Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Weight elements of Chevalley groups
HTML articles powered by AMS MathViewer

by N. A. Vavilov
Translated by: the author
St. Petersburg Math. J. 20 (2009), 23-57
DOI: https://doi.org/10.1090/S1061-0022-08-01036-4
Published electronically: November 13, 2008

Abstract:

The paper is devoted to a detailed study of some remarkable semisimple elements of (extended) Chevalley groups that are diagonalizable over the ground field — the weight elements. These are the conjugates of certain semisimple elements $h_{\omega }(\varepsilon )$ of extended Chevalley groups $\overline {G}=\overline {G}(\Phi ,K)$, where $\omega$ is a weight of the dual root system $\Phi ^{\vee }$ and $\varepsilon \in K^*$. In the adjoint case the $h_{\omega }(\varepsilon )$’s were defined by Chevalley himself and in the simply connected case they were constructed by Berman and Moody. The conjugates of $h_{\omega }(\varepsilon )$ are called weight elements of type $\omega$. Various constructions of weight elements are discussed in the paper, in particular, their action in irreducible rational representations and weight elements induced on a regularly embedded Chevalley subgroup by the conjugation action of a larger Chevalley group. It is proved that for a given $x\in \overline {G}$ all elements $x(\varepsilon )=xh_{\omega }(\varepsilon )x^{-1}$, $\varepsilon \in K^*$, apart maybe from a finite number of them, lie in the same Bruhat coset $\overline {B}w\overline {B}$, where $w$ is an involution of the Weyl group $W=W(\Phi )$. The elements $h_{\omega }(\varepsilon )$ are particularly important when $\omega =\varpi _{i}$ is a microweight of $\Phi ^{\vee }$. The main result of the paper is a calculation of the factors of the Bruhat decomposition of microweight elements $x(\varepsilon )$ for the case where $\omega =\varpi _{i}$. It turns out that all nontrivial $x(\varepsilon )$’s lie in the same Bruhat coset $\overline {B}w\overline B$, where $w$ is a product of reflections in pairwise strictly orthogonal roots $\gamma _1,\ldots ,\gamma _{r+s}$. Moreover, if among these roots $r$ are long and $s$ are short, then $r+2s$ does not exceed the width of the unipotent radical of the $i$th maximal parabolic subgroup in $\overline G$. A version of this result was first announced in a paper by the author in Soviet Mathematics: Doklady in 1988. From a technical viewpoint, this amounts to the determination of Borel orbits of a Levi factor of a parabolic subgroup with Abelian unipotent radical and generalizes some results of Richardson, Röhrle, and Steinberg. These results are instrumental in the description of overgroups of a split maximal torus and in the recent papers by the author and V. Nesterov on the geometry of tori.
References
  • Z. I. Borevič, Description of the subgroups of the general linear group that contain the group of diagonal matrices, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 64 (1976), 12–29, 159 (Russian). Rings and modules. MR 0447422
  • Z. I. Borevič and N. A. Vavilov, Subgroups of the general linear group over a semilocal ring that contain a group of diagonal matrices, Trudy Mat. Inst. Steklov. 148 (1978), 43–57, 271 (Russian). Algebra, number theory and their applications. MR 558939
  • Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
  • Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
  • Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. MR 2109105
  • N. A. Vavilov, On subgroups of the general linear group over a semilocal ring containing a group of diagonal matrices, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 1 (1981), 10–15, 119 (Russian, with English summary). MR 613803
  • N. A. Vavilov, Bruhat decomposition for subgroups containing a group of diagonal matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 20–30, 155 (Russian). Modules and linear groups. MR 618491
  • N. A. Vavilov, Subgroups of the special linear group which contain the group of diagonal matrices. I, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 4 (1985), 3–7, 120 (Russian, with English summary). MR 827955
  • N. A. Vavilov, Bruhat decomposition of one-dimensional transformations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 3 (1986), 14–20, 123 (Russian, with English summary). MR 867389
  • N. A. Vavilov, Weight elements of Chevalley groups, Dokl. Akad. Nauk SSSR 298 (1988), no. 3, 524–527 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 1, 92–95. MR 925952
