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REPRESENTATION THEORY OF (MODIFIED)
REFLECTION EQUATION ALGEBRA OF GL(m|n) TYPE

D. GUREVICH, P. PYATOV, AND P. SAPONOV

Abstract. Let R : V ⊗2 → V ⊗2 be a Hecke type solution of the quantum Yang–
Baxter equation (a Hecke symmetry). Then, the Hilbert–Poincaré series of the asso-
ciated R-exterior algebra of the space V is the ratio of two polynomials of degrees m
(numerator) and n (denominator).

Under the assumption that R is skew-invertible, a rigid quasitensor category
SW(V(m|n)) of vector spaces is defined, generated by the space V and its dual V ∗, and
certain numerical characteristics of its objects are computed. Moreover, a braided
bialgebra structure is introduced in the modified reflection equation algebra asso-
ciated with R, and the objects of the category SW(V(m|n)) are equipped with an

action of this algebra. In the case related to the quantum group Uq(sl(m)), the
Poisson counterpart of the modified reflection equation algebra is considered and the
semiclassical term of the pairing defined via the categorical (or quantum) trace is
computed.

§1. Introduction

The reflection equation algebra is a very useful tool of the theory of integrable systems
with boundaries. It derives its name from an equation describing factorized scattering
on a half-line (see [C], where the reflection equation depending on a spectral parameter
was introduced for the first time).

By definition (see [KS]), the reflection equation algebra (REA for short) is an associa-
tive unital algebra over a ground field1

K generated by elements lji , 1 ≤ i, j ≤ N , subject
to the following quadratic commutation relations:

R12L1R12L1 = L1R12L1R12.

Here L1 = L ⊗ I, L = ‖lji ‖ is the matrix composed of REA generators, while the linear
operator R : V ⊗2 → V ⊗2 is an invertible solution of the quantum Yang–Baxter equation

(1.1) R12R23R12 = R23R12R23 .

Here V is a finite-dimensional vector space over the field K, dimK V = N , and the indices
of R correspond to the space (or spaces) in which the operator is applied. Thus, R12 and
R23 denote the following operators in the space V ⊗3: R12 = R ⊗ I, R23 = I ⊗ R. Such
an operator R will be called a braiding in what follows.

Nowadays, different types of the REA are known to have applications in mathematical
physics and noncommutative geometry (cf. [KS]).
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The REA related to the Drinfeld–Jimbo Quantum Group (QG) Uq(sl(m)) arises in
the construction of a q-analog of differential calculus on the groups GL(m) and SL(m),
where it was treated as a q-analog of the exponential of vector fields (cf. [FP]).

In the case related to the QG Uq(g), an appropriate quotient of the REA can be treated
as a deformation of the coordinate ring K[G], where G is the Lie group corresponding
to a classical Lie algebra g. The Poisson bracket corresponding to this deformation was
introduced by M. Semenov-Tian-Shansky.2

In the present paper we deal with Hecke type solutions of the Yang–Baxter equation
(1.1) that satisfy the condition

(1.2) (R − q I)(R + q−1 I) = 0 ,

where the nonzero parameter q ∈ K is assumed to be generic. By definition, this means
that the values of q do not belong to the countable set formed by the nontrivial roots of
unity: qk �= 1, k = 2, 3, . . . (whereas the value q = 1 is not excluded). Consequently,

kq :=
qk − q−k

q − q−1
�= 0, k ∈ N ,

kq being a q-analog of an integer k. In what follows, a braiding that satisfies relation
(1.2) will be called a Hecke symmetry.

Especially, we are interested in families of Hecke symmetries Rq analytically depending
on the parameter q in a neighborhood of 1 ∈ K and such that for q = 1 the symmetry
R = R1 is involutive: R2 = I.

The well-known example of such a family is the Uq(sl(m)) Drinfeld–Jimbo braidings

(1.3) Rq =
m∑

i,j=1

qδij hj
i ⊗ hi

j +
m∑

i<j

(q − q−1) hi
i ⊗ hj

j ,

where the elements hj
i form the natural basis in the space of left endomorphisms of V ,

that is, hj
i (xk) = δj

k xi in a fixed basis {xk} of the space V . Note that for q = 1 the
above braiding R equals the usual flip P .

The Hecke symmetry (1.3) and all related objects will be called standard. However, a
large number of Hecke symmetries different from the standard one are known, even those
that are not deformations of the usual flip (see [G3]).

We consider the REA corresponding to the standard Uq(sl(m)) Hecke symmetry (1.3)
in more detail. This algebra possesses some very important properties, in contrast with
the REA related to other quantum groups Uq(g), g �= sl(m).

First of all, it is a q-deformation of the commutative algebra Sym(gl(m)) = K[gl(m)∗]
(so, we get a deformation algebra without taking any additional quotient). Second, by a
linear shift of REA generators (proportional to a parameter �), we arrive at quadratic-
linear commutation relations for the shifted generators. In this basis, the REA can be
treated as a “double deformation” of the initial commutative algebra K[gl(m)∗]. We
refer to this form of the REA as the modified Reflection Equation Algebra (mREA) (see
§5) and we denote it by L(Rq, �). Putting � = 0, we return to the (nonmodified) REA
L(Rq).

The specialization of the algebra L(Rq, �) at q = 1 gives the enveloping algebra
U(gl(m)�), where the notation g� means that the bracket [ , ] of a Lie algebra g is
replaced by �[ , ]. (Note that this fact was observed in [IP].) The commutative algebra

2Note that any classical Lie group G admits another Poisson bracket, discovered by E. Sklyanin. Its
quantization is given by an appropriate quotient of the so-called RTT algebra (see [FRT]). These two
quantum analogs of the space K[G] are related by a transmutation procedure introduced by S. Majid (see
[M] and the references therein). Nowadays, there is a universal treatment, based on pairs of so-called
compatible braidings (see [IOP, GPS1, GPS2]).
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K[gl(m)∗] is obtained by the double specialization of the algebra L(Rq, �) at � = 0 and
q = 1.

Being equipped with the Uq(sl(m))-module structure, the algebra L(Rq, �) (as well as
L(Rq)) is Uq(sl(m))-equivariant (or covariant). This means that

M(x · y) = M(1)(x) · M(2)(y) , M ∈ Uq(sl(m)) , x, y ∈ L(Rq, �),

where we use Sweedler’s notation for the quantum group coproduct ∆(M) = M(1)⊗M(2).
The Poisson counterpart of the above double deformation of the algebra K[gl(m)∗] is

the Poisson pencil

(1.4) { , }PL,r = a { , }PL + b { , }r , a, b ∈ K,

where { , }PL is the linear Poisson–Lie bracket related to the Lie algebra gl(m) and { , }r

is a natural extension of the Semenov-Tian-Shansky bracket to the linear space gl(m)∗.
We consider these Poisson structures and briefly discuss their role in defining a “quan-

tum orbit” O ⊂ gl(m)∗ in §7. Taking a two-dimensional sphere as an example, we suggest
a method of constructing such quantum orbits. In contrast with other definitions of quan-
tum homogeneous spaces, our quantum orbits are some quotients of the algebra L(Rq, �).
They look like the “fuzzy sphere”

SLc(�) = U(su(2)�)/〈C − c〉,
where C is the quadratic Casimir element. As is known, there exists a discrete series of
numbers ck ∈ K such that any algebra SLck(�) has a finite-dimensional representation in
a linear space Vk and the corresponding map SLck(�) → End(Vk) is an su(2)-morphism.

A similar statement is valid for the quotients of the algebra L(Rq, �) mentioned above.
However, the corresponding spaces Vk become objects of a quasitensor category. In such
a category, an object is characterized by its quantum dimension, which is defined via the
categorical (quantum) trace. A deformation of the usual trace is a main feature of our
approach to the quantum homogeneous spaces. In §7 we describe the semiclassical term
of the paring defined via the quantum trace in the case of the standard Hecke symmetry.

In a similar way, we treat other quasitensor categories generated by skew-invertible
Hecke symmetries. Roughly speaking, we are dealing with three problems in the present
paper. The first problem is the classification of all (skew-invertible) Hecke symmetries
R. A principal tool for studying this problem is the Hilbert–Poincaré (HP) series P−(t)
corresponding to the “R-exterior algebra” of the space V (its definition is presented in
§3). Though a classification of all possible forms of the HP series P−(t) has not been
found yet, it is known that the HP series P−(t) of any Hecke symmetry is a rational
function; see [H, D].3 The ordered pair of integers (m|n), where m (respectively, n) is
the degree of the numerator N(t) (respectively, denominator D(t)) of P−(t), plays an
important role in the sequel and will be called the birank of the Hecke symmetry R (or of
the corresponding space V ). This pair enters our notation of the quasitensor Schur–Weyl
category SW(V(m|n)) generated by V .

Constructing the category SW(V(m|n)) is the second problem we are dealing with in
this paper. The objects of this category are direct sums of vector spaces Vλ ⊗ V ∗

µ . Here
V is the basic vector space equipped with a skew-invertible Hecke symmetry R, V ∗ is its
dual, and λ and µ stand for arbitrary partitions (Young diagrams) of positive integers.
The map V → Vλ is nothing but the Schur functor corresponding to the Hecke symmetry

3The HP series corresponding to a skew-invertible Hecke symmetry is described in §3. When P−(t)
is a polynomial (in this case we say that R is even), it can differ drastically from the classical polynomial
(1 + t)n, n = dim V . We mention that all skew-invertible Hecke symmetries with P−(t) = 1 + nt + t2

were classified in [G3]. Also in [G3], a way of “gluing” such symmetries was suggested, which gives rise
to skew-invertible Hecke symmetries with other nonstandard HP series.
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R (for its classical version, see [FH]). The map V ∗ → V ∗
µ can be defined in a similar way.

Note that SW(V(m|n)) is a monoidal quasitensor rigid category (as defined in [CP]), but
it is not Abelian.

We compute some numerical characteristics of objects of this category. Namely, we
are interested in their dimensions (classical and quantum). In contrast with the classical
dimensions, which depend substantially on a specific form of the initial Hecke symmetry
and are expressed via the roots of the above polynomials N(t) and D(t), the quan-
tum dimensions depend only on the birank (m|n). Moreover, in a sense, the category
SW(V(m|n)) looks like the tensor category of U(gl(m|n))-modules.

The third problem elaborated below is in constructing the representations of the
mREA L(Rq, �) in the category SW(V(m|n)). Since for q �= 1 the algebra L(Rq, �) is
isomorphic to the nonmodified REA L(Rq) (in fact, we have the same algebra written in
two different bases), we automatically get a representation category of the latter algebra.4

Note that certain representations of the REA have already been known, mainly for the
even case (the birank (m|0)); see [K, Mu1, GS2, S]. In contrast with those papers, here we
consider the mREA L(Rq, �) related to a general type skew-invertible Hecke symmetry R
of birank (m|n) and equip objects of the category SW(V(m|n)) with the L(Rq, �)-module
structure. Note that all the corresponding representations are equivariant (see §6).

A particular example we are interested in is the “adjoint” representation. By this we
mean a representation ρad of the mREA L(Rq, �) in the linear span of its generators. In
the case where a Hecke symmetry is a super-flip in a Z2-graded near space V ,

R : V ⊗2 → V ⊗2 , R(x ⊗ y) = (−1)x yy ⊗ x ,

where x and y are homogeneous elements of V and z̄ denotes the parity (grading) of
a homogeneous element z, the mREA becomes the enveloping algebra U(gl(m|n)), and
the representation ρad coincides with the usual adjoint representation. This is one of the
reasons why we treat the mREA L(Rq, �) as a suitable analog of the enveloping algebra.
Moreover, in the case of involutive skew-invertible Hecke symmetry, the corresponding
mREA becomes the enveloping algebra of a generalized Lie algebra End(V ); this is
explained in §5. Such algebras were introduced in [G1].

Another property that makes the mREA similar to the enveloping algebra of a gen-
eralized Lie algebra (in particular, a Lie superalgebra) is its braided bialgebra structure.
Such a structure is determined by a coproduct ∆ and a counit ε. On the generators of
mREA (organized into a matrix L; see §6) the coproduct reads

∆(L) = L ⊗ 1 + 1 ⊗ L − (q − q−1)L ⊗ L

and coincides with the coproduct of the enveloping algebra of the (generalized) Lie algebra
at q = 1. Note that, though we do not define an antipode in the algebra L(Rq, �), the
category SW(V(m|n)) of its representations is closed.

In addition to the L(Rq, �)-module structure, the objects of the Schur–Weyl category
corresponding to the standard Hecke symmetry (1.3) can be equipped with the action
of the QG Uq(sl(m)). Moreover, the q-analogs of supergroups (see [KT]) can also be
represented in the corresponding Schur–Weyl category. (Another way of constructing
the representations of q-deformed algebras U(gl(m|n), which is based on the triangular
decomposition, was suggested in [Z].) Nevertheless, in general we know of no explicit
construction of the QG type algebra for a skew-invertible Hecke symmetry,5 whereas the
mREA can be defined for any skew-invertible Hecke symmetry.

4Since for q = 1 the isomorphism L(Rq , �) ∼= L(Rq) breaks, we prefer to consider these algebras

separately and use different names for them.
5An attempt of explicit description of such an object for some even nonquasiclassical Hecke symme-

tries was undertaken in [AG].
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The mREA has one more advantage compared with the QG or its superanalogs. It is
a more convenient tool for the explicit construction of projective modules over quantum
orbits in the framework of the approach suggested in [GS1, GS3]. We plan to turn to
these objects in a general (not necessarily even) case in our subsequent publications.

To complete the Introduction, we would like to emphasize a difference between the
Hecke type braidings and the Birman–Murakami–Wenzl ones (in particular, those coming
from the QG of Bn, Cn, and Dn series). In the latter case it is not difficult to define a
“braided Lie bracket” in the space End(V ) (see [DGG]) and introduce the corresponding
“enveloping algebra”. But this “enveloping algebra” is not a deformation of its classical
counterpart, and therefore, is not an interesting object from our viewpoint.

The paper is organized as follows. In the next section we reproduce some elements of
R-technique that form the base of the subsequent computations of some interesting nu-
merical characteristics of the objects involved (the most cumbersome part of the compu-
tations is placed in the Appendix). §3 is devoted to the classification of (skew-invertible)
Hecke symmetries. In §4 we construct the Schur–Weyl category SW(V(m|n)) generated
by the space V . Our main object, the mREA L(Rq, �), is introduced in §5, where we also
study its deformation properties. In §6 we equip the mREA with a braided bialgebra
structure, which allows us to define an equivariant action of the algebra L(Rq, �) on each
object of the category SW(V(m|n)). There we also present our viewpoint on the defini-
tion of braided (quantum) Lie algebras. §7 is devoted to the study of some semiclassical
structures.

