
Algebra i analiz St. Petersburg Math. J.
Tom 21 (2009), � 1 Vol. 21 (2010), No. 1, Pages 111–161

S 1061-0022(09)01088-7
Article electronically published on November 5, 2009

TWISTED YANGIANS AND MICKELSSON ALGEBRAS. II

M. NAZAROV AND S. KHOROSHKIN

Abstract. A skew analog for the composition of the Cherednik and Drinfeld func-
tors is introduced for twisted Yangians. The definition is based on the skew Howe
duality, and originates from the centralizer construction of twisted Yangians due to
Olshanskĭı. Via the new functor, a correspondence is established between intertwin-
ing operators on the tensor products of certain modules over twisted Yangians and
the extremal cocycle on the hyperoctahedral group.

§0. Introduction

This paper is a continuation of our work [KN2], which concerned two known functors.
The definition of one of these two functors belongs to V. Drinfeld [D2]. Let AN be the
degenerate affine Hecke algebra corresponding to the general linear group GLN over
a non-Archimedean local field. This is an associative algebra over the field C, and it
contains the symmetric group ring CSN as a subalgebra. Let Y(gln) be the Yangian
of the general linear Lie algebra gln. This is a deformation of the universal enveloping
algebra of the polynomial current Lie algebra gln[u] in the class of Hopf algebras [D1].
It contains the universal enveloping algebra U(gln) as a subalgebra. There is also a
homomorphism of associative algebras Y(gln) → U(gln) identical on the subalgebra
U(gln) ⊂ Y(gln). In [D2], for any AN -module M , an action of the algebra Y(gln) was

defined on the vector space (M ⊗ (Cn)⊗N )SN
− of the diagonal skew SN -invariants in the

tensor product of the vector spaces M and (Cn)⊗N . Thus, we get a functor from the
category of all AN -modules to the category of Y(gln)-modules, the Drinfeld functor.

In [KN1] we studied the composition of the Drinfeld functor with another functor,
introduced by I. Cherednik [C]. That second functor was also studied by T. Arakawa,
T. Suzuki, and A. Tsuchiya [A, AS, AST]. For any module U over the Lie algebra gll, an
action of the algebra AN can be defined on the tensor product U⊗(Cl)⊗N of gll-modules.
This action of AN commutes with the diagonal action of gll on the tensor product. This
yields a functor from the category of all gll-modules to the category of bimodules over
gll and AN , the Cherednik functor. By applying the Drinfeld functor to the AN -module
M = U ⊗ (Cl)⊗N , one turns the vector space

(U ⊗ (Cl)⊗N ⊗ (Cn)⊗N )SN
− = U ⊗ ΛN (Cl ⊗ C

n)

to a Y(gln)-module. The action of the associative algebra Y(gln) on this vector space
commutes with the action of gll. By taking the direct sum of these Y(gln)-modules
over N = 0, 1, . . . , n, we turn the space U ⊗ Λ(Cl ⊗ Cn) to a Y(gln)-module. It is
also a gll-module; we denote this bimodule by El(U). We identify the exterior algebra
Λ(Cl⊗Cn) with the Grassmann algebra G(Cl⊗Cn), and we denote by GD(Cl⊗Cn) the
ring of C-endomorphisms of G(Cl⊗Cn). The action of the Yangian Y(gln) on its module
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El(U) is then determined by a homomorphism αl : Y(gln) → U(gll)⊗ GD(Cl ⊗ Cn); see
Proposition 1.2 below.

Now, let fm be either the orthogonal Lie algebra so2m or the symplectic Lie algebra
sp2m. Our first objective in the present paper is to define analogs of the functor El
and of the homomorphism αl for the Lie algebra fm instead of gll. The role of the
Yangian Y(gln) is played here by the twisted Yangian Y(gn), which is a right coideal
subalgebra of the Hopf algebra Y(gln). Here gn is a Lie subalgebra of gln, orthogonal
in the case of fm = so2m and symplectic if fm = sp2m; in the latter case, n must be
even. Let the superscript ′ indicate the transposition in gln relative to the bilinear form
on Cn preserved by the subalgebra gn ⊂ gln, so that gn = {A ∈ gln |A′ = −A}. As
an associative algebra, Y(gn) is a deformation of the universal enveloping algebra of the
twisted polynomial current Lie algebra

{A(u) ∈ gln[u] |A′(u) = −A(−u)}.

Twisted Yangians were introduced by Olshanskĭı [O2]; their structure was studied in
[MNO]. In §2 of the present paper, we introduce a homomorphism Y(gn) → U(fm) ⊗
GD(Cm ⊗ Cn); see our Propositions 2.3 and 2.4. The image of Y(gn) under this homo-
morphism commutes with the image of the algebra U(fm) under its diagonal embedding
(2.7) into the tensor product U(fm) ⊗ GD(Cm ⊗ Cn); here we use the homomorphism
ζn : U(fm) → GD(Cm ⊗ Cn) defined by (2.6). The twisted Yangian Y(gn) contains
the universal enveloping algebra U(gn) as a subalgebra. Also, there is a homomorphism
πn : Y(gn) → U(gn) identical on the subalgebra U(gn) ⊂ Y(gn). Our results extend the
classical theorem [H] stating that the image of U(fm) in GD(Cm ⊗Cn) under the homo-
morphism ζn consists of all Gn-invariant elements. Here Gn is either the orthogonal or
the symplectic group, so that gn is its Lie algebra; the group Gn acts on GD(Cm ⊗ Cn)
via its natural action on C

n.
In the present paper we prefer to work with a certain central extension X(gn) of

the algebra Y(gn), called the extended twisted Yangian. Central elements O(1), O(2), . . .
of the algebra X(gn) generating the kernel of the canonical homomorphism X(gn) →
Y(gn) are given in §1, together with the definitions of X(gn) and Y(gn). There is also
a homomorphism X(gn) → X(gn)⊗Y(gln). Using it, we turn the tensor product of any
modules over the algebras X(gn) and Y(gln) to another module over X(gn). Moreover,
this homomorphism is a coaction of the Hopf algebra Y(gln) on the algebra X(gn). We
define a homomorphism βm : X(gn) → U(fm)⊗GD(Cm⊗Cn), which is our analog of the
homomorphism αl; see Proposition 2.3. The image of X(gn) under βm commutes with
the image of the algebra U(fm) under its embedding (2.7) to U(fm)⊗GD(Cm⊗Cn). The
reason why we work with X(gn) rather than with Y(gn) is explained in §2.

The generators of the algebra X(gn) arise as coefficients of certain series Sij(u) in
the variable u, where i, j = 1, . . . , n. We define the homomorphism βm by applying
it to the coefficients, and by giving the resulting series βm(Sij(u)) with coefficients in
U(fm)⊗ GD(Cm ⊗ C

n) explicitly. Then we define another homomorphism

rβm : X(gn) → U(fm)⊗ GD(Cm ⊗ C
n),

which factors through the canonical homomorphism X(gn) → Y(gn). Thus we obtain
the homomorphism Y(gn) → U(fm) ⊗ GD(Cm ⊗ C

n) mentioned above. Every series
rβm(Sij(u)) is the product of βm(Sij(u)) