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SURFACE WAVE RUNNING ALONG THE EDGE
OF AN ELASTIC WEDGE

I. V. KAMOTSKĬI

Abstract. The existence of the waves mentioned in the title is proved for the case
of an acute wedge.

§1. Introduction

For the first time, the existence of surface waves in elastic wedges was conjectured in
the papers [1, 2] on the basis of results of numerical calculations. It was discovered that
such waves oscillate along the edge of the wedge, decaying exponentially far from the
edge, and that the velocity of their propagation depends on the wedge’s angle and can
be considerably less than that of the Rayleigh waves. This latter fact opens a way to use
such waves in lag lines.

After the surface waves had been discovered, the corresponding studies developed in
several directions; see, e.g., [3, 4]. However, the proof that surface waves do exist re-
mained an open question. In the present paper we prove the existence of such waves
in acute wedges. Our method is based on variational considerations. Namely, we show
that the frequencies for which surface waves may arise correspond to the eigenvalues of
a certain selfadjoint operator. Next, in §3, we use the variational principle to prove the
existence of eigenvalues located off the continuous spectrum. This way of argumenta-
tion is traditional; see, e.g., [5–7], where it was used for the study of eigenfunctions in
waveguide-like domains.

The author is deeply grateful to V. M. Babich for setting the problem and for his
permanent attention, and to M. Sh. Birman for valuable remarks.

§2. Setting of the problem

Let Ω = {x1, x2) : r > 0, φ ∈ (0, Φ)} be an angle on the plane R
2; here (r, φ) are polar

coordinates. We consider the problem of steady-state oscillations of an isotropic elastic
wedge K = Ω × R with free boundary:

−∂mσnm = ω2Un in K,(2.1)

σnmνm = 0 on ∂K,(2.2)

where n, m = 1, 2, 3, σnm = σnm(∂1, ∂2, ∂3; U) = λ∂lUlδnm + µ(∂mUn + ∂nUm) are the
components of the stress tensor, λ and µ are the Lamé coefficients, δnm is the Kronecker
symbol, U = (U1, U2, U3) is the vector of displacements, and (ν1, ν2, ν3) is the outward
normal vector. The operators on the left-hand sides in (2.1) and (2.2) will be denoted
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by L(∂1, ∂2, ∂3) and N(∂1, ∂2, ∂3), respectively. Then the Betti formula, valid for any
smooth vector-valued function U = (U1, U2, U3) with bounded support, takes the form

(2.3) (LU, U)K + (NU, U)∂K = aK(U, U),

where aK(U, U) =
∫

K
a(∂1, ∂2, ∂3; U, U) dx and a(∂1, ∂2, ∂3; U, U) = σnm∂mUn. The qua-

dratic form aK coincides with twice the elastic energy functional.
A solution of problem (2.1), (2.2) is sought in the form

(2.4) U(x1, x2, x3) = u(x1, x2) exp(ikx3),

where k is the wave number. Plugging (2.4) in (2.1), (2.2) and separating the oscillating
factor, we obtain the problem

L(ik)u = ω2u in Ω,(2.5)

N(iK)u = 0 on ∂Ω.(2.6)

Here L(ik) = L(∂1, ∂2, ik), N(ik) = N(∂1, ∂2, ik). We have a formula of integration by
parts, similar to (2.3):

(2.7) (L(ik)u, u)Ω + (N(ik)u, u)∂Ω = aΩ(ik; u, u), u ∈ H2(Ω),

as well as an analog of Korn’s inequality (see [8]),

(2.8) ‖u; H1(Ω)‖2 ≤ C(aΩ(ik; u, u) + ‖u; L2(Ω)‖2),

for u ∈ H1(Ω). Here

(2.9) aΩ(ik; u, u) =
∫

Ω

a(∂1, ∂2, ik; u, u) dx1 dx2.

We note that the space of functions for which the right-hand side of (2.8) is finite coincides
with H1(Ω); see [8] for the case of smooth domains and [9] for Lipschitz domains. The
positive form (2.9) is closed on d[a(ik)] = H1(Ω); therefore, it determines a unique
selfadjoint operator A(ik) with domain D(ik)) ⊂ d[a(ik)]. On the other hand, the
operator A(ik) can be defined as the Friedrichs extension of a symmetric operator Â(ik);
specifically, Â(ik) is defined on the H2(Ω)-functions that satisfy the boundary condition
(2.6) and acts by the rule Â(ik)u = L(ik)u.