  • N. A. Vavilov, Conjugacy theorems for subgroups of extended Chevalley groups that contain split maximal tori, Dokl. Akad. Nauk SSSR 299 (1988), no. 2, 269–272 (Russian); English transl., Soviet Math. Dokl. 37 (1988), no. 2, 360–363. MR 943230
  • N. A. Vavilov, Bruhat decomposition for long root semisimple elements in Chevalley groups, Rings and modules. Limit theorems of probability theory, No. 2 (Russian), Leningrad. Univ., Leningrad, 1988, pp. 18–39, 212 (Russian). MR 974130
  • N. A. Vavilov, Bruhat decomposition of two-dimensional transformations, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. vyp. 3 (1989), 3–7, 120 (Russian, with English summary); English transl., Vestnik Leningrad Univ. Math. 22 (1989), no. 3, 1–6. MR 1055331
  • N. A. Vavilov, Root semisimple elements and triples of root unipotent subgroups in Chevalley groups, Problems in algebra, No. 4 (Russian) (Gomel′, 1986) “Universitet⋅skoe”, Minsk, 1989, pp. 162–173 (Russian). MR 1011925
  • N. A. Vavilov, Subgroups of splittable classical groups, Trudy Mat. Inst. Steklov. 183 (1990), 29–42, 223 (Russian). Translated in Proc. Steklov Inst. Math. 1991, no. 4, 27–41; Galois theory, rings, algebraic groups and their applications (Russian). MR 1092012
  • N. A. Vavilov, Subgroups of Chevalley groups that contain a maximal torus, Trudy Leningrad. Mat. Obshch. 1 (1990), 64–109, 245–246 (Russian). MR 1104207
  • N. A. Vavilov, Unipotent elements in subgroups of extended Chevalley groups that contain a split maximal torus, Dokl. Akad. Nauk 328 (1993), no. 5, 536–539 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 47 (1993), no. 1, 112–116. MR 1218959
  • —, Subgroups of group $\SL _n$ over semilocal ring, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) (to appear). (Russian)
  • N. Vavilov, Geometry of 1-tori in $\textrm {GL}_n$, Algebra i Analiz 19 (2007), no. 3, 119–150 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 19 (2008), no. 3, 407–429. MR 2340708, DOI 10.1090/S1061-0022-08-01004-2
  • N. A. Vavilov and E. V. Dybkova, Subgroups of the general symplectic group containing the group of diagonal matrices, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 103 (1980), 31–47, 155–156 (Russian). Modules and linear groups. MR 618492
  • N. A. Vavilov and M. Yu. Mitrofanov, Intersection of two Bruhat cells, Dokl. Akad. Nauk 377 (2001), no. 1, 7–10 (Russian). MR 1833978
  • N. A. Vavilov and A. A. Semenov, Bruhat decomposition for long root tori in Chevalley groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 175 (1989), no. Kol′tsa i Moduli. 3, 12–23, 162 (Russian); English transl., J. Soviet Math. 57 (1991), no. 6, 3453–3458. MR 1047233, DOI 10.1007/BF01100112
  • N. A. Vavilov and A. A. Semenov, Long root semisimple elements in Chevalley groups, Dokl. Akad. Nauk 338 (1994), no. 6, 725–727 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 50 (1995), no. 2, 325–329. MR 1311310
  • Morikuni Goto and Frank D. Grosshans, Semisimple Lie algebras, Lecture Notes in Pure and Applied Mathematics, Vol. 38, Marcel Dekker, Inc., New York-Basel, 1978. MR 0573070
  • E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
  • A. E. Zalesskiĭ, Linear groups, Algebra. Topology. Geometry, Vol. 21, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 135–182 (Russian). MR 724616
  • V. V. Kashin, Orbits of an adjoint and co-adjoint action of Borel subgroups of a semisimple algebraic group, Problems in group theory and homological algebra (Russian), Matematika, Yaroslav. Gos. Univ., Yaroslavl′1990, pp. 141–158 (Russian). MR 1169975
  • A. S. Kondrat′ev, Subgroups of finite Chevalley groups, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 57–96, 240 (Russian). MR 832410
  • M. Yu. Mitrofanov, The role of matroids in the description of thin Bruhat cells, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 319 (2004), no. Vopr. Teor. Predst. Algebr. i Grupp. 11, 244–260, 302 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 134 (2006), no. 6, 2572–2579. MR 2117859, DOI 10.1007/s10958-006-0128-4
  • V. L. Popov, Closed orbits of Borel subgroups, Mat. Sb. (N.S.) 135(177) (1988), no. 3, 385–402, 415–416 (Russian); English transl., Math. USSR-Sb. 63 (1989), no. 2, 375–392. MR 937648, DOI 10.1070/SM1989v063n02ABEH003280
  • A. A. Semenov, Bruhat decomposition of root semisimple subgroups in the special linear group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 8, 239–246, 302 (Russian); English transl., J. Soviet Math. 52 (1990), no. 3, 3178–3185. MR 906861, DOI 10.1007/BF02342938
  • —, Bruhat decomposition for long root semisimple tori in Chevalley groups, Candidate Diss., S.-Peterburg. Univ., St. Petersburg, 1991.
