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TWISTED YANGIANS AND MICKELSSON ALGEBRAS. II

M. NAZAROV AND S. KHOROSHKIN

ABSTRACT. A skew analog for the composition of the Cherednik and Drinfeld func-
tors is introduced for twisted Yangians. The definition is based on the skew Howe
duality, and originates from the centralizer construction of twisted Yangians due to
Olshanskii. Via the new functor, a correspondence is established between intertwin-
ing operators on the tensor products of certain modules over twisted Yangians and
the extremal cocycle on the hyperoctahedral group.

§0. INTRODUCTION

This paper is a continuation of our work [KN2J, which concerned two known functors.
The definition of one of these two functors belongs to V. Drinfeld [D2]. Let 2y be the
degenerate affine Hecke algebra corresponding to the general linear group GLy over
a non-Archimedean local field. This is an associative algebra over the field C, and it
contains the symmetric group ring C Sy as a subalgebra. Let Y(gl,,) be the Yangian
of the general linear Lie algebra gl,,. This is a deformation of the universal enveloping
algebra of the polynomial current Lie algebra gl,[u] in the class of Hopf algebras [D1].
It contains the universal enveloping algebra U(gl,,) as a subalgebra. There is also a
homomorphism of associative algebras Y(gl,) — U(gl,) identical on the subalgebra
U(gl,) C Y(gl,). In [D2], for any Ay-module M, an action of the algebra Y(gl,,) was
defined on the vector space (M ® (C")®N)SN of the diagonal skew & y-invariants in the
tensor product of the vector spaces M and (C™)®V. Thus, we get a functor from the
category of all 2x-modules to the category of Y(gl,,)-modules, the Drinfeld functor.

In [KN1] we studied the composition of the Drinfeld functor with another functor,
introduced by I. Cherednik [C]. That second functor was also studied by T. Arakawa,
T. Suzuki, and A. Tsuchiya [AL[AS|[AST]. For any module U over the Lie algebra gl;, an
action of the algebra 2y can be defined on the tensor product U ® (C!)®¥ of gl,-modules.
This action of A commutes with the diagonal action of gl; on the tensor product. This
yields a functor from the category of all gl;-modules to the category of bimodules over
gl; and 2y, the Cherednik functor. By applying the Drinfeld functor to the 2 -module
M =U ® (CH)®N | one turns the vector space

(U (CHEN @ (C™)®M)SY = U @ AV(C' o C™)
to a Y(gl,)-module. The action of the associative algebra Y(gl,,) on this vector space
commutes with the action of gl;. By taking the direct sum of these Y(gl,)-modules
over N = 0,1,...,n, we turn the space U ® A(C! ® C") to a Y(gl,)-module. It is
also a gl;-module; we denote this bimodule by & (U). We identify the exterior algebra

A(C!®C") with the Grassmann algebra G(C! ® C"), and we denote by GD(C! @ C") the
ring of C-endomorphisms of G(C'® C™). The action of the Yangian Y (gl,,) on its module
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&(U) is then determined by a homomorphism «; : Y(gl,,) — U(gl;) ® GD(C! ® C"); see
Proposition below.

Now, let f,, be either the orthogonal Lie algebra so,,, or the symplectic Lie algebra
SPy,,. Our first objective in the present paper is to define analogs of the functor &
and of the homomorphism «o; for the Lie algebra f,, instead of gl;. The role of the
Yangian Y (gl,,) is played here by the twisted Yangian Y(g,), which is a right coideal
subalgebra of the Hopf algebra Y(gl,,). Here g, is a Lie subalgebra of gl,,, orthogonal
in the case of f,, = s09,, and symplectic if f,, = sp,,,; in the latter case, n must be
even. Let the superscript ’ indicate the transposition in gl,, relative to the bilinear form
on C™ preserved by the subalgebra g, C gl,,, so that g, = {4 € gl,|A’ = —A}. As
an associative algebra, Y(g,) is a deformation of the universal enveloping algebra of the
twisted polynomial current Lie algebra

{A(u) € gl,[u] [A"(v) = —A(=u)}.

Twisted Yangians were introduced by Olshanskii [O2]; their structure was studied in
IMNQO]. In §2 of the present paper, we introduce a homomorphism Y(g,) = U(fm) ®
GD(C™ ® C™); see our Propositions 23 and 24l The image of Y(g,,) under this homo-
morphism commutes with the image of the algebra U(f,,) under its diagonal embedding
@20 into the tensor product U(f,,) ® GD(C™ ® C™); here we use the homomorphism
Cn : Ulfm) — GD(C™ @ C") defined by (Z6). The twisted Yangian Y(g,) contains
the universal enveloping algebra U(g,) as a subalgebra. Also, there is a homomorphism
Tn  Y(gn) — U(gn) identical on the subalgebra U(g,) C Y(g,). Our results extend the
classical theorem [H| stating that the image of U(f,,) in GD(C™ @ C™) under the homo-
morphism (,, consists of all G,-invariant elements. Here G,, is either the orthogonal or
the symplectic group, so that g, is its Lie algebra; the group G,, acts on GD(C™ @ C™)
via its natural action on C".

In the present paper we prefer to work with a certain central extension X(g,) of
the algebra Y(g,), called the extended twisted Yangian. Central elements O, O®) .
of the algebra X(g,) generating the kernel of the canonical homomorphism X(g,) —
Y (g,) are given in §1, together with the definitions of X(g,) and Y(g,). There is also
a homomorphism X(g,) — X(gn) ® Y(gl,,). Using it, we turn the tensor product of any
modules over the algebras X(g,,) and Y(gl,,) to another module over X(g,,). Moreover,
this homomorphism is a coaction of the Hopf algebra Y(gl,,) on the algebra X(g,). We
define a homomorphism S, : X(g,) — U(fn) ® GD(C™ @ C™), which is our analog of the
homomorphism «;; see Proposition 23l The image of X(g,) under 5, commutes with
the image of the algebra U(f,,) under its embedding 271) to U(f,,) @ GD(C™ @ C™). The
reason why we work with X(g,) rather than with Y(g,,) is explained in §2.

The generators of the algebra X(g,) arise as coefficients of certain series S;;(u) in
the variable u, where 4,7 = 1,...,n. We define the homomorphism f,, by applying
it to the coefficients, and by giving the resulting series 3,,(S;;(u)) with coefficients in
U(fm) @ GD(C™ @ C™) explicitly. Then we define another homomorphism

B : X(82) = U(fm) ® GD(C™ @ C"),

which factors through the canonical homomorphism X(g,,) — Y(g,). Thus we obtain
the homomorphism Y(g,) — U(fn) @ GD(C™ @ C™) mentioned above. Every series
gm(Sij(u)) is the product of 3,,,(S;;(u)) by a certain series with coefficients in Z(f,,) ®1,
where Z(f,,) is the center of the algebra U(f,,).

The defining relations of the algebra X(g,) can be written as the reflection equation
(LI5) on the (n x n)-matrix S(u) whose (i, j) entry is the series S;;(u). This terminology
was introduced by physicists; see, e.g., [KS] and the references therein.
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Now, let V' be any f,,-module. Using the homomorphism f,,, we turn the vector
space V ® G(C™ ® C™) into a bimodule over f,, and X(g,). We denote this bimodule
by Fn (V). The functor F, is our analog of the functor & for f,, instead of gl;. When
m = 0, we set Fo(V) = C, so that 3y is the composition of the canonical homomorphism
X(gn) = Y(gn) with the restriction of the counit homomorphism Y(gl,,) — C to Y(g,).

Here we show that the functor F,, shares the three fundamental properties of the
functor & considered in [KN2]. The first of these properties of & concerns parabolic
induction from the direct sum of Lie algebras gl,, ® g[; to gl,,, ;. Let p be the maximal
parabolic subalgebra of gl ,, containing the direct sum gl ® gl;. Let q C gl,,,; be
the Abelian subalgebra with gl,,,; = q © p. For any gl,,-module W, let WK U be the
gl,,, . ;-module parabolically induced from the gl,,, ® gl;-module W ® U. This is a module
induced from the subalgebra p. Consider the space &, 11(W R U)q of g-coinvariants of
the gl,,, ,;-module &,, (W X U). This space is a Y(gl, )-module, which also inherits the
action of the Lie algebra gl,,, ®gl;. The additive group C acts on the Hopf algebra Y (gl,,)
by automorphisms. Let £ *(U) be the Y(gl,,)-module obtained from & (U) by pulling it
back through the automorphism of Y(gl,,) corresponding to z € C. The automorphism
itself is denoted by 7,; see (L2). Thus, the underlying vector space of the Y (gl,,)-module
& *(U) is U ® G(C' @ C™), whereon the action of Y(gl,,) is defined by the composition
of two homomorphisms,

(0.1) Y(gh,) — Y(gl,) —> Ulgh) @ GD(C & C").

Here the target algebra acts on U ® G(C' ® C") by definition. As a gl;-module, £ *(U)
coincides with & (U). In [KN2] we proved that the bimodule &, ;(W X U), over Y(gl,,)
and gl,, @ gl; is equivalent to &, (W) ® £"(U). We use the comultiplication on Y(gl,).

Our Theorem [31lis an analog of this comultiplicative property of &£. Take the maximal
parabolic subalgebra of the Lie algebra f,,4; containing the direct sum f,, ®gl;; we do not
exclude the case of m = 0 here. Using that subalgebra, we determine the f,,4+;-module
VR U parabolically induced from the f,, @ gl;-module V @ U. Consider the space of
coinvariants of the f,,4;-module F,,1;(V R U) relative to the nilpotent subalgebra of
fm+1 complementary to our parabolic subalgebra. This space is a bimodule over f,,, ® gl;
and X(g,). We prove that this bimodule is essentially equivalent to the tensor product
Fn(V) ® E(U) with 2 = m — % for §,, = s03,,, and z = m + % for f,, = sp,,,,. More
precisely, the underlying vector space of the X(g,)-module F,, (V) ® EF(U) is

(0.2) VoG C"eC")eUaG(C eCm),
whereon the action of X(g,,) is defined by the composition of two homomorphisms,
X(gn) = X(gn) ® Y(gl,) = U(fm) ©® GD(C™ © C") @ U(gh) ® GD(C' @ C").

Here the first homomorphism is the coaction of Y(gl,,) on X(g, ), while the second is the
tensor product of the homomorphisms 3, : X(g,) = U(fm) ® GD(C™ ® C™) and

a7 Y(gl,) — U(gl) ® GD(C' @ C™);

see (0I). By multiplying the image of S;;(u) € X(g,)[[u™!]] under this composition by
a certain series with coefficients in the subalgebra

1©1®Z(gh) @1 C U(fm) ® GD(C™ @ C") @ U(gly) ® GD(C' @ C),
we get another homomorphism X(g,,) — U(gl;)®@GD(C!'®@C"). The latter homomorphism
determines another action of X(g,,) on the vector space ([(.2). Theorem B I]states that this
action is equivalent to the action of X(g,) on the space of coinvariants of F,,, (VR U).

Moreover, the actions of the direct summand f,, of §,, @ gl; on F,,,(V) ® 7 (U) and on
the space of coinvariants of F,,;(V X U) are also equivalent, while the actions of the
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direct summand gl; differ only by the automorphism (B8] of the Lie algebra gl;. Hence,
Theorem [3.1] describes the first fundamental property of the functor F,.

Now we discuss the second fundamental property of F,,. In [TV], Tarasov and
Varchenko established a correspondence between canonical intertwining operators on
the I-fold tensor products of certain Y(gl,,)-modules, and the extremal cocycle on the
Weyl group &, of the reductive Lie algebra gl; defined by Zhelobenko [Z]. In [TV], each
of [ tensor factors was obtained from one of gl,,-modules sV (C™) by pulling back through
the homomorphism Y(gl,,) — U(gl,,) and then back through one of the automorphisms
7. : Y(gl,) — Y(gl,). Here SV (C") is the Nth symmetric power of the vector space
C™, while the homomorphism Y(gl,,) — U(gl,,) is defined by (L4). In [KNI] we gave
a representation-theoretic explanation of that correspondence from [TV], by employing
the theory of Mickelsson algebras [MT], [M2] as developed in [KOJ.

For any N € {1,...,n} and any z € C, we denote by PN the Y(gl,)-module obtained
by pulling back the action of U(gl,) on the subspace of G(C") of degree N through
the homomorphism Y (gl,,) — U(gl,,) and then through the automorphism 7_, of Y(gl,,).
The action of the algebra Y(gl,,) on PV is defined by the composition of homomorphisms

(0-3) Y(gl,) — Y(al,) = Ulgl,) » GD(C").

Here the second homomorphism is that defined by (L4); the algebra GD(C™) acts on
G(C™) naturally. Using the functor &;, in [KN2] we established a correspondence between
intertwining operators on the I-fold tensor products of modules of the form P and the
same extremal cocycle on &; as considered in [KN1]. This is an “antisymmetric ” version
of the correspondence first established in [TV]. The parameters z corresponding to the
l tensor factors are in general position, that is, their differences do not belong to Z.
Then each of the tensor products is irreducible as a Y(gl,,)-module [NT]. Hence, the
intertwining operators between them are unique up to factors from C.

In the present paper we show that the functor F,, plays a role similar to that of
&1, when the Lie algebra gl; is replaced by f,,. Namely, we establish a correspondence
between intertwining operators of certain X(g, )-modules, and the extremal cocycle on
the hyperoctahedral group £, corresponding to the reductive Lie algebra f,,. Here 9,,
is regarded as the Weyl group of §,, = sp,,,, and as an extension of the Weyl group
of f,, = 502,, by a Dynkin diagram automorphism. In both cases, the definition of the
extremal cocycle is essentially due to Zhelobenko [Z]. However, the original extremal
cocycle has been defined on the Weyl group of f,,,, which in the case of f,,, = s04,, is only
a subgroup of §),, of index 2. An extension of the original definition to the entire group
$Hm was given in [KN3]. All necessary details on the extremal cocycle corresponding to
f are also reviewed in §4 below.

The twisted Yangian Y(g,,) is determined by a distinguished involutive automorphism
(LII) of the algebra Y (gl,,). The automorphism ([CII]) corresponds to the automorphism

Au) — —A'(—u)

of the Lie algebra gl,,[u] if the algebra Y(gl,,) is regarded as a deformation of the uni-
versal enveloping algebra of gl,,[u]. By pulling the Y(gl,,)-module PY back through the
automorphism (LIT), we get another Y (gl,,)-module, denoted by P, ~. The underlying
vector space of P,V consists of elements of G(C™) of degree N, whereon the action of
Y(gl,,) is defined by the composition of four homomorphisms

Y(gl,) = Y(gl,) - Y(gl,) — U(gl,) — GD(C").

Here the first map is the automorphism ([[I1]); the other three are the same as in ([0.3).
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Now take any vq,...,V, € {1,...,n} and any z1,...,2, € C such that z, — 2, ¢ Z
and z, + 2z, ¢ Z whenever a # b. If §,, = sp,,,, we also assume that 2z, ¢ Z for any
a. The hyperoctahedral group $),, can be realized as the group of all permutations o of
—m,...,—1,1,...,m such that o(—c) = —o(c) for any c. In §5 of the present paper, we
show how the value of the extremal cocycle for the Lie algebra f,, at an element o € $,,
determines an intertwining operator of X(g,,)-modules

(0.4) P/ @@ P/ — Pgi,:lﬂm ® - ® Pg‘jlﬂl,
where
(0.5) Uy = Vig=1(a)|5 Za = Zjo=1(a)| and J, = sign gfl(a)

for each a = 1,...,m. The tensor products in (@4) are those of Y(gl,)-modules. By
restricting both tensor products to the subalgebra Y(g,) C Y(gl,,) and by pulling the
restrictions back through the canonical homomorphism X(g,) — Y(g.), both tensor
products in ([04]) become X(g,)-modules. Thus, the actions of the algebra X(g,) on
both tensor products in (4] are obtained by using the composition

X(gn) = Y(ga) = Y(gl,) = Y(al,)*".

Here the first map is the canonical homomorphism, the second is the embedding defining
Y(g,,), while the third is m-fold comultiplication. It was proved in [MN] that, under our
assumptions on 21, . . ., Z,, the two tensor products in ([@14) are irreducible X (g, )-modules
equivalent to each other. Hence, an intertwining operator between them is unique up to
a factor from C. For our operator, this factor is determined by Proposition 5.9l

To obtain our intertwining operator (0.4]), we use the theory of Mickelsson algebras,
just as we did in [KNIJ [KN2]. Our particular Mickelsson algebra is determined by the
pair formed by the tensor product U(f,,) ® GD(C™ @ C™) and by its subalgebra U(f,,)
relative to the embedding ([27). The extended twisted Yangian X(g,,) appears naturally
here, because its image relative to 3, commutes with the image of U(f,,) in the tensor
product. Another expression for an intertwining operator ([0.4]) was given in [NJ.

In §2 we choose a triangular decomposition ([ZTI7) of the Lie algebra f,, into a direct
sum of a Cartan subalgebra h and two maximal nilpotent subalgebras n,n’. For any
formal power series f(u) in u~! with coefficients in C and leading term 1, the assignments
(LI7) define an automorphism of the algebra X(g,). Up to pulling it back through such
an automorphism, the source X (g, )-module in () arises as the space of n-coinvariants
of weight A for the f,,,-module F,,,(M,), where M), is the Verma module over f,, with the
highest vector of weight p annihilated by the action of the subalgebra n’ C f,,. Here the
weights A\ and p relative to the Cartan subalgebra §h are determined by the parameters
Viy... VUm and 21,. .., z, occurring in ([@4). We denote the space of n-coinvariants of
weight A by F,,(M,)3. The algebra X(g,,) acts on the latter space, because the action
of X(gn) on Fp,(M,) commutes with that of §,,. We prove that the above action of the
algebra X(g,) on the source tensor product in (0] is equivalent to the action on the
vector space of F,,(M,,)} defined by the composition

(0.6) X(gn) = X(gn) — End(Fn(M,,)).

Here the first map is the automorphism (LIT7) with f(u)~! equal to the product (5.24]).
The second map is the defining homomorphism of the X(g,,)-module %, (M,).

To get the target X(g,)-module in (04]), we generalize our definition of the functor
Fom. At the beginning of §5, for any sequence § = (41, ...,d,,) of m elements of the set
{1, -1}, we define a functor F5 with the same source and target categories as the functor
Fm. Moreover, for any f,,-modulef V| the underlying vector spaces of the bimodules
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Fs(V) and Fp,, (V') are the same, that is, V ® G(C™ ® C™). The actions of f,, and X(g,)
on F5(V) are obtained by pushing forward the defining homomorphisms

Cn t Ufm) = GD(C" @ C") and B : X(gn) = U(fm) ® GD(C™ @ C™)

through a certain automorphism w of the ring GD(C™ ® C") depending on §. Namely,
the automorphism w is defined by the assignments (G.I]). Thus, to define the functor Fs,
we use the compositions w ¢, and (1 ® w) B, instead of the homomorphisms ¢, and S,,,
respectively. In particular, we have F5(V) = F,,, (V) for the sequence 6 = (1,...,1).

Up to pulling it back through an automorphism of the form (LI7), the target X(g,)-
module in ([04]) arises as the space of n-coinvariants of weight o o A for the f,,,-module
Fs5(Msop). The sequence § = (d1,...,06,,) is as defined in (05), and the symbol o here
indicates the shifted action of the group $,, on the weights of . Our Proposition
54 states that the action of the algebra X(g,) on the target tensor product in (04 is
equivalent to the action on the vector space of F5(Myo,)5°* defined by the composition

(0.7) X(gn) = X(gn) = End(Fin(Moop))-

Here the first map is the automorphism ([I7) with f(u)~! equal to the product ([5.24).
The second map is the defining homomorphism of the X(g,,)-module F,,(Myop).

In §5 we show that the value of the extremal cocycle for the Lie algebra f§,, at the
element o € £),, determines an intertwining operator of X(g, )-modules

(0.8) ]:m(Mu)ﬁ - fé(MaOM)gO/\'

The product ([5.24) does not depend on the element o € )., so that the automorphisms
(LI of the algebra X(g,,) in (@) and (07) are the same. Hence, by replacing the source
and the target X(g,)-modules by their equivalent modules, we obtain our intertwining
operator (.4]). The role played by the functor F,, in this construction of the operator
([@4) is the second fundamental property of that functor.