§2. Elements of R-technique

By R-technique we mean computational methods based on general properties of braid-
ings (in particular, Hecke symmetries) regardless of their specific form. We are mostly
interested in the so-called skew-invertible braidings, because they enable us to define
numerical characteristics of Hecke symmetries and related objects.

A braiding R (see (1.1)) is said to be skew-invertible if there exists an endomorphism
Ψ : V ⊗2 → V ⊗2 such that

(2.1) Tr(2) R12 Ψ23 = P13 = Tr(2) Ψ12 R23,

where the symbol Tr(2) means calculating the trace in the second factor of the tensor
product V ⊗3. Hereafter, P stands for the usual flip P (x ⊗ y) = y ⊗ x.

Fixing bases {xi} and {xi ⊗ xj} in V and V ⊗2 (respectively), we identify R (respec-
tively, Ψ) with a matrix ‖Rkl

ij‖ (respectively, ‖Ψkl
ij‖):

(2.2) R(xi ⊗ xj) = xk ⊗ xl Rkl
ij ,

where the upper indices mark the rows of the matrix, and from now on summation over
the repeated indices is assumed.

Being written in terms of matrices, relation (2.1) reads

Ria
jb Ψbl

ak = δi
kδl

j = Ψia
jb Rbl

ak .

Using Ψ, we define two endomorphisms B and C of the space V :

B(xi) = xjB
j
i, C(xi) = xjC

j
i,

where

(2.3) Bj
i := Ψkj

ki, Cj
i := Ψjk

ik,

that is,
B := Tr(1) Ψ, C := Tr(2) Ψ.
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If the operator B (or C) is invertible, then we say that the corresponding braiding R
is strictly skew-invertible. As was shown in [O], R is strictly skew-invertible if and only
if R−1 is skew-invertible; moreover, the invertibility of B leads to the invertibility of C
and vice versa.

A well-known important example of a strictly skew-invertible braiding is the superflip
R on a superspace V = V0 ⊕ V1, where V0 and V1 are (respectively) the even and odd
components of V . In this case the operators B and C are called the parity operators,
and their explicit form is

B(z) = C(z) = z0 − z1, z ∈ V,

where z0(z1) is the even (odd) component of z = z0 + z1.
Let R be a skew-invertible braiding. Some useful properties of the corresponding

endomorphisms Ψ, B, and C are listed below.

1) Tr B = Tr C,

(2.4) Tr(2) B2 R21 = Tr(2) C2 R12 = I1,

where I is the identity automorphism of V . These relations follow directly from
the definitions (2.1) and (2.3).

2) The endomorphisms B and C commute and their product is a scalar operator,

(2.5) B C = C B = ν I,

where the numerical factor ν is nonzero if and only if the braiding R is strictly
skew-invertible (in particular, if R is a skew-invertible Hecke symmetry).

3) The matrix elements of B and C realize a one-dimensional representation of the
so-called RTT algebra associated with R (see [FRT]), that is

(2.6) R12B1B2 = B1B2R12, R12C1C2 = C1C2R12 .

As a direct consequence of the above relations, we have

Tr(12)(B1B2R12X12R
−1
12 ) = Tr(12)(B1B2R

−1
12 X12R12) = Tr(12)(B1B2X12),

Tr(12)(C1C2R12X12R
−1
12 ) = Tr(12)(C1C2R

−1
12 X12R12) = Tr(12)(C1C2X12),

where X ∈ End(V ⊗2) is an arbitrary endomorphism and

Tr(12)(. . . ) = Tr(1)(Tr(2)(. . . )).

4) The following important relations were proved in [I, O]:

(2.7)
B1Ψ12 = R−1

21 B2, Ψ12B1 = B2R
−1
21 ,

C2Ψ12 = R−1
21 C1, Ψ12C2 = C1 R−1

21 ,

where R21 = PR12P . In the case ν �= 0, only one of the two lines above is
independent, due to (2.5).

Therefore, for an arbitrary endomorphism X ∈ End(V ), we obtain

Tr(1)(B1R12X2R
−1
12 ) = Tr(1)(B1R

−1
12 X2R12) = Tr(BX) I2,

Tr(2)(C2R12X1R
−1
12 ) = Tr(2)(C2R

−1
12 X1R12) = Tr(CX) I1.

(2.8)

This completes the list of technical facts to be used in what follows.
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§3. The general form of a Hecke symmetry

In this section we study the classification problem for (skew-invertible) Hecke sym-
metries. Our presentation is based on the theory of the Ak−1 series Hecke algebras and
their R-matrix representations. As a survey of the subject, we can recommend the work
[OP1]. Some necessary facts of that theory are given in the Appendix for the reader’s
convenience.

Given a Hecke symmetry R : V ⊗2 → V ⊗2, we consider the R-symmetric algebra
Λ+(V ) and the R-skew-symmetric algebra Λ−(V ) of the space V ; by definition, these are
the following quotients:

(3.1) Λ±(V ) := T (V )/〈(Im(q±1 I12 ∓ R12)〉, I12 = I ⊗ I.

Hereafter, T (V ) stands for the free tensor algebra of the space V , and 〈J〉 denotes the
two-sided ideal generated in this algebra by a subset J ⊂ T (V ).

Then, we consider the Hilbert–Poincaré (HP) series of the algebras Λ±(V )

(3.2) P±(t) :=
∑
k≥0

tk dim Λk
±(V ),

where Λk
±(V ) ⊂ Λ±(V ) is the homogeneous component of degree k.

The following proposition plays the decisive role in the classification of all possible
forms of the Hecke symmetries.

Proposition 1. Consider an arbitrary Hecke symmetry R satisfying (1.1) and (1.2) at
a generic value of the parameter q. Then the following statements hold true.

1. The HP series P±(t) obey the relation

P+(t) P−(−t) = 1.

2. The HP series P−(t) (and hence P+(t)) is a rational function of the form

(3.3) P−(t) =
N(t)
D(t)

=
1 + a1 t + · · · + am tm

1 − b1 t + · · · + (−1)n bn tn
=

∏m
i=1(1 + xit)∏n
j=1(1 − yjt)

,

where the coefficients ai and bi are positive integers, the polynomials N(t) and
D(t) are relatively prime, and all real numbers xi and yi are positive.

3. If, moreover, the Hecke symmetry is skew-invertible, then the polynomials N(t)
and D(−t) are reciprocal.6

The first item of the above list was proved in [G2]; the second and the third were
proved in [H, Da] and [DH].

Definition 2. Let R : V ⊗2 → V ⊗2 be a skew-invertible Hecke symmetry, and let m
(respectively, n) be the degree of the numerator N(t) (respectively, of the denominator
D(t)) of the HP series P−(t). The ordered pair of integers (m|n) will be called the birank
of R. If n = 0 (respectively, m = 0), the Hecke symmetry will be called even (respectively,
odd). Otherwise we say that R is of the general type.

Remark 3. In the sense of the above definition, any skew-invertible Hecke symmetry is a
generalization of the superflip for which P−(t) = (1 + t)m(1 − t)−n, where m = dim V0,
n = dim V1. Such a treatment of Hecke symmetries is also motivated by similarity of the
corresponding Schur–Weyl categories (see below).

6Recall that a polynomial p(t) = c0 + c1t + · · · + cntn with real coefficients ci is called reciprocal if
p(t) = tnp(t−1) or, equivalently, ci = cn−i, 0 ≤ i ≤ n.
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Now we obtain some important consequences of Proposition 1. Let R be a Hecke
symmetry of birank (m|n). As is known, the Hecke symmetry R makes it possible to
define representations ρR of the Ak−1 series Hecke algebras Hk(q), k ≥ 2, in homogeneous
components V ⊗p ⊂ T (V ), for all p ≥ k:

ρR : Hk(q) → End(V ⊗p), p ≥ k .

Explicitly, these representations are given in formula (A.3) in the Appendix.
Under the representation ρR, the primitive idempotents eλ

a ∈ Hk(q), λ 
 k, turn into
the projection operators

(3.4) Eλ
a (R) = ρR(eλ

a) ∈ End(V ⊗p), p ≥ k ,

where the index a enumerates the standard Young tableaux (λ, a) that can be constructed
for a given partition λ 
 k. The total number of the standard Young tableaux correspond-
ing to the partition λ is denoted by dλ.

Under the action of these projectors, the spaces V ⊗p, p ≥ 2, expand into the direct
sum

(3.5) V ⊗p =
⊕
µ�p

dµ⊕
a=1

V(µ,a), V(µ,a) = Im(Eµ
a ).

Relation (A.2) shows that the projectors Eµ
a with different a are related by invertible

transformations, and therefore, all spaces V(µ,a) with fixed µ and different a are isomor-
phic.

At a generic value of q, the Hecke algebra Hk(q) is known to be isomorphic to the
group algebra K[Sk]; see [We]. On the basis of this fact, we can prove the following
result [GLS1, H]:

(3.6) V(λ,a) ⊗ V(µ,b) =
⊕

ν

⊕
dab∈Iab

V(ν,dab)
∼=

⊕
ν

cν
λµ V(ν,d0) , λ 
 p, µ 
 k, ν 
 (p + k) ,

where the integers cν
λµ are the Littlewood–Richardson coefficients, and the tableau index

dab takes values in a subset Iab ⊂ {1, 2, . . . , dν} that depends on the values of the indices
a and b. The number d0 (3.6) stands for the index of an arbitrary fixed tableau from
the set (ν, d), 1 ≤ d ≤ dν . Identity (3.6) has the following meaning. Though the sum-
mands V(ν,dab) do depend on the values of a and b, the total number of these summands
(the cardinality of Iab) depends only on the partitions λ, µ, and ν and is equal to the
Littlewood–Richardson coefficient cν

λµ. Therefore, due to isomorphism V(ν,dab)
∼= V(ν,d0),

we can replace the sum over dab by the space V(ν,d0) with the corresponding multiplicity
cν
λµ (see [GLS1]).

A particular example of the spaces V(λ,a) is the homogeneous components Λk
+(V )

and Λk
−(V ) of the algebras Λ±(V ); see (3.1). They are the images of the projectors

E(k) and E(1k) that correspond to the one-row and one-column partitions (k) and (1k),
respectively. This important fact allows us to calculate the dimensions (over the ground
field K) of all spaces V(λ,a), provided that the Hilbert–Poincaré series P−(t) is known.
Since all the spaces V(λ,a) corresponding to one and the same partition λ are isomorphic,
we denote their K-dimensions by the symbol dim Vλ.

In the sequel, the following corollary of Proposition 1 will be useful.

Corollary 4. Let R be a Hecke symmetry of birank (m|n), and let the Hilbert–Poincaré
series of Λ−(V ) be given by (3.3). Then for the dimensions of the spaces V(k) and V(1k)
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determined by partitions (k) and (1k), k ∈ N, we have

dim V(k) = s(k)(x|y) :=
k∑

i=0

hi(x)ek−i(y),(3.7)

dimV(1k) = s(1k)(x|y) :=
k∑

i=0

ei(x)hk−i(y),(3.8)

where the hi and ei are (respectively) the complete symmetric and elementary symmetric
functions of their arguments.

Proof. We only prove the first of the above formulas because the second can be proved in
the same way. Since V(k) = Λk

+(V ), the dimension of V(k) can be found as an appropriate
derivative of the Hilbert–Poincaré series P+(t),

dimV(k) =
1
k!

dk

dtk
P+(t)|t=0 .

Using the relation P+(t)P−(−t) = 1 (see Proposition 1) and (3.3), we present P+(t) in
the form

P+(t) =
n∏

i=1

(1 + yit)
m∏

j=1

1
(1 − xjt)

= E(y|t)H(x|t),

where E(·) and H(·) denote the generating functions of the elementary and complete
symmetric functions in the finite set of variables [Mac]:

ek(y) =
∑

1≤i1<···<ik≤n

yi1 · · · yik
=

1
k!

dk

dtk
E(y|t)|t=0 ,

hk(x) =
∑

1≤j1≤···≤jk≤m

xj1 · · ·xjk
=

1
k!

dk

dtk
H(x|t)|t=0 .

Calculating the kth derivative of P+(t) at t = 0, we get (3.7). �

Note that the polynomials s(k)(x|y) and s(1k)(x|y) defined in (3.7) and (3.8) belong
to the class of supersymmetric polynomials in {xi} and {yj}. By definition (see [St]), a
polynomial p(u|v) in two sets of variables is said to be supersymmetric if it is symmetric
with respect to any permutation of the arguments {ui} as well as of the arguments
{vj} and if, additionally, setting u1 = v1 = t in p(u|v) yields a result independent of t.
Evidently, the polynomials in question satisfy this definition if we set, for example, u = x
and v = −y.

Actually, the polynomials s(k)(x|y) (respectively, s(1k)(x|y)), k ∈ N, are supersymmet-
ric analogs of the complete symmetric (respectively, elementary symmetric) functions in a
finite number of variables. In particular, they generate the entire ring of supersymmetric
polynomials in the variables {xi} and {yj}. The Z-basis of this ring is formed by the
Schur supersymmetric functions sλ(x|y), which can be expressed in terms of s(k) (or
s(1k)) through the Jacobi–Trudi relations [Mac]. The Schur supersymmetric functions
determine the dimensions dim Vλ. In order to formulate the corresponding result, we
need yet another definition.

Definition 5 ([BR]). Given two arbitrary integers m ≥ 0 and n ≥ 0, consider a partition
λ = (λ1, λ2, . . . ) satisfying the restriction λm+1 ≤ n. The (infinite) set of all such
partitions will be denoted by H(m, n), and any partition λ ∈ H(m, n) will be called a
hook partition of type H(m, n).
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Proposition 6 ([H]). Let R be a Hecke symmetry of birank (m|n). Then the dimensions
dimVλ of the spaces in (3.5) are determined by the following rules.

1. For any λ = (λ1, . . . , λk) ∈ H(m, n), the dimension dimVλ is nonzero and is
given by the formula

(3.9) dimVλ = sλ(x|y) .

Here
sλ(x|y) = det ‖s(λi−i+j)(x|y)‖1≤i,j≤k ,

where s(k)(x|y) is defined in (3.7) for k ≥ 0 and s(k) := 0 for k < 0.
2. For an arbitrary partition λ we have

dim Vλ = 0 ⇔ λ �∈ H(m, n).

Proof. Since

dim(U ⊗ W ) = dim U dimW, dim(U ⊕ W ) = dimU + dimW,

calculation of the dimensions of the spaces on both sides of (3.6) yields

dimVλ dimVµ =
∑

ν

cν
λµ dim Vν .

Now, (3.9) is a direct consequence of an inductive procedure based on Corollary 4 (cf.,
e.g., [GPS2]).