  • T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
  • Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
  • C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66 (French). MR 73602, DOI 10.2748/tmj/1178245104
  • Eiichi Abe, Chevalley groups over local rings, Tohoku Math. J. (2) 21 (1969), 474–494. MR 258837, DOI 10.2748/tmj/1178242958
  • Michael Aschbacher, Some multilinear forms with large isometry groups, Geom. Dedicata 25 (1988), no. 1-3, 417–465. Geometries and groups (Noordwijkerhout, 1986). MR 925846, DOI 10.1007/BF00191936
  • H. Azad, M. Barry, and G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), no. 2, 551–562. MR 1047327, DOI 10.1080/00927879008823931
  • Stephen Berman and Robert V. Moody, Extensions of Chevalley groups, Israel J. Math. 22 (1975), no. 1, 42–51. MR 390077, DOI 10.1007/BF02757272
  • M. Brion, Représentations exceptionnelles des groupes semi-simples, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 345–387 (French). MR 816368
  • Hartmut Bürgstein and Wim H. Hesselink, Algorithmic orbit classification for some Borel group actions, Compositio Math. 61 (1987), no. 1, 3–41. MR 879187
  • Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. MR 1013112
  • R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1–59. MR 318337
  • Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
  • Arjeh M. Cohen and Bruce N. Cooperstein, The $2$-spaces of the standard $E_6(q)$-module, Geom. Dedicata 25 (1988), no. 1-3, 467–480. Geometries and groups (Noordwijkerhout, 1986). MR 925847, DOI 10.1007/BF00191937
  • D. I. Deriziotis, Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 11, Universität Essen, Fachbereich Mathematik, Essen, 1984. MR 742140
  • Erich W. Ellers and Nikolai Gordeev, Intersection of conjugacy classes with Bruhat cells in Chevalley groups, Pacific J. Math. 214 (2004), no. 2, 245–261. MR 2042932, DOI 10.2140/pjm.2004.214.245
  • Peter B. Gilkey and Gary M. Seitz, Some representations of exceptional Lie algebras, Geom. Dedicata 25 (1988), no. 1-3, 407–416. Geometries and groups (Noordwijkerhout, 1986). MR 925845, DOI 10.1007/BF00191935
  • Alan Harebov and Nikolai Vavilov, On the lattice of subgroups of Chevalley groups containing a split maximal torus, Comm. Algebra 24 (1996), no. 1, 109–133. MR 1370526, DOI 10.1080/00927879608825557
  • Stephen J. Haris, Some irreducible representations of exceptional algebraic groups, Amer. J. Math. 93 (1971), 75–106. MR 279103, DOI 10.2307/2373449
  • Wim H. Hesselink, A classification of the nilpotent triangular matrices, Compositio Math. 55 (1985), no. 1, 89–133. MR 791648
  • J. G. M. Mars, Les nombres de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France 94 (1966), 97–140 (French). MR 213363
  • Hideya Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62 (French). MR 240214
  • M. Mitrofanov and N. Vavilov, Overgroups of the diagonal subgroup via small Bruhat cells, Algebra Colloq. (to appear).
  • Ch. Parker and G. E. Röhrle, Minuscule representations, Preprint SFB 343, no. 72, Univ. Bielefeld, 1993.
