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SYSTEMS OF DIAGRAM CATEGORIES AND K-THEORY. I

G. GARKUSHA

Abstract. With any left system of diagram categories or any left pointed dériva-
teur, a K-theory space is associated. This K-theory space is shown to be canonically
an infinite loop space and to have a lot of common properties with Waldhausen’s K-
theory. A weaker version of additivity is shown. Also, Quillen’s K-theory of a large
class of exact categories including the Abelian categories is proved to be a retract of
the K-theory of the associated dérivateur.

Introduction

The notion of a dérivateur was introduced by Grothendieck in [1, 2]. Independently,
similar constructions were investigated by Heller [3], Keller [4], and Franke [5] (the
so-called system of diagram categories). Basing on papers by Grothendieck [2] and
Franke [5], Maltsiniotis [6] introduced the notion of a triangulated dérivateur D, and
then (together with Keller) constructed the K-theory space K(D) for D. In his paper [7]
on the K-theory for triangulated dérivateurs, Maltsiniotis suggested three conjectures.
Our goal in this paper is to give partial affirmative solutions to the additivity and com-
parison conjectures.

It should be mentioned that we study not only triangulated dérivateurs but also the
K-theory K(B) of more general objects B as, for example, left systems of diagram
categories or left pointed dérivateurs. There are plenty of such objects in practice.

First we define the S.-construction for such B’s. Then the K-theory space K(B) is
defined as the loop space for |i.S.B|, where iSnB is the subcategory of isomorphisms
in each category SnB, n ≥ 0. The space K(B) is canonically an infinite loop space by
Segal’s machine [8]. As in Waldhausen’s K-theory [9], the additivity theorem implies
that the space K(B) can be considered in terms of the following connected Ω-spectrum.
Precisely, it is given by the sequence of spaces

Ω|i.S.B|, Ω|i.S.S.B|, . . . , Ω|i.S.nB|, . . . ,

where the multisimplicial objects i.S.nB, n ≥ 1, are obtained by iterating the S.-con-
struction. Though the additivity theorem remains open in the general case (see also [7,
Conjecture 3]), a weaker version holds true.

Theorem 6.5. The additivity theorem holds for the space Ω∞|i.S.∞B| = limn Ωn|i.S.nB|.
In fact, this theorem is proved under certain additional natural assumptions (see

below).
The strong form of additivity was proved for complicial dérivateurs in [10]. Very

recently, Cisinski and Neeman proved that additivity is true for triangulated dérivateurs
[11].

2000 Mathematics Subject Classification. Primary 19D99.
Key words and phrases. Systems of diagram categories, Grothendieck’s dérivateurs, algebraic K-
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We denote by Db(E) the dérivateur which is defined as the hypofunctor I �→ Db(EI),
where Db(EI) is the derived category for the exact functor category EI . Some relations
between Quillen’s K-theory K(E) and the K-theory K(Db(E)) can be obtained for a
large class of exact categories including the Abelian categories.

Theorem 7.1. Let E be an extension closed, full, exact subcategory of an Abelian category
A satisfying the conditions of the resolution theorem. That is,

(1) if 0 −→ M ′ −→ M −→ M ′′ −→ 0 is exact in A and M, M ′′ ∈ E , then M ′ ∈ E ;
(2) for any object M ∈ A there is a finite resolution 0 −→ Pn −→ Pn−1 −→ · · · −→

P0 −→ M −→ 0 with Pi ∈ E.
Then a natural map

K(ρ) : K(E) −→ K(Db(E))

has the property that, for some map p : K(Db(E)) −→ K(E), the map p ◦ K(ρ) is
homotopic to the identity map. In particular, each K-group Kn(E) is a direct summand
of Kn(Db(E)).

Theorem 7.1 gives a partial affirmative solution to the comparison conjecture of
Maltsiniotis. It also shows that the K-theory of dérivateurs is of a fairly complicated
nature.

I would like to thank Denis-Charles Cisinski and Amnon Neeman for helpful discus-
sions. I am also very grateful to A. I. Generalov for a careful reading of the manuscript.

§1. Systems of diagram categories

In this section the reader will face categorical formalities and definitions of concepts. A
lot of similar statements can also be found in [5]. Here we follow the original terminology
of Franke [5].

1.1. Notation. Let I be a category. For a subcategory J of I and x ∈ I, we shall
denote by J/x the following comma category. The objects are the pairs (y, ϕ), where
y ∈ J and ϕ : y −→ x is a morphism in I. The morphisms from (y, ϕ) to (y′, ϕ′) are
given by morphisms ψ : y −→ y′ in J such that ϕ = ϕ′ψ. The category J \ x consists
of pairs (y, ϕ) with y ∈ J and ϕ : x −→ y. The morphisms are similar to those of J/x.
If K ⊆ Ob I is a subclass of objects, we denote by I − K the full subcategory of I with
the class of objects I −K. In particular, if K = {x} has only one object, we still denote
this subcategory by I − x. If f : J −→ I is a functor, the categories f/x and f \ x have
objects (y ∈ J, ϕ : f(y) −→ x) and (y ∈ J, ϕ : x −→ f(y)). If f is the inclusion of a
subcategory, these categories coincide with J/x and J \ x.

Given a nonnegative integer n, we denote by ∆n the totally ordered set {0 < 1 < · · · <
n}. For i ≤ n + 1, the map di : ∆n −→ ∆n+1 is the monotone injection not containing i
in its image, and si : ∆n −→ ∆n−1 is the monotone surjection satisfying si(i) = si(i+1).

1.2. Axioms. For the notions of the 2-category and the 2-functor, we refer the reader
to [12]. In what follows we use the term “poset” as an abbreviation of “finite partially
ordered set”. Every poset can be regarded as a category in which Hom(x, y) has precisely
one element if x ≤ y, and is empty otherwise. The 2-category of posets (respectively, of
finite categories without cycles) will be denoted by Ord (respectively by Dirf).

Let Dia be a full 2-subcategory of the 2-category Cat of small categories that contains
the 2-category Ord. In what follows we assume that Dia satisfies the following conditions:

(1) Dia is closed under finite sums and finite products;
(2) for any functor f : I −→ J in Dia and for any object y of J , the categories f/y

and f \ y are in Dia.
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We shall also refer to Dia as a category of diagrams.
Given I ∈ Dia, let I� be the category I with an initial and final object � added. For

any x and y in I, there is a unique morphism from x to y in I� that factorizes through
�. We shall refer to this morphism as the zero morphism. If I ∈ Ord and x ≤ y, there
is yet another morphism from x to y in I�. Composition is defined in an obvious way.
Let Dia� be the 2-subcategory of the 2-category Cat. Its objects are those of Dia, and
its horizontal morphisms I −→ J are given by functors I� −→ J� mapping � to �. Let
bimorphisms be natural transformations between functors from I� to J�. Note that every
morphism f : I −→ J in Dia extends naturally to a morphism f� : I −→ J from Dia�:
f�(I) = f(I), f�(�) := �.

A presystem of diagram categories with domain Dia or simply a presystem of diagram
categories is a functor

(1) C : Dia�op −→ CAT

from Dia� to the category CAT of categories (not necessarily small) that satisfies the
functoriality axiom (see below). So, with each category I in Dia�, a category CI is
associated and each map f : I −→ J in Dia� gives rise to a functor f∗ = C(f) : CJ −→
CI .

Functoriality axiom. The following conditions are satisfied:
(a) with each natural transformation ϕ : f −→ g, a natural transformation ϕ∗ :

f∗ −→ g∗ is associated, and the maps f −→ f∗ and ϕ −→ ϕ∗ determine a functor from
Hom(I, J) to the category of functors from CJ to CI ;

(b) if

K
f �� I

g
��

g′
�� J

h �� L

are morphisms and ϕ : g −→ g′ is a bimorphism, then f∗ ◦ ϕ∗ = (ϕ ◦ f)∗ and ϕ∗ ◦ h∗ =
(h ◦ ϕ)∗.

From now on, we fix a category of diagrams Dia. With any category C we associate a
presystem of diagram categories that takes a category I in Dia� to the functor category

CI�

= Hom(I�, C)

and a map f : I −→ J to the map

f∗ : CJ� −→ CI�

, X �→ X ◦ f.

A morphism F : C −→ C′ between two presystems C and C′ of diagram categories
consists of the following data:

(1) for any I ∈ Dia�, a functor F : CI −→ C′
I is given;

(2) for any map f : I −→ J in Dia�, there is an isomorphism of functors ιF,f :
f∗F

∼−→ Ff∗.
We also assume that ιF,f satisfies the following conditions:
(a) ιF,1I

= 1F for any I ∈ Dia�;

(b) for any two maps I
f−→ J

g−→ K in Dia�, the diagram

f∗g∗F
ιF,gf ��

f∗ιF,g ����������� Ff∗g∗

f∗Fg∗
ιF,f g∗

�����������

is commutative;
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(c) for any bimorphism ϕ : f −→ g in Dia�, we have the following commutative square:

f∗F
ιF,f ��

ϕ∗F

��

Ff∗

Fϕ∗

��
g∗F

ιF,g

�� Fg∗.

A morphism F : C −→ C′ is an equivalence if for any I ∈ Dia� the functor F : CI −→ C′
I

is an equivalence of categories.
Let A,B,C be presystems of diagram categories. By the fiber product of a pair of

morphisms F : A −→ C and G : B −→ C we mean the following data:
(a) for any I ∈ Dia�, we have the category

∏
(F, G)I whose objects are the triples

(A, c, B), A ∈ AI , B ∈ BI , c : F (A) ∼−→ G(B),

and where a morphism from (A, c, B) to (A′, c′, B′) is a pair of morphisms (a, b) compat-
ible with the isomorphisms c and c′;

(b) for any map f : I −→ J in Dia�, we have a functor

f∗ = f∗∏
(F,G) :

∏
(F, G)J −→

∏
(F, G)I ,

defined by
(A, c, B) �→ (f∗

A(A), ιG,f ◦ f∗
C(c) ◦ ι−1

F,f , f∗
B(B)).

Proposition 1.1. The above data determine a presystem of diagram categories

(2)
∏

(F, G) : Dia�op −→ CAT .

Proof. We show that (2) is a functor. Consider two composable maps I
g−→ J

f−→ K in
Dia�. We have

ιG,gf
∗ ◦ g∗(ιG,ff∗(c)ι−1

F,f ) ◦ ι−1
F,gf

∗

= ιG,gf
∗ ◦ g∗(ιG,f )︸ ︷︷ ︸
ιG,fg

◦g∗(f∗(c)) ◦

ι−1
F,fg︷ ︸︸ ︷

g∗(ι−1
F,f ) ◦ ι−1

F,gf
∗ = ιG,fg(fg)∗(c)ι−1

F,fg.

Thus, (fg)∗ = g∗f∗ :
∏

(F, G)K −→
∏

(F, G)I .
Since the diagram

Ff∗(A)
ι−1
F,f ��

Fϕ∗

��

f∗F (A)
f∗(c) ��

ϕ∗F

��

f∗G(B)
ιG,f ��

ϕ∗G

��

Gf∗(B)

Gϕ∗

��
Fg∗(A)

ι−1
F,g

�� g∗F (A)
g∗(c)

�� g∗G(B)
ιG,g

�� Gg∗(B)

is commutative for any morphisms f, g : I −→ J and any bimorphism ϕ : f −→ g in
Dia�, the map

(f∗(A), ιG,ff∗(c)ι−1
F,f , f∗(B)) �→ (g∗(A), ιG,gg

∗(c)ι−1
F,g, g

∗(B))

yields a map ϕ∗ between f∗, g∗ :
∏

(F, G)J −→
∏

(F, G)I . The functoriality axiom is
verified by direct inspection. �
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Let ∆n = {0 < · · · < n} ∈ Dia. If no confusion is possible, we also denote ∆0 by 0.
Given I ∈ Dia and x ∈ I, we let ix,I : 0 −→ I be the functor that sends 0 to x. For
A ∈ CI , put Ax = i∗x,IA.

If I ∈ Dia, there is a natural functor

diaI : CI −→ Hom(I,C0)

constructed as follows. For any x ∈ I we put diaI(B)(x) = Bx. Every morphism
α : x −→ y in I yields a natural transformation α : ix,I −→ iy,I . Then diaI(B)(α) :=
α∗ : Bx −→ By.

In what follows we shall need the following axioms.

Isomorphism axiom. A morphism f : A −→ B in CI is an isomorphism if and only
if diaI(f) is an isomorphism in Hom(I,C0). In other words, it is an isomorphism if and
only if fx : Ax −→ Bx is an isomorphism for all x ∈ I.

Disjoint union axiom. (a) If the category I = I1 � I2 is the disjoint union of its full
subcategories I1 and I2, then the corresponding inclusions i1, i2 of the subcategories I1,
I2 into I determine an equivalence of categories

(i∗1, i
∗
2) : CI

∼−→ CI1 × CI2 .

(b) C∅ is a trivial category (having precisely one morphism between any pair of
objects).

Kan homotopy extension axioms. The Kan left homotopy extension axiom requires
that for any functor f : I −→ J , the functor f∗ : CJ −→ CI possesses a left adjoint
f! : CI −→ CJ . By symmetry, the Kan right homotopy extension axiom says that f∗

has a right adjoint f∗ : CI −→ CJ . Below we shall also refer to the functors f! and f∗
as to the left and right Kan homotopy extensions, respectively.

In the special case where f : I� −→ 0� comes from a unique functor I −→ 0, we shall
write Holim−−−→I for f! and Holim←−−−I for f∗.

Lemma 1.2. Let (f, g) be a pair of adjoint functors in Dia�, and let ϕ : fg −→ 1,
ψ : 1 −→ gf be the adjunction morphisms. Then (g∗, f∗) is a pair of adjoint functors
and ϕ∗ : g∗f∗ −→ 1, ψ∗ : 1 −→ f∗g∗ are the adjunction morphisms.

Proof. Straightforward. �
Definition. The functor (1) is called a left (respectively, right) system of diagram cate-
gories if the above axioms (the functoriality axiom, the isomorphism axiom, the disjoint
union axiom, and the left (respectively, right) Kan homotopy extension axiom) are sat-
isfied.

In what follows, a left and right system of diagram categories is called a bisystem of
diagram categories.