The third fundamental property of the functor & considered in [KN2] is its relationship
with the centralizer construction of the Yangian Y(gl,) proposed by Olshanskii [O1].
For any two irreducible polynomial modules U and U’ over the Lie algebra gl;, the results
of [O1] provide an action of Y(gl,,) on the vector space

(0.9) Hom 4, (U, U ® G(C' ® C™)).

Moreover, this action is irreducible. In [KN2] we proved that the same action of Y(gl,,)
on the vector space ((.J) is obtained when the target gl,-module U ® G(C! ® C") in (0.9)
is regarded as the bimodule &(U) over Y(gl,,) and gl;.

There is a centralizer construction of Y(g,,), again due to G. Olshanskii [O2]; see also
IMOJ and §6 below. That construction served as a motivation for introducing the twisted
Yangians. For any irreducible finite-dimensional modules V' and V' of the Lie algebra
fm, the results of [O2] provide an action of the algebra X(g,) on the vector space

(0.10) Hom;, (V',V @ G(C™ @ C™)).

The group G, also acts on this vector space, via its natural action on C™.

If g,, is an orthogonal Lie algebra, the space (ILI0Q) is irreducible under the joint action
of X(g,) and G,,. If g,, is symplectic, (0.I0) is irreducible under the action of the X(gy,)
alone. Our Theorem [6.1] states that the action of X(g,,) on (0.I0) is essentially the same
as the action obtained from the bimodule F,,,(V) =V ® G(C™ ® C") of X(g,,) and fy,.
More precisely, the action of X(g,,) on the vector space (ILI0) provided by [O2] can also
be obtained from an action of X(g,) on the target f,,-module V@ G(C™ @ C") in (0I0).
The latter action is not exactly that on F,,,(V), but is defined by the composition

X(gn) = X(gn) a5 U(fm) ® GD(C™ @ C"),
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where the first map is the automorphism (I7)) with f(u) given by (66). The second map
is the defining homomorphism of the X(g,)-module F,, (V). This third property of F,,
was the origin of our definition of that functor. Thus, we have two different descriptions
of the same action of X(g,,) on ([@I0). Another two still different descriptions of the same
action of X(g,,) on the vector space (0I0) were provided in [M] and [N], respectively.

The functor F,, of the present paper is an “antisymmetric ” version of a functor
introduced in [KN3|. Here the exterior algebra A(C™ ® C™) replaces the symmetric
algebra S(C™ ® C”) in [KN3J. Analogs of the three fundamental properties of F,, were
also given in [KN3].

§1. TWISTED YANGIANS

Let G, be one of the complex Lie groups O,, and Sp,,. We regard G,, as the subgroup
of the general linear Lie group GL,, preserving a nondegenerate bilinear form ( , ) on
the vector space C". This form is symmetric in the case where G,, = O,,, and alternating
in the case of G,, = Sp,,. In the latter case, n must be even. We always assume that
the integer n is positive. Throughout this paper, we shall use the following convention.
Whenever the double sign £+ or F appears, the upper sign corresponds to the case of
G,, = O, while the lower sign corresponds to the case of G,, = Sp,.

Let ¢ be any of the indices 1,...,n. If i is even, put 7=1¢ — 1. If i is odd and 7 < n,
put 7 =i+ 1. Finally, if i = n and n is odd, put 7 = i. Let ey,...,e, be the vectors
of the standard basis in C". Choose a bilinear form on C" so that for any two basis
vectors e; and e; we have (e;, e;) = 6; 0y;, where §; =1 or 6; = (—1)~! in the case of the
symmetric or alternating form.

Let E;; € End(C"™) be the standard matrix units. We also regard these matrix units
as basis elements of the general linear Lie algebra gl,,. Let g, be the Lie algebra of the
group G, so that g, = so,, or g, = sp,, in the case of the symmetric or alternating form
on C". The Lie subalgebra g,, C gl,, is spanned by the elements E;; — 0,0, .

Take the Yangian Y(gl,) of the Lie algebra gl,,. The unital associative algebra Y (gl,,)

over C has a family of generators Ti(jl) , Ti(jQ), ..., where 7,5 =1,...,n. Defining relations
for these generators can be written by using the series
1) _ 2) _
Tiju) = by + T u™ + TPu™ 4

where u is a formal parameter. Let v be another formal parameter. Then the defining
relations in the associative algebra Y(gl,,) can be written as

(1.1) (u =) [Tij(u), Tra(v)] = T (w)Tir(v) = T (0) Tar(w).-
The algebra Y(gl,,) is commutative if n = 1. By (L)), for any z € C the assignments
(1.2) T, Tij(u) — Tii(u— 2)

determine an automorphism 7, of the algebra Y(gl,). Here each of the formal power
series T};(u — 2) in (u — 2)~* should be reexpanded in u~!, and every assignment (L2)
is a correspondence between the respective coefficients of series in «~1. Relations (L))
also show that for any formal power series g(u) in u~! with coefficients in C and leading
term 1, the assignments

(1.3) Tij(u) = g(u) Tij(u)

determine an automorphism of the algebra Y(gl,,). Using (L)), one can directly verify
that the assignments

(1.4) Tij(u) = 6; + Eyju™!

determine a homomorphism of unital associative algebras Y (gl,,) — U(gl,,).
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There is an embedding U(gl,,) — Y(gl,,), defined by the mapping E;; Ti(jl). So,
Y (gl,,) contains the universal enveloping algebra U(gl,,) as a subalgebra. The homomor-
phism (I4) is identical on the subalgebra U(gl,,) C Y(gl,,).

Let T'(u) be the (n x n)-matrix whose (7, j)-entry is the series T;;(u). Relations (L)
can be rewritten by using the Yang R-matriz . This is the (n? x n?)-matrix

n
(1.5) R(u)=u— Y Ei® Ey,
ij=1
where the tensor factors E;; and Ej; are regarded as (n x n)-matrices. Note that
(1.6) R(u) R(—u) =1 —u?.
Take (n? x n?)-matrices whose entries are series with coefficients in Y(gl,,),
Ti(u)=T(u)®1 and Ta(v)=1T(v).

The collection of relations (ILI)) for all possible indices 4, j, k, I can be written as

(1.7) R(u—v) Ty (u) Ta(v) = Ta(v) T1(u) R(u — v).
Using this form of the defining relations together with (L], one shows that
(1.8) T(u) = T(—u)~!

determines an involutive automorphism of the algebra Y(gl,). Here each entry of the
inverse matrix T'(—u) ™! is a formal power series in u~! with coefficients in the algebra
Y(gl,,), and the assignment (L.§)) is as a correspondence between the respective matrix
entries.

The Yangian Y(gl,,) is a Hopf algebra over the field C. The comultiplication A :
Y(gl,) — Y(gl,,) ® Y(gl,) is defined by the assignment

(1.9) A Tyj(u) = Y Tin(u) @ Tij(u).
k=1

When taking tensor products of Y(gl,,)-modules, we use the comultiplication (L9]). The
counit homomorphism Y(gl,,) — C is defined by the assignment T;;(u) + &;;. The
antipodal map Y (gl,,) — Y(gl,,) is defined by the assignment T'(u) + T'(u)~*. This map
is an antiautomorphism of the associative algebra Y (gl,,). For further details on the Hopf
algebra structure on Y(gl,,), see [MNOL Chapter 1].

Let T'(u) be the transpose to the matrix T'(u) relative to the form ( , ) on C™. The
(i,7)-entry of the matrix 7”(u) is 6;6;15(u). Define the (n? x n?)-matrices

T{(u)=T'(u)®1 and Ty(v) =1 T (v).

Note that the Yang R-matrix (L) is invariant under applying the transposition relative
to (, ) to both tensor factors. Hence, relation (7)) implies that

T1(u) Ty (v) R(u — v) = R(u — v) Ty(v) Ty (u),
R(u—v) T{(—u) Ty(—v) = T3(—v) Ti(—u) R(u —v).
To obtain the latter relation, we have used (L). By comparing (1) and (LIQ), an
involutive automorphism of the algebra Y(gl,,) can be defined by the assignment

(1.11) T(u) — T (—u).

This assignment is understood as a correspondence between respective matrix entries.
Now take the product T/(—u) T'(u). The (i, j)-entry of this matrix is the series

(1.10)

(1.12) > 001 Tip(—u) Tij (u).
k=1
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The twisted Yangian corresponding to the form ( , ) is the subalgebra of Y(gl,,) generated
by the coefficients of all series (LI2)). We denote this subalgebra by Y (g.,).

To give defining relations for these generators of Y(g,), we introduce the extended
twisted Yangian X(g,). The unital associative algebra X(g,,) has a family of generators

Si(jl),si(;), ..., where i,5 =1,...,n. Put
$30) = 4 S 4 S

and let S(u) be the (n x n)-matrix whose (4, j)-entry is the series S;;(u). Also, we
introduce the (n? x n?)-matrix

(113) R’(u) =UuU— Z 0; 9]‘ Ez’j ® E{j,

i,j=1
which is obtained from the Yang R-matrix (L5 by applying the transposition relative
to the form (, ) on C™ to any of the two tensor factors. Note the relation

(1.14) R'(u) R'(n —u) = u(n — u).
Take (n? x n?)-matrices whose entries are series with coefficients in the algebra X(g,),
Si(u)=Sw)®1 and S2(v)=1® S(v).
Defining relations in the algebra X(g,) can then be written as a single matrix relation
(1.15) R(u—v)S1(u) R (—u —v) S2(v) = Sa(v) R'(—u — v) Sy (u) R(u — v).
This is equivalent to the collection of relations
(1.16)  (u? =) [Si;(u), Sur(v)] = (u +v)(Skj(w) Sia(v) — Sk;(v) Sia(w))
F (u—v)(0k0; Sz (w) Sp(v) — 0:0; Spa(v) Sp; (u))
+ 0,0; (Skr(u) Sy (v) — Ska(v) Sy (u)).

As in the case of (L3, this collection of relations shows that, for any formal power series
f(u) in u~! with coefficients in C and leading term 1, the assignments

determine an automorphism of the algebra X(g,). See [KN3| §1] for the proof of the
following statement.

Proposition 1.1. A homomorphism X(g,) — Y(gn) can be defined by assigning
(1.18) S(u) = T'(—u) T(u).

By definition, the homomorphism (LI])) is surjective. Next, the algebra X(g,) has a
distinguished family of central elements. Indeed, by dividing each side of identity (LIH])
by So(v) from the left and from the right and then setting v = —u, we get

R'(0) S1(u) R(2u) So(—u)™! = So(—u) "' R(2u) S1(u) R'(0).

The rank of the matrix R’(0) equals 1. So the identity last displayed implies the existence
of a formal power series O(u) in u~! with coefficients in X(g,,) and leading term 1, and
such that

(1.19) R'(0) S1(u) R(2u) Sa(—u)~! = (2uF 1) O(u) R'(0).

By [MNO] Theorem 6.3] all coefficients of the series O(u) belong to the center of X(g.,).
We write
Ow)=14+0Wy "t +O@y=2 4 ...
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By [MNO! Theorem 6.4], the kernel of the homomorphism (II8)) coincides with the (two-
sided) ideal generated by the central elements O, O ... defined as the coefficients of
the series O(u). Using (LE), from (II9) we deduce the relation O(u)O(—u) = 1.

Thus, the twisted Yangian Y(g,) can be defined as the associative algebra with the
generators SZ-(;),SZ-(?), ... that satisfy the relation O(u) = 1 and the reflection equation
(LIT). For more details on the definition of the algebra Y(g,), see [MNO| Chapter 3].

In the present paper we need the algebra X(g,,), which is determined by (.TH)) alone,
because this algebra admits an analog of the automorphism (I.8)) of the Yangian Y(gl,,).
Indeed, using (LI3) together with (L6) and (LI4]), we see that the assignment

(1.20) Wyt S(u) = S(—u—n/2)""

determines an involutive automorphism w, of X(g,). However, w, does not determine
an automorphism of the algebra Y(g,), because the map w,, does not preserve the ideal
of X(g,) generated by the elements O O?) .. ; see [MNO| Subsection 6.6]. Note that,
by multiplying (.I9) on the right by Sa(—wu), the relation O(u) = 1 can be rewritten as
S(u) = S(=w)

2u ’
where S'(u) is the transpose of the matrix S(u) relative to the form ( , ) on C™.

The definition (II9) of the series O(u) implies that the assignment ([LI7) determines
an automorphism of the quotient algebra Y(g,) of X(g,) if and only if f(u) = f(—w). If
z # 0, the automorphism 7, of Y(gl,,) does not preserve the subalgebra Y(g,) C Y(gl,,)-
There is no analog of the automorphism 7, for the algebra X(g,,).

However, the homomorphism Y(gl,) — U(gl,) defined by (L4) admits an analog.
Namely, we can define a homomorphism 7,, : X(g,) — U(g,) by the assignments

Eij — 0,0, E5

(1.21) S'(u) = S(—u) +

(1.22) T ¢ Sij(u) = 6ij +

This can be proved by using the defining relations (L.I6]); see [MNOL Proposition 3.11].
Furthermore, the central elements O, O®) ... of X(gn) belong to the kernel of m,.
Thus, 7, factors through the homomorphism X(g,) — Y(g,) defined by (LI8).

Next, there is an embedding U(g,,) — Y(gn) defined by mapping each element E;; —
0,0;E5 € g, to the coefficient of u™! in the series (LI2). Hence, Y(g,) contains the
universal enveloping algebra U(g,,) as a subalgebra. Clearly, the homomorphism Y (g, ) —
U(gn) corresponding to m, is the identity map on the subalgebra U(g,) C Y(gn).

For any positive integer I, consider the vector space C' and the corresponding Lie
algebra gl;. Let E,, € End(C') with a,b = 1,...,l be the standard matrix units. Re-
garding these matrix units as generators of the universal enveloping algebra U(gl;), we
introduce the (I x [)-matrix E whose (a,b)-entry is the generator E,;. Denote by E’ the
(I x I)-matrix whose (a, b)-entry is the generator Ep,. Then consider the inverse matrix
(u— E')~'. Tts (a,b)-entry (u— E’),,' is a formal power series in u~! with the leading
term &4, u~! and with coefficients in the algebra U(gl;).

Take the tensor product of vector spaces C' @ C". Let x,; with @ = 1,...,1 and

i=1,...,n be the standard coordinate functions on C' ® C". Consider the Grassmann
algebra G(C' @ C™). It is generated by the elements z,; subject to the anticommutation
relations x4; Tp; = —xpj e for all indices a,b = 1,...,l and 3,5 = 1,...,n. We shall

denote the operator of left multiplication by z4; on G(C! ® C™) by the same symbol. Let
Oq; be the operator of left derivation on G ((Cl ® C™) corresponding to the variable x,;,
also called the inner multiplication in G(C! ® C™) corresponding to ;.

The ring of C-endomorphisms of G(C! ® C") is generated by all operators z4; and 9,;;
see, e.g., [H, Appendix 2.3]. This ring will be denoted by GD(C! ® C"). In this ring, we
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have

(1.23) Tai Opj + Opj Tai = dab Oij-

Hence, the ring GD(C! ® C") is isomorphic to the Clifford algebra corresponding to the
direct sum of the vector space C' ® C" with its dual.

The Lie algebra gl; acts on the vector space G(C'® C™) so that the generator Eg;, acts
as the operator

(1.24) Z Lok Opk -
k=1

Denote by A; the tensor product of associative algebras U(gl;) ® GD(C! ® C*). We have
an embedding U(gl;) — A; defined for a,b =1,...,1 by the mappings

(125) Ep— Ep®1+ Z 1® xak abk.
k=1

The following proposition was proved in [KN2, §1]; see also [Al §3].
Proposition 1.2. (i) A homomorphism «; : Y(gl,,) — A; can be defined by

l
(1.26) ap : Tij(u) = 0+ Y (u—E) ) @ 2ai 0.
a,b=1
(ii) The image of Y (gl,,) in A; relative to this homomorphism commutes with the image
of U(gl;) in Ay relative to the embedding (L25)).

Note that l
ap Ti(].l) — Z 1® e O
c=1

Hence, the restriction of «; to the subalgebra U(gl,,) C Y(gl,,) corresponds to the natural
action of the Lie algebra gl,, on G(C!' @ C").
Denote by Z(u) the trace of the inverse matrix (u + E)~1, so that
1

(1.27) Z(u)=> (u+E)"

c=1
Then Z(u) is a formal power series in u~' with coefficients in the algebra U(gl,). It is
well known that these coefficients actually belong to the center Z(gl;) of U(gl;). Note
that the leading term of this series is {u"".

We choose the Borel subalgebra b of the Lie algebra gl; spanned by the elements E,,
where a < b. Let t C b be the Cartan subalgebra of gl; with the basis (Ei1,..., Ey).
Consider the corresponding Harish-Chandra homomorphism ¢, : U(gl))t — U(t). By
definition, for any t-invariant element X € U(gl;), the difference X — ¢;(X) belongs to
the left ideal of U(gl;) generated by the elements E,;, where a < b. The restriction of
the homomorphism ¢; to Z(gl;) C U(gl))" is injective. It is well known that

!

(1.28) 1+ @i(Z(u)) :(11;[1 (1+ m);

see, e.g., [PP, Theorem 3]. For the proof of the next lemma, see [KN3, §1], where the
parameter u should be replaced by —u.

Lemma 1.3. For any indices a,d =1,...,1, we have
(u+E)l =1+ Z(u) (u+l+E),;.
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Now, let U be a module of the Lie algebra gl;. Using the homomorphism (L20]), we
can turn the tensor product of gl;-modules U ® G(C! ® C") to a bimodule over gl; and
Y(gl,,). This bimodule is denoted by &(U). More generally, for z € C, denote by £7(U)
the Y(gl,,)-module obtained from & (U) via pull-back through the automorphism 7_, of
Y(gl,,); see (L2). It is determined by the homomorphism Y (gl,,) — A; such that

!
T;j(u) — 6;5 + Z (u+z— E’);b1 ® Tq; Ob;
a,b=1
for every i, = 1,...,n. As a gl;-module, £&7(U) coincides with & (U) by definition.
In the next section we shall introduce analogs of the homomorphism ([25) and of the
correspondence U +— & (U) for the twisted Yangian Y(g,,) instead of Y(gl,,).

§2. HOWE DUALITY

We shall work with one of the pairs (sog,,, O,) and (spg,,, Sprn). The second member
of the pair will be the Lie group G,,. The first member will be the Lie algebra f,, defined
below. These pairs arise in the context of the skew Howe duality; see [H, Subsection 4.3].

Take the even-dimensional vector space C>™. Equip C?>™ with a nondegenerate bilin-
ear form, symmetric in the case of G,, = O,,, and alternating in the case of G,, = Sp,.
Let f,,, be the subalgebra of the general Lie algebra gl,,,, preserving our bilinear form on
C?™. We have f,, = $02,, OT f,,, = 5P, (respectively) in the case of a symmetric or an
alternating form on C?™.

We label the standard basis vectors of C*™ by the numbers —m, ..., —1,1,...,m. Let
E. € End(C?™) be the standard matrix units, where the indices a, b run through these
numbers. These matrix units will also be viewed as basis elements of gl,,,,. Put

(2.1) Eab=1 or 4 =sgna-sgnbd

(respectively) in the case of a symmetric or an alternating form on C?™. Then choose
the form on C?™ so that the Lie subalgebra f,, C gl,,, is spanned by the elements

(22) Foy = Eap — €ab Efb,fan
In the universal enveloping algebra U(f,,) we have the commutation relations
(23) [Faba ch] = 6cb Fad - 6ad Fcb —E€ab 55,70, Ffb,d + €ab 57b,d Fc,fau

Let F be the (2m x 2m)-matrix whose (a, b)-entry is the element Fy;. Denote by F(u)
the inverse to the matrix u+ F. Let F,(u) be the (a, b)-entry of the inverse matrix. Any
of these entries may be regarded as a formal power series in u~! with coefficients in the
algebra U(f,,). Then

(24)  Fap(u)=bwu " +> > (=) Fae Fepey o Fe e, Fepu >

5=0 |eq|,les|=1
If s = 0, the sum over cy,...,c, in ([2.4) is understood as —F,, u~2. We denote by W (u)
the trace of the matrix F'(u), that is,

m
(2.5) W(u) = > Fu(u).
le|=1
The coefficients of the series W (u) belong to the center Z(f,,) of the algebra U(f,,).

