξ is totally irrational and R is a principal ideal domain, then the ring
L̂ξ is also a principal ideal domain.

For the case where R = Z, this theorem is due to J.-Cl. Sikorav (his proof was published
in [21]). The proof in the general case is similar. Observe that if R is a field, then L̂ξ is
also a field.

The main topological applications of these constructions are in the theory of Morse
forms. Let M be a closed connected C∞ manifold, and let ω be a Morse form on M .
Let [ω] ∈ H1(M, R) denote the de Rham cohomology class of ω; then [ω] can also be
identified with a homomorphism G = π1(M) → R. Let L̂[ω] denote the corresponding
Novikov completion of the ring L = ZG. The next theorem relates the homotopy type
of the completed chain complex

(6) Ĉ∗(M̃, [ω]) = L̂[ω] ⊗L C∗(M̃)

(where C∗(M̃) denotes the cellular chain complex of the universal covering of M) and
the geometrical properties of the form ω. Denote by Sk(ω) the set of zeros of ω of index
k, and by S(ω) the set of all zeros.

Theorem 2.5. There is a chain complex N∗ over the ring L̂[ω] such that:

1) Nk is freely generated over L̂[ω] by Sk(ω);
2) the chain complexes N∗ and Ĉ∗(M, [ω]) are chain homotopy equivalent.

For the case of integral classes [ω] ∈ H1(M, Z), the theorem follows from the existence
of the Novikov complex N∗(f, v) associated with a circle-valued Morse map f such that
df = ω and any transverse f -gradient v (see [23]). The case of rational classes [ω] ∈
H1(M, Q) follows immediately. For the case of 1-forms belonging to arbitrary cohomology
classes, see the later paper by Latour [14] and also the papers [30, 31] of Schütz.
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2.2. Twisted Novikov homology. In this subsection, we begin our study of the
twisted Novikov homology. Let M be a connected CW complex. Let ρ : G → GLR(V ) be
any right representation, π : G → H an epimorphism, and ξ : H → R a homomorphism.
In the introduction, with these data we associated a chain complex Ĉ∗(M, ρπ, ξ) over Λ̂ξ

(where Λ = R[H]). When ξ : H → R is a monomorphism and R is a principal ideal
domain, the ring Λ̂ξ is also a principal ideal domain. In this case, put

b̂i(M, ρπ, ξ) = rkΛ̂ξ
Hi(Ĉ∗(M ; ρπ, ξ)),

q̂i(M, ρπ, ξ) = t.n.Λ̂ξ
Hi(Ĉ∗(M ; ρπ, ξ))

(where t.n. stands for the torsion number of the module, i.e., the minimal possible number
of generators of its torsion submodule). Observe that if R is a field, then all the numbers
q̂i(M, ρπ, ξ) vanish.

Theorem 2.6. For a given right representation ρ and a given homomorphism π : G →
H, the numbers bk(M, ρπ, ξ) do not depend on the monomorphism ξ. There is a set
Γ ⊂ H ′

R
= Hom(H, R) which is a finite union of integral hyperplanes such that in every

connected component of the complement H ′
R
\ Γ the numbers q̂k(M, ρπ, ξ) do not depend

on ξ.

In the particular case of the trivial representation, this theorem is due to Sikorav (see
[21]); the proof in the general case is similar.

Corollary 2.7. There is an open polyhedral conical subset S ⊂ H ′
R

= Hom(H, R) such
that a monomorphism ξ : H → R is in S if and only if the Novikov homology Ĥ∗(M ; ρπ, ξ)
vanishes.

It is natural to ask whether we can drop the condition of injectivity for ξ in the
corollary above and still keep the conclusion of the corollary. I do not know if the answer
is positive in general, but this is the case when M is a compact connected 3-manifold
with χ(M) = 0, and π : G → H is the projection onto H = H1(M, Z)/Tors (see §5).

Let us proceed to the applications of the twisted Novikov homology in the theory of
Morse forms. Now we assume that M is a closed connected C∞ manifold. Let ω be a
Morse form on M . The de Rham cohomology class [ω] ∈ H1(M, R) of ω can be identified
with a homomorphism G = π1(M) → R. Let π : G → H be an epimorphism such that
[ω] factors through π, so that [ω] = ξ ◦ π, where ξ : H → R is a homomorphism.

Theorem 2.8. There is a chain complex N ρ
∗ over the ring Λ̂ξ such that:

1) N ρ
k is a free Λ̂ξ-module with n · mk(ω) free generators ;

2) the Λ̂ξ-modules H∗(N ρ
∗ ) and Ĥ∗(M ; ρπ, ξ) are isomorphic.

Proof. Let V̂ H = Λ̂ξ ⊗Λ V H ; the composition of the right representation ρπ with the
natural inclusion GLΛ(V H) ↪→ GLΛ̂ξ

(V̂ H) determines a right representation ρ̂π of G in

GLΛ̂ξ
(V̂ H). By using the factorization [ω] = ξ ◦ π, it is not difficult to check that the

representation ρ̂π extends to a structure of a right L̂[ω]-module on V̂ H , and we have

(7) Ĉ∗(M ; ρπ, ξ) = V̂ H ⊗
L̂[ω]

Ĉ∗(M̃, [ω]).

Now our theorem immediately follows from Theorem 2.5. �
Corollary 2.9. Let ω be a closed 1-form without zeros. Assume that

[ω] = ξ ◦ π ∈ Hom(G, R) = H1(M, R),

where ξ : H → R is a homomorphism and π : G → H is an epimorphism. Then
Ĥ∗(M ; ρπ, ξ) = 0.



816 A. V. PAJITNOV

Corollary 2.10. Let ω be a Morse form. Assume that

[ω] = ξ ◦ π ∈ Hom(G, R) = H1(M, R),

where ξ : H → R is a monomorphism and π : G → H is an epimorphism. Assume that
R is a principal ideal domain. Then

(8) mi(ω) ≥ b̂i(M, ρπ, ξ) + q̂i(M, ρπ, ξ) + q̂i−1(M, ρπ, ξ).

§3. Fitting invariants of chain complexes

Let A be a finitely generated module over a commutative ring Q. Let

0 ←− A ←− C0
λ←− C1

be a presentation for A with free finitely generated modules C0 and C1. By definition,
the kth Fitting ideal of A is the ideal generated by all (n − k) × (n − k)-minors of the
matrix of the homomorphism λ, where n = rkC0 (see [5, §20.2]).

In this section, we give a generalization of this construction and, for every chain
complex C∗ of free finitely generated Q-modules, we define a family of ideals of Q (the
Fitting ideals of C∗), which are chain homotopy invariants of C∗. If Q is a factorial ring,
each ideal has its greatest common divisor; thus the family of the Fitting ideals yields
a family of elements of Q, which are called the Fitting invariants of C∗. When Q is a
principal ideal domain, these invariants determine the homology of C∗ (see Subsection
3.3).

If C∗ is a chain complex over a noncommutative ring L and V is a left Q-module
that is also a right L-module, we can form the tensor product V ⊗L C∗ and consider the
Fitting invariants of the resulting complex. A particular case of this construction leads
to the well-known knot polynomials ∆k(t) of [4, Chapter 8]. We discuss this and similar
constructions in Subsections 3.4 and 3.6.

While the definition of the Fitting ideals for chain complexes is apparently new, many
similar constructions already exist in the literature. For instance, we mention the in-
variants of knots deduced from the representation spaces of the fundamental group of
the knot (see the paper [33] of Le Ty Kuok Tkhang), and the twisted Alexander–Fox
polynomials of Turaev (see [36]).

3.1. Matrices of homomorphisms: terminology. This subsection is purely termi-
nological: we describe the conventions with which we shall be working. Let R be a ring
(noncommutative in general). Let A and B be free finitely generated left modules over
R. Choose a finite basis {ei}1≤i≤k in A and a finite basis {fj}1≤j≤m in B. Let φ : A → B
be a module homomorphism. Write

(9) φ(ei) =
∑

j

Mijfj with Mij ∈ R.

The matrix (Mij) will be denoted by M(φ) and called the matrix of the homomorphism φ
with respect to the chosen bases. Thus the coordinates of the images φ(ei) of the basis
elements of A in B are the rows of the matrix M(φ) (which has k rows and m columns).
Here is the composition formula:

M(φ ◦ ψ) = M(ψ) · M(φ)

(where ψ : C → A, φ : A → B are homomorphisms of left modules and · stands for the
usual matrix product). This way of associating a matrix to a module homomorphism
will be called row-wise. For a free module A with k free generators, the map

φ �→ M(φ) : Hom(A, A) → Mat(k × k, R)

is therefore an antihomomorphism.
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In many recent textbooks on linear algebra, one finds another convention:

(10) φ(ei) =
∑

j

M̃jifi,

so that M̃(φ) = M(φ)T , and the coordinates of the images of the basis elements of A in
B form the columns of the matrix M̃ . This way of associating the matrix to a module
homomorphism will be called column-wise.

When the ring R is commutative, the convention (10) leads to the following composi-
tion formula:

M̃(φ ◦ ψ) = M̃(φ) · M̃(ψ);
therefore the map

φ �→ M̃(φ), Hom(A, A) → Mat(k × k, R)
is a ring homomorphism.

3.2. The Fitting invariants of chain complexes over commutative rings.

Definition 3.1. A chain complex

C∗ = {· · · ←− Ck
∂k+1←−−− Ck+1 · · · }

of left modules over a ring Q is called regular if every Ci is a finitely generated free
Q-module, and Ci = 0 for i < 0.

In this subsection, Q is a commutative factorial ring.

Definition 3.2. Let C∗ be a regular chain complex of Q-modules, and let k ∈ N. Choose
any finite bases in the modules Ck and Ck+1 and let M(∂k+1) be the matrix of ∂k+1 with
respect to these bases.

Let Is(∂k+1) denote the ideal in Q generated by all s×s-minors of M(∂k+1). (Here we
assume that s is an integer with 0 < s ≤ min(rkCk, rk Ck+1). If s > min(rkCk, rkCk+1),
then we put Is(∂k+1) = 0 by definition, and for s ≤ 0 we put Is(∂k+1) = Q.)

The following lemma is a well-known consequence of the Binet–Cauchy formula (see,
for example, [17, p. 25]).

Lemma 3.3. The ideal Is(∂k+1) does not depend on the particular choice of bases in Ck

and Ck+1.

It is clear that, in general, the ideal Is(∂k+1) is not an invariant of the homotopy
type of the chain complex. However, we can reindex the sequence Is(∂k+1) and obtain
homotopy invariants.

Definition 3.4. Put

J (k)
m (C∗) = Irk Ck−rk Ck−1−m+1(∂k+1).3

Proposition 3.5. For any m and k, the ideal J
(k)
m (C∗) is a homotopy invariant of the

regular chain complex C∗.

Proof. Let F be a free finitely generated Q-module. Let T∗(i, F ) denote the chain com-
plex

T∗(i, F ) = {0←−· · · 0 ←− F
id←− F←−0←−· · ·}

concentrated in degrees i and i + 1. A chain complex isomorphic to a direct sum of
complexes T∗(i, F ) for some i ≥ 0 and some F will be called trivial. The following

3This reindexing may seem arbitrary, but we shall see that it fits with the usual notation for the knot
polynomials.
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lemma is a version of the Cockcroft–Swan theorem [2], the proof being similar to that of
Lemma 1.8 in [24]. �

Lemma 3.6. Let C∗ and D∗ be chain homotopy equivalent complexes. Then there are
trivial chain complexes T∗ and T ′

∗ such that C∗ ⊕ T∗ ≈ D∗ ⊕ T ′
∗.

Proof. Let
K∗ =

⊕
i∈Z

T (i, Ci).

This is a trivial chain complex. Let φ : C∗ → D∗ be a chain homotopy equivalence.
Define a chain map ψ : C∗ → D∗ ⊕ K∗ as follows:

ψ(c) = (φ(c), c, ∂c) ∈ Di ⊕ Ci ⊕ Ci−1 for c ∈ Ci.(11)

It is clear that ψ is a chain homotopy equivalence that is a split monomorphism. The
quotient chain complex (D∗ ⊕ K∗)/Im ψ is a contractible chain complex of free finitely
generated modules. Thus, we obtain an exact sequence

(12) 0 −→ C∗
ψ−→ D∗ ⊕ K∗ −→ S∗ −→ 0,

where S∗ is a regular acyclic chain complex. Such a sequence splits (see, for example, [3,
13.2]), and we obtain an isomorphism

C∗ ⊕ S∗ ≈ D∗ ⊕ K∗.

It is easy to prove that there is a free trivial chain complex R∗ such that S∗⊕R∗ is trivial,
which completes the proof of the lemma with T∗ = S∗ ⊕ R∗ and T ′

∗ = K∗ ⊕ R∗. �
Now, we return to the proof of our proposition. By the preceding lemma, it suffices to

check the following easily proved assertion: the ideal J
(k)
m (C∗) does not change if we add

the chain complex T∗(i, F ) to C∗, where F is a finitely generated free Q-module, and i
equals one of the numbers k − 1, k or k + 1. �

Definition 3.7. The ideal J
(k)
m (C∗) is called the mth Fitting ideal of C∗. The GCD

(= the greatest common divisor) of all nonzero elements in the ideal J
(k)
m (C∗) will be

denoted by F
(k)
m (C∗) and called the Fitting invariant of C∗. This element is well defined

up to multiplication by invertible elements of Q. The sequence

(13) · · · ⊂ J (k)
m (C∗) ⊂ J

(k)
m+1(C∗) ⊂ · · ·

of the Fitting ideals will be called the Fitting sequence of C∗ in degree k. The subsequence
of (13) formed by all nontrivial ideals is called the reduced Fitting sequence of C∗ in degree
k.

Recall that an ideal I ⊂ Q is called nontrivial if I 
= 0, I 
= Q.
Observe that the length of the reduced Fitting sequence in degree k is at most rk Ck.

Lemma 3.8. Let S ⊂ Q• be a multiplicative subset of Q. Then, up to invertible elements
of S−1Q, we have

F (k)
m (C∗) = F (k)

m (S−1C∗).

Proof. It suffices to recall that the GCD of the elements of a factorial ring does not
change when the ring is localized. �

Remark 3.9. The Fitting invariants F
(k)
m for k ≤ 2 can be defined in a slightly more

general framework.

Definition 3.10. A chain complex C∗ of left Q-modules will be called 2-regular if Ci = 0
for i < 0 and C0, C1, and C2 are finitely generated free Q-modules.
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Using the same procedure as above, we can define the Fitting invariants F
(i)
m with

i ≤ 2 for any 2-regular chain complex over a commutative ring Q.

3.3. The case when Q is principal. Assume that Q is a principal ideal domain. We
shall show that in this case the sequence of Fitting invariants determines the homology
of the chain complex. We shall give only the statements of the theorems; the proofs are
obtained by applying the standard results on the structure of the modules over principal
ideal domains.

Let us begin with a theorem which shows how to compute the Betti numbers

bk(C∗) = rkQ Hk(C∗)

and the torsion numbers
qk(C∗) = t.n.Q Hk(C∗)

from the Fitting invariants. (Recall that the torsion number of a module X is the minimal
possible number of generators of the torsion submodule of X.) Let C∗ be a regular chain
complex of Q-modules, and let γk = rkCk. Consider the subsequence of the Fitting
sequence starting with J

(k)
−γk−1+1 = Iγk

(∂k+1):

J−γk−1+1, J−γk−1+2, . . .

Let Ak be the number of zero ideals in this sequence. Let κk be the cardinality of the
reduced Fitting sequence of C∗ in degree k.

Theorem 3.11. We have

bk(C∗) =Ak + Ak−1 − γk−1;(14)

qk(C∗) =κk.(15)

The torsion submodule of the homology is also determined by the Fitting invariants.
Write the reduced Fitting sequence in degree k as follows:

(16) I1, . . . , Iκk
.

Let θs be the GCD of all the elements of Is. Then θs+1 | θs for every s. Put λs = θs/θs+1.

Theorem 3.12. The elements λs ∈ Q are noninvertible, for every s we have λs+1 | λs,
and

TorsHk(C∗) ≈
κk⊕
i=1

Q/λiQ.

3.4. The twisted Fitting invariants of ZG-complexes. In this subsection, we apply
the Fitting invariants of the preceding subsection to construct invariants of chain com-
plexes over noncommutative rings. Modules over group rings are of primary importance
for us, and we limit ourselves to this case, although there are obvious generalizations.

Let G be a group, and let C∗ be a regular chain complex over L = ZG. Let θ : G →
GLQ(W ) be a right representation, where W is a finitely generated free Q-module over
a commutative factorial ring Q. We form the tensor product

C∗(θ) = W ⊗Q C∗;

the Fitting invariants F
(k)
m (W ⊗Q C∗) of this complex will be denoted by δ

(k)
m (C∗, θ) and

called twisted Fitting invariants of C∗.

Remark 3.13. As in Remark 3.9, we obtain the Fitting invariants δ
(k)
m (C∗, θ) ∈ Q, where

k ≤ 2 and C∗ is a 2-regular chain complex.
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In this paper we shall mainly be interested in the case when the ring Q is the group
ring of some free Abelian group, or a Novikov completion of such a group ring, or a
localization of such a group ring.

Let H be a free Abelian finitely generated group, R a commutative factorial ring.
The group ring R[H] will be denoted by Λ. Let V be a finitely generated free left R-
module. Let ρ : G → GLR(V ) be a right representation of G, and let π : G → H be an
epimorphism. Recall that in the Introduction a right representation ρπ : G → GL(V H),
where V H = Λ ⊗R V , was associated with these data.

Definition 3.14. Let C∗ be a regular chain complex over ZG. The Fitting invariant
δ
(k)
m (C∗, ρπ) ∈ Λ will be called the twisted Fitting invariant of C∗ with respect to (ρ, π).

In the rest of this subsection, we investigate the behavior of the Fitting invariants of
C∗ with respect to certain completions and localizations of the representation ρπ.

Definition 3.15. Let ξ : H → R be a nonzero homomorphism. An element x ∈ Λ =
R[H] is called ξ-monic if

x = x0h0 +
s∑

i=1

xihi with xi ∈ R, hi ∈ H,

where x0 ∈ R• and ξ(hi) < ξ(h0) for every i 
= 0. The multiplicative subset of all ξ-monic
elements will be denoted by Sξ. The ring S−1

ξ Λ will also be denoted by Λ(ξ).

The next proposition is immediate.

Proposition 3.16. An element x ∈ Λ is ξ-monic if and only if it is invertible in Λ̂ξ.

Therefore, the ring Λ(ξ) can be regarded as a subring of Λ̂ξ. Let ρ̃π,ξ denote the
composition

G −→ ρπ GLΛ(V H) ↪→ GLΛ(ξ)(Λ(ξ) ⊗Λ V H).
This is a right representation of G, and we obtain the corresponding twisted Fitting
invariants δ

(k)
m (C∗, ρ̃π,ξ). It is clear that

(17) δ(k)
m (C∗, ρπ,ξ) = δ(k)

m (C∗, ρ̃π,ξ).

Similarly, let ρ̂π,ξ denote the composition

G −→ ρπ GLΛ(V H) ↪→ GLΛ̂ξ
(Λ̂ξ ⊗Λ V H).

This is a right representation of G, and we obtain the corresponding twisted Fitting
invariants δ

(k)
m (C∗, ρ̂π,ξ).

In the rest of this subsection, we restrict ourselves to the particular case of R = Z,
although some of the results can be proved in a more general setting.

Proposition 3.17. Let ξ : H → R be a monomorphism. Let R = Z. Then

δ(k)
m (C∗, ρπ) = δ(k)

m (C∗, ρ̂π,ξ).

Proof. We shall reduce the proof to formula (17). �

Proposition 3.18 (see [21]). If ξ : H → R is monomorphic, then Λ(ξ) is a principal
ideal domain.

Corollary 3.19. For every two elements a, b ∈ Λ, we have

GCDΛ(a, b) = GCDΛ(ξ)(a, b) = GCDΛ̂ξ
(a, b).

The proposition follows immediately.
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Now we can explain how to compute the twisted Novikov homology of a chain complex
in terms of its twisted Fitting invariants. Let C∗ be a regular chain complex over L =
ZG. Let π : G → H be an epimorphism onto a free finitely generated Abelian group,
and let ρ : G → GL(V ) be a right representation, where V ≈ Zn is a free finitely
generated module over Z. Let ξ : H → R be a monomorphism, so that Λ̂ξ is a principal
ideal domain. Applying the results of Subsection 3.3, we obtain the following description
of the twisted Novikov homology.

Let γk = n · rk Ck, where n = rkZ V , and rk Ck is the number of free generators of Ck.
Consider the segment of the Fitting sequence of C∗(ρπ) = V H ⊗Λ C∗ in degree k starting
with J

(k)
−γk−1+1 = Iγk

(∂k+1):

J−γk−1+1, J−γk−1+2, . . .

Let Ak be the number of zero ideals in this segment. Let I1 ⊂ . . . ⊂ IBk
be the reduced

Fitting sequence of C∗(ρπ) in degree k, and let λs ∈ Λ be the GCD of the ideal Is. Then
λi | λj for i ≥ j. Let κk(ξ) be the number of non-ξ-monic elements λj .

Theorem 3.20. We have

b̂k(X, ρπ, ξ) = Ak + Ak−1 − γk−1;(18)

q̂k(X, ρπ, ξ) = κk(ξ).(19)

As for the torsion submodule in degree k, let θs = λs/λs+1 ∈ Λ.

Theorem 3.21. The elements θs ∈ Λ(ξ) are noninvertible. For every s,

θs+1 divides θs in Λ(ξ)

and

Tors Ĥk(X, ρπ, ξ) ≈
κk(ξ)⊕
i=1

Λ̂ξ/θiΛ̂ξ.

3.5. The twisted Fitting invariants of ZG-modules. Let G be a group, and let N
be a left ZG-module admitting a free finitely generated resolution

0 ←− R0 ←− R1 ←− R2←−· · ·
over ZG (so that the homology of R∗ vanishes in all dimensions except zero, and H0(R∗) ≈
N). Let Q be a commutative factorial ring, and let V a finitely generated free left Q-
module. Let θ : G → GL(V ) be a right representation of G. Consider the chain complex

(20) V ⊗ZG R∗

of free left Q-modules (the module V is endowed with the structure of a right ZG-module
via the representation θ). Observe that the twisted Fitting invariants

(21) F (k)
m (V ⊗ZG R∗)

depend only on N and θ, but not on the particular choice of the resolution R∗ (indeed,
any two resolutions are chain homotopy equivalent). For us, of principal importance are
the Fitting invariants corresponding to the second boundary operator.

Definition 3.22. The element F
(2)
m (V ⊗ZG R∗) ∈ Q will be called the mth Fitting

invariant (or det-invariant) of the pair (G, θ) and denoted by

δm(G, N, θ) = F (2)
m (V ⊗ZG R∗) ∈ Q.

This element is well defined up to multiplication by an invertible element of the ring Q.

Similarly, we obtain the Fitting invariants δm(G, N, θ) for the case when N is a free
left ZG-module admitting a 2-regular resolution (see Remarks 3.9 and 3.13).
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Example 3.23. Let K be an oriented knot; put G = π1(S3 \ K). Let N be an open
tubular neighborhood of K. Choose any finite CW decomposition of S3 \ N . The

cellular chain complex C∗(S̃3 \ N) is a free ZG-resolution of the module H0(S̃3 \ N) ≈ Z.
The canonical epimorphism ε : G → Z sending each positively oriented meridian to 1
extends to a ring homomorphism θ : ZG → (Z[Z])• = GL(1, Z[Z]). Clearly, the Fitting
invariant δ1(G, Z, θ) ∈ Z[Z] equals the Alexander polynomial of the knot. More generally,
δi(G, Z, θ) is the knot polynomial ∆i(t) (in the terminology of [4, Chapter 8]).

The previous example has a natural generalization. Let G be a finitely presented
group. The Abelian group Z endowed with the trivial action of G admits a 2-regular free
resolution. Let V be a free finitely generated left R-module, where R is a commutative
factorial ring, and let ρ : G → GLR(V ) be a right representation. Let π : G → H be a
homomorphism of G to a free abelian finitely generated group. Then we have the twisted
Fitting invariants corresponding to the right representation ρπ : G → GLΛ(V H), where
Λ = R[H].

Definition 3.24. The twisted Fitting invariant δm(G, Z, ρπ) ∈ Λ will also be denoted
by δm(G, ρπ). The first Fitting invariant δ1(G, Z, ρπ) will also be denoted by A(G, ρπ).

It turns out that the Fitting invariants with nonpositive indices vanish.

Lemma 3.25.
δm(G, ρπ) = 0 for m ≤ 0.

Proof. Pick a presentation of a group G, let g1, . . . , gs be the generators, and let r1, . . . , rl

be the relations. Write a 2-regular free resolution for Z over L = ZG as follows:

F∗ = {0 ←− L
∂1←− L

s ∂2←− L
l←−· · · };

here the free generators e1, . . . , es of the module F1 = Ls correspond to the generators
g1, . . . , gs of G and the homomorphism ∂1 is given by ∂1(ei) = 1 − gi. We can assume
that l ≥ s, and that t = π(g1) is one of the free generators of the Abelian group H. We
consider the image of our Fitting invariant in the fraction field R of R[H]. This element
coincides with the Fitting invariant of the chain complex

F∗ = Rn ⊗ZG F∗ = {0 ←− Rn ∂̃1←− Rns ∂̃2←− Rnl←−· · · }.
Observe that ∂̃1 is an epimorphism. Indeed, the restriction of ∂̃1 to the first direct
summand Rn of Rns equals 1 − tρ(g1) : Rn → Rn, and the determinant of this map is
nonzero, therefore invertible in R. Thus, the rank of the matrix ∂̃2 is at most n(s − 1),
and the first Fitting invariant that can be nonzero is

J
(2)
1 (F∗) = IrkF1−rkF0(∂2). �

The Fitting invariants of modules are useful for computation of the homology with
twisted coefficients. Let X be a connected finite CW complex, and put G = π1(X). Let
π : G → H be an epimorphism onto a free finitely generated Abelian group, and let ρ :
G → GL(V ) be a right representation, where V ≈ Zn is a free finitely generated module
over Z. Let C∗(X̃) denote the cellular chain complex of the universal covering of X.

Proposition 3.26. δi(C∗(X̃), ρπ) = δi(G, ρπ).

Proof. We have
H0(X̃) ≈ Z, H1(X̃) = 0.

The module H2(X̃) can be nonzero, and therefore the chain complex C∗(X̃) fails in
general to be a resolution of the module Z. Choose any subset S ⊂ C2(X̃) generating the



NOVIKOV HOMOLOGY AND THURSTON CONES 823

ZG-submodule Z2(X̃) of 2-cycles in the complex C∗(X̃). Put L = ZG and let LS be the
free L-module generated by the set S. Extend the identity map S

id−→ S to an L-module
map φ : LS → C2(X̃). Put

C′
3 = C3(X̃) ⊕ L

S and ∂′
3 = (∂3, φ) : C′

3 → C2(X̃).

The chain complex C′
∗ is 2-regular, and its second homology vanishes. Applying the same

procedure to the third, fourth, etc. homology modules, we obtain an acyclic 2-regular
resolution D∗ of the module Z such that

C∗(X̃) ⊂ D∗ and Di/Ci(X̃) = 0 for i ≤ 2.

Thus,
δi(C∗(X̃), ρπ) = δi(D∗, ρπ) and δi(G, ρπ) = δi(D∗, ρπ). �

3.6. Fitting invariants of knots and links. Let L be an oriented link. Put G =
π1(S3 \L). The group G is finitely presented; therefore the module Z has a 2-regular free
resolution over ZG. Thus for any epimorphism π : G → H and any right representation
ρ : G → GLR(V ), we obtain a sequence of elements

δ1(G, ρπ), δ2(G, ρπ), . . . ∈ Λ = R[H],

defined up to multiplication by an invertible element of R.

Definition 3.27. The elements

δi(G, ρπ) = δi(π1(S3 \ L), ρπ)

are called the Fitting invariants of the link L.

We shall discuss these invariants and their relationship with Novikov homology in
more detail in §5.

§4. Twisted Alexander polynomials

We begin with a recollection of M. Wada’s definition of the twisted Alexander poly-
nomial (see [37] and also [12]); this occupies the first two subsections. In the rest of
the section, we discuss relations between the Fitting invariants and twisted Alexander
polynomials. The one-variable case and the multivariable case are slightly different from
each other and we consider them separately.

4.1. W-invariant of a matrix. Let L be a ring with a unit (noncommutative in gen-
eral); let λ : L → Mat(n × n, Λ) be a ring homomorphism, where Λ is a commutative
factorial ring.

In any matrix A over L, we can replace each of its matrix entries Aij by its image
with respect to λ. The result of this operation will be denoted by ψ(A); the size of ψ(A)
is n times the size of A. We have

ψ(A1A2) = ψ(A1)ψ(A2)

if the number of rows of A2 equals the number of columns of A1.
Now let B be an (l × s)-matrix with coefficients in L. Assume that l ≥ s − 1. Let

α =

⎛
⎜⎝

a1

...
as

⎞
⎟⎠

be a column of elements of L such that

(22) B · α = 0.
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We are going to associate an element

W = W (B, α, λ) ∈ Λ

with these data.
For an integer j with 1 ≤ j ≤ s, denote by Bj the l × (s − 1)-matrix obtained from

B by suppressing the jth column. We have the (nl × n(s − 1))-matrix ψ(Bj). Let
S = i1 < i2 < · · · < in(s−1) be a sequence of integers in [1, nl]. Let ψ(Bj)S denote
the square matrix formed by all the matrix entries of ψ(Bj) contained in the rows with
indices in S. From the condition (22), it is easy to deduce that for every i and j with
1 ≤ i, j ≤ s we have

(23) det
(
ψ(Bj)S

)
· det

(
ψ(ai)

)
= det

(
ψ(Bi)S

)
· det

(
ψ(aj)

)
.

Let Qj(B) denote the GCD of the elements det(ψ(Bj)S) over all S. This element is
defined up to multiplication by an invertible element of Λ.

Definition 4.1. Assume that there exists j with det
(
ψ(aj)

)

= 0. The element

W (B, α, λ) =
Qj(B)

det
(
ψ(aj)

)
of the fraction field of Λ will be called the W-invariant of the matrix B.

If l ≤ s − 1, we set W (B, α, λ) = 0 by definition.

4.2. Twisted Alexander polynomials: definition. Now we apply the construction
of the previous subsection to define the twisted Alexander polynomial. Let G be a finitely
presented group. Let π : G → H be an epimorphism of G onto a finitely generated free
Abelian group H. Let R be a commutative factorial ring, and let λ : G → GL(n, R) be a
group homomorphism. The tensor product of this homomorphism with π : G → R[H]•

gives rise to a ring homomorphism λπ : L = ZG → Mat(n × n, Λ), where Λ = R[H].
Pick a finite presentation p = (g1, . . . , gs | h1, . . . , hl) of the group G, with generators

gj and relators hi. Let ∂hi

∂gj
∈ ZG denote the corresponding Fox derivative.

Definition 4.2. The matrix

A = A(G, p) =
(∂hi

∂gj

)
∈ Mat(l × s, L)

will be called the Alexander matrix of the presentation p.

Let

α =

⎛
⎜⎝

1 − g1

...
1 − gs

⎞
⎟⎠ ∈ L

s.

We have
A · α = 0;

therefore the constructions of the previous subsection apply and we obtain the W-
invariant W (A, λπ, α) in the fraction field of R[H]. The ring R[H] being isomorphic
to the ring of Laurent polynomials in k variables with coefficients in R (where k = rkH),
the W-invariant can be viewed as a rational function of k variables with coefficients in
the fraction field of R[H]. Wada proved in [37] that this element does not depend on the
particular choice of the presentation p (up to multiplication by an invertible element of
Λ) and, therefore, is determined by λ and π.

Definition 4.3. The element W (A, λπ, α) of the fraction field of R[H] is denoted by
∆G,λ and called the twisted Alexander polynomial of G associated with λ and π.
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4.3. Relationship with the Fitting invariants: the one-variable case. In the
case when H ≈ Z, the ring Λ = R[H] is isomorphic to R[t, t−1]. By definition, the
twisted Alexander polynomial is an element of the field of fractions of the ring R[t].
Consider a multiplicative subset Σ ⊂ Λ consisting of all Laurent polynomials of the form
ait

i + · · · + ajt
j , where i, j ∈ Z, i ≤ j, and ai and aj are invertible elements of R.

Proposition 4.4. ∆G,λ(t) ∈ Σ−1Λ.

Proof. We can assume that the first generator g1 satisfies π(g1) = t ∈ R[t, t−1]. The
first coefficient of the polynomial det(1− tλ(g1)) equals 1, and the last coefficient equals
± det(ρ(g1)), which is an invertible element of R. �

Now we can proceed to the comparison of Fitting invariants and twisted Alexander
polynomials. Let ρ : G → GLR(V ) be a right representation of G, where V is a finitely
generated free left R-module. Choose a basis in V ; then we obtain a homomorphism

ρ : G → GL(n, R); ρ(g) = M(ρ(g)).

Proposition 4.5. The Fitting invariant A(G, ρπ) divides the twisted Alexander polyno-
mial ∆G,ρ in the ring Σ−1Λ.

Proof. Let g1, . . . , gs be generators of G, and let h1, . . . , hl be relators. The free resolution
of Z over L = ZG can be constructed as follows:

(24) F∗ = {0 ←− L
∂1←− L

s ∂2←− L
l←−· · · },

where

M(∂1) =

⎛
⎜⎝

1 − g1

...
1 − gs

⎞
⎟⎠

and M(∂2) equals the Alexander matrix A = A(G, p) corresponding to the presentation
p = (g1, . . . , gs | h1, . . . , hl) (see [1, Chapter 9]). The polynomial A(G, ρπ) is computed
from the chain complex F∗ = Λn ⊗ZG F∗. The matrix M(∂̃2) of the second boundary
operator in the chain complex F∗ is equal to the matrix ψ(A) of Subsection 4.1, where
ψ = ρπ. Now the proposition follows easily, since for every j the element Qj(A) in
Definition 4.1 is the GCD of a certain family of ((s − 1)n × (s − 1)n)-minors of M(∂̃2),
and A(G, ρπ) is the GCD of all ((s − 1)n × (s − 1)n)-minors. �

Proposition 4.6. If the group G has a presentation with s generators and s−1 relations
(for example, G is the fundamental group of the complement to a link in S3), then the
elements

A(G, ρπ) and ∆G,ρ ∈ Σ−1Λ

are equal up to multiplication by an invertible element of Σ−1Λ.

Proof. As before, we can assume that π(g1) = t ∈ R[t, t−1]. Suppressing the first n
columns of the matrix ψ(A), we obtain an (n(s − 1) × n(s − 1))-matrix M′. Up to
invertible elements of Σ−1Λ, we have

(25) detM′ = ∆G,ρ.

The boundary operator ∂′
1 in the localized complex

F ′
∗ = Σ−1F∗ = Σ−1Λ ⊗ZG F∗

is an epimorphism (see (24) for the definition of F∗), and it is easy to deduce that
the second boundary operator ∂′

2 in this complex is isomorphic to a homomorphism
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(0, φ) : Λn(s−1) → Λn ⊕Λn(s−1) where the matrix of φ equals M′. Thus, up to invertible
elements of Σ−1Λ we have

(26) detM′ = In(s−1)(∂2) = J
(2)
1 (F ′

∗) = J
(2)
1 (F∗) = A(G, ρπ),

and the proof is completed. �

4.4. Relationship with Fitting invariants: the multivariable case. If H ≈ Zk

with k ≥ 2, the ring Λ = R[H] is isomorphic to R[t1, t−1
1 , . . . , tk, t−1

k ]. In this case, the
twisted Alexander polynomial is an element of the ring Λ itself (cf. [37, p. 253]). Indeed,
choose a presentation p = (g1, . . . , gs | h1, . . . , hl) of G in such a way that π(g1) = t1 and
π(g2) = t2. Let ρ : G → GLR(V ) be a right representation of the group G, where V is a
free finitely generated R-module. Put

P1 = det(1 − t1ρ(g1)) and P2 = det(1 − t2ρ(g2)).

Then we have

P1 = 1 + a1t1 + · · · + antn1 , where an = ± det ρ(g1);(27)

P2 = 1 + b1t2 + · · · + bntn2 , where bn = ± det ρ(g2).(28)

Let A = A(G, p) denote the Alexander matrix for the presentation p. For any sequence
S = i1 < i2 < · · · < in(s−1) of integers, put

αS
1 = det ψ(A1)S and αS

2 = detψ(A2)S .

The property (23) implies that

(29) P2α
S
1 = P1α

S
2 for every S.

The polynomials P1 and P2 are relatively prime in Λ; therefore P1 | αS
1 in Λ, and

∆G,ρ =
Q1

P1
∈ Λ, where Q1 = GCDSαS

1 ,

as we claimed above. Moreover, from (29) it is easy to deduce the following:

GCDS

(
αS

1 , αS
2

) ∣∣∣ Q1

P1
,

and we obtain the following statement.

Proposition 4.7. The Fitting invariant A(G, ρπ) divides the twisted Alexander polyno-
mial ∆G,ρ in the ring Λ = R[H].

Now we proceed to an analog of Proposition 4.6 for the multivariable case. We intro-
duce the corresponding localization.

Definition 4.8. Let µ : H → R be any nontrivial group homomorphism.
1) We say that an element x ∈ Λ has µ-monic ends if

x = x0h0 +
∑a−1

i=1 xihi + xaha with xi ∈ R and hi ∈ H, where x0, xa ∈
R• and µ(h0) < µ(hi) < µ(ha), 0 < i < a.

2) The multiplicative subset of all the elements of Λ with µ-monic ends will be
denoted by Σµ ⊂ Λ.

Proposition 4.9. Assume that the group G has a presentation with s generators and
s− 1 relators. Then the images of the elements A(G, ρπ) and ∆G,ρ in the ring Σ−1

µ Λ are
equal up to invertible elements of this ring.

Proof. Similar to the proof of Proposition 4.6. �



NOVIKOV HOMOLOGY AND THURSTON CONES 827

It is natural to ask whether the Fitting invariant and twisted Alexander polynomial are
equal up to invertible elements of Λ, at least in the case of knot groups. I do not know
if this is true.

§5. Three-dimensional manifolds

In this section, we study the particular case of C∞ compact three-dimensional mani-
folds M of zero Euler characteristic. We prove Theorem 5.5, which gives a criterion for
the vanishing of the twisted Novikov homology of M in terms of the twisted Alexander
polynomial of π1(M) or, equivalently, in terms of the first Fitting invariant of π1(M).
The second main result of this section is Theorem 5.7. For a given right representation
ρ of π1(M) and for a given epimorphism π1(M) → H, this theorem describes the struc-
ture of all classes ξ ∈ H1(M, R) such that the ρ-twisted Novikov homology Ĥ∗(M, ρπ, ξ)
vanishes. It turns out that this set is an open conical polyhedral subset of H1(M, R). In
Subsection 5.3, we discuss the relationship between the twisted Novikov homology and
the Thurston norm; we also suggest a natural question about this relationship.

5.1. The twisted Novikov homology and the twisted Alexander polynomial
for 3-manifolds. Let M be a compact C∞ three-dimensional manifold with χ(M) = 0.
Write G = π1(M) and L = ZG. We begin with two lemmas, which describe the homotopy
type of the chain complex of the universal covering of M .

Lemma 5.1. Let M be a closed connected 3-manifold. Then the cellular chain complex
of its universal covering is chain homotopy equivalent to the chain

(30) C∗ = {0 ←− L
∂1←− L

l ∂2←− L
l ∂3←− L ←− 0},

where:

1) The matrix of ∂1 equals ⎛
⎜⎜⎜⎝

1 − g1

1 − g2

...
1 − gl

⎞
⎟⎟⎟⎠

and the elements g1, . . . , gl ∈ G generate the group G.
2) The matrix of ∂3 equals(

1 − ε1h1, 1 − ε2h2, . . . , 1 − εlhl

)
,

where hi ∈ G and εi = 1 if the loop hi preserves the orientation, and εi = −1 if
hi reverses the orientation. The elements h1, . . . , hl ∈ G generate the group G.

3) The matrix of ∂2 is the Alexander matrix associated with some presentation of
the group G.

Proof. The lemma follows immediately from the existence of the Heegaard decomposition
for closed three-dimensional manifolds. �

Lemma 5.2. Let M be a connected compact 3-manifold with nonempty boundary and
χ(M) = 0. Then the cellular chain complex of the universal covering M̃ is chain homo-
topy equivalent to the following one:

(31) C∗ = {0 ←− L
∂1←− L

l ∂2←− L
l−1 ←− 0},
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where the matrix of ∂1 equals ⎛
⎜⎜⎜⎝

1 − g1

1 − g2

...
1 − gl

⎞
⎟⎟⎟⎠

and the elements g1, . . . , gl ∈ G generate the group G. The matrix of ∂2 is the Alexander
matrix associated with some presentation of the group G.

Proof. Morse theory guarantees the existence of a Morse function f : M → R such that

f |∂M = const = max
x∈M

f(x)

and the number mi(f) of critical points of index i satisfies the following:

m0(f) = 1, m1(f) = m2(f), m3(f) = 0.

The cellular decomposition corresponding to f satisfies the requirements of the lemma.
�

We shall use these lemmas to study the twisted Alexander polynomial and the Fitting
invariants of M . Let V be a free finitely generated R-module (where R is a commutative
factorial ring), and let ρ : G → GLR(V ) be a right representation. Let π : G → H be an
epimorphism of G onto a free Abelian finitely generated group H. Let ξ : H → R be any
nontrivial homomorphism. Denote R[H] by Λ, and let Σξ be the multiplicative subset
of Laurent polynomials with ξ-monic ends (see Definition 4.8). Let

C̃∗ = Σ−1
ξ

(
V H ⊗L C∗

)
,

where V H is endowed with the structure of a right L-module determined by the rep-
resentation ρπ : G → GL(V H). Put Λ[ξ] = Σ−1

ξ Λ, and denote rkV by n. We have a
natural isomorphism

C̃1 ≈ Λn(l−1)
[ξ] ⊕ Λn

[ξ]

(where the first summand of the direct sum corresponds to the elements e1, . . . , el−1 of
the L-basis of C1, and the second summand corresponds to el). The projection of C̃1 onto
the direct summand Λn(l−1)

[ξ] will be denoted by p1. Similarly, the module C̃2 is naturally

isomorphic to Λn(l−1)
[ξ] in the case where ∂M 
= ∅ and to the direct sum Λn(l−1)

[ξ] ⊕Λn
[ξ] in

the case of closed manifolds. Let

(32) D = p1 ◦
(
∂2|Λn(l−1)

[ξ]

)
.

Proposition 5.3. Assume that

(33) ξ(gl) < 0,

and in the case where ∂1(M) = ∅ assume that, moreover,

(34) ξ(hl) < 0.

Then the chain complex C̃∗ is chain homotopy equivalent to a free Λ[ξ]-chain complex

(35) 0 ←− Λn(l−1)
[ξ]

D←− Λn(l−1)
[ξ] ←− 0,

concentrated in dimensions 1 and 2.
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Proof. We treat the case of closed manifolds, the case ∂M 
= 0 being similar. Observe
that the homomorphisms

1 − ρπ(gl), 1 − ρπ(hl) : Λn
[ξ] → Λn

[ξ]

are invertible. Therefore, using a standard basis change in the chain complex C̃∗, we can
split off from C̃∗ two trivial chain complexes

A∗ ≈ T∗(1, Λn
[ξ]) and B∗ ≈ T∗(2, Λn

[ξ]),

in such a way that the resulting chain complex is isomorphic to (35). �

Now we can establish the relationship between the twisted Alexander polynomial and
the Fitting invariant of a three-manifold.

Proposition 5.4. Let G be the fundamental group of a compact three-dimensional C∞

manifold M with χ(M) = 0. Let ρ : G → GLR(V ) be a right representation, where V is
a free finitely generated R-module over a factorial commutative ring R. Let π : G → H
be an epimorphism, where H is a free Abelian finitely generated group. Let ξ : H → R
be any nontrivial homomorphism.

Then the Fitting invariant A(G, ρπ) and the twisted Alexander polynomial ∆G,ρ are
equal up to multiplication by an invertible element of Λ[ξ].

Proof. We shall treat the case of closed manifolds, while the case where ∂M 
= ∅ is even
simpler, and we omit it.

The Fitting invariant of a chain complex depends only on its homotopy type and does
not change when we localize the base ring. Therefore, we can use the chain complex (35)
for computation of the image of A(G, ρπ) in the ring Λ[ξ] (we assume that the conditions
(33) and (34) hold true, which is easy to arrange by a permutation of the elements of
the basis). Thus, the image of A(G, ρπ) in the ring Λ[ξ] equals detD (up to invertible
elements of this ring).

To compute the twisted Alexander polynomial, we use the matrix of the boundary
operator ∂2 in (30). The (nl × nl)-matrix D′ = ψ(∂2) satisfies H ◦ D′ = 0, where
H = ψ

(
(1 − h1, . . . , 1 − hl)

)
.

Let D′′ denote the (nl × n(l − 1))-matrix obtained by suppressing the last n columns
of the matrix of ∂2. Using the invertibility over Λ[ξ] of the matrix 1 − ρπ(hl) and the
condition D′′ ◦ H = 0, we deduce that the last n rows of the matrix D′′ are linear
combinations of the first n(l − 1) rows. This implies that the GCD of the (n(l − 1) ×
n(l−1))-minors of the matrix D′′ equals the determinant of D. Therefore, we obtain the
following identity:

∆G,ρ̄ =
detD

det(1 − ρπ(gl))
,

and the proof is finished. �

Theorem 5.5. Let M be a connected compact C∞ manifold of dimension 3 with χ(M) =
0. Let G = π1(M), and let ρ : G → GLR(V ) be a right representation of the group
G, where V is a finitely generated free module over a commutative factorial ring R.
Let π : G → H be an epimorphism onto a free Abelian finitely generated group, and
let ξ : H → R be a nonzero homomorphism. Then the following four conditions are
equivalent.

1) The twisted Novikov homology Ĥi(M, ρπ, ξ) vanishes for all i.
2) The first twisted Novikov homology module Ĥ1(M, ρπ, ξ) vanishes.
3) The Fitting invariant A(G, ρπ) is ξ-monic.
4) The twisted Alexander polynomial ∆G,ρ is ξ-monic.
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Proof. Observe that the last two conditions are equivalent in view of Proposition 5.4.
Therefore, it suffices to prove that the first three conditions are equivalent. Proposi-
tion 5.3 implies that the twisted Novikov homology Ĥ∗(M, ρπ, ξ) is isomorphic to the
homology of the chain complex

(36) 0 ←− Λ̂n(l−1)
ξ

id⊗D←−−− Λ̂n(l−1)
ξ ←− 0,

concentrated in dimensions 1 and 2, and detD equals the Fitting invariant of M with
respect to ρ and ξ. The homology of the chain complex (36) vanishes for every i if and
only if it vanishes for i = 1, and both of these conditions are equivalent to the invertibility
of detD in Λ̂ξ. This latter condition holds true if and only if this determinant is invertible
in Λ(ξ). In the course of the proof of Proposition 5.4, we saw that the elements detD and
A(G, ρπ) are equal up to multiplication by invertible elements of Λ(ξ). Therefore, the
twisted Novikov homology vanishes if and only if the element A(G, ρπ) is ξ-monic. �

The previous theorem allows us to describe the structure of the set of all ξ such that
the Novikov homology Ĥ∗(M, ρπ, ξ) vanishes.

Definition 5.6. Let G = π1(M), and let ρ : G → GLR(V ) be a right representation
of the group G. Let π : G → H be an epimorphism onto a free Abelian finitely gener-
ated group. A nonzero cohomology class ξ ∈ H1(M, R) will be called (ρ, π)-acyclic if the
twisted Novikov homology Ĥ1(M, ρπ, ξ) vanishes. When the homomorphism π is clear
from the context, we shall say that ξ is ρ-acyclic.

Theorem 5.7. For a given right representation ρ : G → GLR(V ) and a given epimor-
phism π : G → H, the set of all (ρ, π)-acyclic classes ξ ∈ H1(M, R) is an open polyhedral
conical subset of H1(M, R). If R is a field, then the set of all (ρ, π)-acyclic classes is
either empty, or equals H1(M, R) \ {0}, or is the complement in H1(M, R) to a finite
union of integral hyperplanes.

Proof. The Fitting invariant A(G, ρπ) is an element of R[H]. The group H is isomorphic
to the integral lattice Zk ⊂ Rk ≈ H ⊗ R, and A(G, ρπ) is then identified with a Laurent
polynomial A in the variables t1, . . . , tk with coefficients in R. If A = 0, then no class ξ
is ρ-acyclic. If A is a monomial, A = α · h, where α ∈ R, and h ∈ H, then either

(1) α is invertible, and in this case all classes ξ are ρ-acyclic, or
(2) α is noninvertible, and in this case there are no ρ-acyclic classes.

Now, we consider the nondegenerate case when the Newton polytope P of the polynomial
A contains more than one point. For a homomorphism ξ : H → R, the polynomial A is
ξ-monic if and only if the polytope P has a vertex v such that:

1) the coefficient av of A corresponding to this vertex is an invertible element of R,
2) for every other vertex v′ of P we have ξ(v) > ξ(v′).

For a given vertex v, the set Γv of all ξ satisfying conditions 1) and 2) above is an
open polyhedral cone. Indeed, for a pair of vertices v, v′ of P, put

Γv,v′ = {ξ ∈ H1(M, R) | ξ(v) = ξ(v′)}
and

Γ+
v,v′ = {ξ ∈ H1(M, R) | ξ(v) > ξ(v′)},

so that Γ+
v,v′ is one of two open half-spaces corresponding to Γv,v′ . Then

Γv =
⋂
v′

Γ+
v,v′ .

The sets Γv are open polyhedral cones, which are disjoint for different v.
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Now let R be a field. The cases when A = 0 or A is invertible are treated as above.
When the Newton polytope P of A contains more than one vertex, the set of all (ρ, π)-
acyclic classes is the complement in H1(M, R) to the union of all the hyperplanes Γv,v′ .

�
5.2. Detecting fibered links. In this subsection we give a necessary condition for a
link in S3 to be fibered. First, we recall the definition of a fibered link and related
notions.

Definition 5.8. 1. Let V be a compact topological (n − 1)-manifold with ∂V 
= ∅,
and let h : V → V be a homeomorphism that restricts to the identity on ∂V .
Forming a mapping torus Vh and identifying (x, t) ∼ (x, t′) for each x ∈ ∂V and
t, t′ ∈ S1, we obtain a closed topological manifold. This manifold is denoted by
B(V, h).
A closed manifold M is called an open book decomposition if it is homeomorphic
to B(V, h) for some V and h. The images in M of fibers V × {t} (t ∈ S1) are
called pages of the open book, and the image of ∂V × {t} in M is called the
binding.

2. A C∞-embedding of the disjoint union of several copies of an oriented circle into
S3 is called an oriented link.

3. An oriented link L is said to be fibered if there is an orientation-preserving home-
omorphism

φ : S3 → B(F 2, h),
where F 2 is a compact oriented surface and the restriction of φ to L is an
orientation-preserving homeomorphism onto the binding ∂F of the open book.

For an oriented link L, let G = π1(S3 \ L). Let η : G → Z be a homomorphism that
sends every positive meridian of L to 1 ∈ Z. Form the corresponding completion L̂η of

the group ring L = ZG, and let C∗(S̃3 \ L) be the cellular chain complex of the universal
covering of the link complement.

If the link L is fibered, then the complement S3 \ L admits a fibration over a circle.
Although the manifold S3 \L is not compact, it turns out that the corresponding analog
of Theorem 2.5 holds true; this is the subject of the following proposition.

Proposition 5.9. If the link L is fibered, then

H∗
(
L̂η ⊗L C∗(S̃3 \ L)

)
= 0.

Proof. It is clear that S3 \ L is homotopy equivalent to the mapping torus F 2
h , where h

is a homeomorphism. The space F 2
h is homotopy equivalent to the mapping torus F 2

g ,
where g : F 2 → F 2 is a cellular map (see [28, Proposition 6.1]). Thus, our proposition is
a consequence of the following theorem. �
Theorem 5.10. Let X be a finite connected CW-complex. Let g : X → X be a cellular
map, and let Xg be the mapping torus. Let G = π1(Xg), and let η : G → Z be the
homomorphism induced by the projection f : Xg → S1. Put L = ZG and let L̂η be the
corresponding Novikov completion. Then

H∗
(
L̂η ⊗L C∗(X̃g)

)
= 0.