The second claim can be deduced from the properties of the Schur functions sλ(x|y)
established in [BR] (see also [H]). �

To finish this section, we present yet another important numerical characteristic of
the Hecke symmetry that can be expressed in terms of its birank.

Proposition 7. Let R be a skew-invertible Hecke symmetry with birank (m|n). Then

(3.10) Tr B = Tr C = qn−m(m − n)q.

The proof of this is rather technical and is placed in the Appendix.

Corollary 8. For a skew-invertible Hecke symmetry with birank (m|n), the factor ν in
(2.5) equals q2(n−m), i.e.,

BC = CB = q2(n−m)I .

Proof. First, observe that if R is a skew-invertible Hecke symmetry, then the same is
true for the operator R21 = PR12P , and therefore we have

R−1
21 = R21 − (q − q−1) I21.

Applying Tr(2) to the first formula in (2.7), we obtain

B1C1 = Tr(2) (B1Ψ12) = Tr(2)(R
−1
21 B2)

= Tr(2)((R21 − (q − q−1) I21)B2) = I1 − (q − q−1) I1 Tr(B) = q2(n−m) I1. �

§4. The quasitensor category SW(V(m|n))

Our next goal is to construct the quasitensor Schur–Weyl category SW(V(m|n)) of
vector spaces, generated by the space V equipped with a skew-invertible Hecke symmetry
R of birank (m|n). The objects of this category possess a module structure over the
reflection equation algebra, which will be considered in detail in the next sections.

In constructing this category, we proceed by analogy with the paper [GLS1], where
such a category was constructed for an even Hecke symmetry of birank (m|0). A pecu-
liarity of the even case is that the space V ∗, dual to V , can be identified with a specific
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object V(1m−1) of the category (see (3.5) for the definition of Vλ). This property ensures
that the category constructed in [GLS1] is rigid.7

This is not so in the case of a general birank (m|n), and we need to properly enlarge
the category by adding the dual spaces to all objects. In turn, this requires a consistent
extending of the categorical braidings to the dual objects and defining the invariant
pairings. In the present section we elaborate on these problems in detail.

So, let R be a skew-invertible Hecke symmetry of birank (m|n). Upon fixing a basis
{xi}1≤i≤N of the space V , dimV = N , we represent R by the matrix (2.2). Also, we
introduce the dual vector space V ∗ and fix the basis {xi}1≤i≤N in V ∗ dual to {xi} with
respect to the nondegenerate bilinear form

(4.1) 〈 , 〉r : V ⊗ V ∗ → K , 〈xi, x
j〉r = δj

i .

The subscript r (“right”) refers to the order of arguments in the form 〈 , 〉r: the vectors
of the dual space V ∗ stand to the right of the vectors of V .

By definition, the dual space to the tensor product U ⊗ W is W ∗ ⊗ U∗:

〈U ⊗ W, W ∗ ⊗ U∗〉r := 〈W, W ∗〉r〈U, U∗〉r .

As a consequence, the numbering of components in a tensor power V ∗⊗k is reverse to
that in a tensor power V ⊗k:

V ∗⊗k := V ∗
k ⊗ · · · ⊗ V ∗

2 ⊗ V ∗
1 , V ⊗k := V1 ⊗ V2 ⊗ · · · ⊗ Vk .

This peculiarity should always be kept in mind when working with operators marked by
numbers of spaces where these operators act (like in formulas (1.1) and all other similar
expressions).

Now we extend the braiding (2.2) to the space V ∗ ⊗ V ∗. Below we show that the
requirement that the extended braiding be consistent with the invariance of the pairing
(4.1) leads to the only choice

(4.2) R(xi ⊗ xj) = xr ⊗ xs Rji
sr .

Therefore, by analogy with the construction of §3, we can define the representations of
the Hecke algebras Hk(q), k ∈ K, in the tensor powers V ∗⊗k, construct the projectors
Eλ

a , and introduce the subspaces V ∗
(λ,a) ⊂ V ∗⊗k as images of the corresponding projectors

(see (3.4)–(3.6)). Recalling the above remark on the numbering of the tensor product
components, one can show that for any Young tableau (λ, a) there exists a unique tableau
(λ, a′) such that the spaces V(λ,a) and V ∗

(λ,a′) are dual with respect to the form (4.1).
By definition, the class of objects of the category SW(V(m|n)) consists of all direct sums

of spaces Vλ ⊗ V ∗
µ and V ∗

µ ⊗ Vλ, where λ and µ are partitions of nonnegative integers.
The zero partition corresponds to the basic space V0 := V or to its dual space V ∗

0 := V ∗.
The ground field K is treated as the unit object of the category SW(V(m|n)):

K ⊗ V = V = V ⊗ K.

Now we define the class of morphisms of SW(V(m|n)). First, we should define the set
of braiding morphisms RU,W that realizes the isomorphisms U ⊗ W ∼= W ⊗ U for any
two objects U and W . The braidings RVλ,Vµ

and RV ∗
λ ,V ∗

µ
are completely determined by

RV,V and RV ∗,V ∗ given by (2.2) and (4.2). Therefore, we only need consistent definitions
of RV,V ∗ and RV ∗,V , because the braidings RVλ,V ∗

µ
and RV ∗

λ ,Vµ
can then be constructed

by standard methods (see, e.g., [GLS1]). The consistency condition is the following
requirement. Having defined the four braidings mentioned above, we get a linear operator
on (V ⊕ V ∗)⊗2. Our definitions are consistent if this operator satisfies the Yang–Baxter

7Recall that a (quasi)tensor category of vector spaces is rigid if, with any of its objects U , a dual
object U∗ is associated so that the maps U ⊗ U∗ → K and U∗ ⊗ U → K are categorical morphisms.
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equation. This problem is solved in the next proposition. The main idea of such a
construction belongs to V. Lyubashenko (see [LS] and the references therein).

Proposition 9. Let Ψ be the skew-inverse operator (2.1) of a skew-invertible braiding
R. We extend R to the linear operator

R : (V ⊕ V ∗)⊗2 → (V ⊕ V ∗)⊗2

(we keep the same notation for the extended operator) that acts in accordance with the
formulas

(4.3)

V ⊗ V ∗ → V ∗ ⊗ V : R(xi ⊗ xj) = xk ⊗ xl (R−1)lj
ki ,

V ∗ ⊗ V → V ⊗ V ∗ : R(xj ⊗ xi) = xk ⊗ xl Ψkj
li ,

V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗ : R(xi ⊗ xj) = xk ⊗ xl Rji
lk ,

V ⊗ V → V ⊗ V : R(xi ⊗ xj) = xk ⊗ xl R
kl
ij .

Then the extended operator R is a braiding, i.e., it satisfies the Yang–Baxter equation
(1.1) on the space (V ⊕ V ∗)⊗3.

Proof. Since R is a linear operator, it suffices to prove the proposition on the basis vectors
of the space (V ⊕ V ∗)⊗3. This space splits into the direct sum of eight subspaces (from
V ⊗V ⊗V to V ∗⊗V ∗⊗V ∗) and the verification of the claim on each of these subspaces
is a matter of straightforward calculations based on formulas (4.3). �

At the second step of our construction, we assume that a linear combination, the
product, the direct sum, and the tensor product of a finite family of categorical morphisms
is also a morphism.

Then, as in [T], we require the morphisms to be natural (or functorial). This means
that

(g ⊗ f) ◦ RU,W = RU ′,W ′ ◦ (f ⊗ g),
where f : U → U ′ and g : W → W ′ are two categorical morphisms. As a consequence,
we get a necessary condition for a map f : U → U ′ to be a categorical morphism:

(4.4) (idW ⊗f) ◦ RU,W = RU ′,W ◦ (f ⊗ idW), (f ⊗ idW ) ◦ RW,U = RW,U ′ ◦ (idW ⊗f).

We say that a map f satisfying this condition is R-invariant. Thus, any categorical
morphism must be R-invariant.

Proposition 10. Provided R satisfies (4.3), the following claims hold true.
1. The pairing (4.1) is R-invariant.
2. The linear map πr : K → V ∗ ⊗ V generated by

(4.5) 1 πr�→
N∑

i=1

xi ⊗ xi

is also R-invariant.

Proof. In proving claim 1, we can confine ourselves to the simplest case of formula (4.4)
where W = V or W = V ∗. This is a consequence of the structure of objects of the
category SW(V(m|n)). In other words, we must show the commutativity of the diagram

(4.6)

(V ⊗ V ∗) ⊗ V # (4.3)←→ V # ⊗ (V ⊗ V ∗)

〈 , 〉r ⊗ id ↓ ↓ id⊗〈 , 〉r

K ⊗ V # = V # ⊗ K,
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where V # stands for V or V ∗. The commutativity of the diagram immediately follows
from formulas (4.3), the definitions (4.1), (2.1), and the definition of the inverse matrix
R−1.

Next, the same argument shows that claim 2 is equivalent to the commutativity of
the diagram

(V ∗ ⊗ V ) ⊗ V # (4.3)←→ V # ⊗ (V ∗ ⊗ V )

πr ⊗ id ↑ ↑ id⊗πr

K ⊗ V # = V # ⊗ K,

which can be proved similarly. �

Remark 11. Note that the R-invariance of the maps (4.1) and (4.5) is a motivation for
the extension (4.3) of the initial braiding R. It can be shown that such an extension is
unique.

In what follows, besides the right form (4.1), we also need a left nondegenerate bilinear
form

〈 , 〉l : V ∗ ⊗ V → K,

with the additional requirement that the above pairing be R-invariant. This requirement
prevents us from setting 〈xi, xj〉l = δi

j , because this is not an R-invariant pairing (a direct
consequence of (4.3)).

We choose the form 〈 , 〉l in such a way that the following diagram be commutative:

(4.7)

V ∗ ⊗ V
(4.3)−→ V ⊗ V ∗

〈 , 〉l ↓ ↓ 〈 , 〉r

K = K .

A simple calculation based on (4.7) leads to the following explicit expression:

(4.8) 〈xi, xj〉l = Bi
j ,

where the matrix ‖Bi
j‖ is defined in (2.3). Such a choice guarantees the R-invariance of

the left pairing 〈 , 〉l. The commutativity of the corresponding diagram (similar to (4.6))
can be verified easily with the help of (4.3) and (2.7).

Remark 12. Note that the backward diagram

(4.9)

V ∗ ⊗ V
(4.3)←− V ⊗ V ∗

〈 , 〉l ↓ ↓ 〈 , 〉r

K = K

is not commutative with the definition (4.8). In a tensor category one can define the
left pairing in such a way that both diagrams (4.7) and (4.9) are commutative, while
in a quasitensor category this is impossible. This is a consequence of the fact that the
braiding R is not involutive: R2 �= I.

In principle, we could demand the commutativity of the above diagram, rather than of
diagram (4.7). In this case, on the right-hand side of (4.8) we would obtain an additional
factor of q2(m−n). Actually, the two variants are equivalent, and choosing between them
is a matter of taste.
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Now we can find another basis { x0i}1≤i≤N of V ∗ that is dual to the basis {xi}1≤i≤n

with respect to the left form

(4.10) x0i := q2(m−n) Ci
j xj ⇒ 〈 x0i, xj〉l = δi

j .

The normalizing factor in the definition of the basis vector x0i is chosen in accordance
with Corollary 8.

So, we have two R-invariant bilinear forms and two basic sets {xi} and { x0i} in the
space V ∗ that are dual to the basis {xi} of the space V with respect to the right and left
forms, respectively (see (4.1) and (4.10)). For this reason, we refer to {xi} (respectively,
{ x0i}) as the right (respectively, left) basis of V ∗.

Using (2.7), we can rewrite formulas (4.3) in terms of the left basis.

Corollary 13. In terms of the left basis { x0i}1≤i≤N of the space V ∗, the extension of
the braiding R defined by (4.3) has the following form:

(4.3 ′)

R(xi ⊗ x0j) = x0k ⊗ xl Ψjl
ik,

R( x0j ⊗ xi) = xk ⊗ x0l (R−1)jk
il ,

R( x0i ⊗ x0j) = x0k ⊗ x0l Rji
lk,

R(xi ⊗ xj) = xk ⊗ xl R
kl
ij .

Moreover, the linear map πl : K → V ⊗ V ∗ generated by

(4.11) 1 πl�→
N∑

i=1

xi ⊗ x0i

is R-invariant.

Proof. We prove the first formula in (4.3 ′); the others are proved in the same way. Using
the definition of the left basis (4.10) and the first formula in (4.3), we get (recall that
summation over repeated indices is assumed)

R(xi ⊗ x0j) = xu ⊗ xl q
2(m−n) Cj

s(R
−1)ls

ui = x0k ⊗ xl q2(m−n)Cj
s(R

−1)ls
uiB

u
k,

where in the last identity we come back from the right basis to the left by the formula
inverse to (4.10),

xu = Bu
k

x0k.

Then, from the formulas in the second line of (2.7) and Corollary 8 we deduce the relation

q2(m−n)C1R
−1
21 B2 = Ψ12,

which allows us to make the following substitution in the above line of transformations:

q2(m−n)Cj
s(R

−1)ls
uiB

u
k = Ψjl

ik.

So, finally we get
R(xi ⊗ x0j) = x0k ⊗ xl Ψ

jl
ik,

which is the formula in the first line in (4.3 ′).
The R-invariance of the map πl can be proved by straightforward calculations on the

basis of (4.3) or (4.3 ′) in the same way as was done in the proof of (4.5). �

Now we are able to define the categorical morphisms of SW(V(m|n)). Together with
the identity map, the list of morphisms includes (4.1), (4.5), (4.8), (4.11), and all maps
(4.3) (or, equivalently, (4.3 ′)). Furthermore, as we have already mentioned, any linear
combination, the product (successive application), the tensor product, and the direct
sum of categorical morphisms is also a categorical morphism.
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Remark 14. In principle, given a particular braiding R, one can compose a larger list of
R-invariant maps than that mentioned above. Thus, for a superspace V = V0 ⊕ V1 the
projections V → V0 and V → V1 are R-invariant maps.

In what follows, we shall be especially interested in objects of the form V ∗ ⊗ V and
V ⊗ V ∗, which are isomorphic to the space End(V ) of endomorphisms of the space V .
Upon fixing the basis xi in the space V , we arrive at the standard basis hj

i = xi ⊗ x0j in
the space V ⊗ V ∗. Defining the action of an element v ⊗ v∗ ∈ V ⊗ V ∗ on a vector u ∈ V
by the usual rule

(v ⊗ v∗)(u) := v〈v∗, u〉l,
we get the action

hj
i (xk) = δj

k xi

and the multiplication table of elements hj
i treated as endomorphisms of the space V :

hj
i ◦ hs

k = δj
k hs

i .

Fixing the right basis {xi} in V ∗, we arrive at another basis lji = xi ⊗ xj of V ⊗ V ∗

with the properties (see (4.8))

(4.12) lii(xk) = Bj
k xi, lji ◦ lsk = Bj

k lsi .

Taking (4.10) into account, we find the relationship between the two basis sets:

(4.13) hj
i = q2(m−n) Cj

klki .

Now we introduce the linear map TrR : End(V ) → K via the categorical mor-
phism (4.1),

(4.14) TrR(lij) = 〈xj , x
i〉r = δi

j .

This map is called the R-trace in what follows. By (4.13), the R-trace of an operator
F ∈ End(V ) is given by

(4.15) TrR(F) = q2(m−n) Tr(F · C) ,

where F is the matrix of the operator F with respect to basis {xi}.
To complete the section, we calculate the R-dimension of the objects Vλ of our cate-

gory. By definition, the R-dimension of an object Vλ ⊂ V ⊗k, λ 
 k, is given by

(4.16) dimR Vλ := TrR(idVλ
) = q2k(m−n) Tr(1...k)(C1 · · ·CkEλ

a ) .

With the help of (A.2), one can prove that the above definition does not depend on
the value of a. Moreover, like the classical dimension, the R-dimension is an additive-
multiplicative functional:

dimR(U ⊗ W ) = dimR U dimR W , dimR(U ⊕ W ) = dimR U + dimR W .

We introduce the R-analogs Q±(t) of the HP series P±(t) (see (3.2)) by the relation

Q±(t) =
∑
k≥0

tk dimR Λk
±(V ) .

Then the following proposition holds true.

Proposition 15. Given a skew-invertible Hecke symmetry with birank (m|n), we find
the following properties of the series Q±:

1) if m−n = 0, then dimR Vλ = 0 for any λ �= 0, and therefore Q+(t) = Q−(t) = 1;
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2) if m − n > 0, then

dimR Vλ = dimR Vλ
∗ = sλ(qm−n−1, qm−n−3, . . . , q1−m+n),

and therefore

Q−(t) =
m−n∑
k=0

(
m − n

k

)
q

tk ,

(
p

k

)
q

:=
pq(p − 1)q · · · (p − k + 1)q

kq(k − 1)q · · · 2q1q
;

3) if m − n < 0, then

dimR Vλ = dimR Vλ
∗ = sλ∗(qn−m−1, qn−m−3, . . . , q1−n+m),

where λ∗ is the conjugate partition, and therefore

Q+(t) =
n−m∑
k=0

(
n − m

k

)
q

tk .

Proof. The proposition is proved by direct calculations based on the definition (4.16).
The calculations are similar to those in the even case (see, e.g., [GLS1]). �

We emphasize that the Q±(t) depend only on the birank of the given Hecke symme-
try R, whereas the corresponding HP series P±(t) depend substantially on a specific form
of R.

§5. mREA: Definition and deformation properties

If R is an involutive (R2 = I) skew-invertible symmetry, then the space End(V ) can be
endowed with the structure of a generalized Lie algebra (see [G1, G3]). The corresponding
enveloping algebra UR(End(V )) is defined as the following quotient:

(5.1) UR(End(V )) = T (End(V ))/〈JR〉,
where 〈JR〉 is a two-sided ideal of the free tensor algebra T (End(V )) generated by the
subset JR ⊂ T (End(V )) of the form

(5.2) JR = {X ⊗ Y − REnd(X ⊗ Y ) − X ◦ Y + ◦REnd(X ⊗ Y ) | X, Y ∈ End(V )} .

Here ◦ is the product in End(V ) viewed as an associative algebra of linear operators on
V , and the linear operator REnd : End(V )⊗2 → End(V )⊗2 is an extension of the braiding
R to the space End(V )⊗2. Its explicit form can be obtained by using (4.3).

Namely, choosing the basis lij = xj ⊗ xi in the space End(V ) and applying the corre-
sponding formulas from the list (4.3), we find

(5.3) REnd(lij ⊗ lks ) = la1
b1

⊗ la2
b2

(R−1)b2c1
a1c2

Rb1c2
jr1

Rkr2
a2c1

Ψr1i
r2s .

In order to present this formula in a more transparent form, we introduce a matrix
notation that will be useful in what follows. Let L be the N × N -matrix (recall that
N = dimV ) with the matrix elements

(5.4) L j
i = lji ,

where the subscript enumerates the rows and the superscript enumerates the columns of
L. Then, denoting by R̄ the transpose of R,

R̄ j1j2
i1i2

= Rj1j2
i1i2

,

we put

(5.5) L1̄ = L ⊗ I, L2̄ = R̄12L1̄R̄
−1
12 .
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Now, multiplying the two sides of (5.3) by R and R−1 and recalling the definition of Ψ
(see (2.1)), we represent formula (5.3) in the equivalent form

(5.6) REnd(L1̄ ⊗ L2̄) = L2̄ ⊗ L1̄

(summation over the corresponding matrix indices is assumed).
Note that a direct generalization of (5.1)–(5.2) with the definition (5.6) from the

involutive symmetry to the Hecke symmetry case leads to an algebra which possesses
bad deformation properties and a poor representation theory. Fortunately, for any skew-
invertible Hecke symmetry R there exists another generalization of the enveloping algebra
UR(End(V )) (5.1) that has good deformation properties (see Proposition 20 below) and
coincides with the enveloping algebra UR(End(V )) when R is involutive.

Definition 16. The associative algebra generated by the unit element eL and the inde-
terminates lji , 1 ≤ i, j ≤ N , subject to the system of relations

(5.7) Rkl
ij lmk Rpq

ml l
r
p − lai Rbc

aj ldb Rrq
dc − �(Raq

ij lra − lbi Rrq
bj) = 0

is called the reflection equation algebra (REA) (see [KS]) and is denoted by L(Rq) if
� = 0, and it is called the modified reflection equation algebra (mREA) and is denoted
by L(Rq, �) if � �= 0.

The defining relations (5.7) can be presented in a compact form in terms of the matrix
L (see (5.4)) and the transpose R̄:

(5.8) R̄12L1R̄12L1 − L1R̄12L1R̄12 − �(R̄12 L1 − L1 R̄12) = 0 .

Remark 17. Note that, making a linear transformation of generators lji �→ mj
i (for q �=

±1)

M = IeL − ω�
−1L, ω = q − q−1 , M = ‖mj

i‖ ,

we arrive at the following form of commutation relations (5.8):

(5.9) R̄12M1R̄12M1 − M1R̄12M1R̄12 = 0 .

This means that the algebras L(Rq, �) and L(Rq) are isomorphic for all q �= ±1. The
basis of mREA generators with commutation relations (5.8) is more suitable for treating
this algebra as an analog of the universal enveloping algebra U(gl(m|n)).

Now we prove that the commutation relations (5.8) are consistent with the structure
of the category SW(V(m|n)) in the following sense. We treat the mREA as a quotient of
the tensor algebra T (V ⊗ V ∗) over the two-sided ideal generated by relations (5.8) or,
equivalently, (5.9). These relations are consistent with the structure of the category if
the corresponding two-sided ideal is invariant with respect to braidings of the category,
or, in other words, if the mREA commutation relations are R-invariant.

Proposition 18. The commutation relations (5.8) are R-invariant.

Proof. To prove the proposition, it suffices to show that the commutation relations (5.8)
are preserved under commuting with V or V ∗ with respect to the braidings of the category
SW(V(m|n)). This can be done by straightforward calculations based on formulas (4.3)
and lji = xi ⊗ xj . To simplify calculations, working with the generators mj

i as in (5.9) is
more convenient.

For example, taking a basis vector xi ∈ V and using (4.3), we get

R(xi1 ⊗ mj2
i2

) = R̄ a1a2
i1i2

mb1
a1

(R̄−1) c1j2
b1a2

⊗ xc1 or R(x1 ⊗ M2) = R̄12M1R̄
−1
12 ⊗ x1 ,
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where R is the general notation for the corresponding braiding, R = RV,V ⊗V ∗ in the
above formulas. Now we can directly get the desired result:

x1 ⊗ (R̄23M2R̄23M2 − M2R̄23M2R̄23)
R→ R̄12R̄23(R̄12M1R̄12M1 − M1R̄12M1R̄12)R̄−1

23 R̄−1
12 ⊗ x1 .

The commutativity with V ∗ is verified similarly. �
Proposition 19. Let R be an involutive skew-invertible symmetry. Then the commu-
tation relations among the generators {lji } of the algebra UR(End(V )) (see (5.1)) are
equivalent to (5.8) with � = 1. Therefore, in accordance with Definition 16, the algebra
(5.1) coincides with mREA Lq(R, 1).

Proof. In the involutive case, we have R = R−1 by definition. Therefore, the matrix L2

defined in (5.5) can be written as L2 = R̄12L1R̄12. This leads to the following action of
REnd (see (5.6)):

REnd(L1 ⊗ R̄12L1R̄12) = R̄12L1R̄12 ⊗ L1.

Now, setting X = L1 and Y = R̄12L1R̄12 in (5.2), and taking into account the multipli-
cation table (4.12) for the generators lji , we get

X ◦ Y = L1R12 , ◦REnd(X ⊗ Y ) = R12L1 .

Together with the above form of the action of REnd, this allows us to represent the set
JR (see (5.2)) in the form (5.8) with � = 1. �

The main deformation property of the mREA is given by the following proposition.

Proposition 20. Let R be a skew-invertible involutive Hecke symmetry, R2 = I, and let
U ⊂ K be a neighborhood of 1 ∈ K. Consider a family of skew-invertible Hecke symme-
tries Rq analytically depending on q ∈ U and satisfying the condition R1 = R. Denote
by L(k)(Rq) the homogeneous component of L(Rq) of the kth order. Then, provided q is
generic, the following claims hold true.

1. dim L(k)(Rq) = dim L(k)(R) for all k ≥ 0 .
2. GrL(Rq, �) ∼= L(Rq) , where GrL(Rq, �) is the graded algebra associated with the

filtrated algebra L(Rq, �).

Proof. The verification of claim 1 is based on the following observations. Below we
construct a projector (Span(lji ))

⊗3 → L(3)(Rq). The explicit form of that projector
allows us to conclude that its rank is constant for generic q ∈ U . Therefore,

(5.10) dim L(3)(Rq) = dim L(3)(R).

For an involutive R, the algebra L(R) is the symmetric algebra of the linear space Span(lji )
equipped with the involutive braiding REnd. This algebra is a Koszul one. (For the
definition of this notion the reader is referred to [PP].) The Koszul property of L(R)
easily follows from the exactness of the second kind Koszul complex constructed in [G3].

Now we apply the result of [PP] (generalizing [Dr]) that asserts that the Koszul prop-
erty of L(R) and relation (5.10) imply claim 1 of our proposition. Moreover, it can be
shown that for a generic q ∈ U the algebra L(Rq) is also a Koszul algebra.

In order to prove claim 2 of the proposition, we consider the map [ , ] that sends the
left-hand side of (5.7) to its right-hand side. As was shown in [G4], this map satisfies the
Jacobi relation in the form suggested in [PP]. Then, by the generalization of the PBW
theorem given in [PP] (see also [BG]), we arrive at claim 2. �
Remark 21. Note that the skew-invertible Hecke symmetries with nonclassical HP series
P−(t), constructed by methods of [G3], depend analytically on q in a neighborhood of 1.
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Now, we pass to a construction of the projector mentioned in the proof of Proposition
20. We represent the commutation relations for the REA L(Rq) ((5.8) at � = 0) in the
equivalent form

(5.11) R̄12L1̄L2̄ − L1̄L2̄R̄12 = 0.

Consider the unital associative algebra L over K freely generated by N2 generators lji ,

L = K〈lji 〉, 1 ≤ i, j ≤ N.

The algebra L(Rq) is the quotient of L over the two-sided ideal 〈I−〉 generated by the
left-hand side of (5.11):

(5.12) L(Rq) = L/〈I−〉, I− = L1L2 − R̄12L1L2R̄
−1
12 .

As a vector space, the algebra L can be decomposed into a direct sum of homogeneous
components,

L =
⊕
k≥0

Lk, L0
∼= K,

where each Lk is the linear span of the kth order monomials in the generators lji . The
following basis turns out to be convenient:

(5.13) Lk = Span[L1L2 · · ·Lk].

This notation means that Lk is spanned by the matrix elements of the right-hand side
matrix. The matrices Lm are defined by the recurrence rule

(5.14) L1̄ = L ⊗ I, Lk+1 = R̄kLkR̄−1
k , k ≥ 1,

where the shorthand notation Rk := Rk,k+1 is used; this notation will be used system-
atically in the sequel.

Remark 22. Note that, due to the definitions (5.11), (5.14), and the Yang–Baxter equa-
tion for R, the following relation holds true:

(5.15) R̄kLkLk+1 = LkLk+1R̄k, k ≥ 1.

Relation (5.15) is typical of the so-called quantum matrix algebras, the REA being a
particular case of them. For a detailed treatment of this issue the reader is referred to
[IOP].

For the algebra L(Rq), we have a similar vector space decomposition

L(Rq) =
⊕
k≥0

Lk, L0
∼= K, Lk ⊂ Lk.

Let us try to describe the subspaces Lk explicitly. In other words, we want to find a
series of projection operators Sk : Lk → Lk with the property

Im Sk = Lk ⊂ Lk .

Here we construct such projectors for the second and third order components Lk, k = 2, 3.
We introduce a linear operator Q : L2 → L2 by the formula

(5.16) Q(L1L2) := R̄1L1L2R̄
−1
1 ,

or symbolically Q = R̄1 ◦ R̄−1
1 . Using the Yang–Baxter equation for R̄, we easily see that

Q also satisfies the Yang–Baxter equation

(5.17) Q1Q2Q1 = Q2Q1Q2 ,
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where Q1 = Q ⊗ id and Q2 = id⊗Q are obvious extensions of Q to the space L3.
Moreover, using the fact that R is a Hecke symmetry, we can find a minimal polynomial
of the operator Q,

(5.18) (Q + q2 I)(Q + q−2 I)(Q − I) = 0, I := I ◦ I .

This implies that the semisimple operator Q has three eigenvalues on the space L2.
In obvious notation, we get the vector space decomposition

L2 = L
(−q2) ⊕ L

(1) ⊕ L
(−q−2) .

The Hecke condition (1.2) allows us to find the expressions for the corresponding projec-
tors:

P(−q2) = P+(R) ◦ P−(R),

P(−q−2) = P−(R) ◦ P+(R),

P(1) = P+(R) ◦ P+(R) + P−(R) ◦ P−(R) ,(5.19)

where

P±(R) =
q∓1I ± R̄

2q
.

Indeed, a direct calculation shows that

QP(a) = P(a)Q = aP(a), a = −q±2, 1,

and on the other hand, the operators P(a) form a complete set of orthonormal projectors
on L2:

P(a)P(b) = δab P(a), P(−q2) + P(1) + P(−q−2) = I.