Example. Let C be a closed model category, and let I ∈ Dirf. There is a natural struc-
ture of a closed model category for CI (see [5]). Next, suppose that C has a zero object.
Denote by Ho CI the homotopy category obtained by inverting the weak equivalences.
There is a canonical functor CI −→ CI�

that extends an I-diagram to I�. It sends the
zero object and morphisms in I� to the zero object and morphisms in C. Therefore, any
functor f : I� −→ J� yields a functor f∗ : CJ −→ CI . Since it preserves weak equiva-
lences, it gives rise to a functor between homotopy categories. By [5, Subsection 1.3.2],
the functor

I ∈ Dirf �→ Ho CI

determines a bisystem of diagram categories of the domain Dirf.
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Given an arbitrary model category C, let C∗ denote the model category under the
terminal object ∗ (see [13, p. 4]). Then C∗ is pointed. By definition, its bisystem of
diagram categories with domain Dirf is the bisystem associated with C∗.

Let F : A −→ C be a morphism between two left systems A and C of diagram
categories, and let f : I −→ J be a map in Dia�. Consider the adjunction maps

α : 1 −→ f∗f! and β : f!f
∗ −→ 1.

Let γF,f denote the composed map

f!F
f!Fα−−−→ f!Ff∗f!

f!ι
−1
F,f f!−−−−−→ f!f

∗Ff!
βFf!−−−→ Ff!.

We say that F is right exact if γF,f is an isomorphism and the following two compatibility
relations are fulfilled:

(3) FαA = ιF,ff! ◦ f∗(γF,f ) ◦ αCF and FβA = βCF ◦ f!(ι−1
F,f ) ◦ γ−1

F,ff∗.

That is, FαA is the composition

F
αCF−−−→ f∗f!F

f∗(γF,f )−−−−−→ f∗Ff!
ιF,f f!−−−−→ Ff∗f!,

and FβA is the composition

Ff!f
∗ γ−1

F,f f∗

−−−−→ f!Ff∗ f!(ι
−1
F,f )

−−−−−→ f!f
∗F

βCF−−−→ F.

The notion of a left exact (respectively, exact) morphism between two right systems of
diagram categories (respectively, between two bisystems of diagram categories) is defined
similarly.

Proposition 1.3. Let F : A −→ C and G : B −→ C be two right exact (respectively,
left exact) morphisms between left systems of diagram categories (respectively, between
right systems of diagram categories); then the fiber product

∏
(F, G) is also a left system

of diagram categories (respectively, a right system of diagram categories).

Proof. It suffices to consider left systems of diagram categories. The case of a right
system is proved by symmetry. By Proposition 1.1,

∏
(F, G) is a presystem of diagram

categories. Obviously, it satisfies both the isomorphism axiom and the disjoint union
axiom. Thus, we must verify the Kan homotopy extension axioms.

Let f : I −→ J be a map in Dia�. We define a functor

f! :
∏

(F, G)I −→
∏

(F, G)J

as follows: (A, c, B) �→ (f!(A), γG,ff!(c)γ−1
F,f , f!(B)). Then the adjunction maps αA,B :

1 −→ f∗f! and βA,B : f!f
∗ −→ 1 determine adjunction maps for

∏
(F, G). To check this,

we need to check that the squares

FA
c ��

FαA

��

GB

GαB

��
Ff∗f!A

c′
�� Gf∗f!B

with c′ = ιG,ff! ◦ f∗(γG,f ) ◦ f∗f!(c) ◦ f∗(γ−1
F,f ) ◦ ι−1

F,ff! and

Ff!f
∗A

c′′ ��

FβA

��

Gf!f
∗B

GβB

��
FA c

�� GB
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with c′′ = γG,ff∗ ◦ f!(ιG,f ) ◦ f!f
∗(c) ◦ f!(ι−1

F,f ) ◦ γ−1
F,ff∗ are commutative.

We have the following commutative diagram:

FA
c ��

αCF

��

GB

αCG

��
f∗f!FA

f∗f!(c) ��

ιF,f f!◦f∗(γF,f )

��

f∗f!GB

ιG,f f!◦f∗(γG,f )

��
Ff∗f!A

c′
�� Gf∗f!B.

By (3), we obtain

GαB ◦ c = ιG,ff! ◦ f∗(γG,f ) ◦ αCG ◦ c = ιG,ff! ◦ f∗(γG,f ) ◦ f∗f!(c) ◦ αCF

= ιG,ff! ◦ f∗(γG,f ) ◦ f∗f!(c) ◦ f∗(γ−1
F,f ) ◦ ι−1

F,ff! ◦ FαA = c′ ◦ FαA.

Thus, the first square is commutative. The commutativity of the second square is checked
in a similar way. It is routine to verify that the two compositions

f∗ αf∗

−→ f∗f!f
∗ f∗β−→ f∗, f!

f!α−→ f!f
∗f!

βf!−→ f!

are identities (for f∗∏
(F,G) or, respectively, for f!

∏
(F,G)). This shows that the Kan homo-

topy extension axiom is fulfilled. �
1.3. Consequences of axioms. In this subsection we discuss some consequences of
the axioms. We also refer the reader to Franke’s paper [5].

1.3.1. Properties of the Kan homotopy extension functors. A map f : I −→ J
in Dia is a closed (open) immersion if it is a fully faithful inclusion such that, for any
x ∈ J , if Hom(I, x) �= ∅ (Hom(x, I) �= ∅), then x ∈ I. The following is straightforward.

Immersion lemma. Let f : I −→ J be a closed (respectively, open) immersion in Dia.
Then the map g : J� −→ I� that takes j ∈ J to j if j ∈ I and to � otherwise is a right
(respectively, left) adjoint to f�.

Proposition 1.4. Suppose C is a left system of diagram categories. Let f : I −→ J be
a functor, let x ∈ J , and let ix : J/x −→ J , jx : f/x −→ I, and l : f/x −→ J/x be the
canonical functors. If J is a poset, then for A ∈ CI we have isomorphisms

(f!A)x � Holim−−−→J/xi∗xf!A � Holim−−−→J/xl!j
∗
xA � Holim−−−→f/xj∗xA.

If C is a right system of diagram categories, a dual assertion is valid for projective
homotopy limits and right Kan homotopy extensions.

Proof. The proof is similar to that in [5, Subsection 1.4.2]. �
If f is the inclusion I ⊆ J of a full subcategory, where J is a poset, then for every object

x ∈ I the category f/x has a final object (x, idx). Therefore, the following statement is
true.

Corollary 1.5. Let C be a left system of diagram categories (respectively, right system
of diagram categories), and let f : I −→ J be the inclusion of a full subcategory, where J
is a poset. Then the canonical morphism A −→ f∗f!A in CI (respectively, f∗f∗A −→ A)
is an isomorphism for every object A ∈ CI .

Proposition 1.4 is often employed to reduce assertions about the functors f! and f∗
to similar assertions about Holim−−−→J and Holim←−−−J . The following proposition is concerned
with the replacement of J by a smaller category.
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Proposition 1.6. Suppose C is a left system of diagram categories. Let i : I� −→ J� be
some functor (typically, the inclusion of a subcategory). If i has a left adjoint of the form
l� with l : J −→ I, then Holim−−−→JA � Holim−−−→I i

∗A. Dually, suppose C is a right system of
diagram categories. If i has a right adjoint of the form r� for some functor r : J −→ I,
then Holim←−−−JA � Holim←−−−I i

∗A.

Proof. (1) Let l be a left adjoint of i. Then l! is naturally isomorphic to i∗. It follows
that Holim−−−→J = Holim−−−→I ◦ l! � Holim−−−→I ◦ i∗. �

1.3.2. Cartesian squares. Let � ∈ Dia be the poset ∆1 ×∆1 possessing the following
elements:

(0, 0)

��

�� (0, 1)

��
(1, 0) �� (1, 1),

where −→ stands for <. Let � ⊂ � be the subposet obtained by removing the lower
right corner (1, 1), and let � ⊂ � be the subposet containing all elements except for
(0, 0). Let i� : � −→ � and i� : � −→ � be inclusions. Let C be a right system of
diagram categories (respectively, a left system of diagram categories). An object A of C�
is said to be Cartesian (respectively, co-Cartesian) if and only if the canonical morphism
A −→ i�∗i

∗
�A is an isomorphism (respectively if and only if the canonical morphism

i�!i
∗
�A −→ A is an isomorphism).

Lemma 1.7. Let C be a left system of diagram categories. An object A of C� is co-
Cartesian if and only if A(1,1) � Holim−−−→�i∗�A. Dually, if C is a right system of diagram
categories, then an object A of C� is Cartesian if and only if A(0,0) � Holim←−−−�i∗�A.

Proof. Suppose C is a left system of diagram categories. Let A be an arbitrary object
of C�. By Corollary 1.5, the natural morphism

i∗�A −→ i∗�i�! i
∗
�A

is an isomorphism. Therefore, A(i,j) � i�!i
∗
�A(i,j) if (i, j) ∈ {(0, 0), (0, 1), (1, 0)}.

Proposition 1.4 shows that i�! i
∗
�A(1,1) � Holim−−−→�i∗�A, and the claim follows. �

From now on, all left or right systems of diagram categories are assumed to be systems
with domain Ord�. An object A of CI×�, I ∈ Ord, is said to be Cartesian if

A −→ (idI ×i�)∗(idI ×i�)∗A

is an isomorphism; the co-Cartesian objects are defined similarly, by replacing a right
system C of diagram categories with a left system of diagram categories, � with �,
and (idI ×i�)∗ with (idI ×i�)!, and by reversing the direction of the arrow. The isomor-
phism axiom and Proposition 1.8 below imply that an object A ∈ CI×� is Cartesian
(respectively, co-Cartesian) if and only if the object Ax,� = (ix,I × id�)∗A is Cartesian
(respectively, co-Cartesian) in C� for all x ∈ I.

Let C be a left system of diagram categories. For any object I of Ord, we denote by
C(I) the left system of diagram categories defined as C(I)J = CI×J . Here I plays the
role of a parameter.

Proposition 1.8. Let C be a left system of diagram categories, and let f : I −→ J be a
functor in Ord�. Then f gives rise to the right exact functor f∗ : C(J) −→ C(I) induced
by (f × 1K)∗ : CJ×K −→ CI×K with K ∈ Ord�. In particular, the functor f∗ respects
the co-Cartesian squares. A dual assertion is also valid for right systems of diagram
categories.
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Proof. For a map g : K −→ L in Ord�, we need to show that a natural morphism

γ : (1I × g)!(f × 1K)∗ −→ (f × 1L)∗(1J × g)!

is an isomorphism. Suppose A ∈ CJ×K and (x, y) ∈ I × L.
The map ϕx,y : 1×g/(x, y) −→ g/y, ((u, u −→ x), (v, g(v) −→ y)) �−→ (v, g(v) −→ y),

has a right adjoint ψx,y : g/y −→ 1×g/(x, y), (v, g(v) −→ y) �−→ ((x, x = x), (v, g(v) −→
y)). By Proposition 1.6, we have Holim−−−→1×g/(x,y) � Holim−−−→g/yψ∗

x,y.
Proposition 1.4 implies that

(1I × g)!(f × 1K)∗A(x,y) � Holim−−−→1I×g/(x,y)j
∗
(x,y)(f × 1K)∗A

� Holim−−−→g/yψ∗
x,yj∗(x,y)(f × 1K)∗A.

On the other hand,

(f × 1L)∗(1J × g)!A(x,y) = i∗(f(x),y)(1J × g)!A � Holim−−−→1J×g/(f(x),y)j
∗
(f(x),y)A

� Holim−−−→g/yψ∗
f(x),yj∗(f(x),y)A = Holim−−−→g/yψ∗

x,yj∗(x,y)(f × 1K)∗A.

Here we have used the relation j(f(x),y)ψf(x),y = (f × 1K)j(x,y)ψx,y. Thus, γ is an
isomorphism. It is routine to check the compatibility relations (3). �

Definition. Let C be a right (respectively, left) system of diagram categories. A square
in I is a functor i : � −→ I injective on the set of objects. Let A be an object of CI ; we
say that A makes the square i Cartesian (respectively, co-Cartesian) if i∗A is Cartesian
(respectively, co-Cartesian).

Proposition 1.9. Let C be a left system of diagram categories, and let i be a square
in a poset I. If the functor � −→ (I − i(1, 1)/i(1, 1)) possesses a left adjoint and if
A = f!B, where f : J −→ I is a functor not containing i(1, 1) in its image, then A makes
i co-Cartesian. A similar statement is valid if C is a right system of diagram categories,
the functor � −→ (I − i(0, 0) \ i(0, 0)) possesses a right adjoint, and A = f∗B, where
f : J −→ I is a functor not containing i(0, 0) in its image.

Proof. The proof is similar to that in [5, Subsection 1.4.5]. �

Proposition 1.10 (Concatenation of squares and the property of being (co-)Cartesian).
Let C be a left (respectively, right) system of diagram categories, let d0,1,2 : ∆1 −→ ∆2

be three monotone injections, and let A ∈ C∆2×∆1 . Suppose that (d2 × id∆1)∗A ∈ C�
is co-Cartesian (respectively, (d0 × id∆1)∗A ∈ C� is Cartesian). Then (d0 × id∆1)∗A is
co-Cartesian (respectively, (d2 × id∆1)∗A is Cartesian) if and only if (d1 × id∆1)∗A is
co-Cartesian (respectively, (d1 × id∆1)∗A is Cartesian).

Proof. The proof is similar to that in [5, Subsection 1.4.6]. �

Proposition 1.11. Let C be a left (respectively, right) system of diagram categories. For
every I, the category CI has a zero object and finite coproducts (respectively, products).
For every functor f : I −→ J , the functor f! (respectively, f∗) preserves coproducts
(respectively, products).

Proof. Let f : I� −→ ∅
� be the only functor. The inclusion g : ∅

� −→ I� is left and
right adjoint to f . It follows that g∗ is left and right adjoint to f∗. Therefore, if 0 ∈ C∅,
then the object f∗0 (we denote it also by 0) is a zero object in CI .

Let I � I be the disjoint union of two copies of I, and let p : I � I −→ I be the
functor that is the identity on both copies of I. By the disjoint union axiom, we have
CI�I � CI × CI . Hence, the functor p! provides the coproduct. Since the functor f! is
left adjoint to f∗, where f : I −→ J is a map in Dia, it preserves coproducts. �
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Let f : I� −→ J� be a map in Dia�, and let x ∈ I. If f(x) = �, then f∗Ax =

i∗x,If
∗A = 0 for any A ∈ CJ . Indeed, the composition 0� ix,I−→ I� f−→ J� factors as

0� j−→ ∅
� l−→ J�, whence f∗Ax = j∗l∗A = 0.

§2. Dérivateurs

2.1. Definitions. Let Dia be a category of diagrams. So far, we considered only func-
tors

C : Dia�op −→ CAT

evaluated on the category Dia�. The horizontal morphisms I −→ J in Dia� are given by
the functors I� −→ J� mapping � to �. Of particular interest are the functors

(4) D : Diaop −→ CAT

evaluated on the underlying category Dia. Here we follow the terminology of [7].
All the axioms of §1 can also be reformulated for morphisms and bimorphisms in Dia.

Definition. A functor of the form (4) is called a prédérivateur if it satisfies the func-
toriality axiom. It is a left (respectively, right) dérivateur if it satisfies the functoriality
axiom, the isomorphism axiom, the disjoint union axiom, the left (respectively, right)
Kan homotopy extension axiom, and the left (respectively, right) base change axiom (see
below).

Base change axiom. Let f : I −→ J be a morphism in Dia, and let x ∈ J . Consider
the following diagram in Dia:

f/x

↙αxp

��

jx �� I

f

��
0

ix,J

�� J,

where jx is a natural map and αx is the bimorphism

fjx −→ ix,Ip, αx : fjx(y, a : f(y) −→ x) = f(y) a−→ x = ix,Jp(y, a).

The bimorphism αx induces a bimorphism βx : p!j
∗
x −→ i∗x,If!, namely, the composition

p!j
∗
x −→ p!j

∗
xf∗f!

p!α
∗
xf!−−−−→ p!p

∗i∗xf! −→ i∗xf!.

The left base change axiom requires that βx be an isomorphism.
Symmetrically, the right base change axiom says that the diagram

f \ x

↗γxq

��

lx �� I

f

��
0

ix,J

�� J

yields an isomorphism δx : i∗x,If∗ −→ q∗l
∗
x.

The left and right dérivateurs will be called bidérivateurs.

Example. If a category C is closed under colimits, then the representable prédérivateur
associated with it is a left dérivateur. A typical example of a bidérivateur (with domain
Dirf) is given by the functor I �→ Ho CI with C a closed model category (see [14] for
details).
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In what follows, all left or right dérivateurs are assumed to have a fixed domain Dia.
The morphisms between two prédérivateurs and the fiber product of a pair of morphisms
are defined by analogy with the case of presystems of diagram categories. As before, it
can be proved that the fiber product of two morphisms is a prédérivateur, which is a left
(right) dérivateur whenever both morphisms are right (left) exact.

Proposition 2.1. Suppose D is a left dérivateur. Let f : I −→ J be a functor in Dia,
and let x ∈ J . Then for A ∈ DI we have the isomorphism

(f!A)x � Holim−−−→f/xj∗xA.

If D is a right dérivateur, then a dual assertion is valid for the projective homotopy limits
and the right Kan homotopy extensions.

Proof. Straightforward. �
If f is the inclusion I ⊆ J of a full subcategory, then for every object x ∈ I the

category f/x has a final object (x, idx). This leads to the following statement.

Corollary 2.2. Let D be a left (respectively, right) dérivateur, and let f : I −→ J be the
inclusion of a full subcategory. Then the canonical morphism A −→ f∗f!A (respectively,
f∗f∗A −→ A) in DI is an isomorphism for every object A of DI .

The notion of a (co-)Cartesian square is defined as before. Below we formulate state-
ments about (co-)Cartesian squares without proof. The proofs repeat those in the pre-
ceding section word for word.

Lemma 2.3. Let D be a left dérivateur. An object A of D� is co-Cartesian if and only
if A(1,1) � Holim−−−→�i∗�A. Dually, if D is a right dérivateur, then an object A of D� is
Cartesian if and only if A(0,0) � Holim←−−−�i∗�A.

For any object I of Dia, we denote by D(I) the left dérivateur defined by the rule
D(I)J = DI×J .

Proposition 2.4. Let D be a left dérivateur. Let f : I −→ J be a map in Dia. Then
f gives rise to the right exact functor f∗ : D(J) −→ D(I) induced by (f × 1K)∗ :
DJ×K −→ DI×K with K ∈ Dia. In particular, f∗ respects the co-Cartesian squares. A
dual assertion is also valid for the right dérivateurs.

Proposition 2.5. Let D be a left dérivateur, and let i be a square in I ∈ Dia. If the
functor � −→ (I − i(1, 1)/i(1, 1)) possesses a left adjoint and A = f!B, where f : J −→ I
is a functor not containing i(1, 1) in its image, then A makes i co-Cartesian. Let D be
a right dérivateur. A similar statement is true if the functor � −→ (I − i(0, 0) \ i(0, 0))
possesses a right adjoint and A = f∗B, where f : J −→ I is a functor not containing
i(0, 0) in its image.

Proposition 2.6 (Concatenation of squares and the property of being (co-)Cartesian).
Let D be a left (respectively, right) dérivateur, let d0,1,2 : ∆1 −→ ∆2 be three monotone
injections, and let A ∈ D∆2×∆1 . Suppose that (d2 × id∆1)∗A ∈ D� is co-Cartesian
(respectively, (d0 × id∆1)∗A ∈ D� is Cartesian). Then (d0 × id∆1)∗A is co-Cartesian
(respectively, (d2 × id∆1)∗A ∈ D� is Cartesian) if and only if (d1 × id∆1)∗A is co-
Cartesian (respectively, (d1 × id∆1)∗A ∈ D� is Cartesian).

Proposition 2.7. Let D be a left (respectively, right) dérivateur. For every I, the
category DI has an initial (respectively, final) object and finite coproducts (respectively,
products). For every functor f : I −→ J , the functor f! (respectively, f∗) preserves
coproducts (respectively, products).
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Proof. Let f : ∅ −→ I be the inclusion, and let 0 ∈ D∅. Since f! is a left adjoint to f∗,
it follows that f!0 (we denote it also by 0) is an initial object in DI .

Let I � I be the disjoint union of two copies of I, and let p : I � I −→ I be the
functor that is the identity on both copies of I. By the disjoint union axiom, we have
DI�I � DI ×DI . Hence, the functor p! provides the coproduct. Since f! is left adjoint to
f∗, where f : I −→ J is a map in Dia, f! preserves coproducts and f∗ preserves products
(whenever they exist). �

2.2. Pointed dérivateurs. The dérivateurs to be dealt with below will satisfy some
additional conditions. We start with definitions.

Definition. A left dérivateur is said to be pointed if the following three conditions are
satisfied:

(1) for any closed immersion f : I −→ J in Dia, the structure functor f! possesses a
left adjoint f?;

(2) for any open immersion f : I −→ J in Dia, the structure functor f∗ possesses a
right adjoint f∗;

(3) for any open immersion f : I −→ J in Dia and any object x ∈ J , the base change
morphism of the diagram

f \ x

↗γxq

��

lx �� I

f

��
0

ix,J

�� J

yields an isomorphism δx : i∗x,If∗ −→ q∗l
∗
x. The corresponding notion of a pointed right

dérivateur is defined in a similar way.

We note that for any open immersion f : I −→ J in Dia and any object x ∈ J , a right
adjoint q∗, where q : f \ x −→ 0 is a unique map, always exists. Indeed, if x is not in I,
then f \ x = ∅, and q∗ exists because ∅ −→ 0 is an open immersion. If x ∈ I, then f \ x

has an initial object (x, x = x), and we put q∗ = p∗, where 0
p�−→ (x, x = x) ∈ f \ x.

Let D be a left (right) pointed dérivateur. Then DI has a zero object for any I ∈ Dia,
because the inclusion ∅ −→ I is a closed and open immersion, whence 0 = f!0 (0 = f∗0)
is also a final (initial) object. Also, it follows that, for every open immersion f : I −→ J
in Dia and any object x ∈ J , the “value” f∗Ax at x, A ∈ DI , is equal to Ax if x ∈ I and
to 0 otherwise.

In what follows, a left and right pointed dérivateur will be referred to as a pointed
bidérivateur.

2.3. Example. If I ∈ Dirf and C is a Waldhausen category C, then the functor category
CI is also a Waldhausen category. A map F −→ G in CI is a cofibration (respectively,
weak equivalence) if so is F (x) −→ G(x) for every x ∈ I.

Definition. Let A be a category with finite coproducts and an initial object e. Assume
that A has two distinguished classes of maps, called weak equivalences and cofibrations.
A map is called a trivial cofibration if it is simultaneously a weak equivalence and a
cofibration. Following Brown [15], we call A a category of cofibrant objects if the following
axioms are satisfied.

(A) Let f and g be maps such that gf is defined. If two of f , g, gf are weak
equivalences, then so is the third. Any isomorphism is a weak equivalence.

(B) The composition of two cofibrations is a cofibration. Any isomorphism is a cofi-
bration.
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(C) Given a diagram

A
u←− C

v−→ B,

with v a cofibration (respectively, a trivial cofibration), the pushout A �C B exists and
the map A −→ A �C B is a cofibration (respectively, a trivial cofibration).

(D) Any map u in A can be factored as u = pi, where p is a weak equivalence and i
is a cofibration.

(E) For any object A, the map e −→ A is a cofibration.

For instance, the Waldhausen category of bounded complexes Cb(E) of an exact cat-
egory E in which the weak equivalences are quasiisomorphisms and the cofibrations are
componentwise admissible monomorphisms is a category of cofibrant objects.

Let C be a Waldhausen category of cofibrant objects, and let HoC denote the category
obtained from C by inverting weak equivalences. The notion of a homotopy for two maps
f and g can be introduced (see [15]). Consider the category πC with the same objects
as in C and with πC(A, B) equal to the quotient of C(A, B) by the equivalence relation
f ∼ g defined in terms of the homotopy. Then the class of weak equivalences in πC
admits calculation of left fractions [15]. If I ∈ Dirf, then, by [16, Subsection 1.31], the
functor category CI is a Waldhausen category of cofibrant objects.

Theorem 2.8 (Cisinski [16]). If C is a Waldhausen category of cofibrant objects, then
the hyperfunctor

DC : I ∈ Dirf �−→ DCI = Ho CI

determines a left pointed dérivateur with domain Dirf.

§3. The S.-construction

Throughout this section, B is assumed to be either a left system of diagram categories
(with domain Ord�) or a left pointed dérivateur (with domain Dia). Let Ar ∆n be the
poset of pairs (i, j), 0 ≤ i ≤ j ≤ n, where (i, j) ≤ (i′, j′) if and only if i ≤ i′ and j ≤ j′.
Regarded as a category, this poset can be identified with the category of arrows of ∆n.

For 0 ≤ i < j < k ≤ n, let

(5) ai,j,k : � −→ Ar∆n

be defined by the rule

(0, 0) �→ (i, j), (0, 1) �→ (i, k), (1, 0) �→ (j, j), (1, 1) �→ (j, k).

For n ≥ 0, we denote by SnB the full subcategory of BAr ∆n consisting of the following
objects X:

� for any i ≤ n, the object X(i,i) is isomorphic to zero in B0;
� if n > 1, then for any 0 ≤ i < j < k ≤ n the square a∗

i,j,kX is co-Cartesian.

The definition of SnB is similar to that of SnC, where C is a Waldhausen category (see [9]
for the details). Note that S0B is the full subcategory of zero objects in B0. The category
S1B consists of the objects X ∈ B∆2 such that X0 and X2 are isomorphic to zero.

Proposition 3.1. Let n ≥ 1, and let � : ∆n−1 −→ Ar∆n be the map that takes j to
(0, j + 1). Then the functor �∗ induces an equivalence of the categories SnB and B∆n−1 .

Proof. The proof splits into two steps.
I. We consider the left systems of diagram categories and the left pointed dérivateurs

separately.
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(a) Suppose B is a left system of diagram categories. Consider the following full
subcategory I of Ar ∆n:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0, 1)

��

�� (0, 2) �� · · · �� (0, n)

(1, 1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃

2≤i≤n

(i, i),

together with the map g : ∆n−1 −→ I, j �→ (0, j + 1). Since g is an open immersion, the
immersion lemma shows that g possesses the left adjoint f : I� −→ ∆n−1�, (0, j) �−→ j−1
and (i, i) �−→ �. Hence, f∗ is a right adjoint to g∗.

Let B̃I denote the full subcategory of BI consisting of the objects X ∈ BI such that
the X(i,i), 1 ≤ i ≤ n, are isomorphic to zero. We claim that f∗ and g∗ are mutually
inverse equivalences between B∆n−1 and B̃I . Indeed, f∗A ∈ B̃I for any A ∈ B∆n−1 , and
g∗f∗ = 1. On the other hand, the adjunction map B −→ f∗g∗B is an isomorphism for
every B ∈ B̃I .

(b) Suppose B is a left pointed dérivateur. Since g is an open immersion, the functor
g∗ possesses a right adjoint g∗. We show that g∗ and g∗ are mutually inverse equivalences
between B∆n−1 and B̃I . Indeed, the adjunction map g∗g∗ −→ 1 is an isomorphism by
Corollary 2.2. Since g is an open immersion, we see that g∗B is in B̃I for all B ∈ B∆n−1

(see the corresponding remarks on p. 968). It follows immediately that the adjunction
map B −→ g∗g

∗B is an isomorphism for every B ∈ B̃I .
II. Now, let h : I −→ Ar∆n be an inclusion. Propositions 1.9 and 2.5 imply that for

every A ∈ BI the object h!A makes all squares

(0, 0) �� (0, 1)

��

�� (0, 2)

��

�� · · · �� (0, n − 1)

��

�� (0, n)

��
(1, 1) �� (1, 2)

��

�� · · · �� (1, n − 1)

��

�� (1, n)

��
(2, 2) �� · · · �� (2, n − 1)

��

�� (2, n)

��
. . .

...

��

...

��
(n − 1, n − 1) �� (n − 1, n)

��
(n, n)

in the category Ar∆n co-Cartesian. By Propositions 1.10 and 2.6, the same is true for
all concatenations of squares.

Propositions 1.4 and 2.1 show that h!A(0,0) is isomorphic to zero. By Corollaries 1.5
and 2.2, the canonical morphism A −→ h∗h!A is an isomorphism for all A ∈ BI . Let
1 ≤ i ≤ n; then

0 � A(i,i) � h∗h!A(i,i) = h!A(i,i)
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for any A ∈ B̃I . Thus, h! takes an object A of B̃I to an object of SnB. We denote
the restriction of h! to B̃I by the same letter. To show that h! : B̃I −→ SnB is an
equivalence, we must check that the adjunction morphism

(6) h!h
∗B −→ B

is an isomorphism for any B ∈ SnB. By the isomorphism axiom, it suffices to prove
that this map is an isomorphism at each point (i, j) ∈ Ar∆n. Obviously, it is so at each
(i, j) ∈ I ∪ (0, 0).

Given 1 ≤ i < j ≤ n, consider the square a0,i,j : � −→ Ar∆n. We denote by α the
restriction of a0,i,j to �. The morphism (6) induces a morphism

(7) α∗h!h
∗B −→ α∗B,

and also a morphism

h!h
∗B(i,j) � Holim−−−→�α∗h!h

∗B −→ Holim−−−→�α∗B � B(i,j).