Proof. Let H = ker η, R = ZH, and

P = {λ ∈ L | sup λ ∈ η−1(] −∞, 0])},

P̂ = {λ ∈ L̂η | sup λ ∈ η−1(] −∞, 0])}.
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Pick any t ∈ G such that η(t) = −1. Then the ring P is isomorphic to the twisted
polynomial ring Rθ[t], and the ring P̂ is isomorphic to the twisted power series ring
Rθ[[t]] (where θ is the isomorphism of the ring R defined by x �→ txt−1). Denote by
Y → Xg the infinite cyclic covering induced by the natural projection f : Xg → S1 from
the universal covering R → S1. The function f lifts to a continuous function F : Y → R;
for each k ∈ Z the space F−1([k, k + 1]) is homeomorphic to the mapping cylinder Zg of
the map g : X → X. Let Yk = F−1(]−∞, k]). For every m < k, the inclusion Ym ⊂ Yk is
a homotopy equivalence. Let Ỹ be the universal covering for Y , which is also a universal
covering for Xg. Let Ỹk be the inverse image of Yk in Ỹ .

The cellular chain complex C∗(Ỹk) is a free finitely generated P -module. For every k,
we have

L̂η ⊗L C∗(Ỹ ) = L̂η ⊗P̂

(
P̂ ⊗P C∗(Ỹk)

)
;

thus it remains to show that the chain complex P̂ ⊗P C∗(Ỹ0) is acyclic. Observe that,
since the modules C∗(Ỹk) are free finitely generated P -modules, we have

P̂ ⊗P C∗(X̃0) = lim←−C∗(X̃0, X̃−k)

(where k ∈ N). Since the inclusion X−k ↪→ X0 is a homotopy equivalence, all chain
complexes C∗(X̃0, X̃−k) are acyclic.

Applying Theorem A.19 of [16], Appendix, we obtain:

H∗
(
lim←−C∗(Ỹ0, Ỹ−k)

)
≈ lim←−H∗(C∗(Ỹ0, Ỹ−k)) = 0,

which completes the proof. �

Now we apply this result to the twisted Novikov homology of the complement to a
fibered link. Let R be a commutative ring. Denote by ξ the inclusion Z ↪→ R, and
put Λ = R[Z]. Then the ring Λ̂ξ is identified with the ring R((t)), and the ring Λ(ξ) is
identified with the ring

R〈t〉 =
{ P (t)

tn · (1 + tQ(t))

∣∣∣ n ∈ Z and P, Q ∈ R[t]
}
⊂ R((t)).

The ξ-monic elements of Λ are identified with polynomials of the form µ(1 + tQ(t)),
where Q(t) ∈ R[t], and µ ∈ R is invertible. Invertible elements of Λ(ξ) = R〈t〉 are also
called monic. Let ρ : G → GLR(V ) be any right representation.

Proposition 5.11. If L is fibered, then the twisted Novikov homology Ĥ∗(S3 \ L, ρπ, ξ)
equals zero.

Proof. The proposition is deduced from Theorem 5.10 in the same way as Theorem 2.8
is deduced from Theorem 2.5. �

Observe that the space S3 \ L is homotopy equivalent to a compact 3-manifold with
boundary. Indeed, let N be an open tubular neighborhood of L in S3. Then S3 \ L has
the same homotopy type as S3 \ N . Theorem 5.5 implies the following result.

Corollary 5.12. Let G denote the group π1(S3 \ L). If the link L is fibered, then:

(1) the Fitting invariant A(G, ρπ) ∈ R[t, t−1] is monic;
(2) the twisted Alexander polynomial ∆G,ρ ∈ R〈t〉 is monic.
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This result is related to the theorem due to Goda, Kitano, and Morifuji [9]. Their
theorem says that if a knot K is fibered and ρ : π1(S3 \ K) → SL(n, F ) is a rep-
resentation (where F is a field), then the leading coefficient of the twisted Alexander
polynomial associated with ρ equals 1.

Our theorem is valid in a more general setting: it allows representations in GL(n, R),
where R is a factorial ring, and not only in SL(n, F ). On the other hand, for the
representations in SL(n, F ), the theorem of [9] gives much more information because
it guarantees that the leading coefficient of the twisted Alexander polynomial equals 1,
while Corollary 5.12 asserts only that this coefficient is nonzero, that is, the twisted
Alexander polynomial does not vanish.

5.3. Thurston cones and ρ-acyclicity cones. Let M be a closed three-dimensional
C∞ manifold. Put G = π1(M), L = ZG. Let V(M) ⊂ H1(M, R) be the subset of all
cohomology classes representable by closed 1-forms without zeros. Let

Vh(M) = {ξ ∈ H1(M, R) | H∗(L̂ξ ⊗L C∗(M̃)) = 0}.
For a given right representation ρ : π1(M) → GL(Zn), let Valg(M, ρ) be the subset of
all (ρ, π)-acyclic cohomology classes ξ, where π is the projection π1(M) → H1(M)/Tors.
From the results of the previous section, it follows that

(37) V(M) ⊂ Vh(M) ⊂ Valg(M) =
⋂

ρ∈R
Valg(M, ρ),

where R is the set of all right representations π1(M) → GL(Zn). The Thurston theorem
[34] implies that the set V(M) is an open conical polyhedral subset of H1(M, R). The
set Valg(M, ρ) is also an open conical polyhedral subset of H1(M, R), as it follows from
the results of the previous section.

Question. For which manifolds M are the inclusions (37) equalities?

For every ρ, the set Valg(M, ρ) is effectively computable from the twisted Alexander
polynomial or from the first Fitting invariant. Thus, the investigation of the inclusions
(37) will give much information on the structure of the set V(M). We think that computer
experiments can help here, and can clarify the problem (see paper [11] for an example
of application of Kodama’s program KNOT to a similar question). In the rest of this
section, we shall show that the properties of the inclusion (37) are quite sensitive to the
class of the representations that we consider. Let RF be the set of all representations
G → GL(Fn), where F is a finite field. We are going to show that there are closed
manifolds M with

V(M) 
=
⋂

ρ∈RF

Valg(M, ρ).

Let M be any 3-manifold with the following property (L):
L1) there is an open subset U ⊂ H1(M, R) such that no element of U contains a

nowhere vanishing 1-form;
L2) there is a nonzero class ξ0 ∈ H1(M, R) that contains a nowhere vanishing 1-form.
The existence of such manifolds was indicated in [34, pp. 125–127]. If M has property

(L), then the set V(M, ρ) of all ρ-acyclic classes is nonempty for every ρ, and by Theorem
5.7 this set equals H1(M, R) \ {0} or is the complement in H1(M, R) to a finite union
of integral hyperplanes (the case where V(M, ρ) = ∅ is excluded by the property L2).
Therefore, V(M, ρ) is open and dense in H1(M, R), and the intersection I of all sets
Valg(M, ρ) over all right representations in GL(Fn) (where F is a finite field) is a residual
subset. Thus, I intersects every open sublet of H1(M, R), in particular, U ∩ I 
= ∅,
and therefore there exist cohomology classes ξ ∈ H1(M, R) that are ρ-acyclic for every
representation ρ in GL(Fn), but not representable by a nowhere vanishing closed 1-form.
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The present paper is a second part of my joint work [11] with Goda. My special thanks
go to Hiroshi Goda for sharing his knowledge and insight in knot theory.

Thanks go also to A. Ranicki and Liam O’Carroll for providing useful references on
the Fitting invariants of modules.
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Sciences, 2, Rue de la Houssinière, 44072, Nantes, Cedex, France

E-mail address: pajitnov@math.univ-nantes.fr

Received 22/FEB/2006
Originally published in English


