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NORMAL CYCLOTOMIC SCHEMES
OVER A FINITE COMMUTATIVE RING

S. EVDOKIMOV AND I. PONOMARENKO

To the centenary of the birth of D. K. Faddeev

Abstract. Cyclotomic association schemes over a finite commutative ring R with
identity are studied. The main goal is to identify the normal cyclotomic schemes C,
i.e., those for which Aut(C) ≤ AΓL1(R). The problem reduces to the case where the
ring R is local, and in this case a necessary condition of normality in terms of the
subgroup of R× that determines C is given. This condition is proved to be sufficient
for a large class of local rings including the Galois rings of odd characteristic.

§1. Introduction

Let R be a finite commutative ring1 and K a subgroup of its multiplicative group
R×. We denote by Rel(K, R) the set of all binary relations of the form {(x, y) ∈ R×R :
y − x ∈ rK}, r ∈ R. Then the pair

(1) Cyc(K, R) = (R, Rel(K, R))

is an association scheme on R. We call it a cyclotomic scheme over R corresponding
to the group K. Clearly, Cyc(K, R) is the scheme of 2-orbits of the group Γ(K, R) =
{γa,b : a ∈ K, b ∈ R}, where γa,b is the permutation of the set R that takes x to
ax+b. In particular, Cyc(K, R) is a Cayley scheme over the additive group R+ of R (see
Subsection 7.2), or a translation scheme in the sense of [1]. Moreover, multiplications by
elements of R× are Cayley isomorphisms of this scheme.

Cyclotomic schemes over a field were introduced by P. Delsarte (1973) in connection
with algebraic coding theory. In [4] it was proved that any such scheme is uniquely deter-
mined up to isomorphism by its 3-dimensional intersection numbers. Cyclotomic schemes
over rings were introduced and studied in [5] within the framework of duality theory for
association schemes. We also mention the paper [7], where cyclotomic schemes over Ga-
lois rings of characteristic 4 were used to construct amorphous association schemes. In
the present paper we are mainly interested in the automorphism groups of cyclotomic
schemes.

Historically, the well-known Burnside theorem on permutation groups of prime degree
can be viewed as the first result on automorphism groups of cyclotomic schemes. In fact,
this theorem completely determines the structure of such automorphism groups for a
prime field. In the case of an arbitrary finite field we have the following statement, which
is a reformulation of an old number-theoretical result from [9] (see also [1, p. 389]).
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Theorem 1.1. Let C be a cyclotomic scheme over a finite field F. Then Aut(C) ≤
AΓL1(F) whenever rk(C) > 2.

For the cyclotomic schemes over the ring Zn of integers modulo a positive integer n,
no result of such a kind is true. Indeed, since any such scheme is a Cayley scheme over
a cyclic group Z+

n , it can be treated, up to the language, as an S-ring over the same
group. In accordance with [8, 4] every such S-ring can be constructed from normal S-
rings and S-rings of rank 2 by means of tensor products and generalized wreath products
(or wedge products in terms of [8]). Here by normal S-rings we mean exactly those that
come from cyclotomic schemes C such that Aut(C) ≤ AΓL1(Zn) = AGL1(Zn). However,
even among the S-rings corresponding to cyclotomic schemes there exist nonnormal ones
(see [4, §6]).

The above discussion leads to the following definition, which is central for this paper.

Definition 1.2. We say that a cyclotomic scheme C over a finite commutative ring R is
normal if Aut(C) ≤ AΓL1(R).

Our goal in this paper is to identify the normal cyclotomic schemes. Since any finite
commutative ring is a direct product of local rings, the theorem below reduces the general
case to the local case (and moreover, gives some product formula for two-point stabilizers
of the automorphism group). Below, for the ring R =

∏
i Ri, we use the following

notation. For a cyclotomic scheme C = Cyc(K, R) we set Ci = Cyc(Ki, Ri), where
the group Ki ≤ R×

i is defined by the formula ϕi(Ki) = K ∩ ϕi(R×
i ); here ϕi is the

monomorphism of R×
i to R× such that the jth component of ϕi(x) is equal to x for j = i

and to 1Rj
for j �= i.

Theorem 1.3. Let R =
∏

i Ri be a finite commutative ring and C a cyclotomic scheme
over R. Then

(2) Aut(C)u,v =
∏

i

Aut(Ci)ui,vi
,

where u = 0R, v = 1R, ui = 0Ri
, and vi = 1Ri

. In particular, the scheme C is normal if
and only if the scheme Ci is normal for every i.

The following theorem gives a necessary condition for a cyclotomic scheme over a
local ring to be normal. We do not know any example showing that this condition is not
sufficient. Below we set I0 = {x ∈ rad(R) : x rad(R) = {0}}.

Theorem 1.4. Suppose that a cyclotomic scheme Cyc(K, R) over a finite local commu-
tative ring R is normal. Let K = K + I for some ideal I of R. Then I = 0 unless the
order q of the residue field of R equals 2. Moreover, if q = 2, then I ⊂ I0.

Let R be a local commutative ring. Given a group K ≤ R×, we denote by IK the set
of all ideals I of R such that K + I = K, or equivalently, 1 + I ⊂ K. It is convenient for
us to formulate the following definition.

Definition 1.5. A group K ≤ R× is said to be pure if IK = {0}.

If R is a field, then obviously any subgroup of R× is pure. Moreover, Theorem 1.4
implies that for q > 2 the group K is pure whenever the scheme Cyc(K, R) is normal. It
turns out that, for the Galois rings of odd characteristic that are not fields, this necessary
condition of normality is also sufficient (for the definition of a Galois ring, see §2).

Theorem 1.6. Let R be a Galois ring (but not a field) of odd characteristic. Then the
scheme Cyc(K, R) is normal if and only if the group K is pure.
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Let R = GR(pd, r) be a Galois ring of characteristic pd with the residue field of
cardinality q = pr, where p is a prime. If d > 1 and p > 2 (the case of Theorem 1.6),
then it is easily seen that a group K ≤ R× is pure if and only if it does not contain
the group 1 + pd−1R. On the other hand, if d = 1 (i.e., R = F is a field of cardinality
q), then the condition rk(C) = 2 implies Aut(C) = Sym(F). Also, it is easily seen that
Sym(F) ≤ AΓL1(F) if and only if q ≤ 4. Thus, after combining Theorems 1.6 and 1.1,
we arrive at the following statement.

Theorem 1.7. Let R = GR(pd, r) with p > 2. Then a cyclotomic scheme Cyc(K, R) is
normal if and only if one of the following conditions is fulfilled:

1) d = 1 and either (p, r) = (3, 1) or K �= R×;
2) d > 1 and K �≥ 1 + pd−1R.

One of the ideas for proving the sufficiency part in Theorem 1.6 is to develop a reduc-
tion technique for cyclotomic schemes over an arbitrary local ring. For an ideal I of such
a ring R, the scheme Cyc(πI(K), R/I), where πI : R → R/I is the natural epimorphism,
can be treated as a factor-scheme of the scheme Cyc(K, R) (see Subsection 2.2). This
simple observation is used in the proof of Theorem 6.1, a straightforward consequence of
which is the following reduction statement. Below we set π0 = πI0 .

Theorem 1.8. Let R be a finite local commutative ring, K ≤ R× a pure group, C =
Cyc(K, R), and C′ = Cyc(K ′, R′), where K ′ = π0(K) and R′ = R/I0. Then the scheme C
is normal whenever so is the scheme C′.

Unfortunately, in general the group K ′ may fail to be pure (even if R is a Galois ring
of even characteristic), so that Theorem 1.8 cannot be used for a direct inductive proof
of the normality of the scheme C. However, if R is a Galois ring of odd characteristic,
then K ′ is pure, and Theorem 1.6 reduces to the case where rad(R)2 = {0}. Thus,
by Theorem 1.1, it suffices to prove the following statement, which is a special case of
Theorem 6.4.

Theorem 1.9. Let R be a finite local commutative ring other than a field and such that
rad(R)2 = {0}. Then the scheme Cyc(K, R) is normal whenever the group K is pure.

Theorems 6.1 and 6.4, which lead to Theorems 1.8 and 1.9, are proved by using the
S-ring technique. Namely, for a cyclotomic scheme C over R, together with the usual
(addition) S-ring over R+ corresponding to C we consider its multiplication S-ring A
over R× (see §4). Everything reduces to the case of a pure group K ≤ T U0, where T
is the Teichmüller subgroup of R× and U0 = 1 + I0. Then the group Aut(C)u,v acts
faithfully on R×, and the image of this action equals Aut(A). Moreover, in this case the
S-ring A contains the groups T and U = 1 + rad(R), and becomes trivial after adding
to it the cosets by any of these groups (§5). This enables us to prove that the group
Aut(C) normalizes the group AGL1(R) (Theorems 4.4 and 7.2). The latter means that
Aut(C) ≤ AΓL1(R) (Lemma 2.1), i.e., the scheme C is normal.

Actually, the technique that we develop permits us to obtain the following sufficient
condition of normality for an arbitrary finite local commutative ring R: the scheme
Cyc(K, R) is normal whenever the group K is strongly pure (Theorem 6.2). (Here we
say that a group K ≤ R× is strongly pure if it is pure and the group π0(K) is strongly
pure unless R is a field.) It should be noted that this condition is not necessary: it can
be proved that the cyclotomic scheme corresponding to the group K in the example at
the beginning of Subsection 6.2 is normal.

In some cases, somewhat more can be said about the automorphism group of a normal
cyclotomic scheme C = Cyc(K, R), where R is a finite local commutative ring. For
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instance, if K ≤ T and R is not a field, then

Aut(C) ≤ AGL1(R)

(statement 1 of Theorem 6.5). This inclusion remains true also in some other cases. In
particular, this is so if the group K is strongly pure, and either K ≤ U or the residue
field F of R is prime (statements 2 and 3 of Theorem 6.5). The reason for this is that in
both cases the natural mapping

AutC(R) → AutC(F)

is a monomorphism and the group AutC(F) is trivial; here, by definition, AutC(R) (re-
spectively, AutC(F)) consists of all automorphisms of R (respectively, F) that are auto-
morphisms of C (respectively, the factor-scheme of C on F); see Theorem 6.2. It should
be noted that, in general, the kernel of the quotient homomorphism Aut(R) → Aut(F)
is not trivial. For instance, for R = F[X]/(X2) the group Aut(R) is isomorphic to the
semidirect product of R× by Aut(F) (indeed, the mapping a + bπ �→ aσ + bσαπ, where
a, b ∈ F and π = X mod X2, is an automorphism of R for any σ ∈ Aut(F) and α ∈ R×).

All terms and results concerning permutation groups can be found in the mono-
graphs [14, 15, 2]. To make the paper possibly self-contained, we cite the background
on schemes and Schur rings in §7 (see [3] for details). All necessary properties of finite
rings and cyclotomic schemes can be found in §2. The proofs of Theorems 1.3 and 1.4
are contained in §3; they are based on the ideas of [4], where the case of R = Zn was
treated. The multiplication S-ring of a cyclotomic scheme is introduced and studied in
§§4 and 5. §6 contains the proofs of Theorems 6.1, 6.2, and 1.6.

Notation. As usual, Z denotes the ring of rational integers.
For a ring R with identity, we denote by R+, R×, and rad(R) the additive and

multiplicative groups of R and the radical of R, respectively.
Given groups A ≤ R× and B ≤ R+ with AB = B, we denote by Γ(A, B) the group

{γa,b : a ∈ A, b ∈ B}, where γa,b is the permutation of R taking x to ax + b. We omit
B whenever B = 0, and set AGL1(R) = Γ(R×, R+) and GL1(R) = Γ(R×).

By AΓL1(R) we denote the group of all permutations of R of the form x �→ axσ + b,
where a ∈ R×, b ∈ R, and σ ∈ Aut(R). This group is a semidirect product of the groups
AGL1(R) and Aut(R) (with the natural action of the latter group on the former).

The group of all permutations of a set V is denoted by Sym(V ).
In a natural way, each permutation f ∈ Sym(V ) (v �→ vf ) determines a permutation

R �→ Rf of the set of all relations on V . For an equivalence relation E on a set X ⊂ V
such that Ef = E, the permutation f induces a permutation fX/E ∈ Sym(X/E). If E
is Γ-invariant for some group Γ ≤ Sym(V ), then all such permutations for f ∈ Γ form
a group denoted by ΓX/E . If all classes of E are singletons, the set X/E is identified
with X.

For a group G, the permutation group on the set G determined by the right multipli-
cations is denoted by Gright.

For Γ ≤ Sym(V ) and X1, . . . , Xs ⊂ V , we set ΓX1,...,Xs
= {γ ∈ Γ : Xγ

i = Xi for all i}.
If Xi = {vi}, the brackets are omitted. If the Xi’s are the classes of an equivalence
relation E on V , we set ΓE = ΓX1,...,Xs

.

§2. Finite commutative rings and cyclotomic schemes

2.1. Finite rings. It is well known (see, e.g., [10, Theorem 6.2]) that any finite com-
mutative ring is a direct product of local rings. Let R be a finite local commutative ring.
Then R = rad(R) ∪ R×, the ideal rad(R) is maximal, and the characteristic of R is a
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power of the characteristic of its residue field F = R/ rad(R). Moreover,

(3) R× = T × U ,

where T is the Teichmüller group and U is the group of principal units. The group T is
a cyclic group of order q − 1, and the group U = 1 + rad(R) is an Abelian p-group; here
q and p are the order and the characteristic of the field F.

Let I ⊂ rad(R) be an ideal of R. Then the quotient ring R/I is local and (R/I)× =
πI(R×), where πI : R → R/I is the natural epimorphism. The set 1 + I is a subgroup
of U . Moreover, if I ⊂ I0, where I0 = {x ∈ rad(R) : x rad(R) = 0}, then the mapping
r �→ 1 + r induces an isomorphism of the additive group of I onto 1 + I. Below we set
U0 = 1 + I0.

We say that the local ring R is Galois if rad(R) = pR.2 For any positive integers
n, r, there exists a unique (up to isomorphism) Galois ring of characteristic pn with
q = pr; it is denoted by GR(pn, r). We observe that GR(p, r) is a field of order pr and
GR(pn, 1) ∼= Zpn . Each proper ideal of the Galois ring GR(pn, r) = R is of the form piR,
i = 1, . . . , n, and the corresponding quotient ring is isomorphic to GR(pi, r). We also
note that the homomorphism Aut(R) → Aut(F) induced by the epimorphism πrad(R) is
in fact an isomorphism (see [13]).

Generally, the structure of the group Aut(R) is unclear even in the local case. Below
we give a sufficient condition for a permutation of R to belong to this group.

Lemma 2.1. Let R be a commutative ring, and suppose that a group K ≤ R×, viewed
as a set, generates the group R+. Let γ ∈ Sym(R) be a permutation such that

0γ = 0, 1γ = 1, γ−1Γ(K, R)γ = Γ(K, R).

Then γ ∈ Aut(R).

Proof. The condition γ−1Γ(K, R)γ = Γ(K, R) implies that, given (a, b) ∈ K × R, there
exists (aγ , bγ) ∈ K × R such that γ−1γa,bγ = γaγ ,bγ

, or equivalently,

(4) (axγ−1
+ b)γ = aγx + bγ , x ∈ R.