Now we use the fact that (5.11) is equivalent to

(Q − I)(L1L2) = 0.

This means that the second order component L2 of the REA L(Rq) coincides (as a
vector space) with the subspace L(1) ⊂ L2. Consider the following pair of orthonormal
projection operators on L2:

S := P(1), A := P(−q2) + P(−q−2), SA = AS = 0, S + A = I.

These operators can be expressed in terms of Q:

S =
1
22

q

(
(q2 + q−2) I + Q + Q−1

)
,(5.20)

A =
1
22

q

(
2 I− Q − Q−1

)
,

where the inverse operator Q−1 can be obtained from (5.18),

Q−1 = Q2 + (q2 − 1 + q−2)Q − (q2 − 1 + q−2)I .

It can be shown that
Span(I−) = Im A,

as vector subspaces in L2, where I− is defined in (5.12).
The above considerations prove the following proposition.

Proposition 23. The second order homogeneous component L2 of the REA L(Rq) co-
incides with the image of the q-symmetrizer S,

(5.21) L2 = Im S = L2/ Im A.
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Now we pass to the third order homogeneous component L3 and find the projector to
the corresponding component L3 ⊂ L3 of the REA L(Rq).

Extend the action of S and A to the subspace L3. With the projector S, we associate
two operators S1 and S2 in accordance with the rule (see the definition (5.19))

S1 := P(1)(R1), S2 := P(1)(R2) ,

which means that

S1(xyz) := (S(xy))z, S2(xyz) := x(S(yz)), xyz ∈ L3 .

The formulas for A are similar.
At this point we can see an advantage of using the basis (5.13). Indeed, the quadratic

homogeneous component L2 can be embedded into L3 in different ways, the following
two being most important in the sequel:

L2 · L1 ⊂ L3 and L1 · L2 ⊂ L3 .

Formulas (5.11), (5.15) and Proposition 23 show that these embeddings can be identified
with the images of the operators S1 and S2:

L2 · L1 = S1(L3) , L1 · L2 = S2(L3).

The following technical lemma plays a crucial role in the further considerations.

Lemma 24. The q-symmetrizer S obeys the following fifth order relation on the subspace
L3:

(5.22) S1S2S1S2S1 − aS1S2S1 + bS1 = S2S1S2S1S2 − aS2S1S2 + bS2,

where

(5.23) a = (q4 + q2 + 4 + q−2 + q−4)/24
q, b = 42

q/28
q .

Proof. The lemma is proved by a direct calculation, which can be considerably simplified
if for S one uses (5.20) instead of the initial definition (5.19). �

Consider the operator S(3) : L3 → L3 defined by

(5.24) S(3) =
26

q

4 · 32
q

(S1S2S1S2S1 − aS1S2S1 + bS1) ,

where a and b are as in (5.23). By (5.22), there exists an equivalent form of the above
operator:

(5.25) S(3) =
26

q

4 · 32
q

(S2S1S2S1S2 − aS2S1S2 + bS2) .

In fact, the operator S(3) is precisely the projector onto L3 ⊂ L3 we are looking for.

Proposition 25. The third order homogeneous component L3 of the REA L(Rq) is the
image of the projection operator S(3) under its action on L3,

L3 = Im S(3) .

Proof. The fact that (S(3))2 = S(3) can be verified by a straightforward calculation.
Consider now the projection of relation (5.12) to the third order homogeneous com-

ponent:

(5.26) L3 = L3/〈I−〉3, 〈I−〉3 = L1 · Im A2 ∪ Im A1 · L1 .

As can be seen from (5.24) and (5.25), we have 〈I−〉3 ⊆ KerS(3), and therefore, Im S(3) ⊆
L3.
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On the other hand, since S +A = I, the subspace L3 given in (5.26) can be presented
as

L3 = L1 · Im S2 ∩ ImS1 · L1 .

Comparing this form of L3 with the structure of S(3) given in (5.24) and (5.25), we see
that Im S(3) ⊇ L3. Together with the reverse inclusion obtained above, this completes
the proof. �

§6. The braided bialgebra structure and representation theory

In this section we consider finite-dimensional representations of the mREA (5.8) in
the category SW(V(m|n)). Note that the class of all finite-dimensional representations
of the algebra in question is wider; for instance, it includes a large number of one-
dimensional representations. For the particular case of the Uq(sl(m)) R-matrix, all such
representations were classified in [Mu1]. Next, the finite-dimensional representations of
an mREA can be constructed on the basis of the Uq(sl(m)) representations, because the
REA L(Rq) can be embedded (as an algebra) into the quantum group in this particular
case.

The representation theory developed below does not depend on a particular choice of
the R-matrix and works well in the general situation where the quantum group does not
exist. Moreover, an important property of the theory suggested is the equivariance of the
representations with which we are dealing. By definition, a representation ρU of mREA
in a space U is equivariant if the map

End(V ) → End(U) : lji �→ ρU (lji )

is a morphism of the category SW(V(m|n)).
This property has an important consequence, which will be used below. Namely, for

any mREA module W with equivariant representation ρW : L(Rq, 1) → End(W ), the
diagram

(6.1)

U ⊗ (A ⊗ W ) R←→ (A ⊗ W ) ⊗ U

↓ id⊗ρW ρW ⊗ id ↓

U ⊗ W
R←→ W ⊗ U

is commutative for any object U of the category SW(V(m|n)) and any subspace A ⊂
L(Rq, 1). The equivariance condition allows us to define an mREA representation in the
tensor product of mREA modules.

For the particular case of an even Hecke symmetry of rank (m|0), the equivariant
representation theory of the associated mREA turns out to be similar to the representa-
tion theory of the algebra U(sl(m)). At the beginning of §4, we mentioned the specific
peculiarity of the even case. Namely, in the corresponding category of the mREA repre-
sentations, the space V ∗ can be identified with the object V(1m−1), and for constructing
the complete representation theory it suffices, in fact, to define the mREA-module struc-
ture on the space V and on its tensor powers V ⊗k. Any tensor product V ⊗k is a reducible
mREA-module and expands into the direct sum (3.5) of mREA-invariant subspaces Vλ

(for the details, see [GS2, S]).
However, the construction in the papers cited is insufficient for the treatment of the

general case of the birank (m|n). The reason is that in the general case we must construct
representations in the tensor products V ∗⊗k independently of those in the tensor products
V ⊗k, and the central problem here consists in extending the mREA-module structure to
the tensor product Vλ ⊗ V ∗

µ of modules.
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In the present section we suggest a regular procedure for constructing the mREA
representations, which works well independently of the birank of the Hecke symmetry.
Our construction is based on the braided bialgebra structure in the mREA. Throughout
this section, we set � = 1 in the mREA commutation relations (5.8).

The main component of the braided bialgebra is the coproduct ∆, which is a homo-
morphism of the mREA L(Rq, 1) into some associative braided algebra L(Rq); the latter
is defined as follows.

• As a vector space over the field K, the algebra L(Rq) is isomorphic to the tensor
product of two copies of mREA:

L(Rq) = L(Rq, 1) ⊗ L(Rq, 1) .

• The product � : L(Rq)
⊗2 → L(Rq) is defined by the rule

(6.2) (a1 ⊗ b1) � (a2 ⊗ b2) := a1a
′
2 ⊗ b′1b2 , ai ⊗ bi ∈ L(Rq) ,

where a1a
′
2 and b1b

′
2 are the usual products of elements of mREA, while a′

1 and
b′1 result from the action of the braiding REnd (see (5.6)) on the tensor product
b1 ⊗ a2,

(6.3) a′
2 ⊗ b′1 := REnd(b1 ⊗ a2) .

We must verify that the product (6.2) is indeed associative. For this, we need the
following lemma.

Lemma 26. Consider the copies (5.14) of the matrix L. Then

(6.4) REnd(Lk ⊗ Lp) = Lp ⊗ Lk for all k < p, k, p ∈ N .

Proof. The proof consists in a straightforward calculation on the basis of relation (5.6)
rewritten in a slightly modified form,

REnd(L1R̄12 ⊗ L1) = R̄12L1R̄
−1
12 ⊗ L1R̄12 ,

and on the Yang–Baxter equation (1.1), which allows us to interchange the chains of
R-matrices forming the copies Lk and Lp. �

Now the associativity of (6.2) can be proved easily for the matrices Xi
r,s whose com-

ponents are homogeneous monomials in generators of L(Rq, 1):

Xi
r,s := Li · · ·Li+r−1 ⊗ Li+r · · ·Li+r+s−1 ,

where we represent the homogeneous components of mREA as a linear span of elements
similar to those in (5.13).

Note that for any triple Xi1
r1,s1

, Xi2
r2,s2

, and Xi3
r3,s3

we can always choose i1, i2, and i3
so that

i3 ≥ i2 + r2 + s2 ≥ i1 + r1 + s1.

Then, the associativity condition

(Xi1
r1,s1

� Xi2
r2,s2

) � Xi3
r3,s3

= Xi1
r1,s1

� (Xi2
r2,s2

� Xi3
r3,s3

)

is an immediate consequence of Lemma 26. Since any element of L(Rq) can be pre-
sented as a linear combination of matrix elements of some X

(i)
r,s, we conclude that (6.2)

determines an associative product in L(Rq).
Note that the mREA is isomorphic to any of the two subalgebras of L(Rq) obtained

by the following embeddings:

a �→ eL ⊗ a or a �→ a ⊗ eL ,
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where eL is the unit of mREA L(Rq, 1). This can easily be deduced from the fact that the
unit element eL trivially commutes with any a ∈ L(Rq, 1) with respect to the braiding
REnd. As a consequence, we have

(eL ⊗ a1) � (eL ⊗ a2) = (eL ⊗ a1a2) and (a1 ⊗ eL) � (a2 ⊗ eL) = (a1a2 ⊗ eL) .

Let a linear map ∆ : L(Rq, 1) → L(Rq) be defined by the following rules:

(6.5)

∆(eL) := eL ⊗ eL,

∆(lji ) := lji ⊗ eL + eL ⊗ lji − (q − q−1)
∑

k

lki ⊗ ljk,

∆(ab) := ∆(a) � ∆(b) ∀ a, b ∈ L(Rq, 1).

In addition to (6.5), we introduce a linear map ε : L(Rq, 1) → K such that

(6.6)

ε(eL) := 1,

ε(lji ) := 0,

ε(ab) := ε(a)ε(b), a, b ∈ L(Rq, 1) .

The next proposition establishes an important property of the maps ∆ and ε.

Proposition 27. The maps ∆ and ε given in (6.5) and (6.6) are (respectively) the
coproduct and the counit of the braided bialgebra structure on the mREA L(Rq, 1).

Proof. First, we prove that the map ∆ gives rise to an algebra homomorphism L(Rq, 1) →
L(Rq). It is convenient to work with the generators mj

i introduced in Remark 17. In
terms of these generators, the map ∆ is expressed as

(6.7) ∆(mj
i ) =

∑
s

ms
i ⊗ mj

s ,

or, in the matrix form,
∆(Mk) = Mk ⊗ Mk, k ≥ 1 .

Taking definitions (6.2) and (5.6) into account, we find

∆(M1M2) = ∆(M1) � ∆(M2) = M1M2 ⊗ M1M2 .

Comparing this with (5.9), we finally get

R12∆(M1M2) = ∆(M1M2)R12,

which means that the map ∆ is an algebra homomorphism. Note that the braided
coproduct (6.7) was suggested in [M].

The interrelation between ε and ∆

(id⊗ε) ∆ = id = (ε ⊗ id) ∆

is verified trivially. �

Now we ask the following question: what representations of L(Rq) can be constructed
by using mREA representations? Given two equivariant mREA modules U and W with
representations ρU : L(Rq, 1) → End(U) and ρW : L(Rq, 1) → End(W ), we construct
the map ρU⊗W : L(Rq) → End(U ⊗ W ) by the following rule:

(6.8) ρU⊗W (a ⊗ b) 	 (u ⊗ w) = (ρU (a) 	 u′) ⊗ (ρW (b′) 	 w) , a ⊗ b ∈ L(Rq),

where the symbol 	 stands for the action of the corresponding operator, and the ele-
ment(s) b′ and vector(s) u′ result from the action of the corresponding braiding (depend-
ing on b and u) of the category SW(V(m|n)),

u′ ⊗ b′ := R(b ⊗ u) .
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By Proposition 18, the definition (6.8) is self-consistent, because the map b �→ ρW (b′) is
also a representation of mREA L(Rq, 1).

Proposition 28. The action (6.8) determines a representation of the algebra L(Rq).

Proof. Consider two arbitrary elements

Xi = (ai ⊗ bi) ∈ L(Rq), i = 1, 2 ,

of the algebra L(Rq). We prove that for all u ⊗ w ∈ U ⊗ W the following relation holds
true:

(6.9) ρU⊗W (X1 � X2) 	 (u ⊗ w) = ρU⊗W (X1) 	 (ρU⊗W (X2) 	 (u ⊗ w)) .

The left- and the right-hand side of (6.9) are actually the maps sending the element

(a1 ⊗ b1) ⊗ (a2 ⊗ b2) ⊗ (u ⊗ w)

to a vector in the space U ⊗W . We prove that the results of applying these maps to the
above element are the same.

We introduce the shorthand notation

R(b1 ⊗ a2) = a′
2 ⊗ b′1 , R(b2 ⊗ u) = u′ ⊗ b′2 , R(b′1 ⊗ u′) = u′′ ⊗ b′′1 .

The definitions (6.2) and (6.8) allow us to represent the left-hand side of (6.9) as the
composition of the following morphisms:

(a1 ⊗ b1) ⊗ (a2 ⊗ b2) ⊗ (u ⊗ w) �→ (a1 ⊗ a′
2) ⊗ (b′1 ⊗ b2) ⊗ (u ⊗ w)

�→ (a1a
′
2 ⊗ b′1b2) ⊗ (u ⊗ w) �→ (a1a

′
2 ⊗ u′′) ⊗ (b′′1b′2 ⊗ w)

�→ (ρU (a1a
′
2) 	 u′′) ⊗ (ρW (b′′1b′2) 	 w) .

Now, we take into account the equivariance condition (6.1) for the representations ρU

and ρW . This condition means that under the action of the categorical braidings the
vector ρU (a) 	 u commutes with any object in the same way as the element a ⊗ u does.
Therefore, the right-hand side of (6.9) can be represented as the following composition:

(a1 ⊗ b1) ⊗ (a2 ⊗ b2) ⊗ (u ⊗ w) �→ (a1 ⊗ b1) ⊗ (a2 ⊗ u′) ⊗ (b′2 ⊗ w)

�→ (a1 ⊗ b1) ⊗ (ρU (a2) 	 u′ ⊗ ρW (b′2) 	 w) �→ (a1 ⊗ ρU (a′
2) 	 u′′) ⊗ (b′′1 ⊗ ρW (b′2) 	 w)

�→(ρU (a1) 	 ρU (a′
2) 	 u′′) ⊗ (ρW (b′′1) 	 ρW (b′2) 	 w) �→ (ρU (a1a

′
2) 	 u′′) ⊗ (ρW (b′′1b′2) 	 w) .

