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QUASIANALYTIC CARLEMAN CLASSES ON BOUNDED DOMAINS

K. V. TRUNOV AND R. S. YULMUKHAMETOV

Abstract. Several criteria for the quasianaliticity of Carleman classes at a boundary
point of a Jordan domain with rectifiable boundary are found.

Introduction

We start with recalling the necessary definitions from the paper [1].
Let E be a perfect compact set in the plane C. A complex-valued function f is said

to be infinitely differentiable on E if there exist functions f0, f1, . . . continuous on E
with f0(z) ≡ f(z), z ∈ E, and such that, for any n = 0, 1, 2, . . . , k = 0, 1, . . . , n, the
functions

Rn,k(ζ, z) := fk(ζ) −
n−k∑
p=0

fk+p(z)
(ζ − z)p

p!

satisfy the estimate
|Rn,k(ζ, z)| = o(|ζ − z|n−k)

uniformly in ζ, z ∈ E. Note that for any infinitely differentiable function f the functions
fk are determined uniquely by f via the recurrence relations

f0(z) = f(z), fk+1(z) = lim
ζ−→z

fk(ζ) − f(z)
ζ − z

, k = 0, 1, . . . .

In particular, the function f turns out to be holomorphic at the interior points of E
and, moreover, fk(z) = f (k)(z), and the derivatives of f extend continuously up to the
boundary of the set E. Having this in mind, in what follows we write f (k) in place of fk

for the functions infinitely differentiable on E.
For an increasing sequence of positive numbers M = (Mn)∞n=0 and for a positive

integer q, we denote by Aq(E,M) the class of functions f infinitely differentiable on E
and satisfying the condition

|Rn,k(ζ, z)| ≤ Cfqn+1Mn+1
|ζ − z|n−k+1

(n − k + 1)!
, ζ, z ∈ E,

where the constant Cf depends neither on n, k nor on ζ, z ∈ E. The Carleman class
A(E,M) is defined as the union of all classes Aq(E,M), q ∈ N.

If E is a closed interval I of the real axis, then, by the Taylor formula, the Carleman
classes can be described in a classical way as the classes of those infinitely differentiable
functions f on the corresponding open interval I0 for which there exist qf ∈ N and
Cf > 0 such that

|f (k)(x)| ≤ Cfqk
fMk, k = 0, 1, . . . , x ∈ I0.
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In the present paper the set E will be the closure of a simply connected bounded
domain D in C with rectifiable Jordan boundary. In this case, the functions of class
A(D,M) are holomorphic in D and admit continuous extensions to the boundary of
D together with their derivatives. In what follows, we denote by f (k)(z) the kth order
derivative of f extended continuously to the boundary of D. Thus, the class A(D,M)
consists of functions f holomorphic in D and satisfying the condition

sup
n≥0,k≤n

sup
z,ζ∈D

(n − k + 1)!
qn+1Mn+1|ζ − z|n−k+1

∣∣∣∣f (k)(ζ) −
n−k∑
p−0

f (k+p)(z)
(ζ − z)p

p!

∣∣∣∣ < ∞

for some q ∈ N. If the domain D is a quasidisk, i.e., there exists δ > 0 such that any two
points ζ, z ∈ D can be connected by a curve of length at most δ|z−ζ|, then the Carleman
class A(D,M) coincides with the class of functions f that are holomorphic in D and, for
some qf ∈ N and Cf > 0, satisfy |f (k)(z)| ≤ Cfqk

fMk, k = 0, 1, 2, . . . , z ∈ D. Obviously,
the convex domains enjoy this condition. The problem is as follows: if a point z0 is on
the boundary (in the plane sense) of E, then what conditions on E and the sequence M
ensure that the uniqueness theorem at the point z0 will hold true for the class A(E,M)?
The classes where there is no nonzero function vanishing at the point z0 together with
all its derivatives are said to be quasianalytic at z0.

The problem of finding conditions on the sequence M that are necessary and sufficient
for quasianalyticity dates back to Hadamard who posed it in 1912 (see [2]).

Let I be an open interval in R, and let

A(I,M) =
{

f ∈ C∞(I) : sup
x∈I

|f (n)(x)| ≤ Cfqn
f Mn for all n ≥ 0

}
.

The class A(I,M) is said to be quasianalytic at a point x0 ∈ I if

f ∈ A(I,M), f (n)(x0) = 0 for all n ≥ 0 =⇒ f(x) ≡ 0.

A criterion for quasianalyticity is given by the Denjoy–Carleman–Ostrowski theorem
[3]–[5].

Let T (r) = supn≥0
rn

Mn
be the trace function for the sequence M. The class A(I,M)

is quasianalytic at a point x0 ∈ I if and only if∫ ∞

1

ln T (r)
r2

dr = ∞.

As we see, this criterion does not depend on the point x0 ∈ I.
A criterion for quasianalyticity at the point z = 0 for the class A(∆γ ,M), where

∆γ =
{

z : | arg z| <
π

2
γ, 0 < |z| < ∞

}
is the angle of opening γπ with vertex at zero, was obtained by Salinas in [6]: for the
quasianalyticity of A(∆γ ,M) at zero it is necessary and sufficient that∫ ∞

1

ln T (r)

r
γ+2
γ+1

dr = ∞.

For a boundary point of the disk, a quasianalyticity condition is given by a theorem due
to Korenblum [7]: in this case the condition also does not depend on the point, and the
class in question is quasianalytic if and only if∫ ∞

1

ln T (r)
r

3
2

dr = ∞.

The quasianalyticity problem for a boundary point z0 of a convex bounded domain D
was treated in [8] (see also [9]).
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Consider the support lines to the convex domain D through the points at distance
from z0 equal to the length of an arc s, and let γ(s)π be the size of the angle between
these lines that contains the domain D. We put

R(x) = exp
∫ x0
x

1+γ(s)
γ(s) d ln s, x ∈ (0; x0),

where x0 is any positive number less than the length of the boundary of D. Then the
quasianalyticity property is equivalent to the condition∫ ∞

1

ln T (r)
r2R−1(r)

dr = ∞,

where R−1(r) is the function inverse to R(x).
In the present paper, we deal with the quasianalyticity problem at a boundary point

z0 of a nonconvex domain D. We shall pass to the dual problem, which is the problem
of density for the system {(ζ − z0)(−n)}, n = 1, 2, . . . , in a certain weighted space of
functions holomorphic in the complement of the domain D. The corresponding spaces
can be defined as follows.

In the space Aq(D,M), we introduce the norm

‖f‖q := max
(

sup
n≥0,k≤n

(n − k + 1)!
qn+1Mn+1

sup
z,ζ∈D

|Rn,k(ζ, z)|
|ζ − z|n−k+1

,
1

M0
sup
z∈D

|f(z)|
)

.

The spaces Aq(D,M) are Banach, and obviously the space Aq(D,M) is continuously
embedded into Aq+1(D,M). We consider the space A(D,M) with the inductive limit
topology induced by the spaces Aq(D,M):

A(D,M) = ind lim
q

Aq(D,M).

The sequence

mn =
Mn

n!
, n = 0, 1, . . . ,

is called the adjoint sequence. In what follows, we always assume that the sequence (mn)
is regular [1], i.e., it satisfies the following three conditions:

1) logarithmic convexity:

(1.1) m2
n ≤ mn−1mn+1, n = 1, 2, . . . ;

2) there is an integer Q > 0 such that

(1.2) mn+1 ≤ Qnmn, n = 0, 1, . . . ;

3) the following relation holds true:

(1.3) lim
n→∞

m
1
n
n = ∞.

We define a function on the positive semiaxis by the formula M(x) = supk≥0
1

mkxk , x > 0.
Clearly, M(x) is a monotone decreasing function and

(1.4) lim
x→0

M(x) = ∞, M(x) ≥ 1
m0

.

The logarithmic convexity of the sequence (mn) shows that we have an inverse repre-
sentation:

(1.5) mk = sup
x>0

1
xkM(x)

, k = 0, 1, . . . .
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Let G denote the complement of D in the extended complex plane, i.e., G = C \ D, and
let

d(ζ) = inf
z∈D

|ζ − z|, ζ ∈ G,

be the distance function to the boundary of G. For q ∈ N, we introduce the Banach
space

Xq =
{

γ ∈ H(G), γ(∞) = 0, ‖γ‖Xq
= sup

ζ∈G

|γ(ζ)|
M(qd(ζ))

< ∞
}

.

Since the function M(x) is monotone decreasing, the space Xq+1 is continuously em-
bedded into Xq. We denote by Ã(G,M) the projective limit of the spaces Xq:

Ã(G,M) = proj lim
q

Xq.

To simplify the notation, we assume that the point z = 0 lies on the boundary of D
and consider the problem of quasianalyticity at the point z = 0.

§1. Isomorphism between the spaces A(D,M) and Ã∗(G,M)

Let Ã∗(G,M) denote the space of continuous linear functionals on Ã(G,M) equipped
with the strong topology. It is known (see [10]) that

Ã∗(G,M) = ind lim
q

X∗
q .

Since the function M(x) is bounded from below, the function (ζ − z)−1 belongs to
Ã(G,M) for any z ∈ D. Hence, for every continuous linear functional S on Ã(G,M) we
can define its Cauchy transform:

S̃(z) := Sζ

( 1
ζ − z

)
, z ∈ D.

Lemma 1. For any z0, z ∈ D and any k ≥ 1 and q > 0, we have∥∥∥ 1
(ζ − z)k

− 1
(ζ − z0)k

∥∥∥
Xq

≤ qk+1mk+1k|z − z0|

and ∣∣∣ 1
(z − z0)

( 1
ζ − z

− 1
ζ − z0

)
− 1

(ζ − z0)2

∣∣∣
Xq

≤ q2m2|z − z0|.

Proof. For ζ ∈ G, we have∣∣∣ 1
(ζ − z)k

− 1
(ζ − z0)k

∣∣∣ ≤ |z − z0|
k∑

j=1

1
|ζ − z|j |ζ − z0|k−j+1

≤ k|z − z0|
d(ζ)k+1

.

Therefore, ∣∣∣ 1
(ζ − z)k

− 1
(ζ − z0)k

∣∣∣ ≤ k|z − z0|
d(ζ)k+1

=
qk+1mk+1k|z − z0|
mk+1(qd(ζ))k+1

≤ qk+1mk+1k|z − z0|M(qd(ζ)).

This yields the first inequality. The proof of the second is similar. �

The second statement of the lemma shows that the function S̃(z) is holomorphic in
D, and moreover,

S̃′(z) = Sζ

( 1
(ζ − z)2

)
.
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In the same way we obtain a general formula for an arbitrary k ≥ 1:

(1.6) S̃(k)(z) = Sζ

( k!
(ζ − z)k+1

)
.