Since γ leaves both 0 and 1 fixed, for x = 0 this shows that bγ = bγ for all b ∈ R, whereas
for (x, b) = (1, 0) this yields aγ = aγ for all a ∈ K. Therefore, for a = 1 and b = 0
formula (4) gives

(5) (x + b)γ = xγ + bγ , (x, b) ∈ R × R, and (ax)γ = aγxγ , (a, x) ∈ K × R,

respectively. In particular, γ ∈ Aut(R+), and consequently (since K generates R+), the
second relation is valid for all a ∈ R. Thus, γ ∈ Aut(R). �

Lemma 2.1 will be applied in §6 to a local ring R and K = R×. In this case 〈K〉 = R+,
because any element of the set rad(R) = R\R× is the difference of two units. The lemma
is also employed to prove the following statement, in which s = γ−1,1 is the involution
taking x to −x + 1.

Corollary 2.2. Let F be a field and γ ∈ Sym(F) a permutation leaving fixed both 0 and 1.
Suppose that γ normalizes the two groups Γ(F×) and sΓ(F×)s. Then γ ∈ Aut(F).

Proof. A straightforward computation shows that γa−1,0sγa,0s = γ1,1−a for all a ∈ F×.
Assuming without loss of generality that |F|>2, we see that the group 〈Γ(F×), sΓ(F×)s〉
contains the group Γ(1, F+) and hence is equal to Γ(F×, F+). Thus, we are done by
Lemma 2.1 with R = F and K = F×. �

2This is one of the equivalent definitions given in [10].



916 S. EVDOKIMOV AND I. PONOMARENKO

2.2. Cyclotomic schemes. Let C = Cyc(K, R) be a cyclotomic scheme over a finite
commutative ring R (see (1)). Since, obviously, each relation from the set Rel(K, R) is
R+

right-invariant, C is a Cayley scheme over the group R+. The corresponding S-ring is
called the addition S-ring of C. Each basic set of it is of the form rK with r ∈ R. It
follows that any ideal I of R is an A-subgroup (indeed, I =

⋃
r∈I rK). So, due to the

bijection between the sets H(A) and E(C) (see Subsection 7.2), we have the following
statement.

Lemma 2.3. For any ideal I of the ring R, the equivalence relation

E(I) =
⋃

X∈R/I

X × X

belongs to the set E(C). In particular, this relation is Aut(C)-invariant.

Since, obviously, the set Rel(K, R) is AGL1(R)-invariant, and the stabilizer of the
point u = 0 in the group AGL1(R) is equal to GL1(R), we have

(6) AGL1(R) ≤ Iso(C), GL1(R) ≤ Iso(Cu),

where Cu is the u-extension of C (see Subsection 7.1). The following easy statement gives
a simple criterion of normality.

Lemma 2.4. The scheme C is normal if and only if Aut(C)u,v ≤ Aut(R), where u = 0
and v = 1.

Proof. The “only if” part follows from the obvious identity AΓL(R)u,v = Aut(R). Con-
versely, by the orbit-stabilizer theorem [2, Theorem 1.4A], we have

[Aut(C) : Aut(C)u,v] = |R||K| = |Γ(K, R)|.
Since Γ(K, R) ≤ Aut(C), we conclude that Aut(C) = Aut(C)u,vΓ(K, R), and the “if”
part follows. �

Now, let the ring R be local, and let I ⊂ rad(R) be an ideal of R. Then R/E(I) = R/I,
the equivalence relation E(I) is Γ(K, R)-invariant, and Γ(K, R)R/E(I) = Γ(πI(K), R/I).
This implies that

(7) Cyc(K, R)R/E(I) = Cyc(πI(K), R/I),

i.e., the factor-scheme of C modulo E(I) can naturally be treated as a cyclotomic scheme
over the ring R/I.

The following theorem on cyclotomic schemes with pure groups (see Definition 1.5)
will be used in §6.

Theorem 2.5. Let C = Cyc(K, R) be a cyclotomic scheme over a local commutative
ring R. If the group K is pure, then

CE0 ≥ Cyc(U0, R),

where U0 = K ∩ U0 and E0 = E(I0).

Proof. First, we prove that if S ∈ Rel(K, R) and S0 ∈ Rel(U0, R) are the relations
corresponding to the sets xK and xU0 (respectively), then

(8) S ∩ ((a + I0) × (b + I0)) = S0 ∩ ((a + I0) × (b + I0)), a, b ∈ R,

whenever x ∈ R× and the right-hand side is nonempty. Let (y, z) belong to the left-hand
side. Then z − y ∈ (xK) ∩ (b − a + I0). On the other hand, by assumption, there exists
(y0, z0) belonging to the right-hand side. Then z0 − y0 ∈ (xU0) ∩ (b − a + I0). Thus,
(z − y)/(z0 − y0) ∈ K ∩ (1 + I0) = U0, so that z − y belongs to the right-hand side. The
reverse inclusion is obvious.
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We denote by M the set of all relations in Rel(U0, R) corresponding to the sets xU0

with x ∈ R×. Then (8) implies that M ⊂ R∗(CE0), whence [M] ≤ CE0 . Thus, it suffices
to verify that [M] = CE0 , or equivalently, that the addition S-ring A of the scheme
Cyc(U0, R) is generated (as an S-ring) by the sets xU0, x ∈ R×. For this, we prove that

(9) xU0 =
⋂
t∈T

((x − t)U0 + tU0), x ∈ rad(R).

Obviously, the left-hand side of (9) is contained in the right-hand side. Conversely, let
t ∈ T and x ∈ rad(R). Then, since U0 = 1 + H, where H is a subgroup of the additive
group of the ideal I0 and xH = 0, we have

(x − t)U0 + tU0 = (x − t)(1 + H) + t(1 + H) = x − t + tH + t + tH = x + tH.

It follows that if y belongs to the right-hand side of (9), then y ∈ x + tH for all t ∈ T .
On the other hand,

⋂
t∈T tH = 0 by the purity of the group U0. Thus, y = x and we are

done. �

§3. Proof of Theorems 1.3 and 1.4

3.1. Proof of Theorem 1.3. Set Γ = Aut(C) and Γi = Aut(Ci). To prove relation (2),
first we verify that

∏
i(Γi)ui,vi

≤ Γu,v. For this, we observe that the obvious inclusion∏
i Ki ≤ K implies that ∏

i

Γ(Ki, Ri) ≤ Γ(K, R).

Therefore,
⊗

i Ci ≥ C, whence
∏

i Γi ≤ Γ. Since, obviously,
∏

i(Γi)ui,vi
= (

∏
i Γi)u,v, we

are done. To prove the reverse inclusion, we observe that, by Lemma 2.3 with I = Ri,
Ri is a Γu-invariant set for all i. For γ ∈ Γu, let γi denote the restriction of γ to Ri.
Then for any element x = (. . . , xi, . . .) of the set R =

∏
i Ri we have

(10) xγ = (. . . , xγi

i , . . .).

Indeed, by Lemma 2.3 with I =
∏

j �=i Rj , the equivalence E(I) is Γu-invariant. On the
other hand, obviously, each class of this equivalence contains a unique element of Ri.
Thus, the ith component of xγ equals xγi

i by the definition of γi. Since Γu,v,Ri,v+Ri
=

Γu,v, from (10) it follows that

Γu,v ≤
∏

i

(Γu,v)Ri =
∏

i

(Γu,v,Ri,v+Ri
)Ri ≤

∏
i

((ΓRi,v+Ri
)Ri)ui,vi

.

Thus the inclusion
∏

i(Γi)ui,vi
≥ Γu,v and hence formula (2) are easy consequences of

Lemma 3.1 below. Indeed, since the groups Γi and Γ(Ki, Ri) are 2-equivalent (i.e., have
one and the same set of 2-orbits) and the group Γi is 2-closed (i.e., is largest in the class
of groups 2-equivalent to it), it follows that (ΓRi,v+Ri

)Ri ≤ Γi.