In what follows, the upper signs in + and F correspond to the case of a symmetric
form on C?™, while the lower signs correspond to the case of an alternating form on C2™.
In these cases we also have a symmetric or alternating form on C”, respectively. Thus,
the choice of signs in + and F here agrees with our general convention on double signs.
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Let F'(u) be the transpose to F(u) relative to our bilinear form on C?>™, so that the
(a,b)-entry F7, (u) of the matrix F’(u) equals €qp F_p —q(u). For the proof of the next
proposition, see [KN3| §2], where u should now be replaced by —u.

Proposition 2.1. We have equality of (2m x 2m)-matrices:

F(u)
—F' :(W T — l)F— —-2m+1)+ —————.
() WF somgy T FumElE ol
Corollary 2.2. We have
1 1
W — 4+ 1) (W(-u—-2m+t1) *+ ———— + 1
( WF e oms1 " )( (Cu—2mt D 1t )
B 1
(2u+2m F1)%

On the space C™ ® C™, we have the coordinate functions x,;, where a = 1,..., m and

t=1,...,n. Consider the Grassmann algebra G(C™ ® C™) corresponding to this vector

space. We shall denote the operator of left multiplication by z,; on G(C™ ® C™) by the
same symbol. Let 0,; be the left derivation on G(C™ ® C™) relative to x4;. There is an
action of f,, on G(C™®C™) that commutes with the natural action of the group G,,. The
corresponding homomorphism ¢, : U(f,) — GD(C™ @ C™) is defined by the following
mappings for a,b=1,...,m:

n
Gt Fap > —0abn/24 Y Tak Ob,
k=1

n n
Fa,—b — Z 0 T .7 Toks F—a,b — Z 01 Oute 8%.
k=1 k=1

(2.6)

Here the homomorphism property can be verified by using relations ([Z3]). Moreover,
the image of the homomorphism (,, coincides with the subring of all G,,-invariants in
GD(C™ ® C™); see [H, Subsections 3.8.7 and 4.3.3]. Let B,, be the tensor product of
associative algebras U(f,,) ® GD(C™ ® C™). Take the embedding U(f,,) — B, defined
by

(2.7) X = X®1+1®,(X) foreach X € f,.

Proposition 2.3. (i) A homomorphism B,, : X(gn) — B can be defined so that the
series Si;(u) is mapped to the following series with coefficients in the algebra Byy,:

(2.8) 6; + Z (F,a,,b(u + % — M) ® Tqi Opj + F_qp(u* % —m) ® 0; Tai Toy
a,b=1

+ Fop(ut i —m)®0; 045 0p + Fap(ut 2 —m) ®0;0; 0oz 215).

(ii) The image of X(gn) in By, relative to this homomorphism commutes with the
image of U(fm) in By, relative to the embedding ([2.7).

Proposition 23] can be proved by direct calculation using the defining relations (LI6]).
That calculation is omitted here. In §6 we shall give a more conceptual proof of the
proposition. Now, let the indices ¢ and d run through the sequence —m, ..., —1,1,...,m.
For ¢ < 0 we put pe; = £_; and g = 0—;. Forc > 0 we put p.; = 0; 05 and ge; = 0; x5 -
Then our definition of the homomorphism f,, can be written as

m
(2.9) Bm + Sij(u) = 55 + Z Foa(u=+ 3 —m) ® pe; qaj,
lel,|d|=1
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as in (I26]). Moreover, by the definition ([2.6) we have

(2.10) Cn: Fea = —0can/2+ Z ek Pdk-
k=1

Using (Z.5)), we define a formal power series W (u) in u~! with coefficients in the center
Z(fm) of the algebra U(f,,) by the equation

(17 i) W) = W(ut!—m)

By Corollary 2]

(W(u)+ 1) (W(—u)+1)=1.

Hence, there is a formal power series W (u) in u~! with coefficients in Z(,,), with leading
term 1, and such that

~

(2.11) W(—u) W(u) ™" =1+ W(u).

The series VT/(u) is not unique. But its coefficient at u~! is always —m, because the
leading term of the series W (u) is 2mu~!. Let 3, be the homomorphism X(g,) — By,
defined by assigning to S;;(u) the series (28] multiplied by

(2.12) W(u) ®1 € By [[u]).

The homomorphism property of 3, follows from part (i) of Proposition 2.3} see also the

defining relations (LI6). Part (ii) implies that the image of 8, commutes with the image
of U(f,,) in the algebra B,, relative to the embedding (2.7)).

Proposition 2.4. The elements O, O®) ... of X(g,) belong to the kernel of Bom.-

Proof. Let §Z](u) denote the product of the series (2.8)) and (ZI2]). Using the equivalent
presentation (L21) of the relation O(u) = 1, we see that it suffices to prove the identity

(2.13) 0:0; Sy(u) = Sij(—u) +

(2.14) W(u) (1+W(utk—m))=W(-u)+ W) ;uW(*“)
Next, we introduce the (2m x 2m)-matrix
(2.15) F(u) =W(u) Fut 1 —m)

(2.16) F'(u) = —F(—u) ¥
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Changing the indices 4, j in (Z38) to 7,7 (respectively), and multiplying the resulting
series by 0; 0;, we get

8ij + Z (F_as m) ®0;0; 24500 £ Fop(ut i —m)®0;x.5mp
a,b=1

:|:Fa _b(uﬂ:* fm)®9i8aj 8b;+Fab(uj: % fm)®8aj fbi)

+ Z —F, —a u:l: )®91 Gj 5‘a;:vbj~ZF F_bva(uﬂ: % 7777,) ®9j Tai Ty
a,b=1
T Iy, ,a(ui % — m) ® 0; 6a58bj — Fba(ui % —m) ® Ta; 8bj)

=1+ W(ut3z-—m))@d;

Z )®998m$b]+F ( %—m)@Hjxm»xbj

a,b=1

s

+ F(;_b(u + % —m) ® 6; Ogz Opj + Fia7_b(u + % —m) ® Ty 8bj).

Multiplying the expression in the last three lines by W(u) ® 1 and using the definition

ZI5), we get

W(u) (1+W(uti—m)ed;
= > (Ey(w) ®0:0; 0y mag+ Ly (0) @ 05 20 205
a,b=1

+ ﬁ‘;,—b(u) Y 92 aﬁabj + ﬁ‘im_b(u) & i 8bj).
Now, the required formula (213) follows from 2I4) and 2I6). O

So, the homomorphism Em : X(gn) — By, factors through a homomorphism Y(g,,) —
B,,. This is an analog of the homomorphism ([.26]) for the twisted Yangian Y (g, ) instead
of Y( »)- Recall that

~

Wu)=1—mut+---,
so that

Em : Sl(Jl) — 7’!7152‘]‘ + Z (1®xci8cj +1®0i9j acffcj)

c=1

= Z (1 ® L (‘9Cj -1 X 91 9]' .’L'Cjacg).
c=1

Thus, for any formal power series WN/(u) in 4! that has its coefficients in Z(f,,), has the
leading term 1, and satisfies (2I0]), the restriction of the homomorphism Y(g,) — By,
to the subalgebra U(g,) C Y(g,) corresponds to the natural action of the Lie algebra g,
on the vector space G(C™ @ C™).

The series W(u) is not unique, and it will be more convenient for us to work with the
homomorphism S,, : X(g,) — B, defined in Proposition 23] Using this homomorphism
and the action of the Lie algebra f,,, on G(C™ ® C™) as defined by (2.4]), for an arbitrary
fm-module V| we can turn the tensor product V @ G(C™ ® C") to a bimodule over f,,
and X(g,). This bimodule will be denoted by F,,, (V).

Consider the triangular decomposition of the Lie algebra f,,,

(217) fm :n@h@nl7
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where b is the Cartan subalgebra of f,, with the basis (F_, _m,...,F_1,-1). Next, n and
n’ are the nilpotent subalgebras of f,, spanned by the elements Fy;, with a > b and a < b,
respectively; here the indices a,b can be positive or negative. For each f,,-module V,
we denote by V, the vector space V/n -V of coinvariants of the action of the subalgebra
n C f,, on V. The Cartan subalgebra b C f,, acts on the vector space V.

Now consider the bimodule F,,, (V). The action of X(g,) on this bimodule commutes
with the action of the Lie algebra f,,, and hence, with the action of the subalgebra
n C fm. Therefore, the space F,,,(V ), of coinvariants of the action of n is a quotient of
the X(g,,)-module F,, (V). Thus, we get a functor from the category of all f,,,-modules
to the category of bimodules over  and X(g,,),

(2.18) Ve Fn(V)a = (VR GC™®C™),.

The assignments E;, — Fg, for all a,b =1,..., m determine a Lie algebra embedding
gl,, = fm; see relations (23). Using this embedding, consider the decomposition

(2.19) fm=t®gl, &1,

where v and t/ are the Abelian subalgebras of f,, spanned (respectively) by the elements
Fo_pand F_, for all a,b =1,...,m. For any gl ,-module U, let V' be the f,,-module
parabolically induced from the gl,,-module U. To define V, first we extend the action
of the Lie algebra gl,, on U to the maximal parabolic subalgebra gl,, ®t' C f,,, so that
every element of the summand t' acts on U as zero. By definition, V is the f,,-module
induced from the (gl,,, ® t')-module U. Note that here we have a canonical embedding
U — V of (gl,, ®t')-modules; we shall denote by u the image of an element u € U under
this embedding. The f,,-module V' determines the bimodule F,,, (V') over f,, and X(g,).
The space F, (V). of t-coinvariants is then a bimodule over gl,,, and X(g,).

On the other hand, for any z € C, consider the bimodule £ (U) over the Lie algebra
gl,, and over the Yangian Y(gl,). By restricting the module £7 (U) from the algebra
Y (gl,,) to its subalgebra Y(g,,) and then using the homomorphism X(g,,) — Y(g,,) defined
by ([I8), we can regard £7,(U) as a module over the algebra X(g,) instead of Y(gl,,).
This module is determined by the homomorphism X(g,,) — A,, such that for any ¢, j =
1,...,n, the series S;;(u) is mapped to

(2.20) Z 0; Oy, (TEI(_ U+ 2) Thj(u+ z)),
k=1

see (LI2) and (L26). Now we map S;;(u) to the series ([2.20) multiplied by

(2.21) (1+Z(u—z-m))@1eA,[[u]];

see (LZM7), where the positive integer [ must be replaced by m. The latter mapping
determines another homomorphism X(g,) — A,,. Using it, we turn the vector space
U®G(C™®C™) of the X(g,,)-module £ (U) to another X(g,,)-module, to be denoted by

EZ (U). Next, we define an action of the Lie algebra gl, on £ (U) by pulling its action
on &% (U) back through the automorphism

(2.22) Eu — —0apn/24 Eq for a,b=1,...,m.
Thus, the action of gl,, on gﬁl(U ) is determined by the composition of homomorphisms
U(gl,,) = U(gl,,) = End(U ® G(C™ ® C")),

where the first map is the automorphism (2.22)), while the second map corresponds to
the natural action of gl,, on &7 (U). The following proposition is a particular case of
Theorem B.1] from the next section.
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Proposition 2.5. For the f,,-module V' parabolically induced from any gl,,-module U,
the bimodule F,,,(V). over gl,, and X(g,) is equivalent to EZ(U), where z = F3.

Now, let u and f range over the vector spaces U and G(C™ ® C™), respectively. In
the next section, we shall show that the linear map

URGC"®C") = (Vag(C"eC),

defined by mapping v ® f to the class of u ® f in the space of t-coinvariants, is an
equivalence of bimodules £, (U) = Fp(V), over gl,, and X(g,).

An element p of the vector space h* dual to b is called a weight . A weight u can be
identified with the sequence (1, ..., ) of its labels, where

Ha = ﬂ(Fafmfl,afmfl) = _M(meaJrl,mfaJrl) for a= ]-7 s, M.

The Verma module M, of the Lie algebra f,, is the quotient of the algebra U(f,,) by the
left ideal generated by all elements X € n’ and all elements X — pu(X) with X € h. The
elements of the Lie algebra f,, act on this quotient via left multiplication. The image
of the identity element 1 € U(f,,) in this quotient is denoted by 1,. Then X -1, =0
for all X € n’, and X -1, = u(X) -1, for all X € bh. Let L, be the quotient of the
Verma module M, relative to the maximal proper submodule. This quotient is a simple
fm-module of the highest weight .

For z € C, we denote by P, the Y(gl,,)-module obtained by pulling the standard
action of U(gl,) on G(C™) back through the homomorphism Y(gl,) — U(gl,) defined
by ([4), and then back through the automorphism 7_, of Y(gl,,). Let z1,..., 2, be the
standard generators of G(C™) and let 04,...,0, be the corresponding left derivations.
From (0.3) it follows that the action of Y(gl,,) on P, is determined by the homomorphism
Y(gl,,) = GD(C™) such that

xiaj
w4z

Using the comultiplication (L9), for any z1, ..., z, € C we define the tensor product
of Y(gl,,)-modules

(223) ﬂj (u) — 51‘]‘ +

(2.24) P, ® --QP,.
For a =1,...,m, let deg, be the linear operator on this tensor product corresponding
to evaluation of the total degree in x1,...,2, in the tensor factor P, , i.e., in the ath

tensor factor when counting from right to left. By restricting this tensor product of
Y (gl,,)-modules to the subalgebra Y(g,) C Y(gl,,) and then using the homomorphism
X(gn) = Y(g,) defined by (LI8]), we can regard the tensor product [224]) as a module
over the extended twisted Yangian X(g,,).

Corollary 2.6. The bimodule F,(M,)n over b and X(gy) is equivalent to the tensor
product

(2.25) Prptz® Py 1 @@ Py peym—1
pulled back through the automorphism of X(g,) defined by ([LI7), where f(u) equals
e 1
9.26 (1 );
( ) (11;[1 +ufzfm+aflfpa

here z = :F%- The element Fr,_g+1,m—at+1 € B acts on (2Z258) as the operator
(2.27) —n/2 4 deg, —fiq-
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Proof. We have an embedding of gl,, to f, such that F,, — F,, fora =1,...,m. Then
the Cartan subalgebra t of gl,, is identified with the Cartan subalgebra § of f,,. Put
a =m — a + 1 for short. If we regard the weight u as an element of t*, then

w(Eaz) = —pe for a=1,...,m.

Let U be the Verma module of the Lie algebra gl,,, corresponding to p € t*. It is defined
as the quotient of the algebra U(gl,,,) by the left ideal generated by all elements F,; with
a < b, and by all elements E,q — jt(Fqaq). Then the Verma module M,, of the Lie algebra
fm is equivalent to the module V' parabolically induced from the gl,,-module U. Here we
use the decomposition (Z19]).

Let s denote the subalgebra of the Lie algebra gl,,, spanned by all elements E,; with
a > b. Using our embedding of gl,, to f,,, we can also regard s as a subalgebra of f,,.
The Lie algebra n of f,, is then spanned by v and s. By Proposition 28] the bimodule
Fm(M,)n over h and X(gy,) is equivalent to £7(U)s, where z = F1. To describe the latter
bimodule, first we consider the bimodule & (U)s over t and Y(gl,,). By [KN2 Corollary
2.4], the bimodule &% (U)s is equivalent to the tensor product of Y(gl,,)-modules (2:25]),
where the element Ej;; € t acts as deg, —p,. After pulling the action of the Lie algebra
gl,,, on &7 (U) back through the automorphism ([2:22)), the element Fz; € t will act on
the tensor product of vector spaces ([2.25) as [2.27]).

To complete the proof of Corollary 26} recall that the action of X(gl,) on &7 (U)
differs from that on &2, (U) by multiplying the series (Z20)) by ([22I). Using (L28), we
see that the series 1 + Z(u — 2 —m) in u~! with the coefficients in Z(gl,,) acts on the
Verma module U via scalar multiplication by the series (2:20]). O

By definition, the vector spaces of the two equivalent bimodules in Corollary are
(M, ® G(C™®C")), and G(C™)®™, respectively. We can define a linear map from the
latter vector space to the former by mapping f1 ® --- ® f,, to the class of the element

1, ® f in the space of n-coinvariants. Here for any m polynomials f1,..., f,, in the n
anticommuting variables x1, ..., x,, the polynomial f in the mn anticommuting variables
T11,...,Tmn is defined by setting

(228) f(xlla cee 7$mn) = fl(xlh cees xln) ce fm(xmlv cee 7xmn)~

This provides the bimodule equivalence in Corollary 226 see [KN2, Corollary 2.4] and

also the remarks made immediately after stating Proposition in the present paper.
For any z € C denote by P/ the Y(gl,,)-module obtained by pulling P, back through

the automorphism (LTT)) of Y(gl,,). In accordance with (223), the action of Y(gl,,) on

P! is determined by the homomorphism Y(gl,,) — GD(C™),
Qiejxj&z
u—z

Lemma 2.7. The Y (gl,,)-module P, can also be obtained by pushing the action of Y (gl,,)
on P_,_y forward through the automorphism of GD(C™) such that for eachi=1,...,n,

(2.30) i 0;0; and 0;— 0;xy, 1=1,...,n,

and by pulling the resulting action back through the automorphism [3) of Y(gl,,), where
1

2.31 =1- .

(2.31) o) =1-

Thus, the action of Y(gl,,) on P, can also be determined by the composition

Y(gl,) = Y(gl,) . Y(gl,) = U(gl,) = GD(C") — GD(C").
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Here the first map is the automorphism (3] of Y(gl,,), where the series g(u) is given by
[23T)), the last map is the automorphism (Z30) of GD(C"), while the other three maps
are defined as in (0.3).

Proof. Applying the automorphism ([Z30) to the right-hand side of (Z23)) and replacing
the parameter z there by —z — 1, we get

0,0,0; x> 8i; — 0:0,25 05 u—z 0:0;25 05
5 Z]ZJZ(SZ" ij YLy (i‘_l]jl)
J+ufz71 it u—z—1 u—z—1\" u—z /'
and after multiplying by (Z.31]), this becomes the right-hand side of ([2:29]). O

§3. PARABOLIC INDUCTION

The twisted Yangian Y(g,) is not merely a subalgebra of Y(gl,), it is also a right
coideal of the coalgebra Y(gl,,) relative to the comultiplication (I9). Indeed, apply this
comultiplication to the (4, j)-entry of the (n x n)-matrix T7"(—u) T'(u). We get the sum

D 06 (Tpp(—u) @ Ti(—w)) (Ten(w) ® Thy(w))

Z 9i9k A(Tm(—u) Tkj (’U,))
k=1 g,h,k=1

Z 090k ng(—u) Tkh(u) (24 01'99 T?ﬂ(—u) T;Lj (u)
g,h,k=1

In the last displayed line, by performing summation over k = 1,...,n in the first tensor
factor, we get the (g, h)-entry of the matrix 7’(—u) T'(u). Therefore,

A(Y(gn)) C Y(gn) @ Y(gl,,).

For the extended twisted Yangian X(g,,), one can define a homomorphism of associative
algebras

X(gn) — X(gn) @ Y(gl,)
by assigning

(31) Sij (u) — Z Sgh(u) (4 9299 Tg’;(—u) Thj(u).
g,h=1

The homomorphism property can be verified directly; see [KN3|, §3]. Via the homo-
morphism (B]), the tensor product of any modules over the algebras X(g,) and Y(gl,,)
becomes another module over X(g,,).

Furthermore, the homomorphism (B0 is a coaction of the Hopf algebra Y (gl,,) on the
algebra X(g,). Formally, a homomorphism of associative algebras

X(gn) = X(gn) ® Y(gl,,) ® Y(gl,,)

can be defined in two different ways: either by using the assignment (3] twice, or by
using (BI)) and then (LU). Both ways lead to the same result; see again [KN3| §3].

Now for any positive integer [ we consider the general linear Lie algebra gls,,, o and
its subalgebra f,,4+;. This subalgebra is spanned by the elements F,; with

(3.2) a,b=—-m-—1,...,—1,1,... m+1.
We extend the notation ([21) and (22) to all such indices a, b and identify f,, with the
subalgebra of f,,+; spanned by the elements Fy;, where a,b = —m,...,—1,1,...,m.