Also, the first inequality in Lemma 1 implies that the limit

S̃(k)(z0) := lim
z∈D, z→z0

S̃(k)(z) = Sz

( k!
(z − z0)k+1

)
exists for any z0 ∈ ∂D, i.e., the function S̃(k)(z) has a continuous extension to D.

Theorem 1. Let (mn) be a regular sequence, and let D be a Jordan domain. Then the
mapping C : S �−→ S̃ is a topological isomorphism between the spaces Ã∗(G,M) and
A(D,M).

Proof. First, we verify that C is a continuous mapping from Ã∗(G,M) to A(D,M).

Lemma 2. For any continuous linear functional S on Ã(G,M), its Cauchy transform
S̃(z) is in the space A(D,M), and moreover, for any S ∈ X∗

q , q ∈ N, we have

‖S̃‖AqQ(D,M) ≤ q‖S‖X∗
q
,

where Q is the number occurring in (1.2).

Proof. For any ζ, z, w ∈ C, w 
= ζ, z, and any j = 0, 1, 2, . . . , the identity

1
w − ζ

−
j∑

p=0

(ζ − z)p

(w − z)p+1
≡ (ζ − z)j+1

(w − ζ)(w − z)j+1

follows by a straightforward computation of the sum of the geometric progression on the
left-hand side.

Differentiating this identity with respect to w, we obtain identities valid for k = 0, 1,
2, . . . :

k!
(w − ζ)k+1

−
j∑

p=0

(p + k)!(ζ − z)p

p!(w − z)p+k+1
≡ (ζ − z)j+1

k∑
s=0

(
k
s

)
(j + k − s)!s!

j!(w − ζ)s+1(w − z)j+k−s+1
.

We take a number n ≥ k and put j = n − k in the last identity:

(1.7)

k!
(w − ζ)k+1

−
n−k∑
p=0

(p + k)!(ζ − z)p

p!(w − z)p+k+1

≡ (ζ − z)n−k+1
k∑

s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1
.

Now, let S be a continuous linear functional on the space Ã(G,M). As has al-
ready been mentioned, the Cauchy transform S̃ extends continuously to the closure of
D together with all its derivatives, and formula (1.6) holds true. Therefore, for any
n = 0, 1, 2, . . . , k ≤ n, by the linearity of the functional we have

(1.8)

S̃(k)(ζ) −
n−k∑
p=0

S̃k+p(z)
(ζ − z)p

p!

= S̃w

(
k!

(w − ζ)k+1
−

n−k∑
p=0

(p + k)!
(w − z)p+k+1

(ζ − z)p

p!

)
, ζ, z ∈ D.
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Identity (1.7) implies that

(1.9)

S̃(k)(ζ) −
n−k∑
p=0

S̃k+p(z)
(ζ − z)p

p!

= (ζ − z)n−k+1S̃w

( k∑
s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

)
.

We show that the argument of the function S̃ on the right-hand side belongs to the space
Xq for any q ∈ N.

If ζ, z ∈ D and w /∈ D, then |w − ζ|, |w − z| ≥ d(w); therefore,

∣∣∣∣ k∑
s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

∣∣∣∣
≤ 1

d(w)n+2

k∑
s=0

(
k
s

)
(n − s)!s!

(n − k)!
=

k!
d(w)n+2

k∑
s=0

(
n − s

k − s

)
.

The sum of the binomial coefficients on the right-hand side can be evaluated by using the
well-known recurrence relation

(
n+1
m

)
=

(
n
m

)
+

(
n

m−1

)
, m = 1, 2, . . . , n, and

(
n
0

)
=

(
n
n

)
= 1:

(1.10)

k∑
s=0

(
n − s

k − s

)
=

k∑
p=0

(
n − k + p

p

)

=
(

n − k

0

)
+

(
n − k + 1

1

)
+

k∑
p=2

(
n − k + p

p

)

=
(

n − k + 1
0

)
+

(
n − k + 1

1

)
+

k∑
p=2

(
n − k + p

p

)

=
(

n − k + 2
1

)
+

(
n − k + 2

2

)
+

k∑
p=3

(
n − k + p

p

)

= · · · =
(

n + 1
k

)
.

Thus, we obtain the estimate

(1.11)

∣∣∣∣ k∑
s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

∣∣∣∣
≤ k!

d(w)n+2

(
n + 1

k

)
=

1
d(w)n+2

(n + 1)!
(n − k + 1)!

.

Next, for an arbitrary q ∈ N and for the number Q occurring in the regularity condition
(1.2), by the definition of M(x) we obtain∣∣∣∣ k∑

s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

∣∣∣∣ ≤ 1
mn+2(qd(w))n+2

qn+2mn+2(n + 1)!
(n − k + 1)!

≤ qM(qd(w))(qQ)n+1 mn+1(n + 1)!
(n − k + 1)!

= qM(qd(w))(qQ)n+1 Mn+1

(n − k + 1)!
.



QUASIANALYTIC CARLEMAN CLASSES 295

Obviously, this implies that, for any ζ, z ∈ D,

sup
w∈G

1
M(qd(w))

∣∣∣∣ k∑
s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

∣∣∣∣ ≤ q
(qQ)n+1Mn+1

(n − k + 1)!
.

Since the expression on the left-hand side coincides with the norm in the space Xq, we
have the following estimate for any ζ, z ∈ D and q ∈ N:

(1.12)
∥∥∥∥ k∑

s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

∥∥∥∥
Xq

≤ q
(qQ)n+1Mn+1

(n − k + 1)!
.

We return to identity (1.8). Since we consider the space Ã(G,M) with the topology
of the canonical projective limit, the functional S on this space can be extended to a
continuous linear functional on Xq for some q. For this number q, relation (1.9) implies∣∣∣∣S̃(k)(ζ) −

n−k∑
p=0

S̃k+p(z)
(ζ − z)p

p!

∣∣∣∣
≤ |ζ − z|n−k+1‖Sw‖X∗

q

∥∥∥∥ k∑
s=0

(
k
s

)
(n − s)!s!

(n − k)!(w − ζ)s+1(w − z)n−s+1

∥∥∥∥
Xq

.

Using this and (1.12), we see that the following estimate is true for all ζ, z ∈ D and
n ≥ 0, k ≤ n:∣∣∣∣S̃(k)(ζ) −

n−k∑
p=0

S̃k+p(z)
(ζ − z)p

p!

∣∣∣∣ ≤ q|ζ − z|n−k+1‖Sw‖X∗
q

(qQ)n+1Mn+1

(n − k + 1)!
,

or

(1.13) sup
n≥0,k≤n

(n − k + 1)!
(qQ)n+1Mn+1

sup
ζ,z∈D

∣∣∣S̃(k)(ζ) −
∑n−k

p=0 S̃k+p(z) (ζ−z)p

p!

∣∣∣
|ζ − z|n−k+1

≤ q‖Sw‖X∗
q
.

Finally, we estimate the supremum of the function S̃(z), where S is a functional that
admits extension to the space Xq:

(1.14) |S̃(z)| =
∣∣∣S( 1

w − z

)∣∣∣ ≤ ‖S‖X∗
q

∥∥∥ 1
w − z

∥∥∥
Xq

.

Since |w − z| ≥ d(w) for w /∈ D, z ∈ D, it follows that∣∣∣ 1
w − z

∣∣∣ ≤ 1
d(w)

=
qm1

qd(w)m1
≤ qm1M(qd(w)).

Hence, ∥∥∥ 1
w − z

∥∥∥
Xq

≤ qm1 ≤ qQm0 = qM0.

Substituting this estimate in (1.14), we obtain the inequality
1

M0
sup
z∈D

|S̃(z)| ≤ q‖S‖X∗
q
.

This and estimate (1.13) imply that if a functional S extends to a bounded linear func-
tional on Xq, then, by the definition of the space AQq(D,M), its Cauchy transform
belongs to AQq(D,M), and moreover,

‖S̃(z)‖AqQ
≤ q‖S‖X∗

q
.

Lemma 2 is proved. �
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Our next step is to show that the mapping C is injective. By the Banach theorem,
its injectivity will follow from the completeness of the system {(ζ − z)−1, z ∈ D} in
the space Ã(G,M). Since, by Lemma 1, for any z ∈ ∂D the function 1

ζ−z can be

approximated in Ã(G,M) by functions of the form {(ζ − z)−1, z ∈ D}, it suffices to
prove the completeness of the system {(ζ − z)−1, z ∈ D}.

If a function γ(ζ) is holomorphic in G, we can take a contour Γ contained in the
domain of analyticity of γ and in the domain D. We represent the function γ in G as
the Cauchy integral over Γ. The integral sums converge to γ uniformly in G. Since
the function M(x) is bounded from below, these sums, which are linear combinations
of functions belonging to the system under consideration, will approximate γ also in
the topology of the space Ã(G,M). Thus, it remains to prove that the space H(G) of
functions holomorphic in G is dense in Ã(G,M).

Lemma 3. The space H(G) is dense in Ã(G,M).

Proof. The proof is based on the following theorem by N. Sibony [11].

Theorem A. Let Φ be a positive function on a domain of holomorphy Ω. Assume that

Φ(z) − 2 ln δΩ(z) =
(

sup
i∈I

ϕi

)∗
(z), z ∈ Ω,

where each ϕi is a plurisubharmonic function in a domain of holomorphy Ωi ⊃ Ω. As-
sume also that the family of restrictions to Ω of the functions ϕi, i ∈ I, is right-directed
(i.e., for any i, j ∈ I there exists k ∈ I such that ϕi(z), ϕj(z) ≤ ϕk(z) for all z ∈ Ω).
Then for any function f ∈ H2(Ω, exp(−Φ)) there exists a sequence of functions in⋃

i∈I

H2(Ωi, exp(−ϕi)δ4
0)

that converges to f in the norm of the space H2(Ω, exp(−Φ)δ2
Ωδ4

0).

Here Ω is a domain in Cn, d(z) stands for the usual distance to the boundary of Ω,
δ0(z) = (1+|z|2)−1/2, and δΩ = min(d, δ0). We denote by H2(Ω, w) the space of functions
holomorphic in Ω and such that

∫
Ω
|f(z)|2w(z) dv(z) < ∞, where dv is the area Lebesgue

measure. The symbol u∗(z) denotes the upper regularization of the function u:

u∗(z) = lim
w−→z

u(w).

Note that in the plane, any domain is a domain of holomorphy.
We choose an exhausting sequence of compact sets Ki for the domain D:

Ki ⊂ Ki+1,

∞⋃
i=1

Ki = D.