Lemma 3.1. The groups (ΓRi,v+Ri
)Ri and Γ(Ki, Ri) are 2-equivalent for all i.

Proof. Set X = Ri and Y = v+Ri. Since Γ(Ki, R) ≤ Γ and Γ(Ki, Ri) = (Γ(Ki, R)X,Y )X ,
it follows that Γ(Ki, Ri) ≤ ∆X where ∆ = ΓX,Y . Therefore, it suffices to check that
each 2-orbit of the group ∆X is contained in some 2-orbit of the group Γ(Ki, Ri), or
equivalently, that each orbit of the group (∆X)ui

= (∆u)X is contained in some orbit
of the group Γ(Ki, Ri)ui

= Ki (we have used the fact that the group ∆X contains a
transitive subgroup Γ({vi}, Ri)). However, obviously, each orbit of the group (∆u)X

meets some orbit of the group Ki. So, we only need to check that the latter orbit is
∆u-invariant. For this, we shall use the following statement.
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Lemma 3.2. For each i and for any a, r ∈ R such that rj ∈ R×
j for all j �= i, there

exists s ∈ K for which
(a + rK) ∩ Ri = ai + risiKi

whenever the set on the left-hand side is nonempty.

Proof. The definition of the monomorphism ϕi shows that K =
⋃

s sK ′, where K ′ =
ϕi(Ki) and s runs over a full system of representatives of K modulo K ′. Moreover, for
all s, t ∈ K we have

(11) sK ′ = tK ′ ⇔ sj = tj for all j �= i.

Also,

(12) a + rK =
⋃
s

(a + rsK ′)

for all a, r ∈ R. Suppose that the set (a + rsK ′) ∩ Ri is nonempty for some a, r, and s.
Then aj + rjsj = 0 for all j �= i. Therefore, if r is as in the assumptions of the lemma,
then the elements sj for j �= i, and with them the coset sK ′ by (11), are uniquely
determined by a and r. Thus, in this case, formula (12) implies that

(a + rK) ∩ Ri = (a + rsK ′) ∩ Ri = ai + risiKi.

Since the set (a + rK) ∩ Ri is nonempty if and only if so is the set (a + rsK ′) ∩ Ri, we
are done. �

We continue the proof of Lemma 3.1. We consider the identity of Lemma 3.2 with
a = vi − v and r = v − vi and translate it by v − vi; since X + (v − vi) = Y , we obtain

rK ∩ Y = {v − vi}.
Let S denote the basis relation of the scheme C corresponding to r. Since the sets
rK = Sout(u) and Y are ∆u-invariant, so is the set {v − vi}. Applying Lemma 3.2 with
a = v − vi and with r such that the set (v − vi + rK) ∩ X is nonempty and rj ∈ R×

j for
all j �= i, we get

(v − vi + rK) ∩ X = risiKi

for some s ∈ K. Since the sets v − vi + rK = Sout(v − vi) and X are ∆u-invariant, we
conclude that so is the set risiKi. Next, the sets risiKi cover X when r runs over the
elements of R such that the set (v − vi + rK)∩X is nonempty and rj ∈ R×

j for all j �= i

(for instance, we can take rj = −1 for j �= i and take ri to be an arbitrary element of
the ring Ri). So, any orbit of the group Ki is ∆u-invariant. �

Thus, the first part of Theorem 1.3 is proved. The second part follows from the first
and Lemma 2.4 applied to the scheme C and all schemes Ci.

3.2. Proof of Theorem 1.4. Without loss of generality we assume that R is not a field.
Then the required statement is a straightforward consequence of the following lemma,
the idea of the proof of which is taken from [4, Subsection 5.3].

Lemma 3.3. Under the conditions of Theorem 1.4, suppose that R is not a field and
that K + I = K for some nonzero ideal I of R. Then |R/ rad(R)| = 2 and, moreover,
I ⊂ I0.

Proof. For each k ∈ 1 + I, we define a permutation fk of the set R by

(13) xfk =

{
kx if x ∈ U ,

x otherwise.
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First, we show that fk ∈ Aut(C), where C = Cyc(K, R). It suffices to verify that if
x − y ∈ rK, then xfk − yfk ∈ rK for all x, y, r ∈ R. This is obvious for x, y �∈ U , and
follows from the inclusion 1 + I ≤ K for x, y ∈ U . Next, if x ∈ U and y �∈ U , then

xfk − yfk = kx − y = k(x − y) + (k − 1)y ∈ rK + I = rK + rI = r(K + I) = rK,

and we are done. The remaining case is treated similarly.
The normality of the scheme C implies that xfk = axσ + b for some a ∈ R×, b ∈ R,

σ ∈ Aut(R), and for all x ∈ R. Since 0fk = 0 and 1fk = k, we conclude that b = 0 and
a = k. Thus, xfk = kxσ, x ∈ R. By the choice of k, this implies that σ leaves fixed
each element of U (and hence, each element of rad(R)) and each set x + rad(R). Since
T σ = T and |T ∩ (x + rad(R))| = 1 for x ∈ R×, we see that σ leaves fixed each element
of T . Thus, σ = idR, whence xfk = kx for all x ∈ R. Comparing this with (13), we
obtain

(14) Ix = 0, x ∈ R \ U .

Since rad(R) ⊂ R\U , we have I ⊂ I0. To complete the proof, suppose that |R/ rad(R)| >
2. Then R× \ U �= ∅ and (14) implies that Ix = 0 for some x ∈ R×. Thus, I = 0, which
contradicts the choice of I. �

§4. Multiplication S-ring of a cyclotomic scheme

Let C = Cyc(K, R) be a cyclotomic scheme over a finite commutative ring R. Then,
by (6), we have Γ(R×) ≤ Iso(Cu), where Cu is the u-extension of C with u = 0R. Since
∆(R×) is a relation of the scheme Cu and the set R× is Γ(R×)-invariant, this implies
that R×

right = Γ(R×)R×
is a subgroup of Iso((Cu)R×). Therefore, in accordance with §7,

we can consider the scheme
C′ = ((Cu)R×)R×

right .

Obviously, R×
right ≤ Aut(C′). Thus, C′ is a Cayley scheme over the group R×. We denote

by A = A(K, R) the S-ring over R× corresponding to the scheme C′.

Definition 4.1. The S-ring A is called the multiplication S-ring of the scheme C.

The multiplication S-ring of a cyclotomic scheme over a field was introduced and
studied in [4].

Theorem 4.2. The set S∗(A) contains the sets rK for all r ∈ R× and the sets
(1 + rK) ∩ R× for all r ∈ R.

Proof. Suppose r ∈ R× and C = rK. Since each coset C ′ ∈ R×/K is a neighborhood
of the point u in the basis relation of C corresponding to C ′, the set ∆(C ′) is a relation
of the scheme Cu. Therefore, the latter scheme also contains the relation T defined by
formula (4) with G = R×. Thus, C ∈ S∗(A) (the relation T is R×

right-invariant and
Tout(1) = C).

To prove the second statement, take r ∈ R and set X = (1+rK)∩R×. It is easily seen
that the smallest relation S of the scheme Cu that contains {1}×X is a subset of K×R×.
Since all relations of Cu are Γ(K)-invariant, we see that Sout(1) = X. Moreover, by the
definition of the scheme C′, the smallest relation S′ of it containing S is the union of all
relations Sr′ = {(sr′, tr′) : (s, t) ∈ S} with r′ ∈ R×. However, S′

out(1) = Sout(1) = X,
so that X ∈ S∗(A), and we are done. �

The following theorem establishes some relationship between the automorphism group
of the scheme C and that of the S-ring A. We put v = 1R.