Choose the embedding of the Lie algebra gl; to f,,4+; determined by the mappings
(3.3) Ew = Foyam+s for ab=1,...1
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Let q,q" be the subalgebras of f,,1; spanned (respectively) by the elements Fgp, Fpq,
where

a=m+1,....m+1l and b=-m-—1I,...,—1,1,...,m;

these two subalgebras of f,,; are nilpotent. Put p = f,,, ® gl; & q’. Then p is a maximal
parabolic subalgebra of the reductive Lie algebra f,,4+;, and f,,+1 = q ® p. We do not
exclude the case of m = 0 here. In this case the nilpotent subalgebras q and ¢’ of 4
become the Abelian subalgebras v and t' of the Lie algebra f;; see the decomposition
(219), where the positive integer m must be replaced by I. Note that here the meaning
of the symbols p and q is different from that in §0.

Let V and U be any modules of the Lie algebras f,, and gl;, respectively. Denote by
VX U the f,4i-module parabolically induced from the f,, ® gl;-module V ® U. To define
VX U, first we extend the action of the Lie algebra f,, © gl; on V ® U to the Lie algebra
p, so that every element of the subalgebra q' C p acts on V ® U as zero. By definition,
VR U is the f;,4-module induced from the p-module V ® U. Note that here we have a
canonical embedding V@ U — VK U of p-modules; we denote by v ® u the image of an
element v ® u € V ® U under this embedding.

Consider the bimodule F,,4;(V R U) over f,,1; and X(g,). Here the action of X(gl,,)
commutes with the action of the Lie algebra f,,4+;, and hence, with the action of the
subalgebra q C 4. Therefore, the vector space Fp, (VR U)q of coinvariants of the
action of the subalgebra q is a quotient of the X(g,,)-module F,,+;(V R U). Note that
the subalgebra f,, ® gl; C fn+: also acts on this quotient.

For any z € C, consider the bimodule £7(U) over gl; and Y(gl,,), defined as at the end
of §1. Also consider the bimodule F,,, (V') over f,, and X(g,). Via the homomorphism
B1)), the tensor product of vector spaces F,, (V) ® EF(U) becomes a module over X(gy,).
This module is determined by the homomorphism X(g,) — B,, ® A; such that for any
i,j =1,...,n the series S;;(u) is mapped to

n

(3.4) Z B (Sgn () @ 0:04 oy (Tir(—u+ 2) Thj(u + 2)).
g,h=1

Now, we map the series S;;(u) to the series (3.4]) multiplied by
(3.5) (101)@((1+Zu—z—-1)®1) € Bpr @A [[u']};

see (L2T). This mapping determines another homomorphism X(g,) — B,, ® A;. Us-
ing it, we turn the vector space of the X(g,)-module F,,(V) ® EF(U) to yet another
X(gn)-module, which will be denoted by F,, (V)@ &7 (U). Define an action of the Lie
algebra gl; on the latter X(g,)-module by pulling the action of gl; on &(U) back through
the automorphism

(3.6) Eu — —0apn/2+ Ey for a,b=1,...,1L

The Lie algebra f,, acts on the X(g,)-module F,,(V)®&?(U) via the tensor factor
Fm(V). Thus, Fn,(V)@EF(U) becomes a bimodule over the direct sum of Lie alge-
bras f,, @ gl; and over the extended twisted Yangian X(g,). For m = 0, the next theorem
becomes Proposition 2.5, where the positive integer m must be replaced by [. Here we
assume that Fo(V') = C, so that 8y(S5;;(u)) = d;5.

Theorem 3.1. The bimodule Fp,1i(VR U)q over f,, ® gl and X(gy) is equivalent to
Fn(V)REF(U), where z=m F 1.
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Proof. The remaining part of this section is devoted to the proof of Theorem Bl As
vector spaces,

Fru(VRU)g= (VR U®GC" " oC")),,
Fu(V)REU)=VRGC"2C") U G(C'eC).

We can construct a linear map from the latter vector space to the former one by
mapping any element v @ f ® u ® g to the class of Y@ u ® f ® g in the space of g-
coinvariants. Here v € V, f € G(C™ @ C") and u € U, g € G(C' ® C"), whereas the
tensor product f ® g is identified with an element of G(C™* ® C") in a natural way,
which corresponds to the decomposition

(3.7) C"HleCct=C"eC"eC'eC".

We shall show that this map establishes an equivalence of bimodules in Theorem [B.11

The vector space of the §,,4+;-module VR U can be identified with the tensor product
U(q) ® V@ U, where the Lie subalgebra q C f,,,4; acts via left multiplication on the first
tensor factor. Then v @ u = 1 ® v ® u, so that the tensor product V @ U gets identified
with the subspace

(3.8) 1VeUCU@Q)VeU.

On this subspace, every element of the subalgebra ¢’ C f,,,4; acts as zero, while the two
direct summands of the subalgebra f,, @ gl; C fm+: act nontrivially only on the tensor
factors V' and U, respectively. All this determines the action of the Lie algebra f,,4; on
U(q) @V ®U. Now we view Fp, 11 (VR U) as a f,,,-module, denoting it by M for short.
Then M is the tensor product of two f,,;-modules,

(3.9) M=VRU)QGC™"™aC")=U(q)eVeUegC"'aCn).

The vector spaces of the X(g,,)-module F,,(V) and of the Y(gl,,)-module E7(U) are
V®G(C"®C") and U ® G (C! ® C"), respectively. The action of the Lie algebra f,,
on the first vector space is defined by (Z.6]). By pulling back through the automorphism
B30)), the action of the Lie algebra gl; on the second vector space is defined by

E.p — 75abn/2+Eab®1+Z 1® xop Op  for a,b=1,...,1.
k=1

We identify the tensor product of these two vector spaces with the vector space
(3.10) VeUeG(C"eC)eg(C'eC)=VeoUeg(C™"eC"),

where we use the direct sum decomposition [B.1). We get an action of the direct sum of
Lie algebras f,, @ gl; on the vector space (B10).
Now we define a linear map

X:VeUeg(C™"eC") - M/q-M
by the assignment
X YRzt = 1Q0yRet+q-M

for any vectors y € V, # € U and t € G (C™*! @ C"). The operator x intertwines the
actions of the Lie algebra f,, ® gl;; see the definition ([Z.6]) with m replaced by m + 1. We
show that the operator x is bijective.

First, consider the action of the Lie subalgebra q C f,,4; on the vector space

G(Cm™H) =g(C™) @ G(C");
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the action is defined by (Z8l), where n = 1 and the integer m is replaced by m -+ [. This
vector space admits a descending filtration by the subspaces

l
P (") @gh(C), where N=0,1,...,1.
K=N
Here GE(C!) stands for the homogeneous subspace of G (C!) of degree K. The action
of the Lie algebra q on G(C™*!) preserves each of the filtration subspaces and becomes
trivial on the associated graded space.

Similarly, for any n = 1,2, ..., the vector space G (C"™* ® C") admits a descending
filtration by g-submodules such that q acts trivially on each of the corresponding graded
subspaces. The latter filtration induces a filtration of M by g-submodules such that, on
the corresponding graded quotient gr M, the Lie algebra q acts via left multiplication
on the first tensor factor U(q) in ([@3.8). Therefore, the space V ® U ® G (C™*! @ C™) is
isomorphic to the space of coinvariants (gr M), via the bijective linear map

YRret = 1yer®t+q-(grM).

Thus, the linear map x is also bijective. Now it remains to show that the map x inter-
twines the actions of the algebra X(gy,).

In this section we shall use the symbol = to indicate equalities in the algebra U(f,,;)
modulo the left ideal generated by the elements of the subalgebra q' C f,,4;. Any two
elements of U(f,,+) related by = act on the subspace ([B.8)) in the same way. We shall
extend the relation = to formal power series in u~! with coefficients in U(f,, 1), and
then to matrices whose entries are such series. Put

(3.11) v=uti-m-1 and w=-uti-m-—L

The definition of the X(g,)-module M involves the ((2m + 21) x (2m + 2))-matrix
whose (a, b)-entry is d4p v + Fap. The rows and columns of this matrix are labeled by the
indices (32). In [KN3| §3] we proved that the inverse to this matrix is related by = to
the block matrix

H 0 0
(3.12) I J o],
P Q R

where the blocks H, P, R are certain matrices of size [ x [, while the blocks I, J, Q) are
certain matrices of sizes 2m X [, 2m X 2m, and [ X 2m, respectively. We label the rows
and columns of the blocks by the same indices as in the compound matrix (3I12]). For
instance, the rows and columns of the (I X I)-matrix R are labeled by m+1,...,m + .

Keeping the notation of §2; let F' be the (2m x 2m)-matrix whose (¢, d)-entry is Fi.q
forc,d = —m,...,—1,1,...,;m. Let F(u) be the inverse to the matrix u+ F. The entries
of the matrix F(u) are formal power series in u~! with coefficients in the algebra U(fy,);
see (Z4)). But now the algebra U(f,,) is regarded as a subalgebra of U(f,,4). We denote
by W (u) the trace of the matrix F(u), as we did in §2.

Let E denote the (I x [)-matrix whose (a,b)-entry is Fy, for a,b=m+1,...,m + 1.
Using our embedding (B3] of the Lie algebra gl; to {41, we see that this notation agrees
with that of §1. But now we use the indices a,b =m+1,...,m+1{ to label the rows and
columns of the matrix E. Let E(v) be the inverse to the matrix v+ E. Let E,p(u) be the
(a, b)-entry of the inverse matrix and Z(v) the trace of the inverse matrix. The coefficients
of the formal power series Z(v) in v~! belong to the center of the algebra U(gl,), which
is now regarded as a subalgebra of U(f,,+;). Next, for any indices a,b =m+1,...,m+1,
we put Eqp(v) = (v + 1+ E'),.!. Then, by Lemma [[3]

(3.13) (14 Z(v)) Eqp(v) = Eqp(v).
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Let a,b=m+1,...,m+1land ¢,d =—m,...,—1,1,...,m. By [KN3| §3], we have
“Hopa=(1+Z0) (W +D) F L 1) B(w) £ — Ean(v))
’ 2u 2u ’
Taa= Y carFo (14 Z() (gcd Bup(w) Fog—o(v +1)
b>m>c>—m
Eap(w) — Egp(v)
+ — Fua(v+1)),
Jea = (1+ Z(v)) Fea(v + 1),
Py o= Y FjcEps(v) Eoe(w)
e,f>m
£ > cadFp—iFee Bye(v) Eop(w) Fea(v +1),
e,f>m
m>c,d>—m
*Qad = Z Fec Eae(v) ch(v + l)a Rab = Eab(v)~

e>m>c>—m

By the definition of the X(g,)-module M, now the action of X(g,) on the elements of
the subspace

(3.14) 1eVeUeg(C" ' eC") c M

can be described by assigning the following sum of series with coefficients in the algebra
Bt = U(fms1) @ GD(C™H @ CM) to every series S;;(u):

(315) 5ij + Z Ry, ®0; Gj aﬁxsbj‘i’ Z H—b,—a X Tp; 8aj
a,b>m a,b>m

+ Y (T—d—a ®2ai Ouj + La—a @ 0; 0y O )
a>m>d>0

+ Z (Joe,md ®2ci Ogj + J—c,a @0 Tei Tay + Jo,—a © 03 0y 05 + Joa @ 0; 05 Oy x47)
m>c,d>0

+ Z Pe,fa®9i aeTaaj

a,e>m

+ Y (Qad ®0; 06y 04 + Qua ® 0 0; Dy Tay )

a>m>d>0

Here for a = 1,...,m + 1 and ¢ = 1,...,n we use the standard generators x,; of the
Grassmann algebra G(C™* @ C"). Then d,; is the left derivation on G(C™* @ C")
relative to x4;. The generators x,; with a < m and a > m correspond to the first and
the second direct summands in (3.7]).

Consider the action of X(g,) on the elements of the subspace (BI4) modulo q- M, in
accordance with the definition (2.6]), where m must be replaced by m + . From now till
the end of this section, we assume that a,b,e, f =m+1,...,m+1[, whilec,d=1,...,m
The indices g, h and k£ will run through 1,...,n

By our description of the block R, the sum displayed in the first of the six lines in
(BI5) acts on the elements of the subspace [BI4) as the sum

(3.16)  6ij+ > Eap(v) @ 0;0; ay oy = 655 (1 + Z(v ZEab @ 0; 0; 245 Our-
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By our description of the block H, the sum displayed in the second in (BIH) acts on
the elements of ([B.I4]) as the sum over the indices a,b of the expressions

(3.17) ~t2w) (Wt = % 1) Baplw) + % Eun(0)) ® 000y

By our description of the block I, the sum in the third line in (BI5) acts on the
elements of ([B.14) as the sum over the indices a, b, ¢, d of the expressions

~ Eap(w) — E,
+ Fb’,c (1 + Z(U)) (Eab(w) F,d’c(’l) + l) + W F,c’d(’l} + Z)) & Tq; 8(1]'7

- Eap(w) — Eqp(v
— Foe (14 Z(v)) (Eab(w) F g _c(v+1)+ % Fea(v+ l)) ® Xdi Oajs
Eup(w) — Eg(v)
2u
Eab(w) — Eab(U)
2u
Here Fy _. € q and Fy. € q. Hence, modulo q - M, the expression displayed in the last
four lines acts on the elements of ([B.I4) as the sum over the index k of the expressions

Eab (w) — Eab (’U)

FFR_.(1+Z(v)) (Eab(w) Fae(v+1) £ F_._aqlv+ l)) ® 0; Oy Oajs

— P (14 Z(v)) (E’ab(w) Fu_e(v+1)+ Fo_alv+ Z)) ® 0; O Oay.

(318) ( + (Eab(w) F,d’c(’l} - l) + ch,d(v + l)) & Hk :L'b% Tk Tdi 8aj

2u
E, Eu(v
+ (Eab(w) Fog c(v+1)=+ b(w)Qu Fea(v+1) ) ® Tpk Ock Tdi Oaj
N Eop(w) — E,
+ (Eab(w) ch(”U + l) + b(w)Qu ( ) F_c — v + l ® ;0 Typ Lk &H&Lj
Eu(w) — E,
+ (Bap(w) Fa—olw+1) + b(w)Qu W g ot )) © 05 2o Do O D )

x (1+Z(w))®1).

By our description of the block J, the sum displayed in the fourth line in (BI5) acts
on the elements of ([B.I4) as the sum over ¢, d of the expressions

(319) (1+Z)®1) (Foe—a(v+1) @ 3¢ 0y + Fca(v+1) @ 0; 2 Tay
+ FC»*d(v + l) ® 91 8c?6<ij + ch(’U + l) ® 91 9]‘ 8&%}15).

By our description of the block P, the sum displayed in the fifth line in (815 acts on
the elements of the subspace ([B.I4]) as the sum over the indices a, b, e, f of the expressions

Ft _y Ecf(v) Eup(w) @ 0; 0s Oaj
plus the action of the sum over the indices a, b, ¢, d, e, f of the expressions
FraFy—c Eey(v) Eap(w) Foc (v +1) ® 0; Oy Oaj,
+ Fyq Foe Bep(0) Eap(w) Fo.a(v +1) @ 0; 043 Doy,
+ Fpa Foe Bep(v) Bag(w) Fe,ma(v +1) ® 0; 03 0ay,
+ F g Fye Bey(0) Eop(w) Fog(v 4 1) ® 0; 8 Oay.

Here, modulo q - M, the expression to be summed over the indices a, b, e, f acts on the
elements of the subspace ([B.I4]) as the sum over the index k of the expressions

— Eey(v) Eap(w) ® 0; 01 ¢ Tok Oey Day,
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while the expression to be summed over a,b,c,d,e, f acts as the sum over g, h of the
expressions

(Eeb(v) Eop(w) ® 1) ( Foc—a(v+1) ®6; 0y 245 Teg g1, Oan, Oy Oaj
+ Focq(v+1)®6;0,0, xp5 2 g7, Tdh Ocy Oaj
+ Fo—q(v+1) ®0; 2y eg T fr Oan Oei Oaj
£ Fea(v+1) ®0; 0 39 Ocg @ j; Tan Oer Daj).

We have 0 = +0; for k = 1,...,n. Using the commutation relations in the ring
GD(C™H ®C"), the sum over the index k above equals the sum over k of the expressions

(320) Eef (U) Eab(w) ® 0; 0, :Cf% 855 Tk 8aj
plus
(3.21) T Ope Bef(0) Eap(w) © 5 0.

Similarly, the sum over the indices g, h equals the sum over g, h of the expressions
(3.22) (Foc—a(v+1) ® Teg Oan + Fca(v+1) @ 0 weg 5

+ Fo—a(v+1) ® 0y 0cg Oan + Fea(v +1) ® 04 0p, 0cg x5 )

% (Eep(v) ® 0; 0g 705 07) (B (w) ® 51, 0aj)
plus the sum over k of the expressions
(3.23)

(3ef Eep(v) Eap(w) @1) (= F_e—a(v +1) @ 0; ), 2,7 Tet, D O
FF ca(v+1) ®0p x5 e Ta; Oaj
— Feea(v+1) ® 6; 2ok Ock Oy Oaj F Fea(v + 1) @ ok, Ock Tai Oaj) -

By our description of the block @, the sum displayed in the last line in (3I5]) acts on
the elements of [BI4]) as the sum over a, b, ¢, d of the expressions

— (Fb’,c Eab(’l}) F,C’,d(v + l) + Fye Eab(U) Fc,fd(’l} + Z)) ® 0; 8a7(r“)dj
— (Fb),c Eab(v) F,c’d(v + l) + Fye Eab(v) ch(v + l)) ® b; 9j 8(1‘2‘.'1)(15‘.

Modulo q- M, the expression in the above two lines acts on the elements of the subspace
(BI4) as the sum over k of the expressions

(Bap(v) @ 1) (F_c,—a(v 4 1) @ 0; O 1 ek Oz Ogj + Fo,—a(v 4 1) @ 0; 2ok, ek, Oai O
+ F_ca(v+1) ® O 27 Tek 0 05 Oy Tay + Fea(v + 1) @ ok, Ock 0; 0 Oz Tag) -
Note that this sum over the index k can be rewritten as the sum over k of the expressions
(3.24) (F_c,_d(v +1) @ xer Ogj + F-ca(v +1) @ 0; Tek Tay
+Fea(v+1) @005 Ogj + Fea(v+1) @0 0;0 3 xdj)
X (=Eab(v) @ 0; 0 7,7 Ou7)-

Consider the sum of the expressions [B.23]) over the running indices e, f. We add this
sum to the expression displayed in the five lines in (8I8). Using the relation

Eap(w) — Egp(v)

(3.25) > Eop(v) Ege(w) = o
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together with (B3], and performing cancellations, we get the expression
(£ F_gc(v+1) ® 0k 25 Top Tai Oaj + Fg,—c(v + 1) @ Ty Ock Tai Do
+ Fg—c(v 4 1) ® 0; 2y Ock Oy Oy + Fac(v +1) @ 0; 0p 1 Ter Ogy Oaj)
X (14 Z(v)) Eap(w) @ 1).

After exchanging the running indices ¢ and d, the sum over the index k of the expressions
in the last three displayed lines can be rewritten as

(3.26) Sea (14 Z(0)) (Foc—a(v +1) + Fea(v +1)) Eap(w) @ 2p; 9y
plus the sum over k of the expressions
(3.27) (F,C7,d(v 1) @i Oap + F_c.a(v+1) @ Op wei x4
+ Fema(v+1) ® 6; 0 Oar, + Feq(v +1) ® 0; 0,05 23
X (= (1+ Z(v)) Eap(w) ® xpr, 8ay)-
Again, here we have used the commutation relations in the ring GD(C™*+ @ C™).
Now we perform summation over all running indices in the four expressions (B.19),

B22), 324), (327) and then take their total. By exchanging the running indices b and

f in 322), and by replacing the running index k in (3.24), (3:27)) by g, h (respectively),
the total can be written as the sum over the indices ¢,d and g, h of the expressions

(3.28) ((1 +Z(v)® 1) (F_c,_d(v +1) @ Teg Oan + F_ca(v+1) @0 g x 45
+Fe_q(v+1) ® 04005 0an + Fealv+1) ® 0,0 8C§zdﬁ)

% (819 = By (v) © 0,0, w50 ) (95— ZEab ) @ o s ).
e f

We perform summation in ([B2I]) over the running indices b, e. Then we replace the
running index f by the index b, which becomes free after summation. By adding the
resulting sum to the expression (B17), we get

— (14 Z) (W (v +1) + 1) Egp(w) @ zp; Oaj,

by BI3) and B25). Performing summation in ([B.26]) over the running indices ¢, d and
then adding the result to the last displayed expression, we get

(3.29) — (14 Z(v)) Eap(w) @ i O

Now we sum over all running indices in the two expressions (3.20), (3.29) and then
add the two resulting sums to (3I0). By using (3.13]) once again, the total can be written
as the sum over the index k of the expressions

(3.30) (1+Z(v) ®1)
( m*Z v) ®0; ekxfkaez) <5k3 Z ®1'bkaa])
e f ab
By the definition of the series Eqy(v), as given before (BI3), we have

~

1
Eoy(0) = w1+ BV = —(—uF 5 +m—F)

~

1
Eup(w) = (w+1+ Bl = —(uF 5 +m—E')
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We have also used the definitions ([BI1]). Hence, the sum of the expressions ([B:28)) over
the indices ¢,d and g, h plus the sum of the expressions ([B30) over the index k can be
rewritten as the sum over the indices g, h of the following series in u™!:

((1+Z(u:|:%fm—l))®l)

1 1
X (5gh + Z(F_q_d(u:t 5 — m) & Teg Odn +F_C,d(u:|: 5 — m) ® Oy Teg T g5,
c,d

1 1
+F7_d<u:|:f—m>®9 8c§8dh+ch<ui§fm>®999h80q:cdh))

(6194—2( uF 5 —I—m E)f ®99xfg8m)

(5hJ+Z(u:F L +m — E)_1®xbh8aj)

with coefficients in the algebra U(f,, ® gl;) ® GD(C™* @ C"). By mapping the series
S;j(u) to this sum, we describe the action of the extended twisted Yangian X(g,) on the
subspace ([BI4)) modulo q - M. Comparing this sum with the product of the series (3.4)
and B3) with 2 =m F % , we see that the map x intertwines the actions of X(g,); we
have used ([20) and (Z8). This completes the proof of Theorem 311 O

84. ZHELOBENKO OPERATORS

Consider the hyperoctahedral group $,,. This is the semidirect product of the sym-
metric group S,,, and the Abelian group Z3', where G,,, acts by permutations of m copies
of Zy. In this section, we assume that m > 0. The group $,,, is generated by the elements

o, with a = 1,...,m. The elements o, with indices a = 1,...,m — 1 are elementary
transpositions generating the symmetric group &,,, so that o, = (a,a + 1). Then o,, is
the generator of the mth factor Zy of Z5*. The elements o4, ..., 0., € ., are involutions
and satisfy the braid relations
0u0a+1 04 = Ogt10q 0q1 for a=1,...,m—2;
0q 0p = 0p g for a=1,...,b0—2;

Om—10mOm—-10m = OmOm—-10m Om—1-

Note that $,, is the Weyl group of the simple Lie algebra sp,,,. Let B,, be the braid
group corresponding to sp,,,. It is generated by elements &1, ...,y that, by definition,
satisfy the above displayed relations, instead of the involutions o1, ..., 0., respectively.
For any reduced decomposition ¢ = 04, -+ 04, in Hy,, put

(4.1) F=Fa,  Fay.

The definition of & is independent of the choice of a reduced decomposition of o.
The group $,, also contains the Weyl group of the reductive Lie algebra sos,, as a
subgroup of index two. This subgroup $)}, is generated by the elementary transpositions

O1y...,0m—1 and by the involution o], = 0, 0y—1 0p,. Along with the braid relations
among oy, ...,0m_1, we also have braid relations involving o/,
/ / .
000y = 0y, Oa for a=1,...,m—3,m—1;

’ ’ ’
Om—20p0m—2 =0, Om-—20,,

For m > 1, the braid group of sos,, is generated by m elements satisfying the same braid
relations instead of the m involutions oy,...,0m_1,0,,, respectively. When m = 1, the
braid group corresponding to f,, = so09 con51sts of the 1dent1ty element only.
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Now, let the indices ¢,d run through —m,...,—1,1,...,m. For ¢ > 0 we denote
c=m+1—c¢; forc<0put c=—m—1—c. Consider a representation o — & of the
group $,, by permutations of —m,...,—1,1,..., m such that
(4.2) a(c)=0() for oe&,
and a,,(c) = —c if |¢|] = 1, while 7,,(c) = cif |¢| > 1. We can define an action of the
braid group 9B,, by automorphisms of the Lie algebra f,,, by the assignments
(43) o: Fg— F&(c)&(d) for o€ &,

(4.4) T Fea = (1)U (5 (a);

cf. [T]. In accordance with our convention on double signs, the upper sign in + corre-
sponds to f,, = 502,,, while the lower sign corresponds to f,, = sp,,,. The automor-
phism property can be checked by using relations (2Z3]); see the proof of statement (i)
in Lemma 1] below. This action of the group %,, on f,, extends to an action of B,,
by automorphisms of the associative algebra U(f,,). Note that if f,, = s09,,, then the
action of B, on U(f,,) factors through an action of the group $,,.

Next, an action of the braid group 9,, by automorphisms of the algebra GD(C™ ®C")
can be defined in the following way. Put

5’(1’@) = Z5(a)i and 5(8(”) = 8—(a)i for o€ 6G,,,
(45) 5I—rn(xai) = Tai and 5m(8ai
Om(z1:) =0; 01y  and G, (01

where i =1,...,n.

Note that in the case where f,, = s09,,, the element 5,% € B, acts on x1; and on 9y
as the identity, so that the action of B, on GD(C™ ® C") factors through an action of
the group $,,. But if §,, = sp,,,, then the element 52 acts on z1; and on dy; as minus
the identity, because 6; 6; = —1 in this case. This is why we use the braid group, rather
than the Weyl group $,, of the simple Lie algebra sp,,,. Taking the tensor product of
the actions of 9B, on the algebras U(f,,) and GD(C™ ® C™), we get an action of 9B, by
automorphisms of the algebra B,, = U(f,,) ® GD(C™ @ C™).

Lemma 4.1. (i) The map ¢, : U(fp) = GD(C™ @ C™) is B, -equivariant.
(ii) The action of B, on By, leaves invariant any element of the image of X(g,) under
the homomorphism [3,,.

Proof. We employ the elements p.; and g of GD(C™ ® C"), introduced immediately
after stating Proposition [Z3l In terms of these elements, the action of 9B,, on the
algebra GD(C™ ® C™) can be described by setting

F(Pei) = Pa(e)i and 0(qei) = Go(eyi  for  0€ Gy,
5m(pci) = (i1)661p6m(c)i and 5m(qcz> = (il)(;dQc?m(c)ia
where ¢ = —m,...,—1,1,...,m. Statement (i) follows by comparing our definition of
the action of %B,, on f,, with the description ([ZI0) of the homomorphism (,, and (ii)
follows similarly, with the help of the description ([2Z9) of f5,,. a
Consider the Cartan subalgebra h occurring in the triangular decomposition (2.I7]).
In the notation of this section, our chosen basis of § is (F_z_az|la = 1,...,m). Now,
let (eq]a =1,...,m) C h* be the dual basis, so that e5(F_5,_a) = dgp. For ¢ < 0 put
€. = —€_¢. Thus, the element ¢, € h* is defined for every indexc = —m, ..., —1,1,...,m.

Consider the root system of the Lie algebra f,, in h*. Put

Nag =€q —Eqr1 for a=1,....m—1.
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Also, put Np = €m—1 + &m if fim = §02m, and 0y, = 2ey, if fp, = 5Py,,. Then 0y, ..., 0,
are simple roots of f,,. Denote by A" the set of positive roots of f,,. These are the
weights €, — ¢, and g, + €3, where 1 < a < b < m if f,, = s02,,, and the same weights
together with 2e,, where 1 < a < m if f,, = sp,,,,. We assume that in the case where
fm = 502 the root system of f,, is empty. Let p be the half-sum of the positive roots of f,,,
so that its sequence of labels (p1,...,pm) is (m —1,...,0) if f,, = 509, and (m,..., 1)
if §,, = 8ps,,,. For each a =1,...,m — 1, we put

(4‘6) E, = Ffa,fc?l , Fa= ch?lﬁa , Hg= Ffa,fa —I_gF1,—at1-
Let

(4.7) En=F s=im Fn=Fn_n-1, Ho=F 35 a1+ Fm-m
in the case where f,, = s09,, with m > 1. In the case where f,, = sp,,,, let
(4.8) En=F mm/2, Fn,=Fm_-m/2, Hn=F_m_m.

For every possible index a, the three elements E,, F,, H, of the Lie algebra f,, span a
subalgebra isomorphic to sl;. They satisfy the commutation relations

(4.9) [Eo, Fu) = H,, [Ha, E.)=2E,, [H, F,)=—-2F,.

So far we have denoted by B,, the associative algebra U(f,,) ® GD(C™ ® C™). Now
we use a different presentation of the same algebra. Namely, from now on until the end
of the next section, we regard B,, as the associative algebra generated by the algebras
U(f) and GD(C™ @ C™) with the cross relations

(4.10) [X, Y] = [(n(X),Y]

forany X € f,, and Y € GD(C™®C™). The brackets on the left-hand side of (Z1I0) denote
the commutator in B,,, and the brackets on the right-hand side denote the commutator
in the algebra GD(C™ ®C") embedded in B,,,. In particular, we regard U(f,,) as a subal-
gebra of B,,,. An isomorphism of this B,,, with the tensor product U(f,,) ® GD(C™ @ C")
can be defined by mapping elements X € f,, and Y € GD(C™ @ C") of B,,, (respectively)
to the elements

X®1+1®((X) and 1®Y

of U(fp) ® GD(C™ @ C™). Here we have used (2.6). The action of the braid group B,
on By, is defined via its isomorphism with U(f,,) ® GD(C™ @ C"). Since the map ¢, is
B ,,-equivariant, the same action of 8, is obtained by extending the actions of 9,, from
the subalgebras U(f,,) and GD(C™ & C™) to B,,.

Now consider the following two sets of elements of the algebra U(h) C U(f,):

(4.11) {Faa_be+Z; Faa+be+z|1§a<b§m,z€Z},
(4.12) {Fou+2|1<a<m, z€Z}.

In the case where f,, = §02,,, we denote by U(h) the ring of fractions of the commutative
algebra U(h) relative to the set of denominators ([@I1)). For f,, = sp,,,, we denote by
U(h) the ring of fractions of U(h) relative to the union of the sets (@II) and EIZ).
The elements of the ring [Tf)) can also be regarded as rational functions on the vector

space h*. The elements of the subalgebra U(h) C U(h) are then regarded as polynomial
functions on h*.

Denote by B,,, the ring of fractions of B,,, relative to the same set of denominators as

was used to define the ring of fractions U(h). But now we regard these denominators as
elements of B,,,, using the embedding of § C f,, into B,,,. The ring B,, is defined due to



140 M. NAZAROV AND S. KHOROSHKIN

the following relations in B,,. For ¢ < 0 put ¢, = —e_.. Thus, the element €. € h* is
defined for every ¢ = —m, ..., —1,1,...,m. Then for any element H € ) we have
[H, Feq) = (e5—€2)(H)Fea for c¢,d=-m,...,—1,1,...,m;

[H,xe] = —ez(H) xe; and [H,0u] =ez(H) 0y for c=1,...,m.

So, the ring B,, obeys the Ore condition relative to our set of denominators. Using left
multiplication by elements of U(h), we turn the ring B,, into a U(h)-module.

The ring B,, is also an associative algebra over C. The action of the braid group %B,,
on B, preserves the set of denominators, so that ®8,, also acts by automorphisms of the
algebra B,,. Using the elements (&) and (@) if §,, = $02,,, or the elements (&) and

&R) if f,,, = 8ps,,, for every simple root 7, of f,, we can define a linear map

fa : By, — Em
by setting
(4.13) GQYV) =Y+ (sVHE) B FR(Y),
s=1
where

H® = (H)(Hy—1)---(H, —s+1)
and ﬁa is the operator of adjoint action corresponding to the element F, € B,,,
F,(Y) = [F,,Y).

For a given element Y € B,,, only finitely many terms of the sum (£I3) differ from zero.
In the case where f,, = so02, there are no roots of f,,, and no corresponding operators
B,, — B;,. On the other hand, if f,, = s09,,, with m > 1, then, by (£.4),

gm &m = am gmfla
because
5771 : Emfl — Em7 mel = Fm; Hmfl = Hm

Let J and J be the right ideals of the algebras B,, and B,, (respectively) generated
by all elements of the subalgebra n C §,,. The following two properties of the linear
operator &, go back to [Zl, §2]. For any elements X € h and Y € B,,,

ga(XY) € (X + na(X)) ga(Y) + jv
fa(YX) € fa(Y)(X + na(X)) +J.

See [KN1l §3] for detailed proofs of these two properties. The proofs employ only the
commutation relations (3], not the actual form of the elements E,, Fy, H,.
Property ({I4) allows us to define a linear map &, : B,, — J\ B, by

(4.14)

E(XY)=26(Y)+J for XeU(h) and Y €B,,

where the element Z € U(h) is defined by the relation

Z(p) = X(p+ns) for pep”,

and both X and Z are regarded as rational functions on h*. The backslash in J \ By,
indicates that the quotient is taken relative to a right ideal of B,,. For the proofs of the
next two propositions, see [KN3| §4].

Proposition 4.2. For any simple root 1, of f,, we have the inclusion 7(J) C ker&,,
where o = 0, unless fm = §02, and a = m, in which case o = ol,,.
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Recall that n’ denotes the nilpotent subalgebra of §,, spanned by all the elements F,4
with ¢ < d. The relation F.q = —€.q F_q4,—. shows that the subalgebra n’ is also spanned
by the elements F,oq with ¢ < d and ¢ < 0. Now, for any a = 1,...,m, denote by n/, the
vector subspace of f,, spanned by all the elements F.; with ¢ < d and ¢ < 0, except the
element E,. Let J' be the left ideal of B,, generated by the elements X — (,(X) with
X €. Under the isomorphism of B,, with U(f,,) ® GD(C™ & C"), for any X € f,, the
difference X — (,(X) € B,,, is mapped to the element
(4.15) X®1€U(fm)®1C Ufm) GD(C™ @ C").

Let J/, be the left ideal of B,, generated by the elements X — (,(X) with X € n/, and
by the element E, € By,. Denote J' = U()J and J, = U(h)J. Then both J' and J,
are left ideals of the algebra B,,.

Proposition 4.3. For any simple root 1, of f. we have Ea(?f(j;)) c J + 7, where
0 = 04 unless fp, = 8§02y, and a = m, in which case o = o),,.
Proposition allows us, for any simple root 7,, to define a linear map
a : j\Bm _>j\]§m
as the composition &, & applied to the elements of B,, taken modulo J. Here the simple
reflection o € 9, is chosen as in Proposition In their present form, the operators

€1,...,&n on the vector space J\ B, were defined in [KQ]. We call them the Zhelobenko
operators. For the proof of the next proposition, see [KOl §§4 and 6].

Proposition 4.4. The Zhelobenko operators satisfy the braid relations corresponding to
the Lie algebra fy,. Namely, if fm, = sp,,,, then we have

(4.16) ga Ea+1 Ea = Eaﬂ Ea Eaﬂ for a=1,...,m—2;
(4.17) gagb:gbga for a=1,...,b—2;
Smfl gm gmfl gm = Sm §m71 gm €m71~
If fm = 802y, and m > 1, then we have the same relations [EI0) and @IT) among
&1, .-, Em—1 as in the case of ., = spy,, above, and also the relations

EaEm:EmEa for a=1,... m—3,m-—1;
517172 Em gm72 :Em 517172 5171

For f,, = sp,,,, by using any reduced decomposition of an element o € £, in terms
of the involutions o1, ...,0.,, we can define a linear operator

(4.19) & : J\ B — J\ B,

(4.18)

in the usual way, as in (£I). By Proposition [£4] this definition of ga is independent of
the choice of a reduced decomposition of o.

When §,,, = sp,,,, the number of the factors o4,..., 0, in any reduced decomposition
o € $m will be denoted ¢(c). This number is also independent of the choice of a
decomposition and is equal to the number of elements in the set

(4.20) Ay ={neAT|o(n) ¢ AT},

where AT denotes the set of positive roots of the Lie algebra sps,,.

Now suppose that f,, = 502,,. Then we can use any reduced decomposition in terms of
01, .., Om—1,0., to define a linear operator ({19) for every element o € £)/,. Again, this
definition is independent of the choice of a reduced decomposition of o, by Proposition
4 Tt turns out that in this case we can extend the definition of the operator (I9)
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to any element o € §),,, where m > 1. Note that in this case the action of the element
&m on By, preserves the ideal J, and therefore induces a linear operator on the quotient
vector space J \ B,,. This operator will still be denoted by &,,. The extension of the
definition of the operators [I9) to o € $,, is based on the next lemma, which was
proved in [KN3| §4].

Lemma 4.5. If f,, = so2,, and m > 1, then the operators 51, . ,Em,l,am on J \ B,
satisfy the same relations as the m generators of the braid group 2B,,, respectively. Also,
we have the relation

(421) gm :5m gmfl am'
Now, if f,, = s09,, with any m > 1, take any decomposition of an element o € $,, in
terms of the involutions o1, ..., 0,, such that the number of occurrences of o1, ...,0.,_1

in the decomposition is the minimal possible. For f,, = $09,,, the symbol ¢(c) will
denote this minimal number. Note that unlike for f,, = sp,,,, here we do not count
the occurrences of o,, in the decomposition. All the decompositions of ¢ € §),, with

the minimal number of occurrences of oy, ...,0,—1 can be obtained from each other by
using the braid relations among o1, ..., 0, € $,, along with the relation o2, = 1.
Substituting the operators &1, ...,&mn—_1,5m on J\ By, for the involutions o71,. .., 0.,

in such a decomposition of o € $,,, we obtain another operator on J\ B,,,. This operator
does not depend on the choice of a decomposition, because of the first statement of
Lemma [£5] and because the operator &2 on the vector space J \ B,, is the identity for
fm = $02y,, which is the case considered here. Moreover, for o € 3/, C $,,, the operator
on J\ B,, obtained by the above substitution coincides with the operator (ZI9). Indeed,
for f,,, = §09,,, the operator (£19) was defined by substituting the Zhelobenko operators
51, . ,Em,l,gvm for o1,...,0m—_1,0,, in any reduced decomposition of ¢ € $/,. The
coincidence of the two operators for o € £/, now follows from (LZI)). Thus, we have
extended the definition of the operator (£19)) from o € £/, to all o € H,,.

Note that, for f,, = so0q,, and o € $/,, the number ¢(o) is equal to the length of a
reduced decomposition of o in terms of o1, ...,0m_1,0.,. Thus, we have also extended
the standard length function from the Weyl group $!, of soa,, to the hyperoctahedral
group $,,. Moreover, for any o € $),,, not only for o € §/, the number ¢(o) equals the
number of elements in the set {@20), where AT is the set of positive roots of s02,,.

From now on we shall consider f,, = s02,, and f,, = sp,,, simultaneously, working
with the operators (£I9]) for all elements o € §,,. In particular, for f,, = $02,,, we shall
assume that the operator (19) with o = 0., acts as .

The restriction of the action (@3]), (£4) of the braid group %B,, on f,, to the Cartan
subalgebra b factors to an action of the hyperoctahedral group ,,. This is the standard
action of the Weyl group of f,, = sp,,,. The resulting action of the subgroup $,, C 9,
on b is the standard action of the Weyl group of §,, = so2,,. The group $,, also
acts on the dual vector space h*, so that o(e.) = €4() for any o € ,, and any ¢ =
—m,...,—1,1,...;m. Unlike in ([@2]), here we use the natural action of the group $,,
by permutations of —m,...,—1,1,...,m. Thus, o, € $H,, with 1 < a < m exchanges
a,a + 1 and also exchanges —a, —a — 1, while o, € $,, exchanges m,—m. Note that
we always have o(—c) = —o(c). If we identify each weight u € h* with the sequence
(41, .-y pim) of its labels, then

(s ) = (Ho=1(1)s -+ s Ho—1(m)) for o€ Gy,
Om s (s ey ) = (W1 e s 1, —[m)-
The shifted action of the group $,, on the set h* is defined by the assignment
wr—ocou=oc(u+p) —p for o€ Hp.
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By regarding the elements of the commutative algebra U(h) as rational functions on the
vector space h*, we can also define an action of the group $),,, on this algebra:

(4.22) (coX)(p)=X(oc"topu) for X cU(h).
The next proposition was also proved in [KN3| §4].