Here we have used Lemmas 1.7 and 2.3. We see that the latter morphism is an isomor-
phism whenever so is (7). Since Im α ⊂ I, it follows that (7) is always an isomorphism.
Thus, (6) is an isomorphism at each (i, j) ∈ Ar∆n; hence, h! and h∗ are mutual inverses
by the isomorphism axiom.

Since � = hg, the functor �∗ = g∗h∗ : SnB −→ B∆n−1 is an equivalence because so
are both g∗ and h∗ (see above). �
Remark. Observe that if B is a left system of diagram categories or a left pointed
dérivateur, then a quasiinverse to �∗ is given by h!f

∗ (h!g∗).

We denote by B(I) the left system of diagram categories or the left pointed dérivateur
defined as B(I)J = BI×J . Every map f : I −→ J yields a functor f∗ : B(J) −→ B(I).
Below we shall need the following statement.

Proposition 3.2. The structure functor f∗ : B(J)0 = BJ −→ B(I)0 = BI respects the
finite products and coproducts.

Proof. The proof is similar to that in [5, Subsection 1.4.7]. �
By Propositions 1.8 and 2.4, f∗ : B(J) −→ B(I) preserves the co-Cartesian squares.

Therefore, we obtain a functor

f∗ : SnB(J) −→ SnB(I)

(we denote it by the same letter), and for any bimorphism ϕ : f −→ g, the bimorphism
ϕ∗ induces a natural transformation of functors

SnB(J)
f∗

��

g∗
�� SnB(I) .

We put SnBI = SnB(I). Then SnB is a presystem of diagram categories or a prédéri-
vateur, respectively. S0B is trivial, and for n ≥ 1 Proposition 3.1 implies an equivalence

SnB � B(∆n−1).

Since B(∆n−1) is a left system of diagram categories or a left pointed dérivateur, so
is SnB. Thus, we obtain a simplicial left system of diagram categories (respectively, a
left pointed dérivateur)

S.B : ∆n �−→ SnB.

Consider the following simplicial category:

S.B : ∆n �−→ SnB.
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For any n ≥ 0, let iSnB denote the subcategory of SnB whose objects are those of SnB
and whose morphisms are isomorphisms in SnB, and let i.SnB be the nerve of iSnB.
We arrive at the following bisimplicial object:

i.S. : ∆m × ∆n �→ imSnB.

Lemma 3.3. The space |i.S.B| is connected.

Proof. A geometric realization of a bisimplicial set is the diagonal. If O1, O2 ∈ i0S0B
and f : O1 −→ O2 is a unique arrow in S0B connecting O1 and O2, then for A = σ0(f) ∈
i1S1B we have ∂0A = O2, ∂1A = O1. �

Definition. The Grothendieck group K0(B) is the group generated by the set of isomor-
phism classes [B] of objects of B0 with the relations [B] = [A] · [C] for every E ∈ S2B
such that E(0,1) = A, E(0,2) = B, and E(1,2) = C.

Lemma 3.4. π1|i.S.B| � K0(B).

Proof. π1|i.S.B| is the free group on π0|i.S1B| modulo the relations d1(x) = d2(x)d0(x)
for every x ∈ π0|i.S2B|. This follows from the relation π1|i.S0B| = 0 and the Bousfield–
Friedlander homotopy spectral sequence [17]. The set π0|i.S1B| is the set of isomorphism
classes of objects in B0, π0|i.S2B| is the set of isomorphism classes of objects in S2B,
and the maps di : S2B −→ S1B send E to E(1,2), E(0,2), and E(0,1), respectively. �

Let A be an exact category. Its bounded derived category Db(A) is constructed as
follows (here we use Keller’s definitions [18]).

Let Hb(A) be the homotopy category of the category of bounded complexes C =
Cb(A), i.e., the quotient category of C modulo homotopy equivalence. Let Ac(A) denote
the full subcategory of Hb(A) consisting of acyclic complexes. A complex

Xn −→ Xn+1 −→ Xn+2

is said to be acyclic if each map Xn −→ Xn+1 decomposes in A as Xn
en� Dn

mn� Xn+1,
where en is an (admissible) epimorphism and mn is an (admissible) monomorphism;

furthermore, Dn
mn� Xn+1

en+1� Dn+1 must be an exact sequence.
If an exact category is idempotent complete, then every contractible complex is acyclic.

Denote by N = NA the full subcategory of Hb(A) whose objects are the complexes
isomorphic in Hb(A) to acyclic complexes. There is another description of N . Let
A −→ Ã be the universal additive functor to an idempotent complete exact category
Ã. It is exact and respects exactness, and A is closed under extensions in Ã (see [19,
A.9.1]). Then a complex with entries in A belongs to N if and only if its image in Hb(Ã)
is acyclic. The category NÃ = Ac(Ã) is a thick subcategory in Hb(Ã). Note that a
complex over Ã is acyclic if and only if it has trivial homology computed in an ambient
Abelian category. It follows that N is a thick subcategory in Hb(A). Denote by Σ the
multiplicative system associated with N ; we call the elements of Σ quasiisomorphisms.
A morphism s is a quasiisomorphism if and only if in any triangle

L
s−→ M −→ N −→ L[1]

the complex N belongs to N .
The derived category is defined as follows:

Db(A) = Hb(A)/N = Hb(A)[Σ−1].

Clearly, a map is a quasiisomorphism if and only if its image in Cb(Ã) is a quasi-
isomorphism and if and only if its image in Db(A) is an isomorphism.
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Recall that the Grothendieck group K0(Db(A)) is defined as the group generated by
the set of isomorphism classes [B] of objects of Db(A) with the relations [B] = [A] + [C]
for every triangle A −→ B −→ C −→ A[1].

In accordance with [18] (consult also [16]), the hyperfunctor I �−→ Db(AI) yields a
pointed bidérivateur with domain Dirf. It will be denoted by Db(A).

Lemma 3.5. K0(Db(A)) = K0(Db(A)).

Proof. It suffices to observe that there is a one-to-one correspondence between the iso-
morphism classes of objects in S2Db(A) and the isomorphism classes of triangles in
Db(A) (see [16, 6] for the details). �
Definition. The algebraic K-theory for a small left system of diagram categories with
domain Ord� or for a left pointed dérivateur B with domain Dia is given by the pointed
space

K(B) = Ω|i.S.B|
(a fixed zero object 0 of B0 is taken as a basepoint). The K-groups of B are the homotopy
groups of K(B):

K∗(B) = π∗(Ω|i.S.B|) = π∗+1(|i.S.B|).
Convention. We shall also denote by 0 ∈ BI the object const∗0, where const : I −→ 0
is the constant map and 0 is the fixed zero object of B0. Let (L.s.d.c., Left pointed
dérivateurs) denote the corresponding categories of left systems of diagram categories
and left pointed dérivateurs and right exact functors. In order to make the map

(L.s.d.c., Left pointed dérivateurs) K−→ (Spaces)

functorial, in what follows we assume that ιF,f : f∗F −→ Ff∗ are identities for any right
exact morphism F : A −→ B and any map f in Dia.

Any right exact morphism F : A −→ B induces a map F∗ : K(A) −→ K(B) of spaces
and of their homotopy groups Ki(A) −→ Ki(B).

We can apply the S.-construction to each SnB, obtaining a bisimplicial left system
of diagram categories or a bisimplicial left pointed dérivateur, respectively. Iterating
this construction, we can form the multisimplicial object S.nB = S.S. · · ·S.B and the
multisimplicial categories iS.nB of isomorphisms. Assuming the additivity theorem, we
show that |i.S.nB| is the loop space of |i.S.n+1B| for any n ≥ 1 and that the sequence

Ω|i.S.B|, Ω|i.S.S.B|, . . . , Ω|i.S.nB|, . . .

forms a connected Ω-spectrum KB. In this case, the K-theory of B can be thought of
in terms of this spectrum. This does not affect the K-groups, because

πi(KB) = πi(K(B)) = Ki(B), i ≥ 0.

The additivity theorem remains open for K(B). Nevertheless, if the definition of K-
theory as Ω|i.S.B| is substituted with the infinite loop space

Ω∞|i.S.∞B| = lim
n

Ωn|i.S.nB|,

then the additivity theorem holds true (excluding pathological cases we never have in
practice).

Maltsiniotis [7] used the Q.-construction to define a K-theory space of a triangulated
dérivateur. This construction can be extended to arbitrary left systems of diagram
categories or left pointed dérivateurs if we replace bi-Cartesian squares in Maltsiniotis’
definition by co-Cartesian squares. To be more precise, it is given by the bisimplicial
category QB = {Qm,nB}m,n≥0 with Qm,nB being the full subcategory in B∆m×∆n such
that every X ∈ Qm,nB makes any square i : � −→ ∆m × ∆n co-Cartesian. Let iQB
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denote the corresponding maximal groupoid. Then i.QB is a trisimplicial object, and
the K-theory space is defined as Ω| diag(i.QB)|.

In accordance with [20], the resulting K-theory is equivalent to that defined above in
terms of the S.-construction. The proof is based on [9, p. 334] and can be carried over
to our setting without any problem.

§4. Simplicial preliminaries

Multisimplicial sets will arise naturally in this work. It will be important for us to be
able to handle them directly, without diagonalizing away all the structure. This direct
procedure depends on a couple of lemmas, which we give below. We formulate them
for bisimplicial sets, because the corresponding lemmas for multisimplicial sets can be
obtained as immediate consequences, by taking suitable diagonals.

Lemma 4.1 ([8]). Let X.. −→ Y.. be a map of bisimplicial sets. Suppose that the map
X.n −→ Y.n is a homotopy equivalence for every n. Then X.. −→ Y.. is a homotopy
equivalence.

Lemma 4.2 ([21, Subsection 5.2]). Let X.. −→ Y.. −→ Z.. be a sequence of bisimplicial
sets such that X.. −→ Z.. is constant. Suppose that X.n −→ Y.n −→ Z.n is a fibration
up to homotopy for every n. Suppose further that Z.n is connected for every n. Then
X.. −→ Y.. −→ Z.. is a fibration up to homotopy.

Lemma 4.3. Let A and B be two small simplicial categories such that the underlying
sets of objects form simplicial sets, and let iA and iB denote the corresponding simplicial
subcategories of isomorphisms. Then every equivalence F : A −→ B induces a homotopy
equivalence of bisimplicial objects F : i.A −→ i.B. In particular, if A and B happen to
be two left systems of diagram categories or two left pointed dérivateurs, then every right
exact equivalence F : A −→ B induces a homotopy equivalence F : i.S.A −→ i.S.B.

Proof. Straightforward. �

Let C and D be two simplicial objects in a category C and let ∆/∆1 denote the
category of objects over ∆1 in ∆; the objects are the morphisms ∆n −→ ∆1. For any
simplicial object C in C, let C∗ denote the composition

(∆/∆1)op −→ ∆op C−→ C,

(∆n −→ ∆1) �−→ ∆n �−→ Cn.

Then a simplicial homotopy of maps from C to D is a natural transformation C∗ −→ D∗;
see [9, p. 335].

There is a functor P : ∆ −→ ∆ with P∆n = ∆n+1 such that the natural map
s0 : ∆n −→ ∆n+1 = P∆n is a natural transformation id∆ −→ P . This map is obtained
by formally adding an initial object 0′ to each ∆n and then identifying {0′ < 1 < · · · < n}
with ∆n+1. Thus, P (si) = si+1 and P (di) = di+1. If A is a simplicial object in A, the
path space PA is the simplicial object obtained by composing A with P . Therefore,
PAn = An+1, and the ith face operator on PA is the ∂i+1 of A, and the ith degeneracy
operator on PA is the σi+1 of A. Moreover, the maps ∂0 : An+1 −→ An form a simplicial
map PA −→ A.

We write A0 for the constant simplicial object at A0. The natural maps σn+1
0 : A0 −→

An+1 form a simplicial map ι : A0 −→ PA, and the maps An+1 −→ A0 induced by the
canonical inclusion of ∆0 = {0} in ∆n+1 form a simplicial map ρ : PA −→ A0 such that
ρι is the identity on A0. It is well known that ιρ is homotopic to the identity on PA.
Therefore, PA is homotopy equivalent to A0.
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§5. Γ-spaces

In this section we use Segal’s machine [8] to get some information about the K-theory
K(B). We start with preparations.

Given a finite set T , we denote by P(T ) the set of subsets of T ; the set {1, 2, . . . , n}
is denoted by n.

Definition. I. Γ is the category whose objects are all finite sets, and whose morphisms
from S to T are the maps θ : S −→ P(T ) such that θ(α) and θ(β) are disjoint whenever
α �= β. The composition of θ : S −→ P(T ) and ϕ : T −→ P(U) is ψ : S −→ P(U), where
ψ(α) =

⋃
β∈θ(α) ϕ(β).

II. A Γ-space is a contravariant functor A from Γ to spaces such that
(a) A(0) is contractible, and
(b) for any n the map pn : A(n) −→ A(1)× n· · · ×A(1) induced by the maps ik : 1 −→

n in Γ, where ik(1) = {k} ⊂ n, is a homotopy equivalence.
We shall call A(1) the underlying space.

There is a covariant functor ∆ −→ Γ that takes ∆m to m and f : ∆m −→ ∆n to
θ(i) = {j ∈ n | f(i − 1) < j ≤ f(i)}. Using this functor, we can regard Γ-spaces as
simplicial spaces.

The realization functor A −→ |A| used by Segal for simplicial spaces is slightly different
from the usual one (see [8, Appendix A]). If A is a Γ-space, its realization will mean the
realization of the simplicial space it determines.

Definition. If A is a Γ-space, its classifying space is the Γ-space BA such that, for any
finite set S, BA(S) is the realization of the Γ-space T �−→ A(S × T ).

If A is a Γ-space, then the spaces A(1), BA(1), B2A(1), . . . form a spectrum, denoted
by BA. The reason of introducing Γ-spaces is that they arise naturally from categories.

Definition. A Γ-category is a contravariant functor C from Γ to categories such that
(a) C(0) is equivalent to the category with one object and one morphism;
(b) for each n, the functor pn : C(n) −→ C(1)× n· · · ×C(1) induced by the maps

ik : 1 −→ n in Γ is an equivalence of categories.