So, having started with the same initial element, the maps on the left- and the right-hand
side of (6.9) give the same resulting vector in U⊗W . Therefore, these maps coincide. �

Corollary 29. Let U and W be two L(Rq, 1)-modules with equivariant representations
ρU and ρW . Then the equivariant representation L(Rq, 1) → End(U ⊗ W ) is given by
the rule

(6.10) a �→ ρU⊗W (∆(a)) , a ∈ L(Rq, 1) ,

where the coproduct ∆ and the map ρU⊗W are given (respectively) by formulas (6.5)
and (6.8).

Proof. This corollary is a direct consequence of Propositions 27 and 28. �

As was mentioned at the beginning of this section, equivariant representations of
mREA in spaces Vλ, λ 
 k ∈ N, were constructed in [GS2, S]. By the same method we
can define mREA representations in spaces V ∗

λ . Then, formula (6.10) allows us to define
the mREA-module structure on any object of the category SW(V(m|n)).

To complete the picture, we briefly outline the main ideas of [GS2, S], and moreover,
prove the equivariance of the representation in the space V ∗. Contrary to the even case,
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for the Hecke symmetry of general birank, the equivariance of representations in the dual
spaces V ∗

λ should be established independently of that in the spaces Vλ.
The basic left representation of mREA L(Rq, 1) in the space V is defined in terms of

matrix elements of the operator B,

(6.11) ρ1(l
j
i ) 	 xk = Bj

kxi.

As was shown in [S], the map ρ2 : L(Rq, 1) → End(V ⊗2) defined by

ρ2(l
j
i ) 	 (xk1 ⊗ xk2) = (ρ1(l

j
i ) 	 xk1) ⊗ xk2 +

(
R−1 ◦ (ρ1(l

j
i ) ⊗ I) ◦ R−1

)
	 (xk1 ⊗ xk2)

is a representation. An extension of the basic representation up to higher representations
ρp : L(Rq, 1) → End(V ⊗p), p ≥ 3, is defined in a similar way. It can be shown by direct
calculations that these extensions coincide with the universal recipe (6.10).

The representations of the above form are completely reducible — the space V ⊗p

expands into the direct sum of invariant subspaces Vλ labeled by partitions λ 
 p. The
restriction of the representation ρp to the subspaces Vλ is obtained by the action of the
orthogonal projectors Eλ

a (see (3.4) and (3.5)),

(6.12) ρλ,a = Eλ
a ◦ ρp ◦ Eλ

a ,

the modules with different a being equivalent.
The basic representation ρ∗1 : L(Rq, 1) → End(V ∗) is given by

(6.13) ρ∗1(l
j
i ) 	 xk = −xr R̄ kj

ri .

To prove the equivariance of this representation, we need the following lemma.

Lemma 30. Let R be a skew-invertible Hecke symmetry. Then the map

(6.14) V ⊗ V ∗ → V ∗ ⊗ V : xi ⊗ xj �→ xk ⊗ xlR
lj
ki

is a categorical morphism.

Proof. We use the fact that for a Hecke symmetry we have R = R−1 + (q − q−1)I (see
(1.2)). Substituting this in (6.14),

xi ⊗ xj �→ xk ⊗ xl (R−1)lj
ki + (q − q−1) δj

i xk ⊗ xk,

we find that the map in question is a linear combination of a categorical morphism from
the list (4.3) and the map

xi ⊗ xj �→ δj
i xk ⊗ xk.

The latter map can be presented as a composition of categorical morphisms,

xi ⊗ xj 〈 , 〉r�→ δj
i 1 πr�→ δj

i xk ⊗ xk,

where the categorical morphisms (4.1) and (4.5) were used consecutively.
So, we conclude that the initial map (6.14) is a linear combination of categorical

morphisms; therefore, it is a categorical morphisms itself by definition. �

Proposition 31. The representation (6.13) of the algebra L(Rq, 1) in the space V ∗ is
equivariant.

Proof. To prove the equivariance of ρ∗1, we must show that the map ρ∗1 : L(Rq, 1) →
End(V ∗) is a categorical morphism.

Identifying lji with xi ⊗ xj , we can treat any left equivariant action of lji on a basis
vector xk ∈ V ∗ as a categorical morphism

V ⊗ V ∗ ⊗ V ∗ → V ∗.
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We construct such an action as the following composition of morphisms:

V ⊗ V ∗ ⊗ V ∗ (6.14)⊗I−→ V ∗ ⊗ V ⊗ V ∗ I⊗〈 , 〉r−→ V ∗ ⊗ K ∼= V ∗,

which gives explicitly
lji 	 xk = Rkj

ri xr = xrR̄ kj
ri .

Up to a sign, this categorical morphism coincides with the left representation (6.13). �

Now, we consider a particular example of the “adjoint” mREA representation acting
in the linear span of the generators lji . Since

Span(lji ) ∼= V ⊗ V ∗ ,

the representation involved is constructed by the general formula (6.10), which now reads

lji �→ ρV ⊗V ∗(∆(lji )) ,

where we should take the basic representations (6.11) and (6.13) as ρV (lji ) and ρV ∗(lji ),
respectively. Omitting straightforward calculations, we write the final result in the com-
pact matrix form:

(6.15) ρV ⊗V ∗(L1) 	 L2 = L1R12 − R12L1.

Applying the coproduct ∆ (see (6.5)), we extend this representation to any homogeneous
component of the mREA.

Note that the above action (6.15) is an L-linear part of the defining commutation
relations of the mREA (5.8) if we rewrite them in the equivalent form

L1L2 − R−1
12 L1L2R12 = L1R12 − R12L1 .

In this sense, the action (6.15) is similar to the adjoint action of a Lie algebra g on its
universal enveloping algebra U(g), which is also determined by the linear part of the Lie
bracket and then is extended from the Lie algebra to the higher components of U(g) via
the standard coproduct operation.

To conclude the section, we consider the question of “sl-reduction”, that is, the passage
from mREA L(Rq, 1) to the quotient algebra

(6.16) SL(Rq) := L(Rq, 1)/〈TrR L〉 , TrR L := Tr(CL) .

The element 
 := TrR L is central in mREA, which can easily be proved by calculating
the R-trace in the second space from the matrix relation (5.8). This is done with the
help of formulas (2.8).

To describe the quotient algebra SL(Rq) explicitly, we pass to the new set of generators
{f j

i , 
} related to the initial set by a linear transformation,

(6.17) lji = f j
i + (Tr(C))−1δj

i 
 or L = F + (Tr(C))−1I 
 ,

where F = ‖f j
i ‖. Obviously, TrR F = 0. Note that, by (3.10), the above shift is possible

if and only if m �= n.
In terms of the new generators, the commutation relations of mREA read⎧⎪⎨

⎪⎩
R̄12F1R̄12F1 − F1R̄12F1R̄12 = (eL − ω

Tr(C)

)(R̄12F1 − F1R̄12),


 F = F 
 , TrR F = 0 ,

where ω = q − q−1. Now, the quotient (6.16) can easily be described. The matrix
F = ‖f j

i ‖ of SL(Rq) generators satisfy the same commutation relations (5.8) as the
matrix L,

(6.18) R̄12F1R̄12F1 − F1R̄12F1R̄12 = R̄12F1 − F1R̄12 , TrR F = 0 ,
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but the generators f j
i are linearly dependent, due to the relation TrR F = Tr(CF ) = 0.

It is not difficult to rewrite the representation (6.15) in terms of the generators f j
i

and 
. Taking (6.17) into account, after a short calculation we obtain

ρV ⊗V ∗(
) 	 
 = 0, ρV ⊗V ∗(F1) 	 
 = 0 ,(6.19)

ρV ⊗V ∗(
) 	 F1 = −ω Tr(C) F1,

ρV ⊗V ∗(F1) 	 F2 = F1R̄12 − R̄12F1 + ωR̄12F1R̄
−1
12 .

Note that relation (6.19) defines the “adjoint” representation of the quotient algebra
SL(Rq), but, contrary to the mREA L(Rq, 1), this representation is not given by the
linear part of the quadratic-linear commutation relations (6.18).

In general, given a representation ρ : L(Rq, 1) → End(U) such that the element 
 is a
multiple of the unit operator (for example, an irreducible representation),

ρ(
) = χ IU , χ ∈ K,

we can construct the corresponding representation ρ̃ : SL(Rq) → End(U) by the for-
mula [S]

(6.20) ρ̃(f j
i ) =

1
ξ

(
ρ(lji ) − (Tr(C))−1ρ(
) δj

i

)
, ξ = 1 − (q − q−1)(Tr(C))−1χ .

Finally, we note that the REA (5.9) admits a series of automorphisms M �→ zM with
nonzero z ∈ K. At the level of mREA representations, these automorphisms look as
follows (recall that � = 1):

ρU (lji ) �→ ρz
U (lji ) = zρU (lji ) + δj

i (1 − z)(q − q−1)−1 IU .

By using (6.20), it can be shown that the corresponding representation ρ̃U of the algebra
SL(Rq) constructed from ρz

U does not depend on z; in other words, the entire class of
mREA representations ρz

U connected by the above automorphisms gives one and the
same representation of the quotient algebra SL(Rq).

Remark 32. In this connection, we would like to discuss the problem of a suitable defini-
tion of braided (quantum, generalized) Lie algebras. For the first time, such an object was
introduced in [G1] as certain data (g, σ, [ , ]), where g is a vector space, σ : g⊗2 → g⊗2 is
an involutive symmetry, and [ , ] : g⊗2 → g is an operator (“braided Lie bracket”) such
that

1) [ , ]σ = −[ , ];
2) σ[ , ]23 = [ , ]12σ23σ12;
3) [ , ][ , ]23(I + σ12σ23 + σ23σ12) = 0.

Note that the third relation can be presented as follows:

(6.21) [ , ][ , ]12 = [ , ][ , ]23(I − σ12) .

A typical example is

g = End(V ) , σ = REnd , [ , ] = ◦(I − σ)

(in the setting of §5). Another example can be obtained by restricting the above operators
to the subspace of traceless elements of the algebra End(V ). The enveloping algebras of
both braided Lie algebras can be defined by (5.1).

Now, observe that relation (6.21) takes the form (6.15) if we put

(6.22) g = Span(lji ) , σ(L1L2) = R−1
12 L1L2R12 , [L1, L2] = L1R12 − R12L1 .
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So, if we define a braided Lie algebra with such g, σ, and [ , ], then the third axiom of
the above list (in the form (6.21)) will be satisfied. By contrast, relations 1) and 2) fail
and must be modified. Thus, an analog of 1) can be presented in the form

[ , ]S = 0 ,

where S is as in (5.20). The verification of this relation is straightforward and is left to
the reader. In 2), the map σ must be replaced by REnd. This is a consequence of the
fact that the bracket [ , ] in (6.22) is a categorical morphism. But if we restrict ourselves
to the traceless part of the space g, then relation (6.21) also fails.

So, it is somewhat contradictory to define a braided Lie algebra in the space End(V )
(where the space V is equipped with a skew-invertible Hecke symmetry) with the use of
the above three axioms. However, in many papers (cf. [Wo, GM]) the braided (quantum)
Lie algebras related to noninvolutive braidings were introduced via these axioms or their
slight modifications. Recalling our observation (see the Introduction) on “braided Lie
algebras” related to braidings of the Birman–Murakami–Wenzl type, we can conclude
that there are no “braided Lie algebras” satisfying the above list of axioms and, at the
same time, such that their enveloping algebras possess good deformation properties.

§7. Quantization with a deformed trace

In this section we consider the semiclassical structures arising from the mREA L(Rq, �)
(see (5.8)), provided that R is the standard Uq(sl(m)) Hecke symmetry (1.3). In this
case the mREA L(Rq, �) is treated as a two-parameter deformation of the commutative
algebra K[gl(m)∗]. We clarify the role of the corresponding Poisson brackets in defining
the quantum homogeneous spaces. At the end of the section we study the infinitesimal
counterpart of the deformed R-trace.

Given a Hecke symmetry R as in (1.3), a straightforward calculation allows us to find a
Poisson pencil that is the semiclassical counterpart of the two-parameter algebra L(Rq, �).
Indeed, setting q = 1 in (1.3), we pass from L(Rq, �) to the algebra U(gl(m)�). Therefore,
the Poisson bracket corresponding to the deformation described by the parameter � is
the linear Poisson–Lie bracket on the space of functions on gl(m)∗.

In order to find the second generating bracket of the Poisson pencil, we put � = 0 in
(5.8), arriving thereby at the nonmodified REA. Introducing the matrix R = RP ,

R =
m∑
i,j

qδij hi
i ⊗ hj

j + (q − q−1)
m∑

i<j

hj
i ⊗ hi

j ,

we transform the commutation relations of the REA to

(7.1) R̄12 L1 R̄21 L2 − L2 R̄12 L1 R̄21 = 0

(we recall that the bar over the symbol of a matrix means transposition).
Setting q = eν , ν ∈ K, and noting that R = I at q = 1, we arrive at the following

expansion of R in a ν-series: R = 1 + ν r + O(ν2), where

(7.2) r =
m∑

i=1

hi
i ⊗ hi

i + 2
m∑

i<j

hj
i ⊗ hi

j

is the classical sl(m) r-matrix,

[r12, r13] + [r12, r23] + [r13, r23] = 0.

Now, the part of the commutation relation (7.1) that is linear in ν represents the second
Poisson bracket in K[gl(m)∗]:

(7.3) {L1, L2}r = L2L1 r̄21 − r̄12L1L2 + L2 r̄12L1 − L1r̄21L2 .
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This formula is defined on the matrix elements lji of the matrix L that form a basis
of linear functions on the space gl(m)∗. The extension of the bracket (7.3) from the
generators lji to arbitrary functions (polynomials in generators) is described in terms of
vector fields on gl(m)∗. In order to obtain such an extension, we introduce the matrices

r± =
1
2

(r12 ± r21).

Formula (7.2) shows that the above matrices are the images of

(7.4) r− =
m∑

i<j

(ej
i ⊗ ei

j − ei
j ⊗ ej

i ) :=
m∑

i<j

ej
i ∧ ei

j , r+ =
m∑
i,j

ej
i ⊗ ei

j , r± ∈ gl(m)⊗2,

under the fundamental vector representation ej
i �→ hj

i , the elements ej
i being the standard

basis of gl(m),
[ej

i , e
r
k] = δj

k er
i − δr

i ej
k.