Proposition 4.6. For any o € §,,, X € U(h), and Y € J\ B,,, we have
& (XY) = (00X)E,(Y),

(4.23) > N
(Y X) =&(Y)(00X).

§5. INTERTWINING OPERATORS

Let § = (d1,...,0,,) be any sequence of m elements from {1, —1}. The hyperoctahedral
group )., acts on the set of all such sequences naturally, so that the generator o, € $,,
with a < m acts on § as the transposition of §, and d,41, while the generator o, €
$Hm changes the sign of §,,. Let d; = (1,...,1) be the sequence of m elements 1.
Given any sequence 4, take the composition of the following automorphisms of the ring
GD(C™ @ C™):

(5.1) Tai— 0; 05 and Oz — 0;xz; whenever §, = —1.
Here a > 1 and ¢ = 1,...,n. Let w denote this composition. In particular, the au-
tomorphism w corresponding to § = (1,...,1,—1) coincides with the action of &,, on

GD(C™ @ C™); see (@H). For f,, = s02,,, the automorphism w is involutive for any .
But if f,, = 5p,,,, then the square w? acts as follows:

Tgi — —Xg; and Oz — —0g; whenever 0, = —1.

For any f,,,-module V', the action of X(g,) on F,,,(V) = VRG(C™®C") is determined
by the homomorphism 5, : X(g,) = U(fn) ® GD(C™ ® C™); see Proposition Next,
the action of the Lie algebra f,, on the second tensor factor G(C™ @ C™) of F,, (V) is
defined via the homomorphism ¢, : U(f,,) — GD(C™®C"); see the definition (2.6]). Here
any element of the ring GD(C™ & C™) acts on the vector space G(C™ ® C™) naturally.
We can modify the latter action, by making any element ¥ € GD(C™ @ C") act on
G(C™®C™) via the natural action of @ (Y"). Then we get another GD(C™ ® C™)-module,
with the same underlying vector space G(C™ @ C™) for every ¢.

For any f,,-module V, we can now define a bimodule F5(V) of f,, and X(g,). Its
underlying vector space is the same V ® G(C™ ® C") for every §. The action of X(g,,) on
Fs(V) is defined by pushing the homomorphism S, forward through the automorphism
w, applied to GD(C™ ® C™) as to the second tensor factor of the target of 8,,. The
action of f,, on F5(V) is also defined by pushing the homomorphism ¢, forward through
the automorphism w. Thus, the actions of X(g,) and f,, on the bimodule Fs(V') are
determined by the compositions of the homomorphisms

X(gn) = Ulim) ® GD(C" @ C") = U(jm) @ GD(C" © C"),
Ulin) — Ulln) @ GD(C™ & C") — Uljm) ©GD(C" & C"),
respectively. Note that here we have 7, (V) = Fs_ (V).
Let i € b* be any weight of f,, such that
(5.2) o —pp €7 and  pg + pup € Z whenever 1<a<b<m.
In the case where f,, = sp,,,, we also suppose that, in addition to (5.2,

(5.3) 2uq ¢ Z whenever 1<a<m.
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Our nearest goal is to show how the Zhelobenko operator ([@I9]) corresponding to an
arbitrary element o € $),,, determines an X(g, )-intertwining operator

(5.4) Fn(My)n — Fs(Myop)n, where 6 =o0(d).

In this section we keep regarding B,, as the associative algebra generated by U(f,,)
and GD(C™ @ C™) with the cross relations [@I0)). Let Is be the left ideal of the algebra
B,, generated by the elements xz with §, = —1 and the elements dz; with §, = 1.
Herea=1,...,mand i =1,...,m. Note that, in terms of the elements ¢.; introduced
immediately after stating Proposition 2.3}, the left ideal I5 is generated by the elements
q—s,a,i>, where again @ = 1,...,m and 7 = 1,...,m. In particular, the ideal Is, is
generated by all the left derivations d,;. Let Is be the left ideal of B,, generated by the
same elements as the ideal Is of B,,.

Consider the image of the ideal I5 in the quotient space J \ B,,, i.e., the subspace
J\ (Is +J) in the quotient space J \ B,,. The image will be denoted occasionally by the
same symbol I5. In the context of the next proposition, this will cause no confusion.

Proposition 5.1. For any o € $,, the operator fvg maps the subspace Is, to 155, ).

Proof. For any a =1,...,m — 1, consider the operator }A?a corresponding to the element
F, € B,,. By ([@0)) and also (Z6]) and (@I0), for any Y € GD(C™ @ C™) we have

n

Fu(Y) == [wak Oagur - V).
k=1

Similarly, in the case where f,, = §ps,,, for any Y € GD(C™ @ C") we have

NE

}?'m(Y) = [T % Tmr, Y] /2

mk

E
I

1

by (@R). If f,n = 502y, then we do not need to consider the operator Fj,, because in this

case the operator (ZI9) corresponding to o = ,, acts on J\ B,, as &,, by our definition.
The above description of the action of F, with a < m on GD(C™ ® C™) shows that

this action preserves each of the two 2n-dimensional subspaces spanned by the vectors

(5.5) zaz and  xggg;, where (=1,...,n;
(5.6) O0ai and 0Oz77;, where i=1,...,n.
This action also maps to zero the 2n-dimensional subspace spanned by
(5.7) za; and Oz, where i=1,...,n.

Therefore, for any §, the operator &, with a < m maps the left ideal I5 of B,, to the
image of I5 in J \ B,,, unless 5, = 1 and 6,47 = —1. The operator Ea on J\ B,, was
defined by taking the composition of ¢, and &,. Hence, Eva with a < m maps the image
of I5 to the image of Tga((;), unless §, = —1 and 6,41 = 1.

For f,, = sp,,,, the action of F,, on the vector space GD(C™ & C™) maps to zero the
n-dimensional subspace spanned by the elements

(5.8) Tmi = T15, where i=1,...,n.

Therefore, the operator &,, maps the left ideal I5 of B,, to the image of Is in J \ B,

unless 6,, = 1. Hence, the operator fvm on J\ B,, maps the image of I5 to the image of
I5,.(5), unless 0m = —1. In the case where f,, = $02,,, we only note that &,, maps the
image of I5 in J \ B, to the image of Lm((g).
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From now on we shall denote the image of the ideal Is in the quotient space J \ B,,
by the same symbol. Put
5= Z 0a€a € B,
a=1

— ~

Then for every o € 9, we have o(§) = o(d), where on the right-hand side we use the
action of the group $,, on h*. Let ( , ) be the standard bilinear form on h*, so that the
basis of weights ¢, with a = 1,...,m is orthonormal. The above remarks on the action
of the Zhelobenko operators on I can now be restated as follows:

(5.9) if (3, €a —E€at1) >0, then Ea(i;) C Taa((;) for a=1,...,m—1;
(5.10) if (0,em)>0, then  &,(T5) CLy (5 for fum =spy,

We shall prove Proposition 5.1 by induction on the length of a reduced decomposition
of o € H,, in terms of o1, ...,0,,. This number was denoted by ¢(c) in the case where
fm = $Pa,,, but may be different from the number denoted by ¢(o) in the case of f,, =
$02,. Recall that in both cases ¢(0) equals the number of elements in the set (£20),
where AT is the set of positive roots of f,,.

If o is the identity element of §,,, Proposition (.l is tautological. Suppose that for
some o € §),, we have -

£U(I5+) - 10(6+)~
Take o, € $H,, with 1 < a < m such that 0,0 has a longer reducedv decomposivtion in

terms of oy, ...,0,, compared to o. If f,, = 502, and a = m, then &, , = 7m &, and
we need the inclusion
(5.11) 5m(Ta(5+)) - Tama(5+),

which holds true by the definition of the action of $,, on J \ Bn.

We may exclude the case where f,, = 509, and a = m, and assume that
(5.12) Uogo) ={(o) + 1.
First, suppose that a < m here. Then we prove the inclusion

¢a(Iosy)) Clouo(sy)-
By (59), this inclusion will be true if

(0(0+),€a — €at1) = (0(64),€a — €at1) > 0.
But condition (5I2) for @ < m implies that €, — 441 € o(A™). Indeed, since the root
€4 — €at1 Of fm is simple, we have o,(n) € AT for any n € AT such that n # e, — €q11-
Since (o) and ¢(o,0) are the numbers of elements in A, and A,_, (respectively), here
€a—€ar1 € 0(AT). So, €4 — a1 = 0(gp — &), where 1 < b <m and 1 <|c| < m. Thus,

(0(04),2a = 2at1) = (0(34), 0 (ep — £c) = (01,6 — &) > 0.

Now suppose that a = m. Here we assume that §,, = sp,,,. We need the inclusion

Em(Io(sy)) C lopo(ap)-
It will be true if o R
(0001),em) = (0(84), ) > 0.
But condition (5.12)) for a = m implies that 2¢,, € o(AT), where A" is the set of positive
roots of sp,,,,. Indeed, since the root 2¢,, of sp,,, is simple, o,,(n) € AT for any n € AT
such that n # 2¢,,. Since ¢(0) and ¢(0,,0) are the numbers of elements in A, and A,_,
(respectively), we have 2¢,, € o(A™). So &, = o(&p), where 1 < b < m. Thus,

(0(84),&m) = (0(34),0(1)) = (04,2) > 0.
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Corollary 5.2. For any o € $,,, the operator fvg on J \ B,,, maps
INT' 4T, +3) to I\ + Ty, + ).

Proof. We extend the arguments used in the proof of Proposition 5l In particular, we
shall again use the length of a reduced decomposition of ¢ in terms of o1,...,0,,. If
is the identity element of §),,,, then the required statement is tautological. Now suppose
that the statement of Corollary is true for some o € 9),,. Take any simple reflection
0a € Hm with 1 < a < m such that 0,0 has a longer reduced decomposition in terms
of o1,...,0,, compared to ¢. In the case where f,, = 502, we may assume that a < m,
because in that case the required statement for o,,0 in place of o is provided by (G.IT]).

Thus, we may assume (5.12)). With the above assumption on a, we have proved that

(BI2) implies

—

(5.13) (0(64),ma) = 0.
Here 7, is the simple root corresponding to o,. But (B.I3)) implies the identity
(514) j/ +Ta'(5+) = j:z +TU(5+)

of left ideals of By,. Indeed, the two sides of (5.14) differ by elements Y'¢,(E,), where Y
ranges over B,,. Condition (5.13) implies that (,(E.) € 155, ); see the definition (2.6])
and the arguments at the beginning of the proof of Proposition Bl Using Proposition
43l and the induction step in our proof of Proposition 5.1l we see that £, maps

INT 4+ L)+ N =I\T, + Ly +3) to INT +1, .6, +J).
This constitutes the induction step of our proof of Corollary (]

Let I, s be the left ideal of the algebra B,, generated by Is +J" and by the elements
F a_a—C(F_a_g)— ftq, where a=1,...,m.

Recall that under the isomorphism of the algebra B,, with U(f,,) ® GD(C™ ® C"), the
difference X — (,(X) € B, for every X € f,, is mapped to the element (ZIH). Denote

by 1,5 the subspace U(h) 1, 5 of By,; this is also a left ideal of B,y,.

Theorem 5.3. For any element o € 9,,, the operator Eg on J\ B,, maps
j\ (Tu,5+ + j) to j\ (Toou,o(&r) + j)

Proof. Let k be a weight of f,, with sequence of labels (k1,...,km). Suppose that
satisfies conditions (5.2)) instead of u. For f,, = sp,,,, we also suppose that k satisfies
conditions (5.3)) instead of u. Denote by ims the left ideal of By, generated by Is +J" and
by the elements

F_ g _g—Kq, where a=1,...,m.

Proposition and Corollary imply that the operator &, on J \ B,,, maps
I\ Aes, +3) to I\ (Lyow,o(sy) + 7).
Now we choose
(5.15) Ko = pla +n/2 for a=1,...,m.

Then the conditions on r stated at the beginning of this proof are satisfied. For every
o € 9., we shall prove the following identity of left ideals of B,,:

(516) Igon,a(6+) = 700#,0(5_*_)‘
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Theorem [£.3] will then follow. Denote § = o(d4). By our choice of k we have
(5.17) cok=0ou+nd/2,

where the sequence § is regarded as a weight of f,,,, by identifying the weights with their
sequences of labels. Let a run through 1,...,m. If §, = 1, then, by the definition (Z.0]),

Cn(Ffa,fa) -n/2=— Z Zak Oak € Is .
k=1
If 6, = —1, then the same definition (2.6) shows that

Cn(Foa—a) +n/2=" Oarzar €15.
k=1

Hence, relation (5I7) implies (5.16]). O

Consider the quotient vector space B,, / I, 5 for any sequence ¢. The algebra U(f,,),
viewed as a subalgebra of B,,, acts on this quotient via left multiplication. The algebra
X(gn) also acts on this quotient via left multiplication, via the homomorphism 3, :
X(gn) — By. Recall that in §2, the target algebra B,, of the homomorphism g, was
defined as U(f,,) ® GD(C™ ® C™). Here we use a different presentation of the same
algebra, with the help of the cross relations ({I0). In particular, here the image of §,,
commutes with the subalgebra U(f,,) of B,,; see statement (ii) in Proposition Thus,
the vector space B,, / I, s becomes a bimodule over f,, and X(g,).

Consider the bimodule Fs5(M,) over f,, and X(g,) defined at the beginning of this
section. This bimodule is equivalent to B,, / I, 5. Indeed, let Z run through G(C™®C").
Then a bijective linear map

F5(My) = B [ Ls
intertwining the actions of f,, and X(g,) can be defined by mapping the element
1,82 M,G(C"C")

to the image of

w 1(Z) € GD(C™ @ C") C By,
in the quotient B,,, / I, 5. Here the intertwining property follows from the definitions of
Fs(M,) and I, 5. The same mapping determines a bijective linear map

(5.18) f"(;(MH) — Bm/fﬂ’g.

In particular, the space Fs(M,)n of n-coinvariants of Fs(M),) is equivalent to the
quotient J \ B,,/1, s as a bimodule over the Cartan subalgebra b C f,, and over X(g,).
But Theorem [5.3] implies that the operator fvg on J\ B,, determines a linear map

(519) J \ BM/I;L,5+ —J \ Bm/Ioou,a(&r)'

The latter map intertwines the actions of X(g,) on the source and the target vector
spaces, because the image of X(g,,) in B,, relative to §,, commutes with the subalgebra
U(fm) C Biy; see the definition (£I3]). We also use statement (ii) of Lemma [L.1] Recall
that 7, (V) = Fs, (V). Hence, by using the equivalences (5.I8) for the sequences § = ¢,
and § = o(d4), we see that the operator (5.19) becomes the desired X(g, )-intertwining
operator (5.4).

As usual, for any f,,-module V and any element A € h*, let V* C V be the subspace of
vectors of weight A, so that any X € b acts on V* via multiplication by A(X) € C. By
the property ([@23) of &,, the restriction of our operator (54) to the subspace of weight
A is an X(g,,)-intertwining operator

(5.20) Fu M)y — Fs(Myon)l, where §=a(dy).
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At the end of §2, we defined the modules P, and P, over the Yangian Y(gl,,). The

underlying vector space of these modules is the Grassmann algebra G (C™). This algebra

is graded by 0,1,...,n. The actions of Y(gl,,) on P, and P, preserve the degree. Now,
for any N = 1,...,n, denote by PN and P,V (respectively) the submodules in P, and
P! that consist of the elements of degree N. Note that Y(gl,,) acts on the subspace of P,
of degree zero trivially, that is, via the counit homomorphism Y(gl,,) — C. That action
of Y(gl,,) does not depend on z. It will be convenient to denote by P the vector space
C with the trivial action of Y(gl,,).

Denote

(5.21) Vo =N/24 g — Ag for a=1,...,m.

Suppose that vy,...,v, € {0,1,...,n}; otherwise, the source X(g,)-module in (G.20)
would be zero by Corollary Under our assumption, Corollary implies that the
the source X(g,)-module in (B20) is equivalent to

(5.22) P @P, 1 ® @B

pulled back through the automorphism (ZI7) of X(g,), where f(u) is given by (2:26) and
z= :F%. A more general result is stated as Proposition 5.4 below. The tensor product in
BE22) is that of Y(gl,,)-modules. Then we employ the embedding Y(g,) C Y(gl,,) and
the homomorphism X(g,,) — Y(g,) defined by ([LI8). By using the labels p1, ..., py, of
the half-sum p of the positive roots of f,,, the tensor product (522]) can be rewritten as

Vm P V1
(5.23) Pum—%+pm ©o® Pu1—%+p1'

In terms of the labels p1,. .., p, we can also rewrite the product (Z20) as

(5.24) [ o bt

a=1 ’U/_Ma_%_pa

Now, consider the target X(g,)-module in (520)). For each a =1,..., m denote
fla = po-1(@]: Vo = Vo 1(@)]: Pa = Plo-t(a)-

The above description of the source X(g,,)-module in (5.20) can be generalized to similar
X(gy)-modules depending on an arbitrary element o € $),,.

Proposition 5.4. For § = o(04), the X(gn)-module F5(Myo,)Z °* is equivalent to the
tensor product

S o 5101
(5.25) Pﬁ'm_%"l'ﬁm ® ® Pﬁl_%'i‘ﬁl

pulled back through the automorphism ([([LIT) of X(gn), where f(u) equals the product
B.24).

Proof. First, consider the bimodule F,,(Myop)n of h and X(g,,). By Corollary 2.6] this
bimodule is equivalent to the tensor product

(5.26) B i =t +6mm @ O Py 145,

pulled back through the automorphism (II7) of X(g,,), where f(u) equals

ﬁ u_éaﬁa+%_5af~)a

5.27 .
( ) u_éaﬁa_%_(saﬁa

a=1

For any a = 1,...,m, the element F_; _; € b acts on the tensor product (5.26) as
n/2 - dega +(U o /'I’)GJ
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where deg, is the degree operator on the ath tensor factor, counting the factors from
right to left. It acts on the vector space G(C™) of that tensor factor as the Euler operator

n
(5.28) > axdi € GD(CM).
k=1

A bimodule equivalent to F5(Myo,)n can be obtained by pushing forward the actions
of h and X(g,) on (B20) through the composition of the automorphisms (Z30), for
every tensor factor with number a such that §, = —1. Here we number the m tensor
factors of (5.26) by 1,...,m from right to left. Then we also need to pull the resulting
X(gn)-module back through the automorphism ([LI7)), where the series f(u) equals the

product (527). The automorphism ([230) maps the element (528 to

n n
Z Opry =n— Z TrO0k.
k=1 k=1
Hence, if §, = —1, then the element F_5 _5 € h acts on the modified tensor product as

—n/24 (00 p)a + deg, .