920 S. EVDOKIMOV AND I. PONOMARENKO

Theorem 4.3. In the above notation,

1) the mapping f �→ fR×
induces a homomorphism from Aut(Cu,v) to Aut(A), and

2) if R is a field, then the mapping in statement 1) is an isomorphism.

Proof. Being a neighborhood of the point u in a relation of the scheme C, the set R×

is Aut(Cu)-invariant. Therefore, the mapping f �→ fR×
induces a homomorphism from

Aut(Cu) to Aut(Cu)R×
. Moreover,

Aut(Cu)R×
≤ Aut((Cu)R×) ≤ Aut(C′).

Thus, statement 1) is true because Aut(C′)v = Aut(A) by the definition of the group
Aut(A). To prove statement 2), we observe that the restriction homomorphism from
Aut(Cu) to Aut((Cu)R×) is an isomorphism that induces an isomorphism from Aut(Cu,v)
to Aut((Cu)R×)v. On the other hand, by formula (23) with C = (Cu)R× and the fact
that Γ = R×

right, we have Aut(C′) = R×
right Aut((Cu)R×). So, Aut(A) = Aut(C′)v =

Aut((Cu)R×)v and we are done. �

In the general case the relationship between the groups Aut(Cu,v) and Aut(A) is
unclear. However, we have the following statement, which will be used in §6.

Theorem 4.4. Let R be a finite local commutative ring, let C = Cyc(K, R), and let
A = A(K, R). Then the scheme Cu,v is trivial whenever the S-ring A is trivial. In
particular, in this case, Aut(C) = Γ(K, R).

Proof. Suppose that the S-ring A is trivial. This means that C′ is the scheme of 2-
orbits of the group R×

right, and consequently, the scheme (C′)v is trivial. Therefore, the
scheme ((Cu)R×)v and its extension (Cu,v)R× are also trivial. On the other hand, the
permutation s = γ−1,1 is an isomorphism of the scheme C that interchanges u and v, so
that s ∈ Iso(Cu,v). Thus, the scheme (Cus,vs)(R×)s = (Cv,u)1−R× is trivial. It follows that
the restriction of the scheme Cu,v to the set R× ∪ (1 − R×) is trivial. However, by the
locality of the ring R we have R = R× ∪ (1−R×). Thus, the scheme Cu,v is trivial. The
second part of the theorem follows from the first and the proof of Lemma 2.4. �

§5. Multiplication S-ring: Pure case

In this section the multiplication S-ring of a cyclotomic scheme Cyc(K, R), which was
introduced in §4, is studied for a pure group K ≤ T U0. First, we rewrite the second half
of the sets mentioned in Theorem 4.2 in the multiplicative form.

Lemma 5.1. Let R be a finite local commutative ring, and let K = T (1+H) ≤ R× with
H ≤ I0. Then for r = 1 + x ∈ U we have

(1 + rK) ∩ R× =
⋃

t∈T , t�=1

t(1 + zt,x +
t − 1

t
(H + x)),

where zt,x = ytr with an element yt ∈ rad(R) uniquely determined by the condition
1 − t−1 + yt ∈ T .

Proof. By formula (3), we have

(15) (1 + rK) ∩ R× =
⋃

t′∈T , 1+t′ �∈ rad(R)

(1 + (1 + x)t′(1 + H)).
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Let t′ ∈ T , 1 + t′ �∈ rad(R). Then 1 + t′ = t(1 + yt) for some t ∈ T . Therefore,

1 + (1 + x)t′(1 + H) = 1 + t′(1 + H + x) = (1 + t′)(1 +
t

1 + t′
(H + x))

= t(1 + yt)(1 +
t(1 + yt) − 1

t(1 + yt)
(H + x)) = t(1 + yt +

t(1 + yt) − 1
t

(H + x))

= t(1 + yt + ytx +
t − 1

t
(H + x)) = t(1 + zt,x +

t − 1
t

(H + x))

(here xH = ytH = 0 because H ≤ I0). By (15), to complete the proof it suffices to note
that t runs over the set T \ {1} when t′ runs over the set T \ (−1 + rad(R)). �

Theorem 5.2. Let R be a finite local commutative ring, K a subgroup of R×, and A an
S-ring over R× such that X(r) ∈ S∗(A) for all r ∈ R×, where X(r) = (1 + rK) ∩ R×.
Suppose that K ≤ T U0 and the group K is pure. Then:

1) T ,U ∈ H(A);
2) the S-ring A is trivial whenever so is the S-ring AT or the S-ring AU .

Before proving Theorem 5.2, we present an easy consequence of it, which will be used
in the next section.

Theorem 5.3. Let R be a finite local commutative ring, let K ≤ T U0 be a pure group,
and let A be the multiplication S-ring of the scheme Cyc(K, R). Then:

1) T ,U ∈ H(A);
2) if H ∈ {T ,U}, then the S-ring generated by A and the cosets of R× by H is

trivial.

Proof. Statement 1) follows immediately from statement 1) of Theorem 5.2, because
the S-ring A satisfies the assumptions of that theorem (see Theorem 4.2). To prove
statement 2), we denote by A′ the S-ring generated by A and the cosets of R× by H.
Since A′ ≥ A, the S-ring A′ satisfies the assumptions of Theorem 5.2. So, by statement
2) of that theorem, it suffices to verify that the S-ring A′

H′ is trivial, where H ′ = U if
H = T , and H ′ = T if H = U . However, this follows from the fact that |H ′ ∩C| = 1 for
any C ∈ R×/H. �

5.1. Proof of Theorem 5.2. Since U is the complement of the set
⋃

r∈R× X(r) in R×,
the second part of statement 1) follows. To prove the rest of the theorem, we need the
following lemma, based on Lemma 5.1. If |R/ rad(R)| = 2, then the latter lemma is
useless. However, in this case, the group K and hence the S-ring A are trivial and the
lemma below is also true. Below the basic set of A that contains x ∈ R× is denoted
by [x].

Lemma 5.4. Under the conditions of the theorem, we have:
1) if [tu1] = [tu2] for some generator t of T , where u1, u2 ∈ U , then u1 = u2;
2) if [t1u] = [t2u] for all u ∈ U , where t1, t2 ∈ T , then t1 = t2.

Proof. Without loss of generality we assume that T ≤ K. First, we prove statement 1).
Any set X ⊂ R× admits a unique representation in the form X =

⋃
t∈T tXt, where

Xt ⊂ U (see (3)). It follows that for any σ ∈ Aut(T ) we have

(16) Xt = (X σ̂)tσ , t ∈ T ,

where σ̂ is the automorphism of the group R× such that σ̂T = σ and σ̂U = idU . Since
the group T is cyclic and its order is coprime to |U|, the Chinese remainder theorem
implies that the automorphism σ̂ is induced by raising to a power coprime to |R×|.
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Now, without loss of generality, we assume that the residue field of R is of order at
least 3, or equivalently, |T | ≥ 2. Let X = [tu], where t is a generator of T and u ∈ U .
Then, obviously, u ∈ Xt, and it suffices to check that

(17) Xt = {u}.
For this, we note that, by the Schur theorem on multipliers, we have X σ̂ = [tσu] for all
σ ∈ Aut(T ). Therefore, X σ̂ ⊂ X(rσ) for some rσ = 1 + xσ with xσ ∈ rad(R) (we have
used the fact that the latter set belongs to S∗(A) and the union of all such sets equals
R× \ U). Since K ∩ U = 1 + H, where H ≤ I0, Lemma 5.1 shows that

(X σ̂)tσ ⊂ 1 + ztσ,xσ
+

tσ − 1
tσ

(H + xσ).