If C is a Γ-category, |C| is a Γ-space. Here |C| means the functor S �−→ |C(S)|.
Γ-categories arise in the following way. Let C be a category with sums and with a

zero object 0. If S is a finite set, let P(S) denote the category of subsets of S and their
inclusions — this should not cause confusion with the earlier use of P(S). Let C(S)
denote the category whose objects are the functors from P(S) that take disjoint unions
to sums. The morphisms of Γ were defined in such a way that the morphisms from S
to T in Γ correspond precisely to the functors from P(S) to P(T ) that preserve disjoint
unions. Then the category iC(S) of isomorphisms in C(S) satisfies the above definition.

Conforming to the terminology and notation of [9, Subsection 1.8], we denote the
resulting simplicial category by N.C. By definition, N0C = 0 and NnC = C(n) for
each n ≥ 1. We refer to the simplicial category N.C as the nerve with respect to the
composition law. By construction, the space |i.N.C| is B|i.C|(1). Let N.B denote the
nerve with respect to the composition law associated with the category B0.

Observe that any functor f : C −→ D respecting sums yields a map of bisimplicial
objects

f∗ : i.N.C −→ i.N.D.

It follows that, for a given left system of diagram categories or a left pointed dérivateur
B, we can also produce the multisimplicial categories iN.mS.nB, m, n ≥ 0, and the spaces
|i.N.mS.nB| by iterating the N.- and S.-constructions.



976 G. GARKUSHA

Proposition 5.1. |i.S.B| is canonically an infinite loop space, and hence so is the K-
theory space K(B).

Proof. The above considerations show that |i.S.B| is the underlying space of a Γ-space,
with respect to the composition law produced by the coproduct. �

Let F : A −→ B be a right exact functor between left systems of diagram categories
or left pointed dérivateurs, respectively. Let Nn(A −→ B) denote the fiber product of
the diagram

NnA F−→ NnB ∂0←− (PN.B)n = Nn+1B.

An object of Nn(A −→ B) is a triple (A, c, B), where A ∈ NnA, B ∈ Nn+1B, and
c : F (A) −→ ∂0(B) is an isomorphism in NnB. We obtain a simplicial category

N.(A −→ B) : ∆n �→ Nn(A −→ B).

For every n, there is a functor

g : B0 = N1B −→ Nn(A −→ B)

defined by B �−→ (0, 1, v∗B), where v : ∆n+1 −→ ∆1, i �−→ 0 if i = 0 and i �−→ 1
otherwise.

Regarding B0 as a trivial simplicial category, we obtain a sequence

B0
g−→ N.(A −→ B)

p−→ N.A,

where p is the projection. The latter sequence gives rise to the sequence

(8) i.S.B
g−→ i.N.S.(A −→ B)

p−→ i.N.S.A,

where N.S.(A −→ B) = N.(S.A −→ S.B). Note that the space |i.N.S.A| is B|i.S.A|(1),
where B|i.S.A| is the Γ-space associated with |i.S.A|.

Lemma 5.2. The sequence (8) is a fibration up to homotopy.

Proof. By Lemma 4.2, it suffices to show that for every n the sequence

i.S.B −→ i.NnS.(A −→ B) −→ i.NnS.A

is a fibration (because the base term

i.NnS.A = i. Hom(P(n), S.A) � (i.S.A)n

is connected for every n by Lemma 3.3). We shall show that the sequence is the same,
up to homotopy, as the trivial fibration sequence associated with the product i.S.B ×
i.NnS.A.

Let u : ∆1 −→ ∆n+1 be the map 0; 1 �−→ 0; 1. Also, consider the maps d0 : ∆n −→
∆n+1 and s0 : ∆n+1 −→ ∆n. For any B ∈ Nn+1B, we construct the diagram

B′ = v∗u∗B
ϕ−→ B

ψ←− B′′ = s∗0∂0B.

For any subset S of [n + 1]:

B′
S =

{
B1 if 1 ∈ S,

0 if 1 /∈ S,

and

B′′
S =

{
BS\{1} if 1 ∈ S,

BS if 1 /∈ S,

whence the definitions of ϕ and ψ follow. Note that B′
S

ϕS−→ BS
ψS←− B′′

S belongs to N2B.
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The functor Nn(A −→ B) −→ NnA × B0, (A, c, B) �−→ (A, B{1}), is an equivalence
of categories. A quasiinverse is given by the functor

(A, B) �−→ (A, 1, s∗0FA � v∗B).

Then the induced map i.NnS.(A −→ B) −→ i.NnS.A× i.S.B is a homotopy equivalence
by Lemma 4.1.

This homotopy equivalence fits into the following commutative diagram:
i.S.B −−−−→ i.NnS.(A −→ B) −−−−→ i.NnS.A

1

⏐⏐� ⏐⏐� ⏐⏐�1

i.S.B −−−−→ i.NnS.A × i.S.B −−−−→ i.NnS.A.

Being homotopy equivalent to the trivial fibration (the lower row of the diagram), the
upper sequence is a fibration, as required. �

As above, we can construct the sequence

i.B0 −→ P (i.N.B) −→ i.N.B.

The composite map is constant and the middle term is contractible, so that we obtain a
map that is well-defined up to homotopy,

|i.B0| −→ Ω|i.N.B|.
By naturality, in the above sequence we can replace B with the simplicial category S.B.
We obtain a sequence

i.S.B −→ P (i.N.S.B) −→ i.N.S.B,

where “P” refers to the N.-direction. By Lemma 5.2, the sequence is a fibration up to
homotopy. Thus, |i.S.B| −→ Ω|i.N.S.B| is a homotopy equivalence. Therefore, more
generally, by Lemma 4.1, the map |i.N.nS.B| −→ Ω|i.N.n+1S.B| is also a homotopy
equivalence. This results in the spectrum

n �−→ |i.N.nS.B|,
which is actually an Ω-spectrum. This is none other than the spectrum n �−→ Bn|i.S.B|(1)
produced by Segal’s machine.

Since all the maps in the sequence

|i.S.B| −→ Ω|i.N.S.B| −→ ΩΩ|i.N.N.S.B| −→ · · ·
are homotopy equivalences, so is the map

|i.S.B| −→ Ω∞|i.N.∞S.B| = lim
n

Ωn|i.N.nS.B|.

Corollary 5.3. Let A −→ B −→ C be a sequence of right exact morphisms of left
systems of diagram categories or left pointed dérivateurs, respectively. Then the square

i.S.B −−−−→ i.N.S.(A −→ B)⏐⏐� ⏐⏐�
i.S.C −−−−→ i.N.S.(A −→ C)

is homotopy Cartesian.

Proof. There is a commutative diagram
i.S.B −−−−→ i.N.S.(A −→ B) −−−−→ i.N.S.A⏐⏐� ⏐⏐� ⏐⏐�id

i.S.C −−−−→ i.N.S.(A −→ C) −−−−→ i.N.S.A,
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in which the rows are fibrations up to homotopy by Lemma 5.2. Therefore, the square
on the left is homotopy Cartesian. �

Corollary 5.4. 1) Any right exact morphism gives rise to a fibration

i.S.B −→ i.S.C −→ i.N.S.(B −→ C).

2) If C is a retract of B (by right exact functors), then there is a splitting

i.S.B � i.S.C × i.N.S.(C −→ B).

Proof. 1) If A = B, then the space |i.N.S.(A = A)| is contractible, whence the first
claim.

2) Since the composition A −→ B −→ C is an identity map, i.N.S.(A −→ C) is
contractible, and then 2) is implied by Corollary 5.3. �

§6. The additivity theorem

Let B be either a left system of diagram categories or a left pointed dérivateur. Denote
by E0 the full subcategory in B� consisting of the co-Cartesian squares B ∈ B� with
B(1,0) isomorphic to zero. Replacing B by B(I), we define a category EI similar to
E0. This leads to a left system of diagram categories or a left pointed dérivateur E,
respectively.

Lemma 6.1. The map l : ∆1 −→ �, i �−→ (0, i), induces an equivalence of categories
l∗ : E0 −→ B∆1 and also a right exact equivalence E −→ B(∆1).

Proof. The map l factors as

∆1 g−→ � h−→ �.

The proof of Proposition 3.1 shows that l∗ : E0 −→ B∆1 is an equivalence (in the case
of left pointed dérivateurs, use the fact that g is an open immersion). Obviously, the
induced morphism E −→ B(∆1) is an equivalence. It is right exact by Propositions 1.8
and 2.4. �

Corollary 6.2. The map f : � −→ Ar∆2, (i, j) �−→ (i, j + 1), induces an equivalence
of categories f∗ : S2B −→ E0 and also a right exact equivalence S2B −→ E.

Proof. Let � : ∆1 −→ Ar ∆2 be the map i �−→ (0, i+1). It factors as ∆1 l−→ � f−→ Ar∆2,
where l is the map of Lemma 6.1. By Proposition 3.1, it follows that �∗ = l∗f∗ :
S2B −→ B∆1 is an equivalence. By Lemma 6.1, l∗ is an equivalence, whence f∗ is also
an equivalence. �

Lemma 6.3. Let B be either a left system of diagram categories or a left pointed
dérivateur, and let B ∈ B� be a co-Cartesian square such that the map B(0,0) −→ B(0,1)

(respectively, the map B(0,0) −→ B(1,0)) is an isomorphism. Then B(1,0) −→ B(1,1) (re-
spectively, B(0,1) −→ B(1,1)) is also an isomorphism. On the other hand, a square in
which two parallel arrows are isomorphisms is co-Cartesian.

Proof. Suppose that the map B(0,0) −→ B(0,1) is an isomorphism. Let q : � −→ ∆1

denote the functor (ε, η) �−→ ε, and let i : ∆1 −→ � be the functor κ �−→ (κ, 0). Then i
is a left adjoint to q, whence i! � q∗. The map i factors as

∆1 l−→ �
i�−→ �,

where l(κ) = (κ, 0). By Propositions 1.9 and 2.5, the object i!i
∗B � i�!(l!i∗B) is co-

Cartesian.
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Let β : (i!i∗B �)q∗i∗B −→ B be the adjunction morphism. Then β(0,0) = β(1,0) = 1,
and β(0,1) is an isomorphism by assumption. It follows that i∗�β is an isomorphism.
Consider the commutative square

i�!i
∗
�i!i

∗B
i�!i

∗
� β

��

��

i�!i
∗
�B

��
i!i

∗B
β �� B.

The upper arrow is an isomorphism. The vertical maps are isomorphisms, because both
B and i!i

∗B are co-Cartesian. We see that β is also an isomorphism. This implies
that B(1,0) −→ B(1,1) � β(1,1) is an isomorphism. The corresponding assertion in the
case where B(0,0) −→ B(1,0) is an isomorphism is deduced from the first assertion by
application of the autoequivalence τ : � −→ � transposing the vertices (1, 0) and (0, 1).

On the other hand, if both B(0,0) −→ B(0,1) and B(1,0) −→ B(1,1) are isomorphisms,
then β : i!i

∗B −→ B is an isomorphism. Since i!i
∗B is co-Cartesian, it follows that B is

also co-Cartesian. �

We want to construct a functor α : B0 −→ E0 that takes an object A ∈ B0 to an
object in E0 and which is depicted in B0 as the square

A
1 ��

��

A

��
0 �� 0.

Let s0 : ∆1 −→ 0 be a unique map. First, suppose that B is a left system of diagram
categories and d : �� −→ ∆1� is the map (0, i) �−→ i and (1, i) �−→ �. Then we put
α = d∗s∗0. If B is a left pointed dérivateur, we let l : ∆1 −→ � be the map i �−→ (0, i).
Then l is an open immersion, whence there is a right adjoint functor l∗ to l∗. In this case
α = l∗s

∗
0.

Let j : � −→ ∆1 be the map (ε, η) �−→ η. The morphism j∗ takes B ∈ B∆1 to a
square in B� which is depicted in B0 as the square

B0
��

1

��

B1

1

��
B0

�� B1.

Let B be a left system of diagram categories, and let u : ∆1� −→ 0� be the map
0 �−→ � and 1 �−→ 0. Then u∗ takes an object B ∈ B0 to one in B∆1 with u∗B0 = 0 and
u∗B1 = B. We put β = j∗u∗. In its turn, if B is a left pointed dérivateur, consider the
map v : 0 −→ ∆1 with v(0) = 1. Then v!B0 = 0 and v!B1 = B for any B ∈ B0. In this
case β := j∗v!.

The functor β takes an object B ∈ B0 to the square

0 ��

��

B

1

��
0 �� B.

Let B be either a left system of diagram categories or a left pointed dérivateur, and
let B′ and B′′ be either two left subsystems of diagram categories or two left pointed
subdérivateurs such that the inclusion morphisms are right exact. There are three natural
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right exact morphisms s, t, q : E −→ B taking an object E ∈ E? to E(0,0), E(0,1), and
E(1,1), respectively. We define E(B′,B,B′′) as a presystem of diagram categories or as
a prédérivateur that consists of the squares E ∈ E with E(0,0) ∈ B′ and E(1,1) ∈ B′′.
Then E(B′,B,B′′) is a left system of diagram categories or a left pointed dérivateur,
respectively, because E(B′,B,B′′) is equivalent to the fiber product of the diagram

E
(s,q)−−−→ B × B ←− B′ × B′′. We note that E = E(B,B,B).
In order to obtain a unital and associative H-space structure for |i.S.B| induced by

the coproduct � via the map

|i.S.B| × |i.S.B| ∼−→ |i.S.B × i.S.B| �−→ |i.S.B|,

we must have good choices for A�B, A, B ∈ SnB, so that f∗(A�B) = f∗(A)� f∗(B),
where f : ∆m −→ ∆n is a structure map in ∆ (we always have an isomorphism between
them because f∗ respects coproducts by Lemma 3.2). Then we would have a simplicial
equivalence �(�× 1) � �(1 ×�),

i.S.B × i.S.B × i.S.B
�×1 ��

1×�

��

i.S.B × i.S.B

�
��

i.S.B

α		
i.S.B × i.S.B �

�� i.S.B,

inducing a homotopy between them after realization. It would also follow that the two
maps i.S.B −→ i.S.B given by B �−→ B � 0 and B �−→ 0 � B are homotopic to the
identity map, implying that |i.S.B| is unital. It seems that we do not have enough data
to produce such choices in general. We shall refer to this case as pathological. The latter
term is caused by the observation that the required choices always exist in practice.
Indeed, all left systems of diagram categories or left pointed dérivateurs arise in practice
as the hyperfunctor I �−→ Ho CI with C closed under coproducts. Then the choices are
made in C.

Convention. In the rest of this section we assume B to be nonpathological.

By a right exact sequence F ′ −→ F −→ F ′′ of right exact functors B′ −→ B we mean
a right exact functor G : B′ −→ E = E(B,B,B) such that F ′ = s ◦ G, F = t ◦ G, and
F ′′ = q ◦ G.