For Ki we can take Ki = {z ∈ D : infw∈∂D |w − z| ≥ 1
i }.

Let Ωi denote the set C \ Ki; the distance to the boundary of Ωi will be denoted by
di(ζ), for brevity. Put Ω = C \ D = G \ {∞}. We fix q ∈ N and put q1 = 2Qq, where Q
is as in (1.2). Let

ϕi(ζ) = 2 lnM(q1di(ζ)), ζ ∈ Ωi,

Φ(ζ) = 2 lnM(q1d(ζ)) + 2 ln δΩ(ζ), ζ ∈ Ω.

By definition, lnM(qx) is a convex and monotone increasing function of − ln x, and the
function − ln d(ζ) is subharmonic in Ωi. Therefore, the functions ϕi are subharmonic in
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Ωi. Since, for any ζ ∈ Ω, the sequence di(ζ) is monotone nonincreasing and tends to
d(ζ), and the function M(x) is monotone nonincreasing, we have

Φ(ζ) − 2 ln δΩ(ζ) = sup
i

ϕi(ζ), ζ ∈ Ω.

In what follows we shall need a property of the weight function M(x).

Lemma 4. For any x > 0, we have

M(Qx) ≤ xM(x),

where Q is the number occurring (1.2).

Proof. This follows immediately from the definition of M(x) and condition (1.2):

M(Qx) = sup
k≥0

1
mkxkQk

≤ sup
k≥0

1
mk+1xk

≤ xM(x). �

Theorem A deals with integral norms, whereas the norms in the spaces under consid-
eration are uniform. Therefore, we need yet another lemma to translate the results from
integral to uniform norms.

Lemma 5. If f ∈ H2(Ω, exp(−Φ)δ2
Ωδ4

0), then

|f(ζ)| ≤ 2q
√

6√
π

M(qd(ζ))(1 + |ζ|2)‖f‖, ζ ∈ Ω,

where ‖f‖ denotes the norm in the space H2(Ω, exp(−Φ)δ2
Ωδ4

0).

Proof. By the subharmonicity of |f |2, we have

(1.15)
|f(ζ)|2 ≤ 4

πd(ζ)2

∫
|λ−ζ|≤d(ζ)/2

|f(λ)|2 dv(λ)

≤ 4
πd(ζ)2

max
|λ−ζ|≤d(ζ)/2

(
eΦ(λ)δ−2

Ω (λ)δ−4
0 (λ)

)
‖f‖.

Obviously, in the disk of integration we have d(λ) ≥ d(ζ)/2; therefore,

M(q1d(λ)) ≤ M
(q1

2
d(ζ)

)
.

The estimate d(z) ≤ |z| shows that |λ| ≤ 3
2 |ζ| for the points of the disk of integration.

Hence, in that disk, (1+ |λ|2)2 ≤ 81
16 (1+ |ζ|2)2. Also, since q1 = 2Qq, we have (Lemma 4)

M(q1d(λ)) ≤ qd(ζ)M(qd(ζ)).

Thus,
max

|λ−ζ|≤d(ζ)/2

(
eΦ(λ)δ−2

Ω (λ)δ−4
0 (λ)

)
≤ 6q2d(ζ)2M2(qd(ζ))(1 + |ζ|2)2.

Substituting this in (1.15), we obtain the required estimate.
Lemma 5 is proved. �

Now, we take an arbitrary function γ ∈ Ã(G,M). By Lemma 1, the function ζ−k can
be approximated by functions in H(G), and so we can omit any finite number of terms
in the Laurent series for γ at ∞. We omit the first two terms and assume that

(1.16) |γ(ζ)|2 = O

(
1

|ζ|6

)
, |ζ| → ∞.

The definition of the space Ã(G,M) implies the inequality

|γ(ζ)| ≤ CM(q1Qd(ζ)), ζ ∈ Ω.
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Hence, by Lemma 4, we obtain |γ(ζ)| ≤ Cq1d(ζ)M(q1d(ζ)), ζ ∈ Ω; together with (1.16),
this yields

|γ(ζ)|2e−Φ(ζ) ≤ const
(1 + |ζ|)4 , ζ ∈ Ω,

that is, γ ∈ H2(Ω, exp(−Φ)). We apply Theorem A to this function: the function γ can
be approximated by functions belonging to⋃

i

H2(Ωi, e
−ϕiδ4

0)

in the norm of the space H2(Ω exp(−Φ)δ2
Ωδ4

0). Unfortunately, the approximating func-
tions may fail to be holomorphic at the point z = ∞, and so we need to correct them
slightly. Let fn be the approximating sequence and let gn = fn − γ; then, by Lemma 5,
we have

(1.17) |gn(ζ)| ≤ εnM(qd(ζ))(1 + |ζ|2), ζ ∈ Ω,

where εn → 0. The function M(x) is bounded from above for x ≥ 1. Hence, the regular
part of the Laurent expansion for gn in a neighborhood of z = ∞ contains at most three
terms:

gn(ζ) = Pn(ζ) + γn(ζ),

where Pn is a polynomial of degree at most 2, the functions γn are holomorphic at the
point z = ∞ and γn(∞) = 0. For k ∈ N, let Γk be the contour {ζ ∈ Ω : d(ζ) = k},
and let Rk = maxζ∈Γk

|ζ|. It is clear that min{|ζ − λ|, ζ ∈ Γ1, λ ∈ Γ2} ≥ 1. Hence, by
(1.17), inside the contour Γ1 we have

|Pn(ζ)| =
∣∣∣∣ ∫

Γ2

gn(λ)
λ − ζ

dλ

∣∣∣∣ ≤ εnl2(1 + R2
2)M(2q),

where l2 is the length of Γ2. Since the function M(x) is monotone decreasing and d(ζ) < 1
inside the contour Γ1, it follows that

|Pn(ζ)| ≤ εnl2(1 + R2
2)M(qd(ζ)).

Combining this and (1.17), we conclude that in Ω inside the contour Γ1 we have

(1.18) |γn(ζ)| ≤ εn(l2 + 1)(1 + R2
2)M(qd(ζ)).

On the contour Γ1 this estimate takes the form

|γn(ζ)| ≤ εn(l2 + 1)(1 + R2
2)M(q).

Using the maximum principle for the points outside Γ1 and the monotonicity of M(x),
we obtain

|γn(ζ)| ≤ εn(l2 + 1)(1 + R2
2)M(q) = εn(l2 + 1)(1 + R2

2)M(q)m0
1

m0

≤ εn(l2 + 1)(1 + R2
2)M(q)m0M(qd(ζ)).

Combined with (1.18), the latter estimate shows that

|γn(ζ)| ≤ ε′nM(qd(ζ)), ζ ∈ Ω,

where ε′n → 0. It remains to observe that γn = gn − Pn = (fn − Pn) − γ. Thus, the
sequence fn − Pn approximates the function γ in the space Xq, and, by construction,
these functions are holomorphic in Ω, including the point z = ∞, i.e., fn − Pn ∈ H(G).

Lemma 3 is proved. �
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To complete the proof of Theorem 1, it remains to prove that the mapping C is
surjective.

Let f ∈ A(D,M); we construct a continuous linear functional on Ã(G,M) such that
S̃ = f . By Lemma 3, the space H(G) is dense in Ã(G,M). Hence, it suffices to define a
continuous linear functional on H(G) and then extend it by continuity to Ã(G,M).

For any function γ ∈ Ã(G,M) holomorphic on G, put

S(γ) =
1

2πi

∫
∂D

γ(z)f(z) dz.

Note that we can choose a smooth contour Γγ , contained in the intersection of the domain
of holomorphy of the function γ with D, in such a way that

S(γ) =
1

2πi

∫
Γγ

γ(z)f(z) dz.

We will need this remark when we apply the Green formula.
We make use of a theorem on pseudoanalytic continuation proved in [1].

Theorem B. Let D be a domain in C, and let mn = Mn

n! be a regular sequence. Then
any function f in the class A(D,M) can be extended to a continuously differentiable
function F with compact support in C such that∣∣∣ ∂F

∂ζ

∣∣∣ ≤ C

M(Bd(ζ))
, ζ ∈ C,

where C and B are positive constants.

With the help of this theorem, we extend the function f ∈ A(D,M) to a function F
and apply the Green formula

S(γ) =
1

2πi

∫
Γγ

γ(z)f(z) dz =
1

2πi

∫
Γγ

γ(z)F (z) dz

= − 1
π

∫
G

γ(ζ)
∂F (ζ)

∂ζ
dv(ζ) = − 1

π

∫
K∩G

γ(ζ)
∂F (ζ)

∂ζ
dv(ζ),

where K is the support of F and dv(ζ) is the area Lebesgue measure. This representation
implies the estimate

|S(γ)| ≤ |K|C
π

sup
ζ∈G

|γ(ζ)|
M(Bd(ζ))

= 2|K|C‖γ‖XB
,

where |K| is the area of the compact set K and ‖γ‖XB
is the norm of γ in the space XB.

Thus, S is a linear functional on H(G) continuous with respect to the norm of XB, and
hence, also in the topology of the space Ã(G,M). By the density of H(G) in Ã(G,M),
the functional S can be extended to a continuous linear functional on Ã(G,M). By the
definition and the Cauchy formula, we conclude that S̃(z) = f(z), z ∈ D.

Theorem 1 is proved. �

§2. Quasianalyticity and an extremal problem

for subharmonic functions

Theorem 1, Lemma 1, and the Banach theorem imply the following criterion for quasi-
analyticity.

Theorem 2. Let the sequence (mn) be regular, and let the point z = 0 be on the boundary
of a bounded Jordan domain D. The class A(D,M) is quasianalytic at the point z = 0
if and only if the system ζ−n, n = 1, 2, . . . , is dense in the space Ã(G,M).
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Proof. If S is a continuous linear functional on Ã(G,M) that is equal to zero on the
elements of the system ζ−n, n = 1, 2, . . . , then, by Lemma 1, the function S̃(z) in
A(D,M) satisfies the condition S̃(n)(0) = 0 for all n = 1, 2, . . . .

Theorem 2 is proved. �

Let q ∈ N be arbitrary. For any w ∈ G, there exists a number p ∈ N and a point
t ∈ ∂D such that

M(qd(w)) = sup
k≥0

sup
z∈D

∣∣∣ 1
qkmk(z − w)k

∣∣∣ =
∣∣∣ 1
qpmp(t − w)p

∣∣∣.
In what follows we denote the function 1

qpmp(t−ζ)p by fw(ζ). Thus, the function fw(ζ)
has the following properties:

fw(ζ) ∈ Ã(G,M); |fw(ζ)| ≤ M(qd(ζ)), ζ ∈ G; |fw(w)| = M(qd(w)).