Thus, the existence problem for surface waves reduces to finding the point spectrum
of the selfadjoint operator A(ik).

§3. Spectrum of the problem operator

Theorem 2.1. The interval (−∞, c2
Rk2), where cR denotes the velocity of the Rayleigh

wave, contains no points of the essential spectrum of the operator A(ik).

The proof will be split into several lemmas.

Lemma 2.2. We have

aR
2
+
(ik; u, u) ≥ c2

Rk2‖u; L2(R2
+)‖2, u ∈ H1(R2

+),

where R
2
+ = {(x1, x2) : x2 > 0}.

The proof employs the Fourier transformation and the properties of the Rayleigh wave
and can be found in [6].

Lemma 2.3. For any ε > 0, we have

(3.1) aΩ(ik; u, u) ≥ (c2
Rk2 − ε2)‖u; L2(Ω)‖2 − C‖u; L2(Ω ∩ {r < ε−1})‖2,

where u ∈ H1(Ω) and C is a constant independent of u and ε.
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Proof. Let χ1 and χ2 be two smooth cut-off functions such that χ1(r) = 0 for r < 2,
χ2(r) = 0 for r < 1, and

(3.2) χ2
1 + χ2

2 ≡ 1.

We multiply aΩ(ik; u, u) by (3.2), bring the cut-off functions under the differentiation
sign, and use (3.2), obtaining

(3.3) aΩ(ik; u, u) =
2∑

j=1

(
aΩ(ik; χju, χju) −

∫
Ω

a(∇χj
, 0; u, u) dx1 dx2

)
.

Using the location of the supports of our cut-off functions and the fact that the second
term in parentheses in (3.3) does not involve differentiation, we obtain

(3.4) aΩ(ik; u, u) ≥ aΩ(ik; χ2u, χ2u) − C1‖u; L2(Ω ∩ {r < 2})‖2.

For brevity, we denote v = χ2u. In order to apply Lemma 2.2, we use an “angle partition
of unity”, namely, we put ρj(x) = χj(3φ/Φ). As above, we find

(3.5) aΩ(ik; v, v) =
2∑

j=1

(
aΩ(ik; ρjv, ρjv) −

∫
Ω

a(∇ρj , 0; v, v) dx1 dx2

)
.

The functions ρ1v and ρ2v can be extended by zero to the upper half-plane, and we
can apply Lemma 2.2 to these extensions. Recalling (3.2), from (3.5) we deduce the
inequality

(3.6) aΩ(ik; v, v) ≥ c2
rk

2‖v; L2(Ω)‖2 −
2∑

j=1

∫
Ω

a(∇ρj , 0; v, v) dx1 dx2.

Since the functions ρj depend on the angle variable only, the absolute values of their
derivatives, occurring in the subtrahend in (3.6), do not exceed Cr−1. Therefore,

(3.7)
aΩ(ik; v, v) ≥ c2

Rk2‖v; L2(Ω)‖2 − C2‖r−1v; L2(Ω)‖2

≥ (c2
Rk2 − ε2)‖v; L2(Ω)‖2 − C2‖v; L2(Ω ∩ {r < ε−1})‖2.

Now, the statement of the lemma follows from estimates (3.4) and (3.7).
We return to the proof of Theorem 2.1. We argue as in [10]. Suppose that a point

ω1 ∈ (−∞, c2
Rk2) belongs to the essential spectrum of the operator A(ik). Then there

exists an orthonormal sequence un ∈ D(A(ik)) such that (A(ik) − ω1)un → 0 (see [11]).
Consequently,

(3.8) aΩ(ik; un, un) → ω1, n → +∞.

On the other hand, choosing ε = (c2
Rk2 − ω1)1/2/4 in Lemma 2.3, we obtain

(3.9) aΩ(ik; un, un) + C‖un; L2(Ω ∩ {r < ε−1})‖2 ≥ (c2
Rk2 + ω1)/2.