Proposition 6.4 (Equivalent formulations of the additivity theorem). Each of the fol-
lowing conditions implies the other three.

1) The projection

i.S.E(B′,B,B′′) −→ i.S.B′ × i.S.B′′, E �→ (E(0,0), E(1,1)),

is a homotopy equivalence.
2) The projection

i.S.E −→ i.S.B × i.S.B, E �→ (E(0,0), E(1,1)),

is a homotopy equivalence.
3) The following two maps are homotopic:

i.S.E −→ i.S.B, E �→ E(0,1), and, respectively, E �→ E(0,0) � E(1,1).
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4) If F ′ −→ F −→ F ′′ is a right exact sequence of right exact functors B′ −→ B,
then there exists a homotopy

|i.S.F | � |i.S.F ′| ∨ |i.S.F ′′|.

Proof. 2) is a special case of 1), 3) is a special case of 4), and 4) follows from 3) by
naturality.

So it will suffice to show the implications 2) =⇒ 3) and 4) =⇒ 1).
2) =⇒ 3). The desired homotopy |i.S.t| � |i.S.(s ∨ q)| is obtained upon restriction

along the map

|i.S.B| × |i.S.B| −→ |i.S.E|, (A, B) �→ αA � βB.

Therefore, it suffices to know that this map is a homotopy equivalence. But this map is
a section of the map in 2), so that it is a homotopy equivalence if so is the map in 2).

4) =⇒ 1). First, we consider the maps l : ∆1 −→ �, κ �→ (κ, 0), and q : � −→ ∆1,
(ε, η) �→ ε. Denote E′

? = {q∗l∗E | E ∈ E(B′,B,B′′)?}. For E ∈ E(B′,B,B′′)0, the
object q∗l∗E is depicted in B0 as

E(0,0)
1−−−−→ E(0,0)⏐⏐� ⏐⏐�

O
1−−−−→ O,

where O = E(1,0) is a zero object.
Also, let i : ∆1 −→ �, κ �→ (1, κ), and j : � −→ ∆1, (ε, η) �→ η. Denote E′′

? =
{j∗i∗E | E ∈ E(B′,B,B′′)?}. For E ∈ E(B′,B,B′′)0, the object j∗i∗E is depicted in
B0 as

O −−−−→ E(1,1)

1

⏐⏐� ⏐⏐�1

O −−−−→ E(1,1).

We shall construct a right exact morphism

E ∈ E(B′,B,B′′)? �→ E2 ∈ E(E′,E,E′′)?

such that E2 is depicted in E0 as follows:

E′ −−−−→ E⏐⏐� ⏐⏐�
O −−−−→ E′′.

If we neglect the object at (1, 0) ∈ �, then the above diagram is depicted in B0 as

E(0,0)
1−−−−→ E(0,0) −−−−→ O

1

⏐⏐� ⏐⏐� ⏐⏐�
E(0,0) −−−−→ E(0,1) −−−−→ E(1,1)⏐⏐� ⏐⏐� ⏐⏐�1

O −−−−→ E(1,1) −−−−→ E(1,1).

Then our assumption will imply immediately that

i.S.E(B′,B,B′′) −→ i.S.E′ × i.S.E′′, E �→ (q∗l∗E, j∗i∗E),
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is a homotopy equivalence with section (E′, E′′) �→ E′ � E′′. We construct the square
E2 in the following way. Consider two maps ϕ, ψ : � −→ ∆1 defined by the rules

(0, 0), (0, 1), (1, 0)
ϕ�→ 0, (1, 1)

ϕ�→ 1,

and
(0, 0)

ψ�→ 0, (0, 1), (1, 0), (1, 1)
ψ�→ 1.

For an object A ∈ B∆1 , the functors ϕ∗ and ψ∗ take A to the squares that are depicted
in B0 as

A0
1−−−−→ A0

1

⏐⏐� ⏐⏐�
A0 −−−−→ A1

and
A0 −−−−→ A1⏐⏐� ⏐⏐�1

A1 −−−−→
1

A1,

respectively.
An object E ∈ E(B′,B,B′′)0 can be regarded as an object in B(∆1)∆1 , and it is

evaluated as E(0,0) −→ O at 0 and as E(0,1) −→ E(1,1) at 1. We embed E in the co-
Cartesian square E1 = (1∆1 × ϕ)∗E in B(∆1)�. After depicting E1 in an appropriate
way, we obtain the following diagram in B0:

E(0,0) ��

��

O

��

E(0,0)



���
��

��

O



����

��

E(0,1) �� E(1,1).

E(0,0) ��



���
O



���

The object E1 can be regarded as an object in B(�)∆1 , and it is evaluated as the left
square of the depicted cube at 0 and as the right square at 1. We embed the E1 in the co-
Cartesian square E2 = (ψ×1�)∗E1 in B(�)�. The construction of E2 is completed. The
morphism E ∈ E(B′,B,B′′)? �−→ E2 ∈ E(E′,E,E′′)? is induced by (ψ×1�)∗(1∆1 ×ϕ)∗.

It remains to show that the maps f : E ∈ E′
? �−→ E(0,0) ∈ B? and g : E ∈ E′′

? �−→
E(1,1) ∈ B? induce a homotopy equivalence

i.S.E′ × i.S.E′′ (f,g)−−−→ i.S.B′ × i.S.B′′,

because the map p : i.S.E(B′,B,B′′) −→ i.S.B′ × i.S.B′′, E �−→ (E(0,0), E(1,1)), is equal
to the composition

i.S.E(B′,B,B′′)
(q∗l∗,j∗i∗)−−−−−−−→ i.S.E′ × i.S.E′′ (f,g)−−−→ i.S.B′ × i.S.B′′,

and the left arrow is a homotopy equivalence by the above.
Let B̄? = {X ∈ B∆1×? | X1 � 0}. Then B̄ and E′ are isomorphic because l∗q∗ = 1B̄

and q∗l∗q∗l∗|E′ = 1E′ . In a similar way, let ¯̄B? = {X ∈ B∆1×? | X0 � 0}. Then ¯̄B and
E′′ are isomorphic because i∗j∗ = 1 ¯̄B and j∗i∗j∗i∗|E′′ = 1E′′ .

Finally, the proof of Proposition 3.1 shows that the morphism B̄ −→ B′ induced by
the map 0 �−→ 0 ∈ ∆1 is an equivalence, as well as the morphism ¯̄B −→ B′′ induced by
the map 0 �−→ 1 ∈ ∆1. We are done. �
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For a simplicial object X, let PX −→ X be the projection induced by the face map
∂0 : Xn+1 −→ Xn. If we regard X1 as a trivial simplicial object, then there is an inclusion
X1 −→ PX resulting in a sequence X1 −→ PX −→ X.

In particular, we obtain a sequence i.S1B −→ P (i.S.B) −→ i.S.B. In view of the
equivalence of i.S1B with i.B0, this sequence can be rewritten as

i.B0
G−→ P (i.S.B) ∂0−→ i.S.B.

We show explicitly what the map G is. Let �∗ : S1B −→ B0 be the equivalence
occurring in Proposition 3.1. A quasiinverse to �∗ is constructed as follows. Consider
the open immersion e : 0 �−→ 0 ∈ ∆1. If B is a left system of diagram categories and
k : ∆1 −→ 0 is the morphism 0; 1 �→ 0; �, then (k∗B)0 = B and (k∗B)1 = 0 for every
B ∈ B0. In its turn, if B is a left pointed dérivateur, then (e∗B)0 = B and (e∗B)1 = 0.

Next, let p : ∆1 −→ Ar∆1 be the closed immersion i �→ (i, 1), let r : Ar∆1� −→ ∆1�

be the morphism (0, 0) �→ �, (0; 1, 1) �→ 0; 1, and let B ∈ B0. If B is a left system of
diagram categories, then (r∗k∗B)(0,0) = (r∗k∗B)(1,1) = 0 and (r∗k∗B)(0,1) = B. Set
g = r∗k∗. If B is a left pointed dérivateur, then (p!e∗B)(0,0) = (p!e∗B)(1,1) = 0 and
(p!e∗B)(0,1) = B. In this case g := p!e∗.

We consider the map v : ∆n+1 −→ ∆1, 0 �→ 0 and i �→ 1 for i ≥ 1. Set G =
v∗g : B0 −→ Sn+1B. Then the “values” of GB at each (i, j) ∈ Ar ∆n+1 look like this:
GB(i,j) = 0 if (i, j) = (0, 0), i ≥ 1, and GB(0,j) = B for j ≥ 1. Regarding B0 as a trivial
simplicial category, we obtain the maps G : B0 −→ PS.B and G : |i.B0| −→ |P (i.S.B)|.

The composition |i.B0|
G−→ |P (i.S.B)| −→ |i.S.B| is constant, and |P (i.S.B)| is con-

tractible (being homotopy equivalent to the contractible space |i.S0B|). Therefore, we
obtain a map

|i.B0| −→ Ω|i.S.B|,
well-defined up to homotopy.

We present a couple of useful observations due to Waldhausen [9, p. 332].

Observation. The following two composite maps are homotopic:

|i.E0|
t ��

s∨q
�� |i.B0| �� Ω|i.S.B|.

Proof. This results from an inspection of |i.S.B|(2), the 2-skeleton of |i.S.B|, in the S.-
direction. We can identify iB0 with iS1B and iE0 with iS2B.

The face maps from i.S2B to i.S1B correspond to the three maps s, t, q, respectively,
and each of them can be seen from the diagram

0
A0,2 ��

A0,1 ���
��

��
��

2

1
A1,2

���������

Consider the canonical map |i.S2B| × |∆2| −→ |i.S.B|(2). Regarding the 2-simplex |∆2|
as a homotopy from the edge (0, 2) to the edge path (0, 1)(1, 2), we obtain a homotopy
from the composite map jt,

|i.E0|
t−→ |i.B0|

j−→ Ω|i.S.B|(2),
to the loop product of two composite maps js and jq. But in the H-space Ω|i.S.B|
the loop product is homotopic to the composition law, by a well-known fact about loop
spaces of H-spaces, whence the observation as stated. �

The same consideration leads, more generally, to the following.
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Observation. For every n ≥ 0, the following two composite maps are homotopic:

|i.S.nE|
t ��

s∨q
�� |i.S.nB| �� Ω|i.S.n+1B|.

Theorem 6.5. The additivity theorem is valid (i.e., each of the equivalent conditions
of Proposition 6.4 is valid) if in the definition of the K-theory, Ω|i.S.B| is replaced with
Ω∞|i.S.∞B| = limn Ωn|i.S.nB|.

Proof. First, we observe that Proposition 6.4 is formal in the sense that it also applies to
the new definition of the K-theory. By the preceding observation, the composite maps

Ω∞|i.S.∞E|
t ��

s∨q
�� Ω∞|i.S.∞B| �� Ω∞|i.S.∞B|

are homotopic. Since the map on the right is an isomorphism, this is one of the equivalent
conditions of the additivity theorem (Proposition 6.4). �

Remark. As a consequence of the theorem, we could add yet another reformulation of
the additivity theorem to the list of Proposition 6.4 (see also Theorem 6.6). Namely, the
additivity theorem as stated there implies that the maps |i.S.nB| −→ Ω|i.S.n+1B| are
homotopy equivalences for n ≥ 1. Conversely, if these maps are homotopy equivalences,
then so is Ω|i.S.B| −→ Ω∞|i.S.∞B|, and thus the additivity theorem is provided by
Theorem 6.5.

Let F : A −→ B be a right exact functor between two left systems of diagram
categories or between two left pointed dérivateurs. We denote by S.(F : A −→ B) the
fiber product of the diagram

S.A F−→ S.B ∂0←− PS.B,

where ∂0 = d∗0 is the map induced by d0 : ∆n −→ ∆n+1. By Proposition 1.3, S.(F :
A −→ B) is a simplicial left system of diagram categories or a simplicial left pointed
dérivateur. Thus, for every n we have a commutative diagram

Sn(F : A −→ B) F ′
−−−−→ (PS.B)n = Sn+1B

p

⏐⏐� ⏐⏐�∂0

SnA F−−−−→ SnB.

By construction, we can identify an object of Sn(F : A −→ B)? with a triple (A, c, B) the
objects in which are in SnA? and Sn+1B?, respectively, together with an isomorphism
FA

c� ∂0B. We note that all the maps in the above diagram are right exact.
Let G : B −→ Sn+1B be the morphism constructed above. We have ∂0GB = 0, and

G factors as F ′ ◦ G′, where G′ : B −→ Sn(F : A −→ B), B
G′
�→ (0, 1, GB).

Regarding B as a simplicial object in a trivial way, we obtain a sequence

(9) B G′
−→ S.(F : A −→ B)

p−→ S.A,

in which the composition map is trivial. This leads to a sequence

i.S.B −→ i.S.S.(A −→ B) −→ i.S.S.A,

induced by (9).
Similarly, there is a sequence

i.S.B −→ P (i.S.S.B) −→ i.S.S.B,

where “P” refers, say, to the first S.-direction.
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Theorem 6.6. The following statements are equivalent :
1) the additivity theorem (Proposition 6.4) is valid ;
2) the sequence

i.S.B −→ i.S.S.(A −→ B) −→ i.S.S.A
is a fibration up to homotopy ;

3) the sequence
i.S.B −→ P (i.S.S.B) −→ i.S.S.B

is a fibration up to homotopy ;
4) the map |i.S.nB| −→ Ω|i.S.n+1B| is a homotopy equivalence for any n ≥ 1.
If the equivalent conditions 1)–4) are fulfilled, then the spectrum n �→ i.S.nB, with

structural maps defined as the map |i.B0| −→ Ω|i.S.B| above, is an Ω-spectrum beyond
the first term. The spectrum is connected (the nth term is (n − 1)-connected). As a
consequence, the K-theory for B can be defined equivalently as the space

Ω∞|i.S.∞B| = lim
n

Ωn|i.S.nB|.

Proof. 3) is a consequence of 2). Since the space |P (i.S.S.B)| is contractible, condition
3) implies that the map |i.S.B| −→ Ω|i.S.S.B| is a homotopy equivalence, and more
generally, the map |i.S.nB| −→ Ω|i.S.n+1B|, n ≥ 1, is also a homotopy equivalence.
Therefore, 4) follows from 3). By the second observation after Proposition 6.4, the two
composition maps

|i.S.E|
t ��

s∨q
�� |i.S.B| �� Ω|i.S.S.B|

are homotopic. If the map on the right is a homotopy equivalence, then t is homotopic
to s ∨ q. Thus, 4) implies 1). It remains to check that 1) =⇒ 2).