However, by (16), the element u belongs to the left-hand side of this inclusion, and thus,
to the right-hand side; being a coset by the group tσ−1

tσ H, this right-hand side is equal
to u + tσ−1

tσ H. We conclude that

Xt ⊂
⋂

σ∈Aut(T )

(u +
tσ − 1

tσ
H) = u + H0,

where H0 is the intersection of all groups tσ−1
tσ H. To complete the proof of (17), we

show that H0 = 0. Suppose to the contrary that there exists a nonzero x ∈ H0. Then
1

1−tσ x ∈ H for all σ ∈ Aut(T ). On the other hand, the following statement, to be proved
in §8, is true.3

Lemma 5.5. Let F be a finite field of order at least 3. Then the set

M = {1/(1 − g) : g is a generator of the group F×}
contains a linear base of F over its prime subfield.

We observe that the natural epimorphism π from R onto its residue field F induces a
group isomorphism from T to F× such that

M = {π(1/(1 − t′)) : t′ ∈ T ′},
where T ′ is the set of generators of the group T . Then Lemma 5.5 shows that for
any r ∈ R the element π(r) is an integral combination of the elements π(1/(1 − t′)),
t′ ∈ T ′. Let s denote the integral combination (with the same coefficients) of the elements
1/(1 − t′), t′ ∈ T ′. Then r − s ∈ rad(R), and hence rx is a linear combination of the
elements x/(1− t′), t′ ∈ T ′. Since all of them belong to H (see above), this implies that
rx ∈ H. Thus, Rx ⊂ H. It follows that 1 + I ⊂ 1 + H ⊂ K, where I = Rx, which
contradicts the purity of K. This completes the proof of statement 1).

To prove statement 2), suppose that [t1u] = [t2u] for all u ∈ U where t1, t2 ∈ T . By
the second part of statement 1) of Theorem 5.2, proved above, without loss of generality
we may assume that t1 �= 1 and t2 �= 1. It suffices to verify that if t1 �= t2, then there
exists r ∈ U such that

(18) t−1
1 (1 + rK) ∩ U �= t−1

2 (1 + rK) ∩ U .

(Indeed, then there exists an element u belonging to the left-hand side but not to the
right-hand side (or vice versa). Then t1u ∈ X(r) and t2u �∈ X(r). Since X(r) ∈ S∗(A),
this implies that [t1u] �= [t2u], which contradicts our assumption.) Let r = 1 + x ∈ U be
such that equality occurs in (18). Then Lemma 5.1 implies

(19) 1 + zt1,x +
t1 − 1

t1
(H + x) = 1 + zt2,x +

t2 − 1
t2

(H + x),

3The idea of the proof was communicated to the authors by Igor Shparlinski.
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where H is as above. Since the left-hand side and the right-hand side are cosets by the
groups t1−1

t1
H and t2−1

t2
H, respectively, these groups are equal. Moreover, formula (19)

shows that
sx ∈ y + H ′,

where s = yt1−yt2+
t1−1

t1
− t2−1

t2
, y = yt2−yt1 (see Lemma 5.1), and H ′ = t1−1

t1
H = t2−1

t2
H.

We observe that y ∈ rad(R), and s ∈ R× because t1 �= t2. It follows that x belongs to
the coset

C = s−1y + s−1H ′ ⊂ s−1y + I0.

On the other hand, by the purity of K we have H �= I0, whence s−1H ′ �= I0. Thus,
C � s−1y+I0, and inequality (18) is fulfilled for any r = 1+x with x ∈ (s−1y+I0)\C. �

To prove the first part of statement 1) of Theorem 5.2, we take a generator t of the
group T . It suffices to verify that the set X = [t] is contained in T . For this, we observe
that statement 1) of Lemma 5.4 implies that tp ∈ X [p], where p is the characteristic
of the residue field of the ring R and X [p] is as in the Schur theorem on multipliers.
So, t ∈ X ′ = (X [p])σ̂, where σ is the automorphism of T inverse to raising to the pth
power and σ̂ is the automorphism of R× defined above. Then, by the Schur theorem
on multipliers, we have X ′ ∈ S∗(A), whence X ⊂ X ′. Since obviously |X ′| ≤ |X|, we
conclude that X ′ = X. However, the only set Y ⊂ U for which Y [p] = Y is Y = {1}.
Thus, X ⊂ T , and statement 1) is proved.

To prove statement 2), suppose that the S-ring AT is trivial. Let u1, u2 ∈ U , u1 �= u2.
Then statement 1) of Lemma 5.4 implies that [tu1] �= [tu2] for some t ∈ T . Since [t] = {t},
we have [tui] = [t][ui] for i = 1, 2, whence it follows that [u1] �= [u2]. Thus, the S-ring
AU is trivial, and consequently, so is the S-ring A. The second part of the statement is
proved in a similar way, by using statement 2) of Lemma 5.4. �

§6. Proof of Theorem 1.6

6.1. Reduction. For a cyclotomic scheme C over a ring R, we set

AutC(R) = Aut(C) ∩ Aut(R), AutC(R/I) = AutCR/E(I)(R/I),

where I is an ideal of R.

Theorem 6.1. Let R be a finite local commutative ring, and let C = Cyc(K, R), where
K is a pure subgroup of the group R×. Then the restriction mapping from AutC(R) to
AutC(R/I0) is a monomorphism. Moreover, Aut(C) ≤ AΓL1(R) whenever Aut(C)R/E0 ≤
AΓL1(R/I0), where E0 = EI0 .

Proof. First, we observe that the kernel of the homomorphism f �→ fR/E0 from Aut(C)
to Aut(C)R/E0 coincides with the group Aut(C)E0 . Moreover,

(20) Aut(C)E0 ≤ AGL1(R).

Indeed, CE0 ≥ Cyc(U0, R) in view of Theorem 2.5. Therefore, Aut(C)E0 = Aut(CE0) ≤
Aut(Cyc(U0, R)). Thus, by Theorem 4.4, it suffices to verify that the S-ring A(U0, R) is
trivial. However, this immediately follows from statement 2) of Theorem 5.3.

Let a permutation f ∈ AutC(R) be such that the permutation fR/E0 is identical.
Then f ∈ Aut(CE0), whence f ∈ AGL1(R) by (20). Since, obviously, f leaves the points
0 and 1 fixed, this implies that f = idR. This proves the first statement of the theorem.

To prove the second statement, suppose that Aut(C)R/E0 ≤ AΓL1(R/I0). Then, by
the locality of the ring R and Lemma 2.1 with K = R×, it suffices to check that the
group Γ = Γ(R×, R) is normalized by the group Aut(C). By (20) all we need to prove is

f−1Γf ⊂ Γ Aut(CE0), f ∈ Aut(C),
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Take γ ∈ Γ and f ∈ Aut(C). Then

(21) f−1γf = f
−1

γf ∈ f
−1

Γf = Γ,

where the bar means factorization modulo E0 (we have used the fact that, by assumption,
f ∈ Aut(C) ≤ AΓL1(R/I0)). On the other hand, f−1γf = γ(γ−1f−1γ)f = γf1, where
f1 = (γ−1f−1γ)f . Since Γ ≤ Iso(C), we have f1 ∈ Aut(C). Therefore, from (21) it follows
that

f1 ∈ Γ ∩ Aut(C) = Γ(K, R),

where K = π0(K) and R = R/I0. Since the natural homomorphism Γ(K, R) → Γ(K, R)
is surjective, this implies the existence of γ1 ∈ Γ(K, R) such that γ1 = f1. Thus,
γ−1
1 f1 ∈ Aut(CE0), and consequently,

f−1γf = (γγ1)(γ−1
1 f1) ∈ Γ Aut(CE0). �

6.2. Strongly pure groups and normality. We deduce Theorem 1.6 from a more
general result, by using the notion of strong purity defined recursively as follows. A
group K ≤ R× is said to be strongly pure if it is pure and the group π0(K) ≤ (R/I0)× is
strongly pure unless R is a field. Obviously, any strongly pure group is pure. The converse
statement fails in general: a counterexample is given by R = F[X]/(Xn), where F is a
finite field and n ≥ 4, and K = 1+Fxn−2 with x = X mod Xn. However, the definition
implies immediately that any pure group is strongly pure whenever rad(R)2 = 0.