Assume that the system {ζ−n, n = 1, 2, . . . } is complete in Ã(G,M). This means that
for any function γ in Ã(G,M) there exists a sequence of polynomials Pn(z), Pn(0) = 0,
n = 0, 1, . . . , such that

Pn

(1
ζ

)
→ γ(ζ)

in the space Ã(G,M) as n → ∞. In particular, for any ε > 0 there exists a polynomial
P (z), P (0) = 0, such that∣∣∣P(1

ζ

)
− fw(ζ)

∣∣∣ ≤ εM(qd(ζ)), ζ ∈ G.

Then ∣∣∣P(1
ζ

)∣∣∣ ≤ (1 + ε)M(qd(ζ)), ζ ∈ G;
∣∣∣P( 1

w

)∣∣∣ ≥ (1 − ε)M(qd(w)).

For the polynomial P1(z) = P (z)/(1 + ε) we have the inequalities

(2.1)
∣∣∣P1

(1
ζ

)∣∣∣ ≤ M(qd(ζ)), ζ ∈ G;
∣∣∣P1

( 1
w

)∣∣∣ ≥ 1 − ε

1 + ε
M(qd(w)).

In view of these considerations, we introduce the class Kq of functions v satisfying the
following conditions:

1) every function v is continuous and subharmonic in C \ {0};
2) v(ζ) = O(ln 1

|ζ| ) as ζ → 0;
3) v(ζ) ≤ ln M(qd(ζ)), ζ ∈ G.
For example, the functions max(ln |P1( 1

ζ )|,− ln m0), where the polynomials P1 satisfy
(2.1), are in Kq.

Obviously, instead of the sequence Mn we may consider the sequence Mn/eM0 and
assume that m0 = 1/e. Thus, M(x) ≥ 1/m0 = e and lnM(x) ≥ 1. Therefore, to the
definition of the class Kq we may add the following item:

4) v(z) ≥ 0.

Theorem 3. Let the sequence (mn) be regular, and let the point z = 0 be on the boundary
of a bounded Jordan domain D. The class A(D,M) is quasianalytic at the point z = 0
if and only if the condition

(2.2) sup{v(ζ), v ∈ Kq} = lnM(qd(ζ)), ζ ∈ G,

is fulfilled for each q ∈ N.



QUASIANALYTIC CARLEMAN CLASSES 301

Proof. By Theorem 2, the quasianalyticity of the class A(D,M) implies that the system
ζ−n, n = 1, 2, . . . , is complete in the space Ã(G,M). Above, we have shown that the
completeness of this system implies (2.2), because the functions max(ln |(P1( 1

ζ )|,− lnm0)
belong to the class Kq. To prove the converse statement, we use the following lemma.

Lemma 6. Assume that the condition

sup{v(ζ), v ∈ Kq} = lnM(qd(ζ)), ζ ∈ G,

is fulfilled for some q. Then any function in the space Ã(G,M) can be approximated by
the system ζ−n, n = 1, 2, . . . , in the norm of the space Xq/2Q, where Q is as in (1.2).

Proof. For the role of ϕi in Theorem A, we take functions 2v(ζ), where v ∈ Kq. Let
Ωi = C \ {0}, Ω = C \ D. We put

Φ(ζ) = 2 lnM(qd(ζ)) + 2 ln δG(ζ), ζ ∈ Ω.

Then the assumptions of Theorem A are satisfied in view of the assumptions of the
lemma. Therefore, any function of the class H2(Ω, exp(−Φ)) can be approximated by
functions belonging to the union⋃

v∈Kq

H2(Ωi, exp(−2v(ζ))δ4
0)

in the norm of the space H2(Ω, exp(−Φ)δ2
Gδ4

0). Let γ ∈ Ã(G,M). Since we are interested
in approximating the function γ by linear combinations of functions ζ−n, we can omit
several terms in the Laurent series expansion of γ near ∞. Thus, we may assume that

|γ(ζ)|2 = O
(

ln
1

|ζ|6
)
, |ζ| → ∞.

Also, by Lemma 4 we have

|γ(ζ)| ≤ ‖γ‖XqQ
M(qQd(ζ)) ≤ ‖γ‖XqQ

qd(ζ)M(qd(ζ)), ζ ∈ G.

These two relations show that γ ∈ H2(Ω, exp(−Φ)). Let

fn ∈
⋃

v∈Kq

H2(C \ {0}, exp(−2v(ζ))δ4
0)

be an approximating sequence and let gn = fn − γ. By Lemma 5, we have

|gn(ζ)| ≤ εnM(q1d(ζ))(1 + |ζ|2), ζ ∈ Ω,

where εn → 0 and q1 = q/2Q. The function M(x) is bounded from above for x ≥ 1, and
so the last estimate yields

gn(ζ) = Qn(ζ) + γn(ζ),
where Qn is a polynomial of degree at most 2, and γn(∞) = 0. Since γ is holomorphic
at the point ζ = ∞ and γ(∞) = 0, we conclude that Qn(ζ) is the regular part of the
function fn at ∞, and the function fn −Qn is holomorphic at ∞ and vanishes there. As
in the proof of Theorem 1, we can show that

|γn(ζ)| ≤ ε′nM(q1d(ζ)), ζ ∈ G,

where ε′n → 0. This means that the functions fn(ζ)−Qn(ζ) approximate γ in the norm
of the space Xq1 . The function fn belongs to one of the spaces

H2(C \ {0}, exp(−2v(ζ))δ4
0).

Hence, ∫
C\{0}

|fn(ζ)|2 e−2v(ζ)

(1 + |ζ|2)2 dv(ζ) < ∞.
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Now the definition of the classes Kq and the subharmonicity of |fn| show that the function
fn has a pole of order N at the point ζ = 0. Since fn − Qn is holomorphic at infinity,
this function is a linear combination of the functions ζ−n , n = 1, 2, . . . , N . Thus, we
have shown that the function γ can be approximated by the system ζ−n in the norm of
the space Xq/2Q.

Lemma 6 is proved. �
Now we complete the proof of Theorem 3. If condition (2.2) is satisfied for all q ∈ N,

then, by Lemma 6, the functions Ã(G,M) can be approximated by the system (ζ−n) in
the norm of each of the spaces Xq/2Q, that is, in the topology of the space Ã(G,M).

Theorem 3 is proved. �

§3. Quasianalyticity and a Dirichlet problem

We introduce the function

Uq(ζ) = sup{v(ζ), v ∈ Kq}, ζ ∈ C.

Lemma 7. For any q ∈ N, either Uq(ζ) ≡ ∞ in D or Uq(ζ) is a harmonic function
in D.

Proof. Let D1 denote the set of points z in D such that Uq(z) = ∞, and let D2 =
{z ∈ D : Uq(z) < ∞}. We fix an arbitrary point z0 ∈ D and a monotone increasing se-
quence of functions vn ∈ Kq such that limn→∞ vn(z0) = Uq(z0). Let 2d = infζ∈G |ζ−z0|.
We extend each function vn harmonically to the disk B(z0, d). Obviously, the resulting
functions ṽn are also in Kq, and moreover, since ṽn ≥ vn, we have limn→∞ ṽn(z0) =
Uq(z0). Applying the Harnack inequality to each of these functions, we see that, in the
disk B(z0, d/2), we have

(3.1)
1
3
ṽn(z0) ≤ ṽn(z) ≤ 3ṽn(z0).

The left-hand side inequalities show that if z0 ∈ D1, then B(z0, d/2) ⊂ D1, whereas
the right-hand side inequalities show that for z0 ∈ D2 we have B(z0, d/2) ⊂ D2. Thus,
the two sets D1 and D2 are open in D. Since D is connected, this means that one of
them must be empty.

It remains to show that if D1 = ∅, then the function Uq is harmonic in D.
We take an arbitrary point w ∈ B(z0, d/2) and, as for the point z0, construct a

monotone increasing sequence of functions hn(z) ∈ Kq such that limn→∞ hn(w) = Uq(w).
Then, by harmonic extension to the disk B(z0, d), we obtain an increasing sequence of
functions h̃n with the same property: limn→∞ h̃n(w) = Uq(w).

Now we put sn(z) = max(vn(z), hn(z)). Clearly,

lim
n→∞

sn(w) = Uq(w), lim
n→∞

sn(z0) = Uq(z0).

Extending the sn harmonically to the disk B(z0, d), we construct functions s̃n with the
same properties. Also, it is clear that s̃n is greater than both ṽn and h̃n. Put

lim
n→∞

ṽn(z) = V (z), lim
n→∞

h̃n(z) = H(z), lim
n→∞

s̃n(z) = S(z).

Then from our constructions it follows that

V (z0) = Uq(z0), H(w) = Uq(w), S(z0) = Uq(z0), S(w) = Uq(w),

S(z) ≥ V (z), S(z) ≥ H(z).

A nonnegative function S − V harmonic in B(z0, d) vanishes at the interior point z0.
By the maximum principle, S ≡ V . Similarly, S ≡ H. Therefore, V (w) = S(w) =
H(w) = Uq(w), but the construction of V depends only on z0 and not on w. Hence,
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V (w) = Uq(w) for all points in the disk B(z0, d/2), and Uq(z) is harmonic in this disk.
Since z0 is an arbitrary point in D, we conclude that Uq is harmonic in D.

Lemma 7 is proved. �

Lemma 8. If for q ∈ N we have Uq(ζ) ≡ ∞ in D, then Uq(ζ) ≡ ln M(qd(ζ)) in G.

Proof. For a fixed q ∈ N and any w ∈ G, in §2 we introduced the function fw(ζ) of the
form (mpq

p(ζ − z)p)−1, where p ∈ N and z is a point on the boundary of D. These
functions have the properties

|fw(ζ)| ≤ M(qd(ζ)), ζ ∈ G, |fw(w)| = M(qd(w)).

Fixing a point w ∈ G and a number ε > 0, we replace the boundary point z in the
definition of fw(ζ) with a sufficiently close point z′ ∈ D so that the resulting function
f̃w(ζ) satisfy

|f̃w(ζ)| ≤ M(qd(ζ)), ζ ∈ G; |f̃w(w)| ≥ (1 − ε)M(qd(w)).

By the assumptions of the lemma, we have Uq(z′) = ∞, and so there exists a sequence
of functions vn ∈ Kq such that vn(z′) → ∞. As in the proof of the preceding lemma, we
may assume that the functions vn are extended harmonically to the disk B(z′, d), where
2d is the distance from z′ to the boundary D. Then, by (3.1), vn(z) → ∞ uniformly in
the disk B(z′, d/2). Outside the disk B(z′, d/3), the function |f̃w(ζ)| is bounded:

|f̃w(ζ)| ≤ 3p

mpqpdp
= M.