Equating the last displayed expression to (o o \), and using (521 together with the
condition §, = —1, we get the equation deg, = V,. But by Lemma 2.7 pushing forward
the Y (gl,,)-module
_s:a - % _ﬁa
through the automorphism (Z:30)) of GD(C™) yields the same Y(gl,,)-module as pulling
ﬁ_a—a%+ﬁa
back through the automorphism (3] of Y(gl,,), where
u— fg + % — Pa
U — fg — % — Pa
Thus, the X(g,,)-module Fs5(M,o,)Z °* is equivalent to the tensor product (5.25) pulled

n

back through the automorphism (LIT), where the series f(u) is obtained by multiplying
BEZ0) by g(—u)g(u) for each index a such that 6, = —1; see the definition (TI8]). But
for any element o € £, the product (5.24) equals

gl\u) =

1 Bt
(5.29) — 2z

===
If 6, = —1, then the factors of (5.27) and (5.29) indexed by a are equal to g(—u)~! and
g(u), respectively. If §, = 1, then the factors of (5:27) and (5:29) indexed by a coincide.
This comparison of (527) and (5:229) completes the proof. O

The vector spaces of two equivalent X (g, )-modules in Proposition [5.4] are
(Myo, ©G(C™®CM)7°*  and G (C")®--- @G (C"),

respectively. We can define a linear map from the latter vector space to the former, by
mapping f1 ® --- ® fp, to the class of 155, ® f in the space of n-coinvariants. Here

fLeEGP(C™),. .., fm €GTH(C™)

and f € G(C™ ® C") is defined by ([2:28). This linear map realizes an equivalence of the

X(gn)-modules in Proposition 5.4 see the remarks after our proof of Corollary
Thus, for any vy, ...,vm € {0,1,...,n} we have demonstrated how the Zhelobenko op-

erator fvg on J\B,, determines an intertwining operator between the X(g,,)-modules (5.23)
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and (5.20]) pulled back via the automorphism (LI7) of X(g,), where f(u) is the same
product (5:24)) for both modules. Hence, this operator also intertwines the X(g,,)-modules
(5.30) Pul:fééwm ® --@P, o P;,T@#ﬁm @3 Pfilzl—wl
neither of which is now pulled back via the automorphism ([I7). It was proved in
IMN] that the two X(g,)-modules in (B30) are irreducible under our assumptions on
. Hence, an intertwining operator between them is unique up to a factor from C. For
our intertwining operator, this factor is determined by Proposition below. Another
expression for an intertwining operator of the X(g,)-modules (B30 was given in [N].
For any a = 1,...,m and s = 1,...,n, we define elements f,; and g,s of the ring
GD(C™ & C™) as follows. We arrange the indices 1,...,n in the sequence

(5.31) 1,3,...,.n—1,n,...,4,2 or 1,3,...,n—2,n,n— , 4,2

when n is even or odd, respectively. The mapping k — k reverses the sequence ([B31)).
We shall write ¢ < j if 4 precedes j in this sequence. Note that then the elements
E;; —0,0;E5 € gl,, with ¢ < j or ¢ = j span a Borel subalgebra of g,, C gl,,, while the
elements F;; — Ey span the corresponding Cartan subalgebra of g,,. Then f,s and g4
are defined as the products of the elements x,) and 0 ; of GD(C™ @ C"), respectively,
taken over the first s indices k in the sequence (B3I). For example, if n > 4, then
fa2 = Ta1Ta3 and gao = 0q2044. If n = 3, then f,o = 41243 but gos = 0420,3. We also
set faO = gao = 1.

Our proof of Proposition will be based on four lemmas below. The proof of the
first lemma is quite similar to that of the second and will be omitted.

Lemma 5.5. For anya=1,. —1and s,t=0,1,...,n, the operator 5(1 on J\ B,
maps the image in J\ B,, of Jas ga+1t € B,, to the image in J\ B,, of the product
H, — t+1
N Tamstlidl o oot
Ga(9as Jatit) - H, +1
1 if s>t

plus the images in J \ B, of elements of the left ideal in B, generated by J and E3).

Lemma 5.6. For anya=1,. —1and s,t=0,1,...,n, the operator 5(1 on J\ B,
maps the image in J \ By, ffaS fa+1t € B,, to the image in J\ B,, of the product

H,+s—t+1

5a(f¢’zs fﬁt) H,+1
1 if s<t,

if s>t

plus the images in J \ B, of elements of the left ideal in B, generated by J and E9).
Proof. By the definitions (Z.6]) and (£0]), we have

(5'32) Cn( Z Lotk Oar,  and Cn a Z Tak anrlk

k=1
By (4.3), we also have
Ga(fas farie) = faris far-

We shall use the symbol = to indicate equality in the vector space J \ B,, modulo the
subspace that is the image of the left ideal in B,,, generated by J' and the elements E9).
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The element E, € Bln belongs to this left ideal. Therefore, the operator Ea maps the
image of fszs fazis € By in J \ By, to the image in J\ By, of

(FV HYTVED Er (faris fat)

NE

Ea(frms ffzt) =

Il
o

T

(r! H(Sr))ilﬁg ﬁcf(ftﬁu fat)-

NE

Il
=]

T

Now we use (£I0) along with (5.32). By the definitions of f;75, and fz: we have

Fu(faris fat) = = Y [ak Oag1p: faris farl-

k=1

If s < ¢, then every summand above is zero, which proves the lemma in this case. Now
suppose that s > ¢. Then, using the proof of [KN2, Proposition 3.7], we obtain

s—t
_ (s—=t)--(s—t—r+1)
Salfagis fat) = ; Hy(Hy—71+1) fazis far-
Here, the sum of the fractions corresponding to r = 0,...,s — t equals
H,+1 .
H,—s+t+1’

this can easily be proved by induction on the difference s — ¢t. Therefore,

H, +1 H,+s—t+1

ga(f(msfat>EH fm‘sf&t:fmsfat H +1 )

a—S+t+1

as required in the case where s > t. Here we have also used the relation

Ho fogis far = fagis far (Ha + 5 — 1)
in the ring B,,, which follows from ([@I0]), because

n

Cn(Ha) = Cu(Favi,av1 — Faa) = Z (r551k Oatik — Tak Oak)- O
=1

Lemma 5.7. For anya=1,...,m—1 and s,t =0,1,...,n, the operator Ea on J\ B,
maps the image in J\ By, of fas gatis € Bm to the image in J\ B, of the product

Ho+s+t+1

Oalfas agit) § Hat+n+1
1 if s+t<n,

if s+t>n,

plus the images in J \ B, of elements of the left ideal in B,, generated by J and GEo).
Proof. By (&5,

Ga(fas Gaxit) = faxis gat-

Now we use the symbol = to indicate equality in J \ B,, modulo the subspace that is
the image of the left ideal in B,, generated by J' and the elements ). The elements
E,—(n(E,) and (,(F,) of B, belong to this left ideal; see (5:32)). By ({I0), the operator
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Ea maps the image fas gz71; € B,, in J \ B,, to the image in J \ B,, of

alfarisgat) = (MWH)EL FY(faris gar)
r=0

8

= (M H) " u(Ba) CulFa) faris Yar-

r=0

‘We have

Cn(Fa)ftms Gat = — Z Tak 8(ﬁ_k: fms Gat
k=1

by (B.32). If s +¢ < n, then every summand in the above displayed sum is zero modulo
the left ideal of B,, generated by the elements (5.7]), because then there are no factors
a7 of fa7is and Ja; of gar with the same index i. This proves the lemma in this case.

Now suppose that s + ¢ > n. Then the proof of [KN2, Proposition 3.7] shows that
s+t—n
- _ (s+t—n)---(s+t—n—-r+1),
ga(fa-‘rls gfzt) = 7;) Ha"'(Ha _7,_’_1) fa+lsgat

H, +1 e guy = fors goy Hat s EH 1
Ha—S—t+TL+1 a+lsgat* a+lsgat Ha—l—n—i-l
as required. Here we have also used the following relation in the ring B,,, which follows

from (EI0):

)

H, faxis 9at = fagis fat (Ha + 5 +1). 0

Lemma 5.8. If f;, = sps,,,, then for any s =0,1,...,n, the operator fvm on J\B,,, maps

the image of fms € By in J\ By, to the image in J \ B, of the product

H,+s+1 .

—— if s>n/2,
5m(fﬁs) Ha+n/2+1 f /

1 if s<n/2,

plus the images in J \ B, of elements of the left ideal in B,,, generated by 7 and E3).

Proof. Let f,, = sp,,,,- Then g,, = sp,,, so that the number n is even. By (£1]), we have

Om(fms) = gms OF  Om(fms) = (_1)S_n/2 9ms

when s <n/2or s >n/2, respectively. Hence, it suffices to consider the image in J\ B,
of the element &,,(gms) € Bm, s =0,1,...,n. By the definitions (Z6]) and (L8],

Cn(E Z O Ok 0z /2 and  (u(Fn) Z )
k=1 k=1
Now we let the symbol = indicate equality in J\ B,, modulo the subspace that is the

image of the left ideal in B,, generated by J' and the elements (E8). The elements
E, — Co(Ep) and ¢, (Fyy,) of By, belong to this left ideal. Therefore, by (@I0),

Em (gms) = Z (r HD) LB, F (gims)
r=0

8

(P HIY L (B) G (Fon) G-

0

T
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‘We have

k=1
If s < n/2, then every summand in the above sum is zero modulo the left ideal of B,,
generated by the elements (5.8]), because then for any index k there is no pair of factors
Omi and 0_ in the product gms. This proves the lemma in this case. Now suppose that
s > n/2. Then, using the proof of [KN2, Proposition 3.7] once again, we obtain
Sz”:/z (s—n/2)--(s—n/2 —r+1)
Hp (Hy—r+1) ™
B H, +1  Hpt+s+1

Em(gms) =
r=0

as required. Here we have also used the relation H,, gims = gms (Hm + $) in the ring B,,,
which follows from (I0)), because m = 1 and for f,, = sp,,,, we have

Cn(Hm) = —Cu(F11) =n/2 — Z T1k O1k

k=1
by (Z8) and (ZS). O

Now we state Proposition We assume that the weight p satisfies conditions (5.2)

and also satisfies conditions (B3)) if f,, = sp,,,,. Moreover, we assume that vy,...,vy, €
{0,1,...,n}; see the definition (B2I). Let (u3,...,us,) be the sequence of labels of the
weight 4+ p. Then for each a = 1,...,m we have p; = po + m — a if §,, = so0a,,, and

W= pg+m—a+1if f,, = spy,,,. Let (A],..., A,) be the sequence of labels of A + p.
For each positive root n € AT we define a number z, € C:

AL — AE
27‘; if n=¢e,—¢e., and v, > v,
A A
i;i if n=¢ep+e. and v+ v, >n,
Zy = IUQ + He

Ap

— if p=2¢ and 2y, > n,
Hy
1 otherwise.

Note that in the first two cases, 1 < b < ¢ < m, while in the third case, 1 < b < m
and f., = spy,,. Let ’U;} be the image of the product fi,, -+ fmu,, € B,, in the quotient
vector space J\ B,,,/1,,5,. This image is a highest vector relative to the action of the Lie
algebra g,, on this space: it is annihilated by the elements E;; — 0,0, Ey € g, with 7 < j.

Proposition 5.9. (i) The vector vﬁ‘ is not in the zero coset of J \ Em/iu,&r'

(ii) Under the action of b on J\ By, /1,5, , the vector vy is of weight X. _

(iii) For any o € $m, the intertwining operator (B.I9) determined by {, maps the
vector vz‘ to the image in J\ By /loop o(s,) of 0(f1u, - frvn,) € Bm multiplied by the
product

(5.33) I =-
UISTAWS

Proof. Statement (i) of the proposition follows directly from the definition of the ideal
I.5.. We prove statement (ii). The elements of h act on J\ By, /1, s, via left multipli-
cation on B,,. Let = indicate equality in B,, modulo the left ideal Tu,é +- Then, by the
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definition (2.6)), for each @ = 1,...,m in the algebra B,, we have
Fla afiv - frve = fro - S Foa—a— Y [@ak Oak — n/2, fru, -+ fr,]
1

k=
= fiul e fmum (F,a’,a - Va) = fil/] e f?T’Ll/,,,L (Cn(F7’,7§> + Ha — Va)

=gl ... 37%7]: (n/2+,ua_l/a) :)‘afiul "'fml/m'

1k

Thus,
A
n

Statement (iii) will be proved by induction on the length of a reduced decomposition of
o interms of o1, ...,0.,. If 0 is the identity element of $),,,, then the required statement is
tautological. Now suppose that statement (iii) is true for some o € $),,. Take any simple
reflection o, € 9, with 1 < a < m such that 0,0 has a longer reduced decomposition in
terms of o1, ..., 0., compared to o. If f,,, = s02,,, and a = m, then we have Eamg =0Om g(,
and A, » = Ay, so that the induction step is immediate. Now we may assume that
a < m in the case where f,,, = 502,,.

Take the simple root 7, corresponding to the reflection o,. Let 7 = 0=1(n,). Then
n e At and

A
F g _av, = Av, for a=1....m.

UaU(TD = Ua(”a) = Ta ¢ AT
Hence,
Ay =0, U{n}.
Let x € b* be the weight with the labels (L.I5]). Using the proof of Theorem B3] we see
that the following two left ideals of the algebra B,, coincide:

Loam)om(oao)61) = Loao)on,(0a0)(64)-
But modulo the second of these two ideals, the element H, equals
(5.34)  ((040) 0 K)(Ha) = (020 (K + p) = p)(Ha) = (& + p)(0 00(Ha)) — p(Ha)
2(k + p,m)

(n,m)

Here H,, = o~ 1(H,) is the coroot corresponding to the root 1, and we use the standard
bilinear form on h*. Using only the definition (G.I5]), we can rewrite the right-hand side
of (&34) in the form

= —(k+p) (0 (Ha))—1=—(k+p)(Hy) —1=— 1.

—Hp +he—1 i n=e—e,
—up—pe—n—1 if n=e+e
—pp —n/2—1 if n=2e.
Now we shall use (iii) as the induction assumption. Denote 6 = o(d4). Consider
five cases.
I. Suppose n = e, — €., where 1 < b < ¢ < m, while o(g;) = &, and o(e.) = €441.
Then o, = €4 — €441 and d, = do+1 = 1. Hence,
O(fiv, - fawn) = fav, far1.. Y
where Y is an element of the subalgebra of GD(C™ ® C™) generated by all x4, and 9gx
with d # a,a + 1. Here Lemma with s = 14, and t = v, applies. With these s and t,

and with —uf +p? —1 in place of H, in the fraction displayed in that lemma, the fraction
becomes

% *_ 1 — v, 1 A — A
(535) :U’b+uc +Vb Ve + ) c

—py g =141 o
Here the condition s > ¢ in Lemma [5.6l means that v, > v,.
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II. Suppose 1 = &, — &¢, where 1 < b < ¢ < 'm, but o(ep) = —,41 and o(e.) = —e,.
Then o, = g, — €441 again, but d, = d,4+1 = —1. Hence,

(fiv, ** fravm) = Gav, 9aFiv, Ys

where Y is another element of the subalgebra of GD(C™ ® C™) generated by all x4, and
Oqr, with d # @,a+1. Now Lemma with s = v, and t = v, applies. With these
s and ¢, and with —pj + p — 1 in place of H, in the fraction displayed in Lemma [5.3]
the fraction becomes the same number (5.33) as in the preceding case, under the same
condition v > v.

ITI. Suppose n =&, + e, and 1 < b < ¢ < m, while o(ep) = &, and o(e.) = —€441.
Then o, = g4 — €441 again, but , = 1 and 6,11 = —1. Hence,

o(fiv, + frvm) = fan, 9ag10.Ys

where Y is another element of the subalgebra of GD(C™ ® C") generated by the x4, and
Oqr, with d # @,a + 1. Here Lemma [5.7 with s = v}, and ¢ = v, applies. With these
s and t, and with —pu; — s —n—1 in place of H, in the fraction displayed in that lemma,
the fraction becomes the number
—py = —n—1+vy+ve+1 A+ AL

—py —pr—n—1+n+1 puy + g

(5.36)

Here the condition s + ¢ > n in Lemma [5.7 means that v, + v, > n.
IV. Suppose n = & + &, where 1 < b < ¢ < 'm, but o(ep) = —€441 and o(e.) = &,.
Then o, = €4 — €441 again, but d, = 1 and d,+1 = —1. Hence,

o(fiv, - frvm) = fave 9agi0, Yo

where Y is another element of the subalgebra of GD(C™ @ C™) generated by the xgy
and Oy, with d # @,a + 1. Now Lemma [5.7 with s = v, and t = v, applies. With these
s and t, and with —pu; — % —n—1 in place of H, in the fraction displayed in that lemma,
the fraction becomes the same number (530 as in the preceding case, under the same
condition vy + v, > n.

V. Suppose f,, = §ps,,, and n = 2¢;, with 1 < b < m. Then o(ep) = €, and 04 = Oy,
while §,, = 1. Hence,

F(fiv, = frwvm) = fraw Y,
where Y is now an element of the subalgebra of GD(C"™®C™) generated by the x 45 and Ogy,
with d # m = 1. Here Lemmal5.8 with s = v}, applies. With this s, and with —pf —n/2—1
in place of H,, in the fraction displayed in that lemma, the fraction becomes
—uy—n/2=1+u+1 A
—pp—n/2—-14+n/24+1 pi

Here the condition s > n/2 in Lemma [£.8 means that 2v, > n.
Using the inductive hypothesis, we see that, in all the five cases above, the intertwining
operator

INBn/Tus: = Louoon,(vao)(61)
determined by Evgag maps the vector ’U;} to the image in J\ B/ L(o,0)ou,(0u0)(6s) OF
Ga&(f1v, -+ frv,) € Bm

multiplied by the product (5.33]) over the set A, and by an extra factor z, corresponding
to the positive root n = o~1(n,). This completes the induction step. (Il
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The product (E33)) in Proposition does not depend on the choice of a reduced
decomposition of o € §,, in terms of o1, ..., 0,,. Thus, the uniqueness of the intertwining
operator (0.30) provides another proof of the independence of our operator (B.20) of the
decomposition of &, not involving Proposition .4l Proposition [£.9 also shows that our
intertwining operator (£.20) is not zero.

§6. OLSHANSKII HOMOMORPHISM

For a positive integer [, take the vector space C**!. In the case of an alternating form
on C™, we choose [ to be even. Let ey, ..., e,4+; be the vectors of the standard basis in
C™*!. Consider the decomposition C*t = C" @ C', where the direct summands C" and
C! are spanned by the vectors e, ..., e, and €, 41, ..., €4, respectively. This determines
an embedding of the direct sum gl, ® gl; of Lie algebras to gl, ;. As a subalgebra of
gl,, 1, the summand gl,, is spanned by the matrix units F;; € gl,,,;, where¢,5 =1,...,n.
The summand gl; is spanned by the matrix units £;;, where i,j =n+1,...,n+1.

The subspace C* C C™* comes with the bilinear form chosen in §1. Now we choose
a bilinear form on the subspace C! € C"* in a similar way. Namely, let i be any of
the indices n + 1,...,n+ 1. If i — n is even, then put 7 =i — 1. If i — n is odd and
i<n-+l, thenput?=14+ 1. If i =n+1[ and [ is odd, then put 7 = i. Next, put 6; =1
or §; = (—1)""""1 in the case of the symmetric or alternating form on C". For any basis
vectors e; and e; of the subspace C!, put (e;, e;) = 0; 0;;. We equip the vector space Ccntt
with the bilinear form that is the sum of the forms on the direct summands. The forms
on C! and C™*! are of the same type (symmetric or alternating) as the form on C".

Now we consider the subalgebras g,,g;, and g,4; of the Lie algebras gl,,, gl;, and
gl,, ., respectively. We have an embedding of the direct sum g, ® g; to the Lie algebra
On+i1, in accordance with our choice of the bilinear forms made above. We also have
an embedding of the direct product of Lie groups G,, X G; to G,4;. Let C; denote the
subalgebra of G;-invariants in the universal enveloping algebra U(g,4;). Then C; contains
the subalgebra U(g,) C U(gn+:). If g, = sp,,, then C; coincides with the centralizer of
the subalgebra U(sp;) C U(sp,,,;). If g,, = s0,, then C; is contained in the centralizer of
U(so;) C U(s0y,41), but may differ from the centralizer.

Take the extended twisted Yangian X(g,;). The subalgebra of X(gl,, ;) generated by

s g2

D82, ... with i,j=1,....n
is isomorphic to X(g,) as an associative algebra; see [MNO| Subsection 3.14]. Thus, we
have a natural embedding X(g,,) = X(gn+1); we denote it by ¢;. We also have a surjective
homomorphism
Tttt X(Gn+1) = Ulgn+1);

see (L22). Note that the composition 7,4 ¢; coincides with the homomorphism .

Next, consider the involutive automorphism wy4; of the algebra X(g,;); see the
definition (L20). The image of the composition of homomorphisms

(6.1) Tt Wntt 12 X(Gn) = Ul@nt)
belongs to the subalgebra C; C U(g,4;). Moreover, together with the subalgebra of
G4 i-invariants in U(g,,4;), this image generates C;. These two results are due to G. Ol-
shanskil [O2]; for their detailed proofs, see [MO §4]. We shall use the composition of
homomorphisms

Y = T4l Wn+l Ll Wy
and call it the Olshanskit homomorphism. The images of the homomorphisms 7; and
(1) in U(gp+:) coincide. The reason for using the homomorphism ~; rather than the
homomorphism (GII) will become apparent when we state Theorem [G.1]
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An irreducible representation of the group G, is said to be polynomial if it arises as a
subrepresentation of some tensor power of the defining representation C". In accordance
with [Wl Subsections V.7 and VI1.3], the irreducible polynomial representations of the
group G,, are parametrized by all the partitions v of N = 0,1,2,... such that 2v; < n in
the case of G,, = Sp,, and v] + V4 < n in the case of G,, = O,,. Here v/ is the partition

conjugate to v, while vj, 14, ... are the parts of v/. Note that in the case where G,, = O,
we still have 204 < n. Denote by W, the irreducible polynomial representation of the
group G, corresponding to v. Let vy, 19, ... be the parts of v.