By Lemma 4.2, it suffices to show that for every n the sequence i.S.B −→ i.S.Sn(A −→
B) −→ i.S.SnA is a fibration (because the base term i.S.SnA is connected for every
n). Using the additivity theorem, we shall show that this sequence is the same, up to
homotopy, as the trivial fibration sequence associated with the product i.S.B× i.S.SnA.

Consider the maps u : ∆1 −→ ∆n+1, 0; 1 �→ 0; 1, and v : ∆n+1 −→ ∆1, 0 �→ 0, i �→ 1
if i ≥ 1. Then u is left adjoint to v. To simplify the notation, the corresponding maps
Ar∆1 −→ Ar∆n+1 and Ar∆n+1 −→ Ar∆1 induced by u and v are denoted by the same
letters. Let B̄ = {v∗u∗B | B ∈ Sn+1B}; then v∗u∗B(0,0) = B(0,0), v∗u∗B(0,i) = B(0,1) for
any 1 ≤ i ≤ n + 1 and v∗u∗B(i,j) = B(1,1) for any i ≥ 1.

Let ¯̄B = {σ0∂0B | B ∈ Sn+1B}, where σ0 : SnB −→ Sn+1B is the functor induced
by s0 : Ar ∆n+1 −→ Ar∆n. Note that σ0 is right adjoint to ∂0.

Let m : ∆1 ×Ar ∆n+1 −→ Ar ∆n+1 be the map taking (0, (i, j)) to (uv(i), uv(j)) and
(1, (i, j)) to (i, j). Then m∗ takes an object B ∈ Sn+1B? to the object in Sn+1B∆1×?

that is depicted in Sn+1B? as the adjunction morphism v∗u∗B −→ B.
Next, let l : ∆1 × Ar∆n+1 −→ Ar∆n+1 be the map taking (0, (i, j)) to (i, j) and

(1, (i, j)) to (d0s0(i), d0s0(j)). Then l∗ takes an object B ∈ Sn+1B? to the object in
Sn+1B∆1×? that is evaluated as B at 0, and as σ0∂0B at 1. This object is depicted in
Sn+1B? as the adjunction morphism β : B −→ σ0∂0B.

The restriction of the right exact morphism (1∆1 × m)∗l∗ : B(Ar∆n+1) −→ B(� ×
∆n+1) to Sn+1B takes an object B ∈ Sn+1B? to an object in E(Ar∆n+1)? ⊂ B(� ×
Ar∆n+1)?. Thus, we obtain a right exact functor

T : Sn+1B
l∗−→ Sn+1B(∆1)

(1∆1×m)∗−−−−−−−→ E(Ar∆n+1)

such that t ◦ T is the identity morphism on Sn+1B and s ◦ T (B) ∈ B̄, q ◦ T (B) ∈ ¯̄B
for every B ∈ Sn+1B. So, T takes its values in E(B̄,Sn+1B, ¯̄B), and actually this is a
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functor
T : Sn+1B −→ E(B̄,Sn+1B, ¯̄B).

To illustrate the above procedure, let us temporarily think of Sn+1B as “strings”
B(∆n) via the equivalence �∗ : Sn+1B −→ B(∆n) (see Proposition 3.1). Consider the
function m̃ : ∆1 × ∆n −→ ∆n defined by

(0, i) �−→ 0, (1, i) �−→ i.

Then the induced right exact morphism m̃∗ : B(∆n) −→ B(∆1 × ∆n) takes an object
B ∈ B(∆n)? to the object in B(∆1 × ∆n)? that is depicted in B? as

B0
1−−−−→ B0

1−−−−→ · · · 1−−−−→ B0

1

⏐⏐� ⏐⏐�b1

⏐⏐�bn···b1

B0
b1−−−−→ B1

b2−−−−→ · · · bn−−−−→ Bn.

Let k : ∆1×∆n −→ Ar ∆n+1 be the map (i, j) �−→ (i, j +1), and let αj : � −→ ∆1×∆n

be the map taking (0; 1, 0) to (0; 1, j) and (0; 1, 1) to (0; 1, j + 1). Denote by S′
n+1B the

left subsystem of diagram categories or the left pointed subdérivateur of B(∆1 × ∆n)
consisting of the objects B such that all the squares α∗

jB, j ≤ n, are co-Cartesian and
B(1,0) = O is a zero object. Then the restriction morphisms k∗ : Sn+1B −→ S′

n+1B and
w∗ : S′

n+1B −→ B(∆n) with w : ∆n −→ ∆1 × ∆n, j �−→ (0, j) are easily seen to be
equivalences.

The restriction of the morphism (1∆1 × m̃)∗ : B(∆1 × ∆n) −→ B(� × ∆n) to S′
nB

takes an object B ∈ S′
nB? to the object in B(� × ∆n)? that is depicted in B? as

B(0,0) ��

��

B(0,1)

��

��

��

B(0,2)

��

��

��

· · · �� B(0,n)

��

B(0,0)



���
��

��

B(0,0)



���

��



���
��

��

B(0,0)



���

��



���
��

��

· · · �� B(0,0)



���

��

O �� B(1,1) �� B(1,2) �� · · · �� B(1,n).

O ��



����
O



���
�� O



���
�� · · · �� O



���

The back wall of the diagram is the element B of S′
nB? drawn in B?. We obtain a right

exact morphism T̃ = (1∆1 × m̃)∗ ◦ w∗−1 : B(∆n) −→ E(∆n), because each transverse
xth square Bx,�, x ≤ n, is co-Cartesian.

Now, we return to the morphism T and lift it to Sn(A −→ B). More precisely, we send
an object (A, c, B) ∈ Sn(A −→ B)? to (∂0Tσ0A, ∂0Tσ0(c), TB) ∈ E(Sn(A −→ B))?.
We use the commutative diagram

A(Ar∆n)
σ0 ��

F

��

A(Ar∆n+1) T ��

F

��

A(� × Ar∆n+1)
∂0 ��

F

��

A(� × Ar∆n)

F

��
B(Ar∆n)

σ0 �� B(Ar∆n+1) T �� B(� × Ar∆n+1)
∂0 �� B(� × Ar∆n)

to show that F∂0Tσ0A = ∂0Tσ0FA. The relation ∂0TB = ∂0Tσ0∂0B is straightforward.
Put B′ = {(∂0v

∗u∗σ0A, ∂0v
∗u∗σ0(c), v∗u∗B) | (A, c, B) ∈ Sn(A −→ B)} and B′′ =

{(A, c, σ0∂0B) | (A, c, B) ∈ Sn(A −→ B)}.
We obtain a right exact functor

T ′ : Sn(A −→ B) −→ E(B′,Sn(A −→ B),B′′),

where s◦T ′ sends (A, c, B) to (∂0v
∗u∗σ0A, ∂0v

∗u∗σ0(c), v∗u∗B), t◦T ′ being the identity,



SYSTEMS OF DIAGRAM CATEGORIES AND K-THEORY. I 987

and q ◦T ′ sends (A, c, B) to (A, c, σ0∂0B). Thus we get a right exact sequence s ◦T ′ −→
1 −→ q ◦ T ′. By our assumption, the map

(s ◦ T ′, q ◦ T ′) : S.Sn(A −→ B) −→ S.B′ × S.B′′

is a homotopy equivalence, with a homotopy inverse induced by the coproduct.
Clearly, the morphism B′ −→ B taking (∂0v

∗u∗σ0A, ∂0v
∗u∗σ0(c), v∗u∗B) to B(0,1) is

an equivalence. A quasiinverse to it is G′.
We show that the morphism δ : SnA −→ B′′, A �→ (A, 1, σ0FA), is a quasiinverse

to the restriction of p to B′′. Obviously, δ is faithful. For any object (A, c, B) ∈ B′′,
the morphism (1, σ0(c)) : (A, 1, σ0FA) −→ (A, c, B) is an isomorphism. Also, every
morphism (a, b) : δA −→ δA′ in B′′ is equal to (a, σ0Fa), whence δ is full. We see that
δ is an equivalence.

So, the map i.S.B′ × i.S.B′′ −→ i.S.B × i.S.SnA is a homotopy equivalence. Hence,
so is the composition

i.S.Sn(A −→ B) −→ i.S.B′ × i.S.B′′ −→ i.S.B × i.S.SnA.

This latter homotopy equivalence fits into the following commutative diagram:
i.S.B −−−−→ i.S.Sn(A −→ B) −−−−→ i.S.SnA

1

⏐⏐� ⏐⏐� ⏐⏐�1

i.S.B −−−−→ i.S.B × i.S.SnA −−−−→ i.S.SnA.

Being homotopy equivalent to the trivial fibration (the lower row of the diagram), the
upper sequence is a fibration, as required. �
Remark. Let � be a class of left systems of diagram categories or left pointed dérivateurs
satisfying the following two conditions:

1) B ∈ � implies SnB ∈ � for any n;

2) the map i.S.E
(s,q)−−−→ i.S.B × i.S.B is a homotopy equivalence for any B ∈ �.

The proof of Theorem 6.6 then shows that the spectrum

n �−→ i.S.nB

is an Ω-spectrum beyond the first term, so that the K-theory for every B ∈ � can be
defined equivalently as the space

Ω∞|i.S.∞B| = lim
n

Ωn|i.S.nB|.

A left pointed dérivateur D with domain Ord is said to be complicial if for some
complicial bi-Waldhausen category C in the sense of Thomason [19] there is a right exact
equivalence F : DC −→ D that is closed under formation of canonical homotopy pushouts
and canonical homotopy pullbacks. In this case we say that D is represented by C. That
equivalence induces a homotopy equivalence of bisimplicial sets F : i.S.DC −→ i.S.D.

Theorem 6.7 ([10]). The class of complicial dérivateurs satisfies the conditions of the
remark above.

Proposition 6.8. Under the assumptions of Theorem 6.6, suppose we are given a se-
quence A −→ B −→ C of right exact morphisms between left systems of diagram cate-
gories or left pointed dérivateurs. Then the square

i.S.B −−−−→ i.S.S.(A −→ B)⏐⏐� ⏐⏐�
i.S.C −−−−→ i.S.S.(A −→ C)

is homotopy Cartesian.
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Proof. There is a commutative diagram
i.S.B −−−−→ i.S.S.(A −→ B) −−−−→ i.S.S.A⏐⏐� ⏐⏐� ⏐⏐�id

i.S.C −−−−→ i.S.S.(A −→ C) −−−−→ i.S.S.A,

in which the rows are fibrations up to homotopy by Theorem 6.6. Therefore, the square
on the left is homotopy Cartesian. �
Corollary 6.9. Under the assumptions of Theorem 6.6, the following two assertions are
valid.

1) Every right exact morphism gives rise to a fibration

i.S.B −→ i.S.C −→ i.S.S.(B −→ C).

2) If C is a retract of B (by right exact functors), then there is a splitting

i.S.B � i.S.C × i.S.S.(C −→ B).

Proof. 1). If A = B, then the space |i.S.S.(A = A)| is contractible, whence the first
assertion.

2). This is a consequence of Proposition 6.8, because the composition A −→ B −→ C
is an identity map, and then i.S.S.(A −→ C) is contractible. �

§7. Comparison theorem

Given an exact category E , we would like to compare Quillen’s K-theory K(E) of E
with the K-theory of the associated bidérivateur Db(E).

Let wCb(E) denote the Waldhausen category of quasiisomorphisms in Cb(E) whose
cofibrations are componentwise admissible monomorphisms. For every I ∈ Dirf we have
a natural functor

Ho : Cb(EI) −→ Db(EI).
The image under the functor Ho of any co-Cartesian square of Cb(E)� = Cb(E�)

∗ −−−−→ ∗⏐⏐� ⏐⏐�
∗ −−−−→ ∗

in which the horizontal arrows are cofibrations is a co-Cartesian square in Db(E)� (this is
dual to [16, 3.14]). Therefore, Ho induces a map of bisimplicial objects ν : w.S.Cb(E) −→
i.S.Db(E). Consider the map

K(τ ) : K(E) −→ K(wCb(E))

induced by the map τ taking an object of E to the complex concentrated at the zeroth
degree (K(wCb(E)) stands for the Waldhausen K-theory of wCb(E)).

The first Maltsiniotis conjecture [7]. The map K(ρ) = K(ντ ) : K(E) −→ K(Db(E))
is a homotopy equivalence.

The homomorphism K0(E) −→ K0(Db(E)) is an isomorphism, since the Grothendieck
groups K0(E) and K0(Db(E)) are naturally isomorphic (an exercise!) and K0(Db(E)) is
naturally isomorphic to K0(Db(E)) by Lemma 3.5.

The first Maltsiniotis conjecture is very resistant in general. However, some informa-
tion can be obtained for a large class of exact categories including the Abelian categories.
The following statement shows that Quillen’s K-theory K(E) of an exact category E in
this class is a retract of K(Db(E)).
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Theorem 7.1. Let E be an extension closed and full exact subcategory of an Abelian
category A satisfying the conditions of the resolution theorem. That is,

(1) if 0 −→ M ′ −→ M −→ M ′′ −→ 0 is exact in A and M, M ′′ ∈ E , then M ′ ∈ E and
(2) for any object M ∈ A there is a finite resolution 0 −→ Pn −→ Pn−1 −→ · · · −→

P0 −→ M −→ 0 with Pi ∈ E.
Then a natural map

K(ρ) : K(E) −→ K(Db(E))

is such that for some p : K(Db(E)) −→ K(E) the composition p ◦ K(ρ) is homotopic to
the identity map. In particular, each K-group Kn(E) is a direct summand of Kn(Db(E)).

We postpone the proof. It should be noted that it depends substantially on Neeman’s
results [22] on K-theory for triangulated categories.

In [24, 25] it was shown that the natural morphism K(C) −→ K(DC) from the Wald-
hausen K-theory to the K-theory of its dérivateur cannot be an equivalence in general.
For instance, this is not an equivalence for the Waldhausen K-theory of spaces. This does
not mean, however, that the K-groups Kn(C) cannot be recovered from its dérivateur,
and that this is a counterexample to the comparison problem stated above for exact
categories.

A good Waldhausen category is a Waldhausen category that can be embedded in
the category of cofibrant objects of a pointed model category, and whose Waldhausen
structure is induced by the ambient model structure (see the precise definition in [25]).
Though there exist nongood Waldhausen categories (see [25, Example 2.2]), in practice it
turns out that, given a Waldhausen category, we always have a good Waldhausen model,
i.e., a good Waldhausen category with the same K-theory space up to homotopy. Any
good Waldhausen category is a Waldhausen category of cofibrant objects; therefore it
gives rise to a left pointed dérivateur DC (Theorem 2.8). The following theorem is also
a consequence of a result by Cisinski and Toën [24, Subsection 2.16].