Now, consider the actions of gl(m) on K[gl(m)∗] by the left, right, and adjoint vector
fields

(7.5) ej
i 	 lsk := δj

k lsi , lsk � ej
i := δs

i ljk , ad ej
i (l

s
k) = ej

i 	 lsk − lsk � ej
i ,

which are extended to any polynomial in K[gl(m)∗] by the Leibniz rule. Then, taking
the above definitions of r± into account, we can rewrite (7.3) in the general form

(7.6) {f, g}r = ◦ rl,r
+ (f ⊗ g) − ◦ rr,l

+ (f ⊗ g) − ◦ rad,ad
− (f ⊗ g), f, g ∈ K[gl(m)∗].

Here ◦ : K[gl(m)∗]⊗2 → K[gl(m)∗] stands for the commutative pointwise product of
functions on gl(m)∗, and the superscripts of r± denote the following actions:

(7.7) rad,ad
− (f ⊗ g) :=

m∑
i<j

ad ej
i (f) ∧ ad ei

j(g), rl,r
+ (f ⊗ g) :=

∑
i,j

(ej
i 	 f) ⊗ (g � ei

j) .

Note that the brackets

{f, g}− = ◦ rad,ad
− (f ⊗ g) and {f, g}+ = ◦ rl,r

+ (f ⊗ g) − ◦ rr,l
+ (f ⊗ g)

are not Poisson, since they do not obey the Jacobi identity.
The bracket { }+ is gl(m)-covariant, that is,

ad X({f, g}+) = {ad X(f), g}+ + {f, ad X(g)}+, f, g ∈ K[gl(m)∗], X ∈ gl(m).

The bracket (7.6) restricts to any GL(m)-orbit O ⊂ gl(m)∗ because for any f ∈ IO,
where IO is an ideal of functions vanishing on this orbit, and for any g ∈ K[gl(m)∗], we
have

{f, g}r ∈ IO .

This property is evident for the component { }− because the operation in question is
defined via adjoint vector fields. The proof for the component { }+ was given in [D]. In
particular, the bracket (7.6) can be restricted to the variety c1 :=

∑
lii = c, where c ∈ K

is a constant. Setting c = 0, we get a Poisson bracket on the algebra K[sl(m)∗].

Remark 33. Being restricted to K[g∗], where g = sl(m), the bracket { }+ admits the
following interpretation [G4, D]. Consider the space g⊗2 as an adjoint g-module. It
decomposes into the direct sum of submodules

g
⊗2 = gs ⊕ ga,

where gs(ga) is the symmetric (skew-symmetric) subspace of g⊗2. For m > 2, there
exist subspaces g+ ⊂ gs and g− ⊂ ga that are isomorphic to g itself as adjoint g-
modules. Therefore, there is a unique (up to a factor) nontrivial g-covariant morphism
β : g⊗2 → g⊗2 sending g− to g+.
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Since the space of linear functions on g∗ with the Poisson–Lie bracket is isomorphic
to g as a Lie algebra, the morphism β can also be defined on the entire algebra K[g∗]
(via the Leibniz rule), giving a bracket that coincides (up to a factor) with { }+. Note
that for m = 2 the component g+ vanishes, so that the bracket { }+ also vanishes.

Proposition 34. The bracket (7.6) is compatible with the Poisson–Lie bracket (their
Schouten bracket vanishes), and therefore, any bracket of the pencil (1.4) is Poisson.

This claim is an immediate consequence of the fact that the family of algebras L(Rq, �)
is a two-parameter deformation of the commutative algebra K[gl(m)∗], but this can also
be verified by direct calculations [D].

Now, we consider the case of m = 2 in more detail. As we have noticed before, in this
case the component { }+ of the Poisson bracket { }r vanishes and we have { }r = { }−.
Let {H, E, F} be the Cartan–Chevalley generators of sl(2). Then r− = E ∧F (see (7.4))
and the Poisson bracket (7.6) reads

{a, b}r = − ad E(a) ad F (b) + ad F (a) ad E(b).

Take the generators {e, f, h} of K[sl(2)∗] that correspond to the Cartan–Chevalley gen-
erators under the isomorphism of sl(2) and the Lie algebra of linear functions on sl(2)∗.
A simple calculation on the basis of (7.5) gives

{h, e}r = −2eh , {h, f}r = 2fh , {e, f}r = −h2.

Note that this differs from the Poisson–Lie bracket only by the factor −h; therefore, each
leaf of the bracket { }r lies in a leaf of the Poisson–Lie bracket. Moreover, the element
c2 = h2/2+2ef is central with respect to both brackets; hence, the corresponding Poisson
pencil can be restricted to the quotient K[sl(2)∗]/〈c2 − c〉 for any c ∈ K.

Let K = C, and let the elements

x =
1
2

(e − f), y =
i

2
(e + f), z =

i

2
h

be the generators of su(2). In these generators, we get the Poisson pencil { }PL,r, where

{x, y}PL = z, {y, z}PL = x, {z, x}PL = y,

{x, y}r = z2, {y, z}r = xz, {z, x}r = yz.

Here we have renormalized the bracket { }r since this does not affect the Poisson pencil.
The quadratic central element takes the form c2 = x2 + y2 + z2.

A particular bracket of this Poisson pencil (namely, { }PL − {}r) appeared in [Sh]
(see the Appendix by J.-H. Lu and A. Weinstein) in studying a semiclassical counterpart
of the quantum sphere. In the paper cited, the quantum sphere was represented as an
operator algebra. This approach is based on the paper [P], where the quantum sphere
was treated as a C∗-algebra, and its irreducible representations (as a C∗-algebra) were
classified. As a result, in [Sh] the quantum sphere was presented in terms of functional
analysis.

Our method of constructing the quantum sphere (or the quantum hyperboloid, which
is the same over the field K = C) is completely different. First, we quantize the Kirillov–
Kostant–Souriau (KKS) bracket8 on the sphere and realize the resulting quantum algebra
as the quotient

(7.8) U(su(2)�)/〈x2 + y2 + z2 − c〉 , c ∈ K , c �= 0.

8Recall that the KKS bracket is the restriction of the Poisson–Lie bracket to a coadjoint orbit of the
Lie group in the space dual to its Lie algebra.
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We are interested in finite-dimensional representations of this algebra. There exists a set
of negative values c(k) = −�2k(k+2)/4, k ∈ N, of the parameter c such that the quotient
algebra (7.8) admits a finite-dimensional representation if c = c(k) for some k ∈ N.

Returning to the generators of the algebra sl(2), we obtain a one-parameter family of
algebras

SLc(�) = U(sl(2)�)/〈1
2

H2 + EF + FE − c〉.

Any algebra SLc(�) in this family, as well as SLc = K[sl(2)∗]/〈h2

2 + ef + fe − c〉, being
equipped with the sl(2)-action, can be expanded into a multiplicity-free direct sum of
sl(2)-modules

SLc ∼=
⊕
k≥0

Vk .

Let α : SLc → SLc(�) be an sl(2)-invariant map sending the highest weight elements
e⊗k ∈ SLc to E⊗k ∈ SLc(�). This requirement determines the map α completely. Now,
the commutative algebra SLc can be equipped with a new noncommutative product �
coming from the algebra SLc(�),

(7.9) f �� g = α−1(α(f) ◦ α(g)), f, g ∈ SLc,

where ◦ is the product in the algebra SLc(�). Thus, we have quantized the KKS bracket
on the hyperboloid c2 = c in the spirit of deformation quantization scheme, by introducing
a new product in the initial space of commutative functions. Note that, in accordance
with [R], our algebraic quantization cannot be extended on the function space C∞[S2].

Now, we deform the algebra K[sl(2)∗] in the q and � “directions” simultaneously.
We get the mREA (5.8) with R-matrix given in (1.3), where we should set m = 2.
Extracting the R-traceless elements from the set of four mREA generators, we arrive at
a unital associative algebra generated by three linearly independent elements {Ĥ, Ê, F̂}
subject to the system of commutation relations

q2ĤÊ − ÊĤ = 2q� Ê ,

ĤF̂ − q2F̂ Ĥ = −2q� F̂ ,

q(ÊF̂ − F̂ Ê) = Ĥ
(
� − (q2 − 1)

2q
Ĥ

)
.

We denote this algebra by SL(q, �). The element Cq = Ĥ2

2q
+ q−1ÊF̂ + qF̂ Ê is central

and is called the braided Casimir element. We put

SLc(q, �) = SL(q, �)/〈Cq − c〉.
We call this algebra the quantum hyperboloid or (considering it over the field K = C) the
quantum sphere. It is a two-parameter deformation of the initial commutative algebra
SLc. For a generic value of q, it is possible to define a map αq : SLc → SLc(q, �) similar
to α (but without the equivariance property) and represent the product in SLc in the
spirit of relation (7.9).

As in the case of the algebra (7.8), there exists a series of values c = ck such that the
corresponding quotient algebra SLck(q, �) has a finite-dimensional equivariant represen-
tation. Its construction was described in §6. Letting q → 1, we get a representation of
the algebra SLck(�). By contrast, the representation theory of the quantum sphere sug-
gested in [P] has nothing in common with the theory of finite-dimensional representations
of sl(2) (or su(2)).

In general, by quantizing the KKS bracket on a semisimple orbit, we represent the
quantum algebra as an appropriate quotient of the enveloping algebra U(g�) with



REPRESENTATION THEORY 245

g = gl(m) or sl(m). (Note that if such an orbit is not generic, then the problem of
finding defining relations of the corresponding “quantum orbit” is somewhat subtle; cf.
[DM].) Finally, we additionally deform this quotient in the “q-direction” and get some
quotient of the algebra L(q, �).

Observe that on a generic orbit in g∗, where g is a simple Lie algebra, there exists a
family of nonequivalent Poisson brackets that give rise to Uq(g)-covariant algebras. One
of them is the reduced Sklyanin bracket. It is often described in terms of the Bruhat
decomposition (see [LW]). The classification of all these brackets and their deformation
quantization are given in [DGS] and [D]. The reduced Sklyanin bracket can also be
quantized in terms of the so-called Hopf–Galois extension (see [DGH]). But only the
bracket (7.6), restricted to a semisimple orbit, is compatible with the KKS bracket, and
the quantization of the corresponding Poisson pencil can be realized in the spirit of affine
algebraic geometry, i.e., via generators and relations among them.

Note that on the sphere (hyperboloid), the reduced Sklyanin bracket coincides with
one of the brackets in the Poisson pencil { , }KKS,r (this is also true for any symmetric
orbit). So, the Sklyanin bracket can be quantized via different approaches. However, for
m > 2 and for higher-dimensional orbits the notion of quantum orbits must be specified
depending on the bracket to be quantized.

As to the other classical simple algebras g of B, C, or D series, there is no two-
parameter deformation of the algebra K[g∗] (see [D]). Though a quadratic-linear algebra
(similar to L(Rq, �)) can be constructed in this case (see [DGG] for the details), we note
that neither this algebra nor the associated quadratic algebra is a deformation of its
classical counterpart.

We complete this section with considering a semiclassical analog of the quantum trace
in the spirit of [G2]. Poisson pencils considered in that paper are similar to the above
ones, but they were generated by triangular classical r-matrices, which give rise to in-
volutive braidings. The main difference is that the result of the “double quantization”
of the Poisson pencil from [G2] was treated as the enveloping algebra of a generalized
Lie algebra, and its finite-dimensional representations formed a tensor (rather than a
quasitensor) category.

As is known, on any symplectic variety there is a Liouville (or invariant, or symplectic)
measure dµ with the basic property

∫
{f, g} dµ = 0. In the framework of the deformation

quantization, this measure gives rise to a trace with usual properties (see [GR]). It is
merely the case of the KKS bracket on a semisimple orbit. For nonsymplectic Poisson
brackets, one usually tries to describe its symplectic leaves and to quantize them sepa-
rately, i.e., to associate an operator algebra with each of the leaves. In the framework
of our approach, we are not dealing with quantizing leaves of the bracket { , }r or any
bracket from the Poisson pencil { , }KKS,r, but we quantize this Poisson pencil as a whole.
In other words, we simultaneously q-deform all algebras arising from “�-quantization”
and arrive at operator algebras with deformed traces.

Consider the Poisson pencil { , }KKS,r on a semisimple orbit O ⊂ su(m)∗. Since the
bracket { , }r is not symplectic, the pencil involved has no Liouville measure on the entire
orbit (a similar case was considered in [G2]). Nevertheless, the following proposition holds
true independently of a specific form of the matrix r.

Proposition 35. Let { , }KKS,r be the Poisson pencil on a semisimple orbit O ⊂ g∗,
where g = su(m) (or its complexification) and dµ is the Liouville measure for the bracket
{ , }KKS. Then the quantity

(7.10) 〈a, b〉 =
∫
O
{a, b}r dµ
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is a cocycle with respect to the bracket { , }KKS, i.e.,

〈a, {b, c}KKS〉 + 〈b, {c, a}KKS〉 + 〈c, {a, b}KKS〉 = 0.

This statement is a simple consequence of the fact that the brackets { , }KKS and { , }r

are compatible. The cocycle (7.10) is treated as an infinitesimal term of the deformation
of the pairing a ⊗ b �→

∫
O ab dµ [G2].

In a similar way, we consider an infinitesimal term of the deformation of the pairing
A ⊗ B �→ Tr(A ◦ B). For this, we use the relation

TrR ◦(R12L1R21L2 − L2R12L1R21) = 0 ,

where the entries of the matrices L1 and L2 belong to End(V ), the symbol ◦ stands for
the product (4.12) in this algebra, and the operation TrR is applied to each entry. The
above relation is true because TrR lji = δj

i .
Then, expanding the R-matrix and the R-trace into a ν-series,

R = I + ν r + O(ν2) , TrR = Tr +ν b + O(ν2)

(r is given by (7.2)), we get the explicit form of the operation b ◦ on the skew-symmetric
subspace ∧2(End(V )):

b ◦ (L1 ⊗ L2 − L2 ⊗ L1) = −Tr ◦(r12L1L2 + L1r21L2 − L2r12L1 − L2L1r21) .

Having defined the operation b ◦ on the basis elements in this way, we directly get the
general expression (see (7.4)–(7.7) for the notation)
(7.11)
b◦ (A⊗B−B⊗A) = Tr ◦(−rad,ad

− (A⊗B)−rr,l
+ (A⊗B)+rl,r

+ (A⊗B)), A, B ∈ End(V ) .

Thus, we obtain the skew-symmetrized linear term of deformation of the pairing

A ⊗ B �→ Tr(A ◦ B) .