Theorem 6.2. Let R be a finite local commutative ring other than a field. Then the
scheme C = Cyc(K, R) is normal whenever the group K is strongly pure. Moreover, in
this case the restriction mapping from AutC(R) to AutC(F) is a monomorphism, where
F is the residue field of R.

Proof. With the help of Theorem 6.1, applied inductively to the scheme C and its factors,
we immediately obtain the monomorphism statement. Moreover, the proof of normality
reduces to the case where rad(R)2 = 0 and the group K is pure, and in this case it
suffices to verify that

(22) Aut(C)F ≤ AΓL1(F).

For this, we need the following lemma. �

Lemma 6.3. The groups Aut(Cu)R×
and Aut(Cv)1−R×

normalize the groups Γ(T )R×

and (sΓ(T )s)1−R×
, respectively, where u = 0, v = 1, and s = γ−1,1.

Proof. Statement 1) of Theorem 5.3 shows that T ∈ H(A), where A is the multiplication
S-ring of the scheme C. Therefore, by Theorem 7.2 (with H = T ), Aut(A) normalizes
the group 〈Aut(A′), Γ(T )R×〉. However, in our case the group Aut(A′) is trivial by
statement 2) of Theorem 5.3. Thus, Aut(A) normalizes Γ(T )R×

. On the other hand, the
definition of the S-ring A shows that Aut(Cu)R× ≤ Γ(R×)R×

Aut(A). Thus, Aut(Cu)R×

normalizes the group Γ(T )R×
. To complete the proof we observe that, obviously, s is an

isomorphism of C that interchanges u and v. So, the group Aut(Cv)1−R×
normalizes the

group (sΓ(T )s)1−R×
. �

To check (22), it suffices to show that if γ ∈ Aut(Cu,v), then γF ∈ Aut(F). However,
from Lemma 6.3 it follows that the permutation γX0 = (γR×

)X0 normalizes the group
Γ(F×)X0 whereas the permutation γX1 =(γ1−R×

)X1 normalizes the group (sFΓ(F×)sF)X1 ,
where Xi = F \ {i}, i ∈ {0F, 1F}. Thus, γF normalizes each of the groups Γ(F×) and
sFΓ(F×)sF, and we are done by Corollary 2.2. �
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Since, obviously, a pure group K ≤ T U0 is strongly pure, Theorem 6.2 implies the
following statement.

Theorem 6.4. Let R be a finite local commutative ring other than a field, and let K be
a pure subgroup of R×. Then the scheme Cyc(K, R) is normal whenever K ≤ T U0.

We complete this subsection with a sufficient condition for the automorphism group
of a cyclotomic scheme to be a subgroup of AGL1(R).

Theorem 6.5. Let C = Cyc(K, R) be a cyclotomic scheme over a finite local commuta-
tive ring R other than a field. Then Aut(C) ≤ AGL1(R) whenever one of the following
conditions is satisfied:

1) K ≤ T ;
2) K is a strongly pure subgroup of U ;
3) the group K is strongly pure and the residue field of R is prime.

Proof. To prove statement 1), we observe that by Theorem 4.2, the S-ring A(K, R)
contains all elements of the set R×/K. Therefore, by statement 2) of Theorem 5.3,
this S-ring is trivial, and it remains to use Theorem 4.4. To prove statements 2) and
3), we observe that, by the first part of Theorem 6.2, we have Aut(C) ≤ AΓL1(R).
Therefore, by the second part of that theorem, it suffices to prove that the group AutC(F)
is trivial, where F is the residue field of R. However, this is clear for statement 2) because
CF = Cyc(1, F) (see (7)), and for statement 3) because Aut(F) = 1. �
6.3. Proof of Theorem 1.6. By Theorem 6.2, the required statement is a consequence
of the following theorem.

Theorem 6.6. For a Galois ring of odd characteristic, any pure group is strongly pure.

Proof. Let R = GR(pn, r), where p is odd. We may assume that n > 1. Then the
group U is isomorphic to a direct product of r copies of a cyclic group of order pn−1 (see
[10]). In particular, rk(U) = r, and the maximal elementary Abelian subgroup of U is
equal to U0. Since the rank of an Abelian group does not increase under factorization,
it suffices to prove the lemma below. �
Lemma 6.7. Under the above assumptions, a group K ≤ R× is pure if and only if
rk(U) < r, where U = K ∩ U .

Proof. Suppose that the group K is not pure. Then U0 ≤ U . On the other hand, since
I0 = pn−1R, the group U0 is elementary Abelian of order pr. Thus, rk(U) ≥ rk(U0) = r.
Conversely, let rk(U) = r. Then the maximal elementary Abelian subgroup of U is of
order pr. Therefore, it coincides with the maximal elementary Abelian subgroup of U .
Since the latter subgroup equals U0, we are done. �

§7. Association schemes and Schur rings

7.1. Schemes. Let V be a finite set, and let R be a partition of V 2 into nonempty
subsets. We denote by R∗ the set consisting of all unions of elements of R. A pair

C = (V,R)

is called a coherent configuration, association scheme, or scheme on V if 1) the set R is
closed with respect to transposition, 2) the diagonal ∆(V ) of V 2 belongs to R∗, and 3)
given R, S, T ∈ R, the number

|{v ∈ V : (u, v) ∈ R, (v, w) ∈ S}|
does not depend on the choice of (u, w) ∈ T . The elements of the sets V , R = R(C), and
R∗ = R∗(C) are called the points, the basis relations and the relations of C, respectively.
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The number rk(C) = |R| is called the rank of C. We observe that, given nonempty sets
X, Y ⊂ V , we have X × Y ∈ R∗ if and only if ∆(X), ∆(Y ) ∈ R∗. If ∆(V ) ∈ R, the
scheme C is said to be homogeneous.

Two schemes are isomorphic if there exists a bijection between their point sets pre-
serving the basis relations. Any such bijection is called an isomorphism of these schemes.
The set of all isomorphisms of a scheme C is denoted by Iso(C). This group contains a
normal subgroup

Aut(C) = {f ∈ Sym(V ) : Rf = R, R ∈ R},
called the automorphism group of C. For a permutation group Γ ≤ Iso(C), we denote by
CΓ the scheme on the same point set, the relations of which are exactly the elements of
R∗ invariant with respect to Γ. In particular, if the scheme C is trivial, i.e., R∗ = 2V 2

,
then Iso(C) = Sym(V ), and CΓ equals the scheme of 2-orbits of the group Γ. In the
general case, it can be proved that if Γ acts regularly on the set {X ⊂ V : ∆(X) ∈ R},
then

(23) Aut(CΓ) = Γ Aut(C)

(see [4, Theorem 2.2]).
Given a set U ⊂ V , denote by RU the set of all nonempty relations RU = R ∩ U2,

R ∈ R (viewed as relations on U). If ∆(U) ∈ R∗, then the pair CU = (U,RU ) is a scheme
on U . Clearly,

Aut(C)U ≤ Aut(CU ).
Given an equivalence relation E on V , denote by RV/E the set of all relations

RV/E = {(X, Y ) ∈ (V/E)2 : R ∩ (X × Y ) �= ∅}, R ∈ R.

If E ∈ R∗, then CV/E = (V/E,RV/E) is a scheme on V/E. The set of all such E is
denoted by E = E(C). Clearly,

Aut(C)V/E ≤ Aut(CV/E).

The set of all schemes on V is partially ordered by inclusion: C ≤ C′ if and only
if R∗ ⊂ (R′)∗. The largest scheme is the trivial scheme on V , whereas the smallest
one is the scheme of 2-orbits of the group Sym(V ). For the sets R1, . . . ,Rs ⊂ 2V 2

, we
denote by [R1, . . . ,Rs] the smallest scheme C on V such that Ri ⊂ R∗ for all i; we
omit the braces if Ri = {Ri} and write Ci instead of Ri if Ri is the set of all basis
relations of the scheme Ci. In particular, for a scheme C on V and v1, . . . , vs ∈ V we set
Cv1,...,vs

= [C, ∆({v1}), . . . , ∆({vs})]. It is easily seen that

Aut(Cv1,...,vs
) = Aut(C)v1,...,vs

,

where Aut(C)v1,...,vs
is the pointwise stabilizer of the set {v1, . . . , vs} in the group Aut(C).

We shall also use the following property of the v-extension Cv of the scheme C, where
v ∈ V : if X = Rout(v) is the neighborhood of v in a relation R ∈ R∗, then ∆(X)
is a relation of the scheme Cv. Finally, if E is an equivalence relation on V , we set
CE = [C, {∆(X) : X ∈ V/E}]. It immediately follows that

(24) Aut(CE) � Aut(C), E ∈ E(C).

7.2. Schur rings and Cayley schemes. Let G be a finite group. A subring A of the
group ring Z[G] is called a Schur ring (S-ring, for brevity) over G if it has a (uniquely
determined) Z-base consisting of elements

∑
x∈X x, where X runs over a family S = S(A)

of pairwise disjoint nonempty subsets of G such that

{1} ∈ S,
⋃

X∈S
X = G, and X ∈ S ⇒ X−1 ∈ S.
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We call the elements of S the basic sets of A and denote by S∗ = S∗(A) the set of all
unions of them and by H = H(A) the set of all A-subgroups of G (i.e., the subgroups
belonging to S∗). The number rk(A) = dimZ(A) is called the rank of A. If rk(A) = |G|
(equivalently, A = Z[G]), then we say that the S-ring A is trivial. Given H ∈ H, we
denote by AH the S-ring over H such that S(AH) = {X ∈ S : X ⊂ H}.

The proof of the following theorem, called the Schur theorem on multipliers, can be
found in [14]. Below, for X ⊂ G, m ∈ Z, and a prime p, we set

X(m) = {xm : x ∈ X}, X [p] = {xp : x ∈ X, |xH ∩ X| �≡ 0 (mod p)},
where H = {g ∈ G : gp = 1}.

Theorem 7.1. Let G be a finite Abelian group and A an S-ring over G. Then, for any
X ∈ S(A),

1) X(m) ∈ S(A) for any integer m coprime to |G|, and
2) X [p] ∈ S∗(A) for any prime p dividing |G|.

For a finite group G, we denote by R(G) the set of all binary relations on G that are
invariant with respect to the group Gright. Then the mapping

2G → R(G), X �→ RG(X),

where RG(X) = {(g, xg) : g ∈ G, x ∈ X}, is a bijection. A straightforward computation
shows that if H � G and C ∈ G/H, then

(25) RG(C) =
⋃

C′∈G/H

C ′ × CC ′.4

In particular, RG(H) is an equivalence relation on G.
Let A be an S-ring over the group G. Then the pair C = (G,R) with R = RG(S) =

{RG(X) : X ∈ S} is a scheme on G, and Gright ≤ Aut(C). Any scheme satisfying
the latter condition is called a Cayley scheme on G. In fact, the above correspondence
induces a bijection between the S-rings over G and the Cayley schemes on G, and this
bijection preserves the natural partial orders on these sets. Obviously, R∗ = RG(S∗) and
E = RG(H). Moreover,

(26) Aut(C) = Aut(A) Gright,

where Aut(A) = Aut(C)v with v = 1G.

Theorem 7.2. Let A be an S-ring over a group G and H a normal A-subgroup of
G. Then Aut(A) normalizes the group 〈Aut(A′), H ′〉, where A′ is the S-ring over G
generated by A and by the cosets of G by H, and H ′ is the subgroup of the group Gright

corresponding to multiplications by the elements of H.

Proof. Let C and C′ be the Cayley schemes over the group G that correspond to the
S-rings A and A′, respectively. Then C′ = [C,RG(G/H)] (see (4)). We show that

(27) CE = (C′)E ,

where E = RG(H). Indeed, obviously, ∆(C) is a relation of the scheme CE for all
C ∈ G/H. The observation at the end of the first paragraph of Subsection 7.2 shows
that RG(C) is also a relation of the scheme CE for all C. Therefore, RG(G/H) ⊂ R∗(CE),
whence (C′)E ≤ CE . Since the reverse inclusion is clear, (27) is proved. Next, we have

(28) Aut((C′)E) = Aut(A′)H ′.

4If C = H, then the normality condition for H is not necessary.
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Indeed, by definition we have Aut(C′) = Aut(A′)Gright. Also, by the normality of H we
have (Gright)E = H ′. Since, obviously, Aut(A′)E = Aut(A′), it follows that

Aut((C′)E) = Aut(C′)E = (Aut(A′)Gright)E = Aut(A′)(Gright)E = Aut(A′)H ′,

whence (28) follows.
Since H ∈ H(A), we have E ∈ E(C). Therefore, from (24) it follows that Aut(CE) is

a normal subgroup of the group Aut(C). This implies that the group Aut(A) normalizes
Aut(CE). However, Aut(CE) = Aut((C′)E) = Aut(A′)H ′ (see (27) and (28)). The
theorem is proved. �

§8. Proof of Lemma 5.5

We denote by P the set of generators of the group F× and put f(g) = 1/(1 − g),
g ∈ F \ {1}. Then it suffices to verify that for any a ∈ F, the set Sa of solutions in P to
the equation

(29) f(g1) + f(g2) + f(g3) = a

is nonempty. For this, we observe that

(30)

|Sa| =
∑

g1,g2,g3∈P

q−1
∑
ψ∈Ψ

ψ(f(g1) + f(g2) + f(g3) − a)

= q−1
∑

g1,g2,g3∈P

1 + q−1
∑

ψ∈Ψ\{ψ0}

∑
g1,g2,g3∈P

ψ(f(g1))ψ(f(g2))ψ(f(g3))ψ(a)

= |P |3/q + q−1ψ(a)
∑

ψ∈Ψ\{ψ0}
(
∑
g∈P

ψ(f(g)))3,

where q = |F|, Ψ is the set of all additive characters of F, and ψ0 is the principal character.
On the other hand, by the inclusion-exclusion principle we have∑

g∈P

ψ(f(g)) =
∑

d|q−1

µ(d)d−1
∑

g∈F×\Gd

ψ(f(gd)),

where µ is the Möbius function and Gd = {g ∈ F× : gd = 1}. However, applying [11,
Theorem 2], we obtain

|
∑

g∈F×\Gd

ψ(f(gd))| ≤ 2dq1/2.

This implies that

|
∑
g∈P

ψ(f(g))| ≤
∑

d|q−1

2q1/2 = 2τ (q − 1)q1/2,

where τ (q − 1) is the number of divisors of the integer q − 1. Thus, by (30),

(31) |Sa| ≥ |P |3/q − q−1
∑

ψ∈Ψ\{ψ0}
|
∑
g∈P

ψ(f(g))|3 ≥ ϕ(q − 1)3/q − 8τ (q − 1)3q3/2,

where ϕ is the Euler function. Using the well-known estimates ϕ(n) ≥ (n log 2)/(2 log n)
and log τ (n) < 1.6 log 2 log n/ log log n for n ≥ 3 (see [6] and [12]), it is not difficult to
check that the right-hand side of (31) is positive for all q > 575. Therefore, the set Sa is
nonempty for such q, so that equation (29) is solvable for all a. For q ≤ 575 the statement
of the lemma can be checked by an exhaustive search.
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