Theorem 7.2 (first stated by Toën [26]). Let C and C′ be two good Waldhausen categories
such that their associated dérivateurs DC and DC′ are equivalent. Then the Waldhausen
K-theory spectra K(C) and K(C′) are also equivalent.

With certain extra data, B encodes the structure of a triangulated category on B0;
see [16, 5, 6, 7]. This structure is carried over canonically to all the categories BI ,
I ∈ Dia. In this case B is referred to as a system of triangulated diagram categories or
triangulated dérivateur, respectively. The following result shows that such a B contains
strictly more information than its triangulated category B0.

Proposition 7.3. There exist two nonequivalent triangulated dérivateurs B and B′

whose associated triangulated categories B0 and B′
0 are equivalent.

Proof. Let C = mM(Z/p2) and C′ = mM(Z/p[ε]/ε2) be two stable model categories
considered in [27]. Here M(Z/p2) and M(Z/p[ε]/ε2) denote the corresponding categories
of finitely generated modules. Since Z/p2 and Z/p[ε]/ε2 are quasi-Frobenius rings, it
follows that M(Z/p2) and M(Z/p[ε]/ε2) are Frobenius categories, and DC and DC′ are
triangulated dérivateurs by [16, Subsection 4.19]. From [27, Subsection 1.4] we know
that DC0 and DC′

0 are equivalent as triangulated categories. But the dérivateurs DC
and DC′ cannot be equivalent by Theorem 7.2, because the Waldhausen K-theories K(C)
and K(C′) are nonequivalent by [27, Subsection 1.7]. �

Another problem arising in our context (see also [7, Conjecture 2]) is the localization
theorem. Suppose we are given a family W = {WI ⊆ MorBI | I ∈ Dia} of morphisms
compatible with the structure functors f∗ and f!, i.e., f∗(WJ) ⊆ WI and f!(WI) ⊆ WJ
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for every map f : I −→ J . Let B?[W−1
? ] denote the category of fractions obtained by

inverting the maps in W?. We also require the following condition to be fulfilled: a
morphism is in W? if and only if its image in B?[W−1

? ] is an isomorphism. Suppose the
hyperfunctor

I
Q�−→ BI [W−1

I ]
determines a left system of diagram categories or a left pointed dérivateur, respectively.
We denote it by B[W−1]. Suppose further that the quotient morphism Q : B −→ B[W−1]
is right exact.

In the case where B is a system of triangulated diagram categories or, respectively, a
triangulated dérivateur, any thick subcategory A0 of B0 gives rise to a localization in B.
Namely, given I ∈ Dia, we can put AI = {A ∈ BI | Ax ∈ A0 for all x ∈ I}. Then AI

is thick in BI , and the functor I �−→ AI determines a system of triangulated diagram
categories or a triangulated dérivateur, and the quotient is then constructed in a natural
way (see [5, p. 39]).

The second Maltsiniotis conjecture [7]. Suppose we are given a sequence of mor-
phisms between left systems of diagram categories or left pointed dérivateurs,

A F−→ B
Q−→ B[W−1]

where Q is the quotient morphism and F is a right exact equivalence between A and
Q−1(0) = {B ∈ B? | 0 −→ B ∈ W?}. Then the induced sequence of K-theory spaces

K(A) −→ K(B) −→ K(B[W−1])

is a fibration up to homotopy.

With the morphism F we have already associated a fibration (see Corollary 5.4(1)):

i.S.A −→ i.S.B −→ i.N.S.(A −→ B).

There is a natural map from i.N.S.(A −→ B) to i.S.B[W−1]. Therefore, the localization
theorem reduces, say, to showing that the latter map is a homotopy equivalence.

It remains to prove Theorem 7.1, as promised. We start with preparations.

Definition. An additive category T will be called a category with squares provided
� T has an automorphism Σ : T −→ T ;
� T is equipped with a collection of special squares

C �� D

(1)



A

��

�� B

��

This means that the square
C �� D

A

��

�� B

��

is commutative in T , and there is a map D −→ ΣA depicted as the curly arrow. The
mark (1) in the label of the arrow is to remind us that this map is of degree 1, i.e., a
map D −→ ΣA.

For two categories with squares, a special functor

F : S −→ T
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is an additive functor such that there is a natural isomorphism ΣF � FΣ and F takes
special squares in S to special squares in T .

If T is a category with squares, by the fold of the square

C
δ �� D

µ



A

β

��

α �� B

γ

��

we shall mean the sequence

A
(α,−β)t

−−−−−→ B ⊕ C
(γ,δ)−−−→ D

µ−→ ΣA.

Examples. Let T be a triangulated category. Then T is additive and comes with an
automorphism Σ. We say that a square is special if and only if its fold is a distinguished
triangle in T . When we regard a triangulated category T as a category with squares (see
above), then we shall denote it by T d.

Let A be an Abelian category. Let GrbA be the category of bounded, graded objects
in A. We recall that a graded object of A is a sequence of objects {Ai ∈ A}i∈Z. The
sequence {Ai} is bounded if Ai = 0 except for finitely many i ∈ Z.

Let the functor Σ : GrbA −→ GrbA be the shift, i.e., Σ{Ai} = {Bi} with Bi = Ai+1.
A square in GrbA is said to be special if the fold

A
(α,−β)t

−−−−−→ B ⊕ C
(γ,δ)−−−→ D

µ−→ ΣA

gives a long exact sequence

· · · −→ Di−1 −→ Ai −→ Bi ⊕ Ci −→ Di −→ Ai+1 −→ · · ·

in A.
Let H : Db(A) −→ GrbA be the homology functor taking a complex A ∈ Db(A) to

{Hi(A)}. Then it induces a functor between categories with squares:

H : Db(A)d −→ GrbA.

Definition. (1) Let T be a category with squares, and let m, n ≥ 0. A functor X : ∆m×
∆n −→ T is called an augmented diagram if for any 0 ≤ i ≤ i′ ≤ m and 0 ≤ j ≤ j′ ≤ n
we are given a special square

Xij′ �� Xi′j′

δi′,j′
i,j

��Xij

��

�� Xi′j

��

such that δi′,j′

i,j is the composition Xi′j′ −→ Xmn

δm,n
0,0−−−→ ΣX00 −→ ΣXij . By a morphism

ϕ : X −→ Y between augmented diagrams we mean a natural transformation of functors
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such that the square

Xi′j′

ϕi′j′

��

δi′,j′
i,j �� ΣXij

Σϕij

��
Yi′j′

δi′,j′
i,j �� ΣYij

is commutative for any 0 ≤ i ≤ i′ ≤ m and 0 ≤ j ≤ j′ ≤ n.
The category of augmented diagrams will be denoted by Qm,nT . This leads to a

bisimplicial category QT = {Qm,nT }m,n≥0 (the face/degeneracy operators are defined
by deleting/inserting a row or column).

(2) For a category with squares T , its K-theory K(T ) is defined to be the space
Ω|Ob(QT )|.

Let H : Db(A)d −→ GrbA be the functor of categories with squares (see above). H
induces a map χ : QDb(A)d −→ QGrbA of bisimplicial categories and, hence, a map
K(χ) : K(Db(A)) −→ K(GrbA).

Let E be an exact category, let m, n ≥ 0, and let Qm,nE be the following category.
Its objects are the functors X : ∆m × ∆n −→ E such that for any 0 ≤ i ≤ i′ ≤ m and
0 ≤ j ≤ j′ ≤ n we are given a bi-Cartesian square

Xij′ �� �� Xi′j′

Xij

����

�� �� Xi′j

����

in which the vertical arrows are epimorphisms and the horizontal arrows are monomor-
phisms. The morphisms are given by natural transformations. The resulting bisimplicial
category is denoted by QE . It is well known that a simplicial model for a delooping of
the space K(E) is given by the realization of the bisimplicial set ObQE .

Let A be an Abelian category, and let i : A −→ Db(A) denote the natural functor
sending an object A ∈ A to the complex concentrated at the zeroth degree. Then it
induces a functor (see also some discussion below) of bisimplicial categories ι : QA −→
QDb(A)d. Note that the differentials δi′,j′

i,j in QDb(A)d are constructed canonically and
are unique for every diagram coming from QA (see [23]).

Theorem 7.4 (Neeman [22]). Let A be a small Abelian category. Then the composition

Ob QA ι−→ Ob QDb(A)d χ−→ Ob QGrb(A)

is a homotopy equivalence.

As usual, given a category C, we denote by iC the maximal groupoid in C and by i.C
the nerve in the i-direction.

Corollary 7.5. Let A be a small Abelian category. Then the composition of maps of
trisimplicial objects

i.QA ι−→ i.QDb(A)d χ−→ i.QGrb(A)
is a homotopy equivalence.

Proof. For k ≥ 0, the category ikA of strings of isomorphisms A0
∼−→ · · · ∼−→ Ak is

Abelian, and the composition

ikQA = Q[ikA] ι−→ ikQDb(A)d χ−→ ikQGrb(A) = QGrb[ikA]

is a homotopy equivalence of bisimplicial objects by Theorem 7.4. By Lemma 4.1, so is
the map described in the corollary. �
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Proof of Theorem 7.1. 1) First, we prove the statement for an Abelian category A. For
Quillen’s K-theory K(A) we use the following simplicial model. It is the loop space of
the realization of i.QA (see [9]). In its turn, the model for K(Db(A)) is given by the
bisimplicial maximal groupoid iQDb(A) (see §3).

By Corollary 7.5, it suffices to show that the map i.QA ι−→ i.QDb(A)d factors through
i.QDb(A). Recall that Qm,nDb(A), m, n ≥ 0, consists of the objects X ∈ Db(A)∆m×∆n

such that for any 0 ≤ i ≤ i′ ≤ m and 0 ≤ j ≤ j′ ≤ n the square

Xij′ �� Xi′j′

Xij

��

�� Xi′j

��

is bi-Cartesian in Db(A)� (= co-Cartesian in triangulated dérivateurs, see [7]). It follows
that

cone(Xij −→ Xij′ ⊕ Xi′j) −→ cone(0 −→ Xi′j′) � Xi′j′

is a quasiisomorphism in Cb(A), hence an isomorphism in Db(A) (here we use proper-
ties of triangulated dérivateurs and the triangulated structure information encoded by
Db(A), see [16, 5, 6]). Now we compose the inverse of this isomorphism with the natural
projection:

cone(Xij −→ Xij′ ⊕ Xi′j) −→ cone(Xij −→ 0) � ΣXij ,

and we have a map δi′,j′

i,j : Xi′j′ −→ ΣXij . This produces a special square in Db(A)d.
Clearly, this construction is natural. Let f : X −→ Y , where X, Y ∈ Qm,nDb(A), be

an isomorphism. It is represented by a diagram X ←− Z −→ Y, where Z ∈ Qm,nDb(A)
and the arrows are quasiisomorphisms. We have the following commutative diagram in
Cb(A) for any 0 ≤ i ≤ i′ ≤ m and 0 ≤ j ≤ j′ ≤ n:

Xij
a �� Xij′ ⊕ Xi′j �� Xi′j′ cone(a)�� �� ΣXij

Zij
b ��

��

��

Zij′ ⊕ Zi′j ��

��

��

Zi′j′

��

��

cone(b)��

��

��

�� ΣZij

��

��
Yij

c �� Yij′ ⊕ Yi′j �� Yi′j′ cone(c)�� �� ΣYij .

This yields an isomorphism of triangles in Db(A)

Xij ��

��

Xij′ ⊕ Xi′j ��

��

Xi′j′

��

δi′,j′
i,j �� ΣXij

��
Yij �� Yij′ ⊕ Yi′j �� Yi′j′

δi′,j′
i,j �� ΣYij ,

and hence, an isomorphism of special squares in Db(A)d.
Now, let X ∈ Qm,nDb(A), and suppose that 0 ≤ i′ ≤ m and 0 ≤ j′ ≤ n. There is a

commutative diagram in Cb(A),

X00
��

��

Xi′0 ⊕ X0j′ ��

��

Xi′j′

��
X00

�� Xm0 ⊕ X0n
�� Xmn.
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Consequently, in Db(A) we obtain a commutative square

Xi′j′

��

δi′,j′
0,0 �� ΣX00

��
Xmn

��
δm,n
0,0 �� ΣX00.

For any 0 ≤ i ≤ i′ and 0 ≤ j ≤ j′, in Cb(A) there is a commutative diagram

X00
��

��

Xi′0 ⊕ X0j′ ��

��

Xi′j′

��
Xij �� Xi′j ⊕ Xij′ �� Xi′j′ .

Consequently, in Db(A) we obtain a commutative square

Xi′j′

��

δi′,j′
0,0 �� ΣX00

��
Xi′j′ ��

δi′,j′
i,j �� ΣXij ,

and the “natural” map δi′,j′

i,j : Xi′j′ −→ ΣXij is obtained from δm,n
0,0 : Xmn −→ ΣX00

simply as the composition

Xi′j′ −→ Xmn

δm,n
0,0−−−→ ΣX00 −→ ΣXij .

It follows that the functors dia : Db(A)∆m×∆n −→ Hom(∆m ×∆n, Db(A)), m, n ≥ 0,
induce a map of bisimplicial groupoids

θ : iQDb(A) −→ iQDb(A)d.

Obviously, the map i.QA ι−→ i.QDb(A)d factors as

i.QA ρ−→ i.QDb(A) θ−→ i.QDb(A)d.

This implies the claim.
(2) Suppose now that an exact category E ⊆ A satisfies the assumptions of the theo-

rem. Consider the commutative diagram

i.QE

��

ρ �� i.QDb(E)

��
i.QA ρ �� i.QDb(A)

χθ �� i.QGrbA
in which the vertical arrows are induced by the inclusion E −→ A. The left vertical
arrow is a homotopy equivalence by the resolution theorem [28]. Obviously, the fact that
the map χθρ is a homotopy equivalence (by (1)) completes the proof. �

Based on Vaknin’s computations in [29], Neeman showed in [23] that there is an
exact category E such that the homomorphism K1(ι) : K1(E) −→ K1(Db(E)) is not a
monomorphism (while it is a split monomorphism for Abelian categories [22, 23]). A
simplest example is provided by the category E of free modules of finite rank over the
ring of dual numbers k[ε]/ε2. Such exact categories could give us counterexamples to
the first Maltsiniotis conjecture if we showed in a similar way that the map K1(ρ) :
K1(E) −→ K1(Db(E)) is not a monomorphism.
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Pascal 10 (2003), no. 2, 195–244. MR2031269 (2004k:18009)
[15] K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc.

186 (1974), 419–458. MR0341469 (49:6220)
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