Proposition 36. The quantity 〈A, B〉 = −b ◦ (A ⊗ B − B ⊗ A) is a cocycle on the Lie
algebra gl(m), i.e.,

〈A, [B, C]〉 + 〈B, [C, A]〉 + 〈C, [A, B]〉 = 0.

This cocycle reduces to the Lie algebra sl(m).

It is not difficult to write an explicit form of the cocycle 〈A, B〉. Indeed, it can be shown
that the second and third terms on the right-hand side of (7.11) give no contribution to
this cocycle; using the cyclic property of the usual trace, we get

〈A, B〉 = Tr
(

[A, B] ◦
∑
α>0

[Xα, X−α]
)

= Tr
(

[A, B] ◦
∑
α>0

Hα

)
,

where the sum is over the set of all positive roots.

Appendix

In this section we collect some facts and definitions pertaining to the theory of the
Ak−1 series Hecke algebras Hk(q), used in the main text of the paper. For a detailed
survey of the subject the reader is referred to [OP1]. Throughout this section we use the
definitions and notation of that paper. At the end of the section we prove Proposition
7, stated in §2.
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By definition, a Hecke algebra of Ak−1 series is a unital associative algebra Hk(q) over
a field K generated by elements σi, 1 ≤ i ≤ k − 1, subject to the following commutation
relations:

σiσi+1σi = σi+1, σiσi+1, 1 ≤ i ≤ k − 2;

σiσj = σjσi, |i − j| ≥ 2;

σ2
i = 1H − (q − q−1) σi, 1 ≤ i ≤ k − 1.

Here 1H is the unit of the algebra, and q ∈ K is a nonzero element of the ground field.
Below we assume K to be the field of complex numbers C or the field C(q) of rational
functions of a formal variable q.

At a generic value of q, the Hecke algebra Hp(q) is semisimple and isomorphic to
the group algebra of the kth order symmetric group K[Sk]; see [We]. Therefore, being
viewed as a regular two-sided Hk(q)-module, the Hecke algebra Hk(q) can be presented
as a direct sum of simple ideals (the Wedderburn–Artin theorem)

Hk(q) =
⊕
λ�k

Mλ

labeled by partitions λ of the integer k. Under the left (right) action of the Hecke algebra,
the submodules Mλ are reducible and can be further decomposed into the direct sum of
the corresponding equivalent one-sided (left or right) submodules

Mλ =
dλ⊕

a=1

M
(λ,a)
l(r) ,

where dλ is the number of the standard Young tableaux (λ, a) corresponding to the
partition λ; see [Mac]. The index a enumerates the standard tableaux in accordance with
some ordering (say, lexicographical).

In each ideal Mλ, we can fix a linear basis of “matrix units” eλ
ab with the multiplication

table
eλ
ab eµ

cd = δλµδbc eµ
ad .

A subset eλ
ab, 1 ≤ b ≤ dλ (with a fixed value of the first index), forms a basis of the right

module M
(λ,a)
r , while fixing the second index gives a basis of the left module M

(λ,b)
l .

The diagonal elements eλ
aa, denoted briefly by eλ

a , form the set of primitive idempotents
of the Hecke algebra Hk(q). The idempotents eλ

a are constructed explicitly as some
polynomials in the Jucys–Murphy elements Jp, 1 ≤ p ≤ k (see [OP1] for the details),
which are defined by the iterative rule

J1 = 1H , Jp+1 = σp Jp σp.

The set of Jucys–Murphy elements is a basis of the maximal commutative subalgebra of
Hk(q). An important property of these elements is as follows:

(A.1) Jp eλ
a = eλ

a Jp = jp(λ, a)eλ
a , jp(λ, a) = q2(cp−rp) ∈ K.

Here the positive integers cp and rp are the number of the column and the number of
the row of the Young tableau (λ, a) that contain the box with integer p. Below we give
a simple example of a Young tableau of the partition λ = (3, 2, 1):

1 3 4
2 6
5

⇒
j1 = 1, j4 = q4,
j2 = q−2, j5 = q−4,
j3 = q2, j6 = 1.
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Any two idempotents eλ
a and eλ

b corresponding to different tableaux (λ, a) and (λ, b)
of a partition λ 
 k can be transformed into each other by the two-sided action of some
invertible elements of the Hecke algebra Hk(q) [OP1]:

(A.2) eλ
a = xλ

ab eλ
b yλ

ab , xλ
ab, yλ

ab ∈ Hk(q).

Now, consider a Hecke symmetry R : V ⊗2 → V ⊗2, and define a special representation
ρR of a Hecke algebra Hk(q) in the tensor product V ⊗p, p ≥ k, by the rule

(A.3)

ρR(1H) = id⊗p
V ,

ρR(σi) = id⊗(i−1)
V ⊗Ri ⊗ id⊗(p−i−1)

V , 1 ≤ i ≤ k − 1,

ρR(xy) = ρR(x)ρR(y), x, y ∈ Hk(q)

(we recall that Ri := Rii+1). The fact that ρR is a representation follows immediately
from (1.1) and (1.2).

Suppose the birank of R is (m|n), i.e., the corresponding HP series P−(t) is of the
form (3.3). Consider the partitions

(A.4)
λm,n := ((n + 1)m+1), λm,n 
 (m + 1)(n + 1),

λ−
m,n := ((n + 1)m, n), λ−

m,n 
 mn + m + n .

In a graphic form, the partition λm,n is represented by a rectangular diagram with m+1
rows of length n + 1, while the diagram of λ−

m,n is obtained by removing one box in the
right lower corner of the rectangle. Note that λ−

m,n ∈ H(m, n), while the partition λm,n

is the minimal partition not belonging to the hook H(m, n) (see Definition 5).
Below we list the properties of representations ρR that follow immediately from Propo-

sition 6.

i) The images Eλ
a = ρR(eλ

a) are nonzero, eλ
a ∈ Hk(q), for all 2 ≤ k < (m+1)(n+1).

ii) The representation ρR of H(m+1)(n+1)(q) possesses a kernel generated by

ρR(eλm,n
a ) = 0, 1 ≤ a ≤ dλm,n

,

and ρR(eµ
a) �= 0 for all µ 
 (m + 1)(n + 1), µ �= λm,n.

iii) For any integer p ≥ (m + 1)(n + 1) and any partition ν 
 p we have

ρR(eν
a) = 0 ⇔ λm,n ⊂ ν,

where the inclusion µ = (µ1, µ2, . . . ) ⊂ ν = (ν1, ν2, . . . ) means that µi ≤ νi for
all i.

Proof of Proposition 7. We denote p := (m+1)(n+1) to obtain more compact formulas.
In the Hecke algebra Hp(q), we take the Hecke subalgebra Hp−1(q) ⊂ Hp(q) generated
by σi ∈ Hp(q), 1 ≤ i ≤ p − 2. Fix a standard Young tableau (λm,n, a) (see (A.4))

and consider the idempotents e
λ−

m,n

a− ∈ Hp−1(q) and e
λm,n
a ∈ Hp(q). Here the notation

(λ−
m,n, a−) refers to a special choice of the corresponding Young tableau: it is properly

included into the Young tableau (λm,n, a). In other words, the integers from 1 to p − 1
occupy the same positions in the tableau (λ−

m,n, a−) as they do in the tableau (λm,n, a).
Note that, since we consider the standard Young tableaux, the only possible position for
the number p is the box in the right lower corner of the rectangular tableau (λm,n, a).

Now we apply the map ρR : Hp(q) → End(V ⊗n) to the relation (see [OP1])

eλm,n
a = e

λ−
m,n

a−
(Jp − q2(n+1)1H)

(q2(n−m) − q2(n+1))
(Jp − q−2(m+1)1H)

(q2(n−m) − q−2(m+1))
.
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Denoting ρR(Jk) := Jk and using property ii), we get the identity

0 = E
λ−

m,n

a−
(Jp − q2(n+1)I)

(q2(n−m) − q2(n+1))
(Jp − q−2(m+1)I)

(q2(n−m) − q−2(m+1))
,

where E
λ−

m,n

a− �= 0 by i), and the letter I stands for the identity operator on the space
V ⊗p.

We calculate the trace tr of the above identity in the last (pth) component of the tensor
product V ⊗p, where tr coincides up to a factor with the categorical R-trace (4.15),

tr(X) := Tr (C · X).

It is clear that tr(I) = Tr C is the object we are interested in.

Since the matrix E
λ−

m,n

a− is a polynomial in Jk with k < p, it can be factored out of the
trace operation in the pth space, and we arrive at the relation

(A.5) 0 = E
λ−

m,n

a− tr(p)

(
J2

p − (q2(n+1) + q−2(m+1))Jp + q2(n−m)I
)
.

We consider the traces of the terms of the above identity separately. Introducing the
auxiliary shorthand notation ω := q − q−1, we find

tr(p)(Jp) = tr(p)

(
Rp−1Jp−1(R−1

p−1 + ωI)
)

= ωJp−1 + Ip−1 tr(p−1)(Jp−1).

In this line of transformations we have used the iterative definition of the Jucys–Murphy
element, the Hecke condition for R, and properties (2.4) and (2.8) of tr listed in §2. Since
the trace in (A.5) is multiplied by an idempotent, we can replace the Jucys–Murphy
element Jp−1 by the corresponding “eigenvalue” jp−1 defined in (A.1):

(A.6) E
λ−

m,n

a− tr(p)(Jp) = E
λ−

m,n

a−

(
ωjp−1 + tr(p−1)(Jp−1)

)
.

To simplify the formulas, we omit the symbol of the idempotent and perform all calcula-
tions bearing in mind the possibility to replace each free of trace Jucys–Murphy element
Jk by the corresponding number jk.

Thus, the calculation of tr(p)(Jp) is completed by straightforward induction, with the
use of (A.6):

tr(p)(Jp) = ω

p−1∑
k=1

jk + tr(I)

(recall that J1 = I by definition).
Now, we transform the term with the second power of Jp:

tr(p)(J2
p ) = tr(p)

(
Rp−1Jp−1Rp−1(R−1

p−1 + ωI)Jp−1Rp−1

)
= tr(p)

(
Rp−1J

2
p−1(R

−1
p−1 + ωI)

)
+ ω Jp−1tr(p)

(
Jp(R−1

p−1 + ωI)
)

= 2ω J2
p−1 + ω2 Jp−1tr(p)(Jp) + tr(p−1)(J2

p−1)

= 2ω j2
p−1 + ω2 jp−1tr(p)(Jp) + tr(p−1)(J2

p−1).

Substituting the value of tr(p)(Jp), we get the base for the inductive calculation,

tr(p)(J2
p ) = 2ω j2

p−1 + ω2jp−1 tr(I) + ω3jp−1

p−1∑
k=1

jk + tr(p−1)(J2
p−1).

This leads to the following expression:

tr(p)(J2
p ) = 2ω

p−1∑
k=1

j2
k + ω3

p−1∑
k=1

jk

k∑
s=1

js +
(
1 + ω2

p−1∑
k=1

jk

)
tr(I).
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Substituting all the calculated components in identity (A.5) and using the fact that

E
λ−

m,n

a− �= 0, we find the following linear equation for tr(I):

α tr(I) + β = 0

with

α = 1 + q2(n−m) − q2(n+1) − q−2(m+1) + ω2

p−1∑
k=1

jk,

β = ω

(
2 +

ω2

2

) p−1∑
k=1

j2
k +

ω3

2

(p−1∑
k=1

jk

)2

− ω
(
q2(n+1) + q−2(m+1)

)p−1∑
k=1

jk ;

to find the coefficient β we have used the identity

p−1∑
k=1

jk

k∑
s=1

js =
1
2

p−1∑
k=1

j2
k +

1
2

(p−1∑
k=1

jk

)2

.

Taking into account the definition of jk and the form of the diagram λ−
m,n = ((n+1)m, n),

we can easily calculate the sum of the eigenvalues jk:

p−1∑
k=1

jk =
p−1∑
k=1

q2(ck−rk) = (1 + q2 + · · · + q2n)(1 + q−2 + · · · + q−2m) − q2(n−m)

= qn−m(n + 1)q(m + 1)q − q2(n−m),

whence
p−1∑
k=1

j2
k =

p−1∑
k=1

(q2)2(ck−rk) = q2(n−m)(n + 1)q2(m + 1)q2 − q4(n−m) .

Now by a short calculation we simplify the coefficient α to the form

α = −ω2 q2(n−m).

The transformation of β is more involved though also straightforward; it is useful to
invoke the identity

kq2 =
q2k − q−2k

q2 − q−2
=

(qk − q−k)
(q − q−1)

(qk + q−k)
(q + q−1)

= kq
qk + q−k

2q
.

Omitting routine calculations, we present the final result:

β = ω2 q3(n−m)(m − n)q.

So, we finally get

tr(I) = Tr C = −β

α
= qn−m(m − n)q.

This completes the proof. �
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of Koszul type, J. Algebra 181 (1996), 315–328. MR1383469 (96m:16012)

[CP] V. Chari and A. Pressley, A guide to quantum groups, Cambridge Univ. Press, Cambridge,
1994. MR1300632 (95j:17010)

[C] I. Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1984),
no. 1, 35–44; English transl., Theoret. and Math. Phys. 61 (1984), 977–983. MR0774205
(86g:81148)

[DGH] L. Da̧browski, H. Grosse, and P. Hajac, Strong connections and Chern–Connes pairing in the
Hopf–Galois theory, Comm. Math. Phys. 220 (2001), 301–331. MR1844628 (2002g:58007)

[Da] A. A. Davydov, Totally positive sequences and R-matrix quadratic algebras, J. Math. Sci. 100
(2001), 1871–1876. MR1774356 (2001k:16052)

[DGG] G. W. Delius, C. Gardner, and M. D. Gould, The structure of quantum Lie algebras for the
classical series Bl, Cl and Dl, J. Phys. A 31 (1998), 1995–2019. MR1628724 (99k:81109)

[D] J. Donin, Double quantization on coadjoint representations of semisimple Lie groups and their
orbits, ArXiv: QA/9909160.

[DGS] J. Donin, D. Gurevich, and S. Shnider, Double quantization on some orbits in the coadjoint
representations of simple Lie groups, Comm. Math. Phys. 204 (1999), 39–60. MR1705663
(2001c:22021)

[DM] J. Donin and A. Mudrov, Explicit equivariant quantization on coadjoint orbits of GL(n, C),
Lett. Math. Phys. 62 (2002), 17–32. MR1952112 (2004b:17026)

[Dr] V. Drinfel′d, On quadratic commutation relations in the quasi-classical case, Mathematical
Physics, Functional Analysis, “Naukova Dumka,” Kiev, 1986, pp. 25–34; English transl., Selecta
Math. Soviet. 11 (1992), no. 4, 317–326. MR0906075 (89c:58048); MR1206296
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