We choose n so large that vn(ζ) > ln M in the disk B(z′, d/2) and introduce the function

u(ζ) =

{
max(vn(ζ), ln |f̃n(ζ)|) if ζ /∈ B(z′, d/3),
vn(ζ) if ζ ∈ B(z′, d/3).

By construction, we have u ∈ Kq and

u(w) ≥ ln |f̃w(w)| ≥ ln(1 − ε) + lnM(qd(w)).

Since ε > 0 is arbitrary, Uq(w) = lnM(qd(w)).
Lemma 8 is proved. �

Lemma 9. If, for a given q, the function Uq(z) is finite at some point z1 ∈ D, then in a
neighborhood of any point z ∈ ∂D there are points ζ ∈ G such that Uq(ζ) < ln M(qd(ζ)).

Proof. Assume the contrary. Let z0 ∈ ∂D and suppose that Uq(ζ) ≡ ln M(qd(ζ)) in
the intersection of the disk B(z0, r) with G. Put r0 = min(r/2, |z0|/2) and let G′ be
the connected component of the intersection of G with B(z0, r0) such that z0 is on its
boundary. We denote by G0 the difference G \ G′ and let K̃q be the class of functions
that are subharmonic, nonnegative, and continuous in C \ {0} and satisfy the conditions

v(z) = O
(

ln
1
|z|

)
, |z| → 0, v(ζ) ≤ ln M(qd(ζ)), ζ ∈ G0.

Obviously, we have Kq ⊂ K̃q, whence

Ũq(ζ) = sup{v(ζ), v ∈ K̃q} ≥ Uq(ζ).

Hence, the function Ũq(ζ) is unbounded near the point z0 ∈ C \ G0. By Lemma 7, we
see that Ũq(ζ) ≡ ∞ in D0 = C \ G0 ⊃ D. Let ṽ be a function in K̃q such that

ṽ(z1) ≥ Uq(z1) + 4.
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Then the function v(z) = ṽ(z) − 2 satisfies the inequalities

v(z1) ≥ Uq(z1) + 2, v(ζ) ≤ ln M(qd(ζ)) − 2, ζ ∈ G0.

The subharmonic function v(z) is bounded from above in the disk B(z0, r0):

v(z) ≤ M, z ∈ B(z0, r0),

for some M . Since M(x) is monotone, on the set G′′ = {ζ ∈ G′ : d(ζ) ≤ ε} we have

ln M(qd(ζ)) ≥ ln M(qε).

Let ε > 0 be so small that ln M(qε) > M + 1. Then in G′′ we have the inequality

ln M(qd(ζ)) ≥ M + 1.

By assumption, the identity Uq(z) ≡ ln M(qd(z)) is true on the set G′ \ G′′. For any
point w ∈ ∂G′ ∩ ∂G′′ there exists a function uw ∈ Kq such that uw(w) > M and,
by the continuity of uw, this inequality extends to some neighborhood Vw of w. The
complementary part of the boundary G′ \ G′′ lies on the boundary of G0 in the disk
B(z′, r0). Hence, for a point ζ in this part of the boundary, we have

Uq(ζ) = lnM(qd(ζ)) ≥ v(ζ) + 2.

Hence, for each point w in this part of the boundary there exists a function uw ∈ Kq

satisfying uw(w) > v(w) + 1. Again, by the continuity of uw and v, this inequality
extends to some neighborhood Vw of w. Since ∂(G′ \ G′′) is a compact set, we can
choose a finite subcovering Vw1 , . . . , Vwm

of the covering {Vw, w ∈ ∂(G′ \ G′′)}, where
w1, . . . , wm ∈ ∂(G′ \G′′). Put u(z) = maxk=1,...,m uwk

(z). Obviously, u(z) ∈ Kq and, by
construction, we have u(z) > v(z) on the set V =

⋃
Vwk

. We introduce the function

u0(ζ) =

{
max(u(ζ), v(ζ)) if z /∈ G′ \ G′′,

u(ζ) if ζ ∈ G′ \ G′′.

Since in the neighborhood V of the boundary ∂(G′ \G′′) we have u0(ζ) = u(ζ), the func-
tion u0 is subharmonic and continuous. Moreover, u0 ∈ Kq. The necessary inequalities
on the set G0 follow from the fact that both functions u and v satisfy these inequalities
there. On the set G′ \ G′′, the necessary inequalities follow because u ∈ Kq. Finally, in
G′′ we have

v(ζ) ≤ M < M + 1 ≤ ln M(qd(ζ)).

Thus, u0 ∈ Kq, and so u0(z1) ≤ Uq(z1).
On the other hand, u0(z1) ≥ v(z1) ≥ Uq(z1) + 2, a contradiction.
Lemma 9 is proved. �

Lemmas 7, 8, and 9 make it possible to state new quasianalyticity criteria.

Theorem 4. Let the sequence (mn) be regular, and let z = 0 be on the boundary of a
bounded Jordan domain D. Then the class A(D,M) is quasianalytic at the point z = 0
if and only if

sup{v(z), v ∈ Kq} = ∞, ζ ∈ D,

for any q ∈ N.

Proof. If the assumptions of the theorem are fulfilled, then, by Lemma 8, for any q ∈ N

we have

(3.2) Uq(ζ) ≡ ln M(qd(ζ)), ζ ∈ G.
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By Theorem 3, in this case the class A(D,M) is quasianalytic. Conversely, if the class
A(D,M) is quasianalytic, then we have (3.2) by Theorem 3. By Lemma 9, the func-
tion Uq cannot be finite in D, and therefore, the conclusion of Theorem 4 follows from
Lemma 7.

Theorem 4 is proved. �

Theorem 5. Let the sequence (mn) be regular, and let z = 0 be on the boundary of a
bounded Jordan domain D. Then the class A(D,M) is nonquasianalytic at the point
z = 0 if and only if, for any q ∈ N greater than some q0, there is a domain Dq containing
D \ {0} and a function h(ζ) that is harmonic in Dq, equals ln M(qd(ζ)) on the boundary
of Dq, and satisfies

(3.3) lim
|z|−→0

h(z)
− ln |z| = +∞.

Proof. Obviously, under the assumptions of the theorem, the class A(D,M) cannot be
quasianalytic.

Assume that the class A(D,M) is nonquasianalytic. Then, for a fixed q ∈ N, we
extend the function ln M(qd(ζ)) to the entire plane assuming that it is equal +∞ on D.
Let

D′ = {ζ ∈ C : Uq(ζ) < ln M(qd(ζ))}.
Under our assumptions, by Theorem 4, there exists q0 ∈ N such that D′ ⊃ D, and

the intersection D′ ∩ G is nonempty by Lemma 9. It is clear that the same is true for
q > q0. �

Lemma 10. The sets

G′ = D′ ∩ G = {ζ ∈ G : Uq(ζ) < ln M(qd(ζ))},
G′′ = {ζ ∈ G : U∗

q (ζ) < ln M(qd(ζ))}
coincide, are open in G, and the function Uq(ζ) is harmonic in G′.

Proof. Clearly, G′′ ⊂ G′. Assume that there is a point ζ0 ∈ G such that ζ0 ∈ G′ \ G′′.
To simplify the notation, we put T = lnM(qd(ζ0)) and assume that

(3.4) Uq(ζ0) = (1 − 2a)T

for some a ∈ (0, 1/2). Take the largest r > 0 such that the harmonic majorant V (ζ) of
the function lnM(qd(ζ)) in the disk B(ζ0, r) satisfies the condition

V (ζ) ≤ ln M(qd(ζ)) + aT.

Now we fix an arbitrary ε > 0 and choose a point w in B(ζ0, r) with the property

Uq(w) > (1 − ε)T.

This is possible because ζ0 /∈ G′′, and so U∗
q (ζ0) = lnM(qd(ζ0)). Also, let |w − ζ0| = δr;

we may assume that δ < 1
3 . There exists v ∈ Kq such that

v(w) > Uq(w) − εT.

Let ṽ denote the harmonic extension of v to the disk B(ζ0, r). Since ṽ ≤ V in that disk,
we have, by the choice of the number r,

ṽ(ζ) − aT ≤ ln M(qd(ζ)), ζ ∈ G,

that is, ṽ(ζ) − aT ∈ Kq, and moreover,

ṽ(w) − aT ≥ v(w) − aT ≥ Uq(w) − εT − aT ≥ (1 − a − 2ε)T.

Therefore, ṽ(w) − aT ≥ (1 − a − 2ε)T.
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Applying the Harnack inequality to this function in the disk B(w, (1− δ)r), we obtain

ṽ(ζ0) − aT ≥ (1 − δ)r − δr

(1 − δ)r + δr
(ṽ(w) − aT ).

The last two inequalities imply that

ṽ(ζ0) − aT ≥ (1 − 2δ)(1 − a − 2ε)T.

Consequently,
Uq(ζ0) ≥ (1 − a)T − (2ε + 2δ − 2δa − 4δε)T.

Recalling (3.4), we see that a ≤ 2ε + 2δ − 2δa − 4δε.
Letting δ and ε tend to zero, we obtain a = 0. This means that ζ0 /∈ G′, a contradiction.

Thus, G′ = G′′. Since U∗
q is upper semicontinuous and ln M(qd(ζ)) is continuous, the

set G′′ is open. Therefore, G′ is also open.
We prove that the function Uq is harmonic in G′′. Let ζ0 ∈ G′′. Since

lim
r→0

1
2π

∫ 2π

0

U∗
q (ζ0 + reiϕ) dϕ = U∗

q (ζ0),

for any ε > 0 there exists r′ > 0 such that for r ≤ r′ we have

1
2π

∫ 2π

0

U∗
q (ζ0 + reiϕ) dϕ ≤ U∗

q (ζ0) + ε.

We choose ε > 0 so small that U∗
q (ζ0) + 3ε < ln M(qd(ζ0)), extend the function U∗

q

harmonically to the disk B(ζ0, r
′), and denote the resulting function on C \ {0} by Ũq.

Observe that

Ũq(ζ0) =
1
2π

∫ 2π

0

U∗
q (ζ0 + r′eiϕ) dϕ ≤ U∗

q (ζ0) + ε.

For δ ∈ (0; 1), by the Harnack inequality in the disk B(ζ0, δr
′), we have

Ũq(ζ) ≤ 1 + δ

1 − δ
Ũq(ζ0) ≤

1 + δ

1 − δ
(U∗

q (ζ0) + ε).

Thus, for sufficiently small δ > 0 in the disk B(ζ0, δr
′) we have

Ũq(ζ) ≤ U∗
q (ζ0) + 2ε.

Let r > 0 be so small that in the disk B(ζ0, r) we have the inequality

ln M(qd(ζ)) ≥ ln M(qd(ζ0)) − ε.

(Such a choice is possible by the continuity of M(x).) Put r0 = min(δr′, r). Then in the
disk B(ζ0, r0) we have

(3.5) Ũq(ζ) ≤ (U∗
q (ζ0) + 2ε) ≤ ln M(qd(ζ0)) − ε ≤ ln M(qd(ζ)).

Each v in Kq is less than or equal to U∗
q , so v does not exceed Ũq(ζ) on the boundary of

the disk B(ζ0, r0). If we extend v harmonically to B(ζ0, r0), then the resulting function
ṽ will not exceed Ũq(ζ) in this disk by the maximum principle. By (3.5), all functions ṽ
obtained in this way are in the class Kq and are harmonic in the disk under consideration.
Then the function Uq will also be harmonic in B(ζ0, r0) as an upper envelope of a bounded
family of harmonic functions; see [12].

It is obvious that relation (3.3) holds true for the function Uq(z).
Lemma 10 is proved. �

To clarify what happens to the points of the boundary of D, we need the following
lemma concerning the properties of the function M(x).
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Lemma 11. Let p(x) denote the smallest natural number p such that

M(x) =
1

mpxp
;

such numbers exist by the definition of the function M(x). Then

lim
x→0

p(x) = ∞.

Also,

lim
x→0

ln M(x)
− ln x

= ∞.

Proof. To prove the first statement, assume the contrary. Suppose that for a sequence
xn → 0 we have p(xn) < p. Then

1

mp(xn)x
p(xn)
n

≥ 1
mpx

p
n

and, for xn < 1,

xn > xp−p(xn)
n ≥ min{mk, k = 0, 1, . . . , p − 1}

mp
.

Let n tend to infinity. Then either min{mk, k = 0, 1, . . . , p − 1} = 0 or mp = ∞, which
is impossible.

Now we take j ∈ N and let 1 > δ > 0 be so small that p(x) > j for all x < δ. Then

ln M(x) = ln
1

mp(x)xp(x)
≥ − lnmj − j ln x, x < δ.

Hence,

lim
x→0

ln M(x)
− ln x

≥ j.

Lemma 11 is proved. �

Now we study the points on the boundary of D.

Lemma 12. The set ∂D \ {0} is contained in D′; the function Uq is harmonic at the
points of this set and satisfies (3.3).

Proof. First, we prove that on ∂D there are points where Uq is locally bounded. It is
clear that such points belong to D′. We fix an arbitrary point z ∈ ∂D and some number
ρ > 0. By property (1.3) of regular sequences, there exists a number p0 = p(ρ) such that
for all p ≥ p0 we have

mpρ
p > 1,

whereas, by Lemma 11, there exists δ > 0 such that p(x) > p0 for all x ∈ (0; δ). By
Lemma 9, all boundary points are limit points for G′. Take a point w ∈ G′ in the disk
B(z, min(ρ, δ)). Let ε > 0 be such that

(3.6) Uq(w) ≤ ln M(qd(w)) − 2ε,

and let fw(ζ) be a function of the form 1/mp(ζ − t)p, where t ∈ D, p ∈ N; this function
satisfies the estimates

ln |fw(ζ)| ≤ ln M(qd(ζ)), ζ ∈ G; ln |fw(w)| ≥ ln M(qd(w)) − ε.

Since d(w) < δ, the number p in the formula for fw is at least p0, and, by the choice of
p0,

(3.7) ln |fw(ζ)| < 1, ζ /∈ B(t, ρ).
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Let v ∈ Kq be an arbitrary function, and denote by V the connected component of the
set

{ζ : v(ζ) < ln |fw(ζ)|}
that contains the point w. Should the singularity point t be situated outside V , the
function

ṽ(ζ) =

{
max(v(ζ), ln |fw(ζ)|) if ζ ∈ V,

v(ζ) if ζ /∈ V,

would belong to the class Kq, which leads to the estimate

Uq(w) ≥ ṽ(w) = ln |fw(w)| ≥ ln M(qd(w)) − ε,

and this contradicts (3.6). Thus, the component V contains the singularity point t of
fw. Note that, since v ≥ 0, the component V is in B(t, ρ) by (3.7). Thus, the point w
can be connected with the point t by a path in B(t, ρ) on which we have

v(ζ) < ln |fw(ζ)|.
Let 2σ = inf{|t − ζ|, ζ ∈ ∂D}, and let t0 be the first point of the circle |t − ζ| = σ lying
on this path (if we start from w). On the part of the path from w to t0 we have

v(ζ) < ln |fw(ζ)| ≤ 1
mpσp

.

Note that the number 1/mpσ
p does not depend on the function v.

Now, we take two points z1, z2 ∈ ∂D and put ρ = |z1 − z2|/3. Repeating the above
constructions for each of these points, we find points wi ∈ G′, ti ∈ D for the points zi,
i = 1, 2, such that for any function v ∈ Kq there is a path γi ⊂ B(ti, ρ) connecting wi

and ti, and on each of these two paths we have

v(ζ) ≤ Mi,

where Mi does not depend on v. Put

s = min
(

d(w1), d(w2), inf
ζ∈∂D

|t1 − ζ|, inf
ζ∈∂D

|t2 − ζ|
)

.

We connect the points w1, w2 by a path l1 in the domain {ζ : d(ζ) > s/2}, and
the points t1, t2, by a path l2 in D at the distance of at least s/2 from ∂D. Let
M ′ = max{Uq(ζ), ζ ∈ l2}. Then on the contour composed of γi, li, i = 1, 2, we have the
estimate

v(ζ) ≤ max
(
M1, M2, M

′, ln M
(qs

2

))
= M.

By the maximum principle, this estimate extends to the interior V0 of the contour. In
particular, this estimate holds true on the set V0 \ (B(t1, ρ) ∪ B(t2, ρ)), which does not
depend on the function v. Since |t1 − t2| ≥ |z1 − z2| − |z1 − t1| − |z2 − t2| > 3ρ, this set
is nonempty. Hence, Uq(ζ) ≤ M on this set.

Thus, we have found points on ∂D where Uq is locally bounded.
We prove that the set of points on ∂D where Uq is locally bounded is connected.

Let z, w ∈ ∂D, and let the function Uq be bounded in B(z, r1), B(w, r2). Consider the
diameter d1 of the disk B(z, r1) with endpoints z1 ∈ D, z2 ∈ G and the diameter d2 of
the disk B(w, r2) with endpoints w1 ∈ D, w2 ∈ G. We connect the points z1, w1 by a
continuous path l1 in D and the points z2, w2, by a continuous path l2 in G. Put

C1 = max{Uq(ζ), ζ ∈ d1 ∪ l1 ∪ d2},
ε = min{d(ζ), ζ ∈ l2},

C = max(C1, ln M(qε)).
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Obviously, on the contour composed of the diameters d1, d2 and the paths l1, l2, we have
Uq(ζ) ≤ C. By the maximum principle, this estimate extends to the domain bounded
by the contour. Hence, the function Uq is locally bounded at the points of the arc of the
boundary of D between z and w.

Now we show that Uq is locally bounded at all points of the set ∂D \ {0}. Let Γ0 be
the maximal connected arc of the boundary such that Uq is locally bounded on that arc
and Uq is not locally bounded at some boundary point z 
= 0. Assume that

2ρ = inf
ζ∈Γ0

|z − ζ| > 0

and perform the above construction for the point z with a given ρ; as a result, we find
points w ∈ G′, t ∈ D such that for any function v ∈ Kq there is a path γ in B(t, ρ) that
connects the points and the estimate

v(ζ) ≤ M

holds true for all points of the path, where M does not depend on v. Connect the points
w and t by a continuous curve γ0 such that it intersects the boundary of D at a point of
the arc Γ0. Obviously, this curve can be chosen so that the function Uq is locally bounded
on it. On the contour composed of the curves γ and γ0 the function v will be bounded by
a constant independent of v. Extending this estimate inside by the maximum principle,
we conclude that v is bounded on the interior of the contour. This interior V0 depends
on the function v, but its nonempty subset V0 \ B(t, ρ) does not depend on v. Hence,
we see that Uq is bounded on V0 \ B(t, ρ). By the choice of ρ, the latter set contains a
boundary arc that is not contained in Γ0, which contradicts the maximality of Γ0.

Thus, the function Uq is locally bounded on the set ∂D \ {0}. Let z be an arbitrary
point in this set. There exist constants M, r > 0 such that

Uq(ζ) ≤ M ≤ ln M(qd(ζ)), ζ ∈ B(z, r).

Replacing each function v ∈ Kq by its harmonic extension to the disk B(z, r), we obtain
a right-directed family of functions harmonic in B(z, r), and Uq will be harmonic in
B(z, r), as the upper envelope of this family.

Relation (3.3) holds true for the function Uq by its definition.
Lemma 12 is proved. �

To complete the proof of Theorem 5, it remains to show that the set D′ is connected.
Let w ∈ G′, and let ε > 0 be such that

Uq(w) ≤ ln M(qd(w)) − 2ε.

Again, we use a function fw(ζ) of the form 1/mp(ζ − z0)p, where p ∈ N, z0 ∈ D, that
satisfies

ln |fw(ζ)| ≤ ln M(qd(ζ)), ζ ∈ G, ln |fw(w)| ≥ ln M(qd(w)) − ε.

Let V be the connected component of the set

{ζ : Uq(ζ) < ln |fw(ζ)|}
that contains the point w. Should the singularity point z0 not belong to V , the har-
monic functions Uq and ln |fw| would coincide on the boundary V and therefore in V , in
particular, at the point w. But this cannot be true because

ln |fw(w)| ≥ ln M(qd(w)) − ε ≥ Uq(w) + ε.

Hence, z0 ∈ V , and this point can be connected with w by a path in V ⊂ D′. This
implies that the set D′ is connected.

Theorem 5 is proved. �
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§4. Localization of the quasianalyticity problem

In this section we prove that the quasianalyticity problem is local: if two domains D1

and D2 coincide in a neighborhood of a common boundary point z0, then the classes
A(D1,M) and A(D2,M) are simultaneously quasianalytic or nonquasianalytic at z0.

By using criteria already known, we can deduce new quasianalyticity criteria from this
property under certain restrictions on the domain.

Theorem 6. Let the sequence (mn) be regular, and let z = 0 be a common boundary
point of two bounded Jordan domains D′ and D′′. If for some r > 0 these two domains
coincide in the disk B(0, 2r), i.e.,

D′ ∩ B(0, 2r) = D′′ ∩ B(0, 2r),

then the classes A(D
′
,M) and A(D

′′
,M) are simultaneously quasianalytic or nonquasi-

analytic at the point z = 0.

Proof. We need an auxiliary lemma.

Lemma 13. Let z = 0 be a common boundary point of two bounded Jordan domains D′

and D′′. If for some r > 0 these two domains coincide in the disk B(0, 2r), i.e.,

D′ ∩ B(0, 2r) = D′′ ∩ B(0, 2r),

then there exist a positive number p and a Jordan domain D such that
a) D ⊂ D′∩B(0, 2r) = D′′∩B(0, 2r) and the boundary of D lies on the circle |z| = 2r

and on the common part of the boundaries of D′ and D′′;
b) for ζ /∈ D and |ζ| ≤ p, the distance from ζ to the boundary of D coincides with the

distance from ζ to the boundaries of D′ and D′′:

d(ζ) := inf
z∈D

|z − ζ| = inf
z∈D′

|z − ζ| = inf
z∈D′′

|z − ζ|.

Proof. Let D be the connected component of the intersection D′ ∩ B(0, 2r) that has
the point z = 0 on its boundary. By assumptions, D coincides with the corresponding
part of the intersection D′′ ∩ B(0, 2r). Obviously, the domain D is simply connected.
Let z = z(t), |t| ≤ 1, be a continuous parametrization of the boundary of D′ satisfying
z(0) = 0. We denote by I the set of points t ∈ [−1; 1] for which |z(t)| < 2r. Let (α; β)
be the largest interval in I containing the point t = 0. Put

p =
1
2

inf{|z(t)|, t /∈ (α; β)}.

Since the boundary of D is a Jordan curve without self-intersections, it follows that p > 0.
For any point ζ ∈ B(0, p) \ D, we have

d(ζ) = inf
z∈D

|z − ζ| ≤ |ζ| < p < inf{|z(t)|, t /∈ (α; β)},

i.e.,
d(ζ) = inf{|z(t)|, t ∈ (α; β)} ≥ inf{|z(t)|, t ∈ [−1; 1]} = d′(ζ).

Consequently, for ζ ∈ B(0, p) \ D we have

d(ζ) = d′(ζ) := inf
z∈D′

|z − ζ|.

Since the domains D′ and D′′ coincide in the disk B(0, p), for ζ as above we have

d(ζ) = d′′(ζ) := inf
z∈D′′

|z − ζ|.

Lemma 13 is proved. �
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Obviously, it suffices to prove simultaneous quasianalyticity for the classes A(D
′
,M)

and A(D,M) at the point z = 0. Denote by G, G′ the complements of D, D
′
, respectively,

to the extended complex plane, i.e., G = C \ D, G′ = C \ D
′
. Let d(ζ), d′(ζ) be the

distances from the point ζ to the domains D, D′. These function are defined on the
domains G and G′, respectively. By Lemma 13,

G ∩ B(0, p) = G′ ∩ B(0, p),

and also d(ζ) = d′(ζ) for ζ ∈ G ∩ B(0, p).
Since D ⊂ D′, it follows that d′(ζ) ≥ d(ζ) for ζ ∈ G′, whence

(4.1) M(qd(ζ)) ≤ M(qd′(ζ))

for any q ∈ N.
Assume that the class A(D,M) is quasianalytic. By Theorem 4, for any q ∈ N the

relation
sup{v(z), v ∈ Kq(D)} = ∞, ζ ∈ D,

is fulfilled. By property (4.1), we have the inclusion Kq(D) ⊂ Kq(D′), and so

sup{v(z), v ∈ Kq(D′)} = ∞, ζ ∈ D.

By Theorem 4, the class A(D
′
,M) is also quasianalytic.

Now, assume that the class A(D,M) is nonquasianalytic. By Theorem 5, for any
q ∈ N starting with some q0, there is a domain Dq containing D \ {0}, and a function
h(ζ) harmonic in Dq that is equal to ln M(qd(ζ)) on the boundary and satisfies

lim
|ζ|−→0

h(ζ)
− ln |ζ| = +∞.

Theorem 5 means that, for any fixed q ∈ N, q ≥ q0, the function

u(z) = sup{v(z), v ∈ Kq(D)}, z ∈ D,

is well defined and subharmonic on the extended plane except for the point zero, i.e.,
on C \ {0}, and is harmonic in the domain Dq, containing D \ {0}. The domain D′ is
bounded and the ratio |ζ|/d′(ζ) tends to 1 as |ζ| −→ +∞. Therefore, there exists a
sufficiently large number R such that

D′ ⊂ B(0, R),
|ζ|

d′(ζ)
≤ 2 for |ζ| ≥ R.

Let C denote the open annulus bounded by the circles |z| = p and |z| = R. Let
the Borel measure µ in the domain C \ {0} be the Riesz measure associated with the
subharmonic function u(ζ), and let µ0 be the restriction of the measure µ to the ring
C. Since C is a compact set in C \ {0}, it follows that µ0(C) < ∞ and the logarithmic
potential of the measure µ0,

u0(ζ) =
∫

ln |ζ − z| dµ0(z),

is well defined and subharmonic on the entire plane C and harmonic on C \ C. The
difference u(ζ) − u0(ζ) is harmonic on the union (C ∪ Dq), and, in particular, in the
domain

Ω = (C ∪ Dq) ∩ B(0, R).
The boundary of Ω consists of the circle |ζ| = R and of a part γ lying inside the circle
B(0, p). By the choice of the numbers p and R, we have

ln M(2qd′(ζ)) ≤ ln M(q|ζ|), |ζ| ≥ R,

ln M(2qd′(ζ)) = lnM(2qd(ζ)) ≤ ln M(qd(ζ)), |ζ| ≤ p, ζ ∈ G′.
(4.2)
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Take an arbitrary function v(ζ) in the class K2q(D′). Then v is nonnegative, contin-
uous, and subharmonic on C \ {0} and satisfies the estimates

v(ζ) = O
(

ln
1
|ζ|

)
as ζ → 0; v(ζ) ≤ ln M(2qd′(ζ)), ζ ∈ G′.

Using (4.2), from the second inequality we deduce that

v(ζ) ≤ ln M(q|ζ|), |ζ| ≥ R,

v(ζ) ≤ ln M(qd(ζ)), |ζ| ≤ p, ζ ∈ G′.

Note that the functions max(− lnmk − k ln q|ζ|, 0) are subharmonic, nonnegative, and
continuous on the extended plane except for zero, and also

max(− ln mk − k ln q|ζ|, 0) ≤ ln M(qd(ζ)), ζ /∈ D,

that is, these functions belong to Kq(D). Hence, by the definition of the function u(ζ),
we have ln M(q|ζ|) ≤ u(ζ) for all ζ, whence v(ζ) ≤ u(ζ), |ζ| ≥ R.

Since
B(0, p) ∩ G′ = B(0, p) ∩ G

and the boundary of Ω coincides with the boundary of Dq in B(0, p), and on the boundary
of Dq the function u(ζ) equals ln M(qd(ζ)), we conclude that

v(ζ) ≤ ln M(qd(ζ)) = u(ζ), ζ ∈ ∂Ω ∩ B(0, p).

Thus, we have v(ζ) ≤ u(ζ), ζ ∈ ∂Ω.
The function u0(ζ) is subharmonic in the entire plane, and therefore, is bounded in

the disk B(0, R):
u0(ζ) ≤ T.

Hence, on the boundary of Ω we have v(ζ) ≤ u(ζ) − u0(ζ) + u0(ζ) ≤ u(ζ) − u0(ζ) + T ,
ζ ∈ ∂Ω.

The function u(ζ) − u0(ζ) is harmonic in Ω, and v(ζ) is subharmonic in this domain.
By the maximum principle,

(4.3) v(ζ) ≤ u(ζ) − u0(ζ) + T, ζ ∈ Ω.

Being subharmonic on C \ {0}, the function u(ζ) − u0(ζ) is bounded from above in the
annulus {p

2 ≤ |ζ| ≤ R}, u(ζ) − u0(ζ) ≤ T1.
By definition, the function u(ζ) is nonnegative; hence, the function −u0(ζ) is also

bounded from above in the same annulus,

−u0(ζ) ≤ T1.

Since the function u0(ζ) is harmonic in the disk B(0, p), the function −u0(ζ) is bounded
from above in the disk B(0, p

2 ):
−u0(ζ) ≤ T2.

Put T ′ = max(T1, T2). Then the last two inequalities imply that the function −u0(ζ) is
bounded by T ′ in the disk B(0, R). In particular, this estimate is valid for the domain Ω:

−u0(ζ) ≤ T ′, ζ ∈ Ω.

Combined with (4.3), this inequality shows that v(ζ) ≤ u(ζ) + T ′ + T , ζ ∈ Ω.
Since v is an arbitrary function in K2q(D′), the condition of Theorem 4 cannot be

satisfied, and the class A(D
′
,M) cannot be quasianalytic.

Theorem 6 is proved. �
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Theorem 7. Let D, D1 be simply connected domains, let Ω be a domain containing the
closure D, and let ϕ be an analytic function in Ω such that ϕ(D) ⊂ D1. If the boundary
point w0 ∈ ∂D1 is the image of a boundary point z0 ∈ ∂D, i.e., w0 = ϕ(z0), then for any
sequence M = (Mn) we have the inclusion

{f(ϕ(z)), f ∈ A(D1,M)} ⊂ A(D,M).

Proof. Let f ∈ A(D1,M). By Dyn′kin’s theorem [1] (see Theorem B of the present
paper), there exists a continuously differentiable function F on C such that F (w) ≡ f(w)
in D1 and

(4.4)
∣∣∣∣∂F (w)

∂w

∣∣∣∣ ≤ C

M(Bd1(w))
, w ∈ C,

where C, B are some positive constants, and d1(w) denotes the distance from the point
w /∈ D1 to the boundary of D1. Let 3r = inf{|z − w|, z ∈ D, w /∈ Ω} be the distance
from D to the boundary of Ω. By the assumptions of the theorem, we have r > 0. We
denote by Ω′ and Ω′′ the r-envelope and the 2r-envelope of the set D, respectively, i.e.,
Ω′ =

⋃
z∈D1

B(z, r), Ω′′ =
⋃

z∈D1
B(z, 2r).

We take a smooth Jordan curve Γ in Ω′′ \Ω′ that encloses the set D and denote by Ω1

the interior of the curve. Applying the Borel–Pompeiu formula (see [13]) to the function
g(z) = F (ϕ(z)) in the domain Ω1, we obtain

g(z) =
1

2πi

∫
Γ

g(t)
t − z

dt − 1
π

∫
Ω1

∂g

∂t

dv(t)
t − z

.

We prove that each term on the right-hand side of this identity belongs to the class
A(D,M). Put

u(z) =
1

2πi

∫
Γ

g(t)
t − z

dt, v(z) =
1
π

∫
Ω1

∂g

∂t

dv(t)
t − z

.

For z, ζ ∈ D and k, n ∈ N, n ≥ k, we have∣∣∣∣u(k)(ζ) −
n−k∑
p=0

u(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
=

1
2π

∫
Γ

|g(t)|
∣∣∣∣ k!
(t − z)k+1

−
n−k∑
p=0

(p + k)!(ζ − z)p

p!(t − z)p+k+1

∣∣∣∣|dt|.

We apply formula (1.7) and observe that if z, ζ ∈ D and t ∈ Γ, then |ζ − t|, |z − t| ≥ r.
Therefore, ∣∣∣∣u(k)(ζ) −

n−k∑
p=0

u(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ |ζ − z|n−k+1 1

2πrn+2
max
t∈Γ

|g(t)| |Γ|
k∑

s=0

(
k
s

)
(n − s)!s!

(n − k)!

= max
t∈Γ

|g(t)| |Γ| |ζ − z|n−k+1 k!
2πrn+2

k∑
s=0

(
n − s

k − s

)
,
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where |Γ| is the length of the curve Γ. The sum of binomial coefficients was evaluated in
(1.10); this yields∣∣∣∣u(k)(ζ) −

n−k∑
p=0

u(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ 1

2π
max
t∈Γ

|g(t)| |Γ| |ζ − z|n−k+1 (n + 1)!
(n − k + 1)!rn+2

.

Property (1.3) of regular sequences shows that there exists a number δ > 0 such that
m

1
n
n ≥ δ, n = 0, 1, . . . , or Mn ≥ n!δn, n = 0, 1, . . . . Hence,∣∣∣∣u(k)(ζ) −

n−k∑
p=0

u(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ 1

2π
max
t∈Γ

|g(t)| |Γ| |ζ − z|n−k+1 Mn+1

(n − k + 1)!δn+1rn+2
.

Thus, we have obtained the estimate

(4.5)
sup

n≥0,k≤n
sup

z,ζ∈D

(δr)n+1(n − k + 1)!
Mn+1|z − ζ|n−k+1

∣∣∣∣u(k)(ζ) −
n−k∑
p=0

u(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ maxt∈Γ |g(t)| |Γ|

2πr
.

Next, we work with the function v(z). Since, by the properties of the function F (w), the
integral in the definition of v(z) is only taken over the domain Ω1 \ D, for z, ζ ∈ D and
k, n ∈ N, n ≥ k, we have∣∣∣∣v(k)(ζ) −

n−k∑
p=0

v(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ 1

π

∫
Ω1\D

∣∣∣∂g(t)
∂t

∣∣∣ ∣∣∣∣ k!
(t − z)k+1

−
n−k∑
p=0

(p + k)!(ζ − z)p

p!(t − z)p+k+1

∣∣∣∣dv(t).

Again, we apply formula (1.7) and observe that |ζ − t|, |z − t| ≥ d(t) for t ∈ Ω1 \ D and
ζ, z ∈ D; this yields∣∣∣∣v(k)(ζ) −

n−k∑
p=0

v(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ 1

π

∫
Ω1\D

∣∣∣∂g(t)
∂t

∣∣∣ |ζ − z|n−k+1k!
d(t)n+2

n−k∑
s=0

(
n − s

k − s

)
dv(t).

Recalling (1.10), we obtain

(4.6)
∣∣∣∣v(k)(ζ) −

n−k∑
p=0

v(k+p)(z)
(ζ − z)p

p!

∣∣∣∣ ≤ |Ω1|
π

sup
Ω1\D

∣∣∣∂g(t)
∂t

∣∣∣ |ζ − z|n−k+1(n + 1)!
d(t)n+2(n − k + 1)!

,

where |Ω1| is the area of the domain Ω1. Using the definition of the function g(t) and
relation (4.4), we get

(4.7)
∣∣∣∂g(t)

∂t

∣∣∣ =
∣∣∣∂F (w)

∂w
(ϕ(t))ϕ′(t)

∣∣∣ ≤ C

M(Bd1(ϕ(t)))
max
t∈Ω1

|ϕ′(t)|.
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Let t ∈ Ω1 \ D and d(t) = |t − t0|, where t0 ∈ ∂D. Then ϕ(t0) ∈ D1. Also |t − t0| < 2r

and B(t0, 2r) ⊂ Ω
′′
, and therefore,

d1(ϕ(t)) ≤ |ϕ(t) − ϕ(t0)| ≤ max
Ω

′′
|ϕ′(z)| |t − t0| = max

Ω
′′

|ϕ′(z)|d(t).

We denote the final quantity maxΩ
′′ |ϕ′(z)| by T . Thus, for t ∈ Ω1 \ D, we get the

estimate
d1(ϕ(t)) ≤ Td(t).

Substituting this in (4.7), and using the monotonicity of the function M(x), we obtain∣∣∣∂g(t)
∂t

∣∣∣ =
∣∣∣∂F (w)

∂w
(ϕ(t))ϕ′(t)

∣∣∣ ≤ TC

M(BTd(t))
.

We plug this in (4.6):

(n − k + 1)!
|ζ − z|n−k+1

∣∣∣∣v(k)(ζ) −
n−k∑
p=0

v(k+p)(z)
(ζ − z)p

p!

∣∣∣∣ ≤ TC|Ω1|
π

sup
t∈Ω1\D

1
M(BTd(t))d(t)n+2

.

By the properties (1.5) and (1.2) of regular sequences, we have

sup
t∈Ω1\D

1
M(BTd(t))d(t)n+2

≤ sup
x>0

1
M(BTx)xn+2

= (BT )n+2mn+2

≤ BT (BTQ)n+1mn+1 = BT (BTQ)n+1 Mn+1

(n + 1)!
.

Hence,

(n − k + 1)!
|ζ − z|n−k+1

∣∣∣∣v(k)(ζ) −
n−k∑
p=0

v(k+p)(z)
(ζ − z)p

p!

∣∣∣∣ ≤ BT 2C|Ω1|
π

(BTQ)n+1Mn+1.

Thus, we obtain

sup
n≥0,k≤n

sup
ζ,z∈D

(n − k + 1)!
(BTQ)n+1Mn+1|ζ − z|n−k+1

∣∣∣∣v(k)(ζ) −
n−k∑
p=0

v(k+p)(z)
(ζ − z)p

p!

∣∣∣∣
≤ BT 2C|Ω1|

π
.

Since g(t) ≡ u(t) + v(t), combining this estimate with (4.5) yields

sup
n≥0,k≤n

sup
ζ,z∈D

Pn+1(n − k + 1)!
Mn+1|ζ − z|n−k+1

∣∣∣∣g(k)(ζ) −
n−k∑
p=0

g(k+p)(z)
(ζ − z)p

p!

∣∣∣∣ ≤ C ′,

where

P = min(δr, BTQ), C ′ =
maxt∈Γ |g(t)| |Γ|

2πr
+

BT 2C|Ω1|
π

.

Thus, g(t) ∈ A(D,M). Theorem 7 is proved. �

Corollary 1. Suppose D, D1 are simply connected domains, the domains Ω, Ω1 contain
the closures D, D1, respectively, and ϕ is a conformal mapping of Ω onto Ω1 such that
ϕ(D) = ϕ(D1). If a boundary point w0 ∈ ∂D1 is the image of a boundary point z0 ∈ ∂D,
i.e., w0 = ϕ(z0), then for any sequence M = (Mn), the class A(D1,M) is quasianalytic
at the point w0 if and only if the class A(D,M) is quasianalytic at the point z0.
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Proof. Let the class A(D1,M) be nonquasianalytic at w0, i.e., there is a nonzero func-
tion f ∈ A(D1,M) that vanishes at w0 with all its derivatives. By Theorem 7, the
function g(w) = f(ϕ(w)) belongs to A(D,M) and vanishes at z0 together with all its
derivatives. Thus, the class A(D,M) also cannot be quasianalytic. The proof of the
converse statement is similar. �
Corollary 2. Let B′ = B′(a, R) be the exterior of the disk B(a, R) in the extended
complex plane, i.e., B′(a, R) = C \ B(a, R). Then, for any point z0 ∈ ∂B′, a criterion
of quasianalyticity for the class A(B

′
,M) at the point z0 is given by the condition

(4.8)
∫ ∞

1

ln T (r)
r

3
2

dr = ∞,

where
T (r) = sup

n≥0

rn

Mn

is the trace function of the sequence M.

Proof. This follows immediately from Corollary 1, because ϕ(w) = R
w−a is a conformal

map of C onto itself and B′ is mapped onto the unit disk. �
In what follows we consider domains whose boundary coincides locally with the graph

of some function y = u(x), |x| < δ. Denote by Ω(u, δ) the supergraph of u(x) on the
interval (−δ; +δ), i.e.,

Ω(u) = {z = x + iy : y > u(x), |x| < δ}.
Theorem 8. Suppose that a Jordan domain D coincides locally with the supergraph of
some function y = u(x), |x| < δ, with u(0) = 0. This means that for some r > 0, the
sets D ∩ B(0, r) and Ω(u, δ) ∩ B(0, r) coincide. Suppose that for some a > 0 we have

|u(x)| ≤ ax2;

then the class A(D,M) is quasianalytic at the point z = 0 if and only if condition (4.8)
is satisfied.

Proof. For |x| ≤ 1
2a , we have the inequalities

u+(x) :=
1
2a

−
√

1
4a2

− x2 =
x2

1
2a +

√
1

4a2 − x2
≥ ax2,

u−(x) := − 1
2a

+

√
1

4a2
− x2 =

−x2

1
2a +

√
1

4a2 − x2
≤ −ax2.

Hence, if |x| < δ1 := min(δ, 1
2a ), then

u+(x) ≥ u(x), u−(x) ≤ u(x),

and the supergraph Ω(u+, δ1) is contained in the supergraph Ω(u, δ1), and Ω(u−, δ1)
contains Ω(u, δ1). The supergraph Ω(u+, 1

2a ) contains the open disk B( i
2a , 1

2a ) and the
supergraph Ω(u−, 1

2a ) is contained in the complement B′ of the closed disk B(−i
2a , 1

2a ).
Put ε = min(δ1, r). Now, the claim follows from the inclusions

B
( i

2a
,

1
2a

)
∩ B(0, ε) ⊂ Ω(u+) ∩ B(0, ε)

⊂ Ω(u) ∩ B(0, ε) ⊂ Ω(u−) ∩ B(0, ε) ⊂ B′ ∩ B(0, ε)

and from Corollary 2 of Theorem 7.
Theorem 8 is proved. �
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