Let v be the weight of the Lie algebra f,, with the sequence of labels
(n/2—vl,,....,n/2 —vy).

By the conditions on v, for f,, = sp,,,, the labels vy, ..., U, of U are integers such that
v > > Uy > 0. For f,,, = 509, either all labels of U are integers, or all of them are
half-integers. In the case where f,, = $09,,, we have Iy > -+ > U1 > Uy

Consider G(C™ ® C™) as a bimodule over f,, and G,,. Then, by [H, Subsection 3.8.9]
when G,, = Sp,, or by [HL Subsection 4.3.5] when G,, = O,,, we have a decomposition

(6.2) g(C"aC") = Ly @ W,

where v ranges over all parameters of the irreducible polynomial representations of G,
such that 1 < m. Here Ly is the irreducible f,,-module of the highest weight v.

Let A and p be parameters of any irreducible polynomial representations of the groups
G+ and G, respectively. Suppose that A, u; < m. Using the action of the group G
on Wy via its embedding to G,4; as the second direct factor of the subgroup G,, x Gy,
we consider the vector space

(6.3) Hom ¢, (W,,, Wy).

The subalgebra C; C U(g,+1) acts on this vector space through the action of U(g,;) on
Wy. In the case where G,, = Sp,, the vector space ([63)) is irreducible under the action
of the algebra Cj; see [D, Theorem 9.1.12]. If G,, = O,, the C;-module ([63)) is either
irreducible or splits into a direct sum of two irreducible C;-modules. It is irreducible if
W, is irreducible as an so,;-module, that is, if 2)\] # n + [, by [Wl Subsection V.9].
Note that for G,, = O,, the condition 2X} # n + [ is sufficient but not necessary for the
irreducibility of the C;-module (G3); see [Nl Subsection 1.7].

In any case, the vector space ([G.3]) is irreducible under the joint action of the subalgebra
C; C U(gn4:) and the subgroup G,, C G,4; see again [N, Subsection 1.7]. Hence, the
following identifications of bimodules over C; and G,, are unique up to rescaling of their
vector spaces:

(6.4) Hom g, (W,,, Wy) = Hom g, (W,,, Hom;, (L5 ,G(C™ @ C"*)))
= Hom g, (W, Hom;, (Ly,G(C™ ®C") @ G(C™ @ C™")))
= Homj, (L, Lz ® G(C™ @ C")).
We use the decompositions (2] for n + ! and  instead of n, and the identification
(6.5) GCmeC"th) =g(C"oCHeG(C™eC")
of vector spaces. Thus, in (64), the labels of the weights X and i of f,, are (respectively)
(n/2+1/2—=X,,,....n/2+1/2—=X)) and (I/2—pul,,...,1/2—p}).

By pulling back via the Olshanskii homomorphism ~; : X(g,) — C;, the vector space
[©3) becomes a module over the extended twisted Yangian X(g,). Using the above
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identifications, we see that the vector space (6.4]) also becomes a module over X(g,,). But
the target f,,-module L; ® G(C™ @ C") in (6.4)) coincides with the f,,-module F,,(Lz).

Theorem 6.1. The action of X(g,) on the vector space (€4) via the homomorphism 7y
coincides with the action obtained by pulling the action of X(gn) on the bimodule F.,(Ly)
back through the homomorphism ([(LIT), where

(6.6) flw)=1—m(u—1/24+1/2)"L

Proof. Take the action of the subalgebra C; C U(gl, ;) on the space G(C™ @ C"*1).
The extended twisted Yangian X(g,) acts on this vector space via the homomorphism
v : X(gn) — C;. Using the decomposition (GH), we show that for i,7 = 1,...,n the
generators SZ-(jl), Si(f), ... of X(g,) act on this vector space respectively as the coefficients
of u=t,u=2, ... in the series (Z.8) multiplied by the series (G.6]).

For any i,j = 1,...,n + [, the element F}; € U(g,4;) acts on G(C™ ® C"*!) as the
operator

m
Z (ﬂfci 8Cj — 91 9j :vcjé)c;).
c=1
Here we use the standard coordinate functions z.; on C™ @ C** with ¢ =1,...,m and

i=1,...,n+1. Then d,; is the left derivation on the Grassmann algebra G(C™ ® C"*!)
relative to x.;. The functions z.; with ¢ < n and ¢ > n correspond to the direct summands
C" and C! of C**. Consider the ((n +1) x (n +1))-matrix whose (i, j)-entry is
Sij + (u—1/2£1/2)7" Y (2ei Oy — 0: 6; 75 0c2).
c=1

We can write this matrix and its inverse as block matrices

A B A B

C D C D

)

} and

where the blocks A, B, C, D and fT, E, 5’, D are matrices of sizes n x n,n x1, I xn, and
I x I, respectively. Now the action of the algebra X(g,,) on the vector space G(C™®@C"*!)
via the homomorphism 7; : X(gl,,) — C; can be described by assigning the (i, j)-entry
of the matrix A ~! to the series Sij(uw) with 4,7 =1,...,n.

We introduce the ((n + 1) x 2m)-matrix whose (i,c¢)-entry for ¢ = —m,...,—1 is
the operator of left multiplication by z.; on G(C™ ® C™*!). For ¢ = 1,...,m, let the
(i, c)-entry of this matrix be the operator 6; 0;. We write this matrix as

H

where the blocks P and P are matrices of sizes n x 2m and [ x 2m, respectively. Next,
we introduce the (2m x (n + [))-matrix whose (¢, j)-entry for ¢ = —m, ..., —1 is the
operator O.;. For ¢ =1,...,m, let the (c, j)-entry of this matrix be the operator of left
multiplication by 6; x.;. We write this matrix as

(@ Q.

where @ and @ are matrices of sizes 2m x n and 2m x [, respectively. Then

{é g] — 14 (u—1/2+1/2)" [P%ém Pcf?m}’

which can also be written as the matrix

1+ (u—1/2+1/2—m)"! “jg ]Ijg]
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multiplied by the series f(u) determined by (6.6). Using a well-known formula for A1
we obtain

67 A'=A-BD'C=f(u)(1+@m—1/2+1/2—m)"LPQ
—(u—=1/2+1/2=m) 2 PQ (1+ (u—1/2+1/2—m)"'PQ) ' PQ)
— flu) (1+Pu—1/2+1/2—m+QP)'Q).
Consider the (2m x 2m)-matrix QP appearing in the last line. For any indices a,b =
-m,...,—1,1,...,m, the (a,b)-entry of this matrix is the operator
San /2 + G(Fub),

where ¢; : U(fn) — GD(C™ @ C**!) is the homomorphism corresponding to the action
of the Lie algebra f,,, on G(C™ ® C"*!) via the tensor factor G(C™ ® C!) in (6.H), similar
to the homomorphism (2.6]). Namely, for a,b=1,..., m we have

n+4l
G(Fap) = —0ab1/2 + Y Tak Opk,
k=n+1
n+l n+l
Fap)= Y. Oczgzn,  QF-ap)= > 0k0ur0y.
k=n+1 k=n+1

Hence, any entry of the (2m x 2m)-matrix
(u—1/2+1/2—m+QP)™*

can be obtained by applying the homomorphism ¢; to the corresponding entry of the
matrix F(us3—m); the last mentioned entries are series in u™! with coefficients in U(f,,).
Now we complete the proof by comparing the (i, j)- entry of the (n x n)-matrix (IB_T_H) with
the series obtained from (I?EI) by replacmg Fuy(u+ 2 —m) there by ((Fap(u® i —m))
for all indices a,b = —m, -1,1,. (]

Set Cy = U(g,) and y9 = 7. Then Theorem [G.Ilremains valid in the case where [ = 0.
In this case we assume that g; = {0}. Note that our proof of Theorem also implies
Proposition 3 because the kernels of the homomorphisms {; with [ = 0,1,2,... have
only zero intersection. For f,, = so0q, the latter fact follows directly from the definition
@X4). For f,, # soq, all irreducible finite-dimensional f,,-modules arise from the skew
Howe duality.

Let A and p be the parameters of any irreducible polynomial representations of G, 1;
and G|, respectively. The vector space (63) is not zero if and only if

(6.8) A > and A, —pu <n forevery k=1,2,...;

see [Nl Subsection 1.3]. Suppose that A1, 41 < m. Then we can identify the vector spaces
©3) and (64). Then the algebra C; acts on ([G.4) irreducibly if G,, = Sp,. If G,, = O,,
then (64) is irreducible under the joint action of the algebra C; and the group O,. In
both cases, the G, ;-invariant elements of U(gl, ;) act on (6.4]) via multiplication by
scalars. Then Theorem [61] has a corollary, which refers to the action of X(g,,) on the
vector space (6.4) inherited from the bimodule F,,,(Ly).

Corollary 6.2. The algebra X(g,) acts on the space ([64) irreducibly if G, = Spy. If
G, = Oy, the space ([64) is irreducible under the joint action of X(gp) and O,,.

Now suppose that f,, # s02. Then any irreducible finite-dimensional module V' of f,,
is equivalent to L; for some nonnegative integer [ and the label i of some irreducible
polynomial representation of the group G; with p; < m. If V' is another irreducible
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finite-dimensional f,,-module such that the vector space ([0I0) is nonzero, then V’ must
be equivalent to Ly for the label X of some irreducible polynomial representation of G4
with A\; < m. Thus any nonzero vector space ([.I0) must be of the form ([6.4]).

ACKNOWLEDGMENTS

We are grateful to P. Kulish for amiable attention to this work. The first author
has been supported by the RFBR grant 08-01-00392, the grant for Support of Scientific
Schools 8065-2006-2, by the Atomic Energy Agency of the Russian Federation, and by the
ANR grant 05-BLAN-0029-01. The second author has been supported by the EPSRC
grant C511166, and by the EC grant MRTN-CT2003-505078. This work began when
both authors visited the Max Planck Institute for Mathematics in Bonn. We are grateful
to the staff of the Institute for their kind help and generous hospitality.

REFERENCES

[A] T. Arakawa, Drinfeld functor and finite-dimensional representations of the Yangian, Comm.
Math. Phys. 205 (1999), 1-18. MR1706920/(2001c:17011)

[AS] T. Arakawa and T. Suzuki, Duality between sl, (C) and the degenerate affine Hecke algebra, J.
Algebra 209 (1998), 288-304. MR 1652134 (99h:17005)

[AST] T. Arakawa, T. Suzuki, and A. Tsuchiya, Degenerate double affine Hecke algebra and conformal
field theory, Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr.
Math., vol. 160, Birkhduser Boston, Boston, MA, 1998, pp. 1-34. MR1653020|/(991:17025)

] I. Cherednik, Lectures on Knizhnik—Zamolodchikov equations and Hecke algebras, Quantum
Many-Body Problems and Representation Theory, MSJ Mem., No. 1, Math. Soc. Japan, Tokyo,
1998, pp. 1-96. MR1724948 (2001i:20004)

D] J. Dixmier, Enveloping algebras, North-Holland Math. Library, vol. 14, North-Holland Publ.
Co., Amsterdam, 1977. MR0498740//(58:16803b)

[D1] V. Drinfel'd, Hopf algebras and the quantum Yang—Bazter equation, Dokl. Akad. Nauk SSSR
283 (1985), no. 5, 1060-1064; English transl., Soviet Math. Dokl. 32 (1985), no. 1, 254-258.
MR0802128 (87h:58080)

, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20
(1986), no. 1, 69-70; English transl., Funct. Anal. Appl. 20 (1986), no. 1, 62-64. MR0831053
(87m:22044)

[H] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond,
The Schur Lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat
Gan, 1995, pp. 1-182. MR1321638 (96e:13006)

[KN1] S. Khoroshkin and M. Nazarov, Yangians and Mickelsson algebras. I, Transform. Groups 11
(2006), 625-658. MR2278142//(2008d:17016)

[KN2] | Yangians and Mickelsson algebras. II, Mosc. Math. J. 6 (2006), 477-504. (English)
MR2274862//(2008d:17017)

, Twisted Yangians and Mickelsson algebras. I, Selecta Math. (N.S.) 13 (2007), 69-136.
MR2330588|/(2009d:17021)

[KO] S. Khoroshkin and O. Ogievetsky, Mickelsson algebras and Zhelobenko operators, J. Algebra
319 (2008), 2113-2165. MR2394693 (2009a:16040)

[KS] P. Kulish and E. Sklyanin, Algebraic structures related to reflection equations, J. Phys. A 25
(1992), 5963-5975. MR1193836,(93k:17032)

M] A. Molev, Skew representations of twisted Yangians, Selecta Math. (N.S.) 12 (2006), 1-38.
MR2244262//(2007h:17013)

[MN]  A. Mudrov and M. Nazarov, On irreducibility of modules over twisted Yangians (in preparation).

[MNO] A. Molev, M. Nazarov, and G. Ol'shanskil, Yangians and classical Lie algebras, Uspekhi Mat.
Nauk 51 (1996), no. 2, 27-104; English transl., Russian Math. Surveys 51 (1996), no. 2, 205-282.
MR1401535|/(97£:17019)

[MO] A. Molev and G. Olshanski, Centralizer construction for twisted Yangians, Selecta Math. (N.S.)
6 (2000), 269-317. MR1817615//(2002j:17013)

[M1]  J. Mickelsson, Step algebras of semi-simple subalgebras of Lie algebras, Rep. Mathematical Phys.
4 (1973), 307-318. MR0342057|/(49:6803)

(D2]

[KN3]


http://www.ams.org/mathscinet-getitem?mr=1706920
http://www.ams.org/mathscinet-getitem?mr=1706920
http://www.ams.org/mathscinet-getitem?mr=1652134
http://www.ams.org/mathscinet-getitem?mr=1652134
http://www.ams.org/mathscinet-getitem?mr=1653020
http://www.ams.org/mathscinet-getitem?mr=1653020
http://www.ams.org/mathscinet-getitem?mr=1724948
http://www.ams.org/mathscinet-getitem?mr=1724948
http://www.ams.org/mathscinet-getitem?mr=0498740
http://www.ams.org/mathscinet-getitem?mr=0498740
http://www.ams.org/mathscinet-getitem?mr=0802128
http://www.ams.org/mathscinet-getitem?mr=0802128
http://www.ams.org/mathscinet-getitem?mr=0831053
http://www.ams.org/mathscinet-getitem?mr=0831053
http://www.ams.org/mathscinet-getitem?mr=1321638
http://www.ams.org/mathscinet-getitem?mr=1321638
http://www.ams.org/mathscinet-getitem?mr=2278142
http://www.ams.org/mathscinet-getitem?mr=2278142
http://www.ams.org/mathscinet-getitem?mr=2274862
http://www.ams.org/mathscinet-getitem?mr=2274862
http://www.ams.org/mathscinet-getitem?mr=2330588
http://www.ams.org/mathscinet-getitem?mr=2330588
http://www.ams.org/mathscinet-getitem?mr=2394693
http://www.ams.org/mathscinet-getitem?mr=2394693
http://www.ams.org/mathscinet-getitem?mr=1193836
http://www.ams.org/mathscinet-getitem?mr=1193836
http://www.ams.org/mathscinet-getitem?mr=2244262
http://www.ams.org/mathscinet-getitem?mr=2244262
http://www.ams.org/mathscinet-getitem?mr=1401535
http://www.ams.org/mathscinet-getitem?mr=1401535
http://www.ams.org/mathscinet-getitem?mr=1817615
http://www.ams.org/mathscinet-getitem?mr=1817615
http://www.ams.org/mathscinet-getitem?mr=0342057
http://www.ams.org/mathscinet-getitem?mr=0342057

[M2]

(N]
[NT]

[O1]

[02]

(PP]
[T]

[TV]

(W]

(2]

TWISTED YANGIANS AND MICKELSSON ALGEBRAS. II 161

, On irreducible modules of a Lie algebra which are composed of finite-dimensional mod-
ules of a subalgebra, Ann. Acad. Sci. Fenn. Ser. A T Math. No. 598 (1975), 16 pp. MR0384885
(52:5755)

M. Nazarov, Representations of twisted Yangians associated with skew Young diagrams, Selecta
Math. (N.S.) 10 (2004), 71-129. MR2061224 (2005e:17026)

M. Nazarov and V. Tarasov, On irreducibility of tensor products of Yangian modules associated
with skew Young diagrams, Duke Math. J. 112 (2002), 343-378. MR1894364//(2003h:17021)

G. Olshanskil, Extension of the algebra U(g) for infinite-dimensional classical Lie algebras g
and the Yangians Y (gl(m)), Dokl. Akad. Nauk SSSR 297 (1987), no. 5, 1050-1054; English
transl., Soviet Math. Dokl. 36 (1988), no. 3, 569-573. MR0936073(89g:17017)

G. Ol'shanskii, Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum
Groups (Leningrad, 1990), Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 104—
119. MR1183482 (93h:17039)

A. Perelomov and V. Popov, Casimir operators for semi-simple Lie groups, lzv. Akad. Nauk
SSSR Ser. Mat. 32 (1968), no. 6, 1368-1390. (Russian) MR0236308 |(38:4605)

J. Tits, Normalisateurs de tores. I. Groupes de Coxzeter étendus, J. Algebra 4 (1966), 96-116.
MRO0206117]/(34:5942)

V. Tarasov and A. Varchenko, Duality for Knizhnik—Zamolodchikov and dynamical equations,
The 2000 Twente Conference on Lie Groups (Enschede), Acta Appl. Math. 73 (2002), 141-154.
MR1926498|/(2003h:17024)

H. Weyl, The classical groups. Their tnvariants and representations, Princeton Univ. Press,
Princeton, NJ, 1939. MR0000255/(1:42¢)

D. Zhelobenko, Ezxtremal cocycles on Weyl groups, Funktsional. Anal. i Prilozhen. 21 (1987),
no. 3, 11-21; English transl., Funct. Anal. Appl. 21 (1987), no. 3, 183-192. MR0911771
(89g:17007)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YORK, YORK YO10 5DD, ENGLAND
E-mail address: mlnl@york.ac.uk

INSTITUTE FOR THEORETICAL AND EXPERIMENTAL PHYSICS, Moscow 117259, RuUSSIA
E-mail address: khor@itep.ru

Received 10/SEP /2007

Translated by THE AUTHORS


http://www.ams.org/mathscinet-getitem?mr=0384885
http://www.ams.org/mathscinet-getitem?mr=0384885
http://www.ams.org/mathscinet-getitem?mr=2061224
http://www.ams.org/mathscinet-getitem?mr=2061224
http://www.ams.org/mathscinet-getitem?mr=1894364
http://www.ams.org/mathscinet-getitem?mr=1894364
http://www.ams.org/mathscinet-getitem?mr=0936073
http://www.ams.org/mathscinet-getitem?mr=0936073
http://www.ams.org/mathscinet-getitem?mr=1183482
http://www.ams.org/mathscinet-getitem?mr=1183482
http://www.ams.org/mathscinet-getitem?mr=0236308
http://www.ams.org/mathscinet-getitem?mr=0236308
http://www.ams.org/mathscinet-getitem?mr=0206117
http://www.ams.org/mathscinet-getitem?mr=0206117
http://www.ams.org/mathscinet-getitem?mr=1926498
http://www.ams.org/mathscinet-getitem?mr=1926498
http://www.ams.org/mathscinet-getitem?mr=0000255
http://www.ams.org/mathscinet-getitem?mr=0000255
http://www.ams.org/mathscinet-getitem?mr=0911771
http://www.ams.org/mathscinet-getitem?mr=0911771

	§0. Introduction
	§1. Twisted Yangians
	§2. Howe duality
	§3. Parabolic induction
	§4. Zhelobenko operators
	§5. Intertwining operators
	§6. Olshanskii homomorphism
	Acknowledgments
	References