The sequence un is orthonormal, and, by (3.8) and (2.8), the quantities ‖un; H1(Ω)‖ are
bounded. Therefore, we can find a subsequence unp

tending to zero in L2(Ω∩{r < ε−1}).
Thus, we have

aΩ(ik; unp
, unp

) + C‖unp
; L2(Ω ∩ {r < ε−1})‖2 → ω1, n → +∞,

which contradicts (3.9) because c2
Rk2 > ω1. �

Remark 1. Theorem 2.1 states that the essential spectrum of A(ik) is contained in the
interval [c2

Rk2, +∞). However, it is not difficult to construct an appropriate singular
sequence showing that actually the two sets mentioned above coincide.

Theorem 2.4. If Φ < π/2, then the interval (0, c2
Rk2) contains a point of the point

spectrum of the operator A(ik).
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Proof. By the variational principle (see [11]), the lower bound of the selfadjoint operator
A(ik) can be found by the formula

(3.10)
σ(A(ik)) = inf Ψ(u), u ∈ d[A(ik)], u �= 0,

Ψ(u) =
aΩ(ik; u, u)

(u, u)
.

By Theorem 2.1, it suffices to show that there is utest ∈ d(ik) such that

(3.11) Ψ(utest) < c2
Rk2.

Let UR(x1, x2, x3) be a Rayleigh wave that propagates in the direction of (0, 0, 1) and
leaves the plane x2 = 0 free of stresses. Such a wave is representable in the form

(3.12) UR(x1, x2, x3) = exp(ikx3)uR(x2),

and the exponentially decaying vector-valued function uR(x2) delivers the minimum,
equal to c2

Rk2, to the functional

Ψ1(u) =
∫ ∞

0

a(ik; uR, uR) dx2

( ∫ ∞

0

uRuR dx2

)−1

.

This yields the estimate

(3.13)
∫ N

0

a(ik; uR, uR) dx2 < c2
Rk2

∫ N

0

uRuR dx2,

for any N > 0. Indeed, otherwise there must exist a function of the form (3.12) that
represents a surface wave leaving the plane x2 = N free of stresses and propagating with
velocity less than that of the Rayleigh wave.

We define a test sequence by the formula

utest
n (x1, x2) = exp(−n−1x1)uR(x2), n = 1, 2, . . . .

Plugging this in (3.10) and using (3.13) and the fact that uR(x2) decays exponentially
as x2 → +∞, we obtain
(3.14)

Ψ(utest
n ) =

aΩ(ik; utest
n , utest

n )
(utest

n , utest
n )

=

∫ +∞
0

e−2n−1x1
∫ tan Φx1

0

(
a(ik; uR, uR) + µn−2uRuR

)
dx2 dx1

(utest
n , utest

n )

=

∫ +∞
0

e−2n−1x1
∫ tan Φx1

0
a(ik; uR, uR) dx2 dx1

(utest
n , utest

n )
+ µn−2

= c2
Rk2 +

∫ +∞
0

e−2n−1x1
(
c2
Rk2

∫ tan Φx1

0
uRuR dx2 −

∫ tan Φx1

0
a(ik; uR, uR) dx2

)
dx1

(utest
n , utest

n )
+ µn−2 < c2

Rk2 − Cn−1 + C1n
−2,

where C and C1 are positive constants independent of n. Putting utest = utest
n for n

sufficiently large, we see that inequality (3.11) is fulfilled. �

Remark 2. The above proof does not cover the case of the right angle (the constant C
vanishes). Nevertheless, Theorem 2.4 can be proved also in this situation, under the
additional requirement that λ �= 0, with the help of arguments similar to those in [7].
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Theorem 2.1 ensures the solvability of problem (2.5), (2.6) in the class H1(Ω). More-
over, arguing as in [10], it is not hard to show that the solution decays exponentially.
Namely, there exists a constant c > 0 depending on λ and µ and such that if u is the
solution of (2.5), (2.6) and ω2 ∈ (0, c2

Rk2), then

exp{c(c2
Rk2 − ω2 − ε)1/2(x2

1 + x2
2)

1
2 }u ∈ H1(Ω)

for an arbitrary ε ∈ (0, c2
Rk2 − ω2).
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