  • Christopher Parker and Gerhard Röhrle, The restriction of minuscule representations to parabolic subgroups, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 1, 59–79. MR 1990832, DOI 10.1017/S0305004102006576
  • Eugene Plotkin, Andrei Semenov, and Nikolai Vavilov, Visual basic representations: an atlas, Internat. J. Algebra Comput. 8 (1998), no. 1, 61–95. MR 1492062, DOI 10.1142/S0218196798000053
  • Vladimir L. Popov, A finiteness theorem for parabolic subgroups of fixed modality, Indag. Math. (N.S.) 8 (1997), no. 1, 125–132. MR 1617826, DOI 10.1016/S0019-3577(97)83356-3
  • Vladimir Popov and Gerhard Röhrle, On the number of orbits of a parabolic subgroup on its unipotent radical, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 297–320. MR 1635688, DOI 10.1017/S1446788700007217
  • R. W. Richardson, Finiteness theorems for orbits of algebraic groups, Nederl. Akad. Wetensch. Indag. Math. 47 (1985), no. 3, 337–344. MR 814886
  • Roger Richardson, Gerhard Röhrle, and Robert Steinberg, Parabolic subgroups with abelian unipotent radical, Invent. Math. 110 (1992), no. 3, 649–671. MR 1189494, DOI 10.1007/BF01231348
  • Gerhard Röhrle, Orbits in internal Chevalley modules, Groups, combinatorics & geometry (Durham, 1990) London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 311–315. MR 1200268, DOI 10.1017/CBO9780511629259.026
  • Gerhard E. Röhrle, On the structure of parabolic subgroups in algebraic groups, J. Algebra 157 (1993), no. 1, 80–115. MR 1219660, DOI 10.1006/jabr.1993.1092
  • Gerhard E. Röhrle, On extraspecial parabolic subgroups, Linear algebraic groups and their representations (Los Angeles, CA, 1992) Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, pp. 143–155. MR 1247502, DOI 10.1090/conm/153/01310
  • Gerhard Röhrle, Parabolic subgroups of positive modality, Geom. Dedicata 60 (1996), no. 2, 163–186. MR 1384426, DOI 10.1007/BF00160621
  • Gerhard Röhrle, A note on the modality of parabolic subgroups, Indag. Math. (N.S.) 8 (1997), no. 4, 549–559. MR 1621854, DOI 10.1016/S0019-3577(97)81557-1
  • Gerhard Röhrle, On the modality of parabolic subgroups of linear algebraic groups, Manuscripta Math. 98 (1999), no. 1, 9–20. MR 1669615, DOI 10.1007/s002290050121
  • Gary M. Seitz, Subgroups of finite groups of Lie type, J. Algebra 61 (1979), no. 1, 16–27. MR 554848, DOI 10.1016/0021-8693(79)90302-8
  • G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627
  • A. A. Semenov and N. A. Vavilov, Halbeinfache Wurzelelemente in Chevalley-Gruppen, Preprint no. 2, Univ. Bielefeld, 1994, 11 pp.
  • T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
  • Michael R. Stein, Stability theorems for $K_{1}$, $K_{2}$ and related functors modeled on Chevalley groups, Japan. J. Math. (N.S.) 4 (1978), no. 1, 77–108. MR 528869, DOI 10.4099/math1924.4.77
  • J. Tits, Groupes semi-simples isotropes, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 137–147 (French). MR 0148667
  • J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116 (French). MR 206117, DOI 10.1016/0021-8693(66)90053-6
  • Nikolai A. Vavilov, Structure of Chevalley groups over commutative rings, Nonassociative algebras and related topics (Hiroshima, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 219–335. MR 1150262
  • —, Weight elements of Chevalley groups, Preprint no. 35, Univ. Warwick, 1994, 46 pp.
  • Nikolai Vavilov, Intermediate subgroups in Chevalley groups, Groups of Lie type and their geometries (Como, 1993) London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233–280. MR 1320525, DOI 10.1017/CBO9780511565823.018
  • Nikolai Vavilov, Unipotent elements in subgroups which contain a split maximal torus, J. Algebra 176 (1995), no. 2, 356–367. MR 1351614, DOI 10.1006/jabr.1995.1249
  • Nikolai Vavilov, A third look at weight diagrams, Rend. Sem. Mat. Univ. Padova 104 (2000), 201–250. MR 1809357
  • N. A. Vavilov, Do it yourself structure constants for Lie algebras of types $E_l$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 281 (2001), no. Vopr. Teor. Predst. Algebr. i Grupp. 8, 60–104, 281 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 120 (2004), no. 4, 1513–1548. MR 1875718, DOI 10.1023/B:JOTH.0000017882.04464.97
  • Nikolai Vavilov and Eugene Plotkin, Chevalley groups over commutative rings. I. Elementary calculations, Acta Appl. Math. 45 (1996), no. 1, 73–113. MR 1409655, DOI 10.1007/BF00047884
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2000): 20G15
  • Retrieve articles in all journals with MSC (2000): 20G15
Bibliographic Information
  • N. A. Vavilov
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University, Universitetskiĭ Prospekt 28, Staryĭ Peterhof, St. Petersburg 198504, Russia
  • Email: nikolai-vavilov@yandex.ru
  • Received by editor(s): November 8, 2006
  • Published electronically: November 13, 2008
  • © Copyright 2008 American Mathematical Society
  • Journal: St. Petersburg Math. J. 20 (2009), 23-57
  • MSC (2000): Primary 20G15
  • DOI: https://doi.org/10.1090/S1061-0022-08-01036-4
  • MathSciNet review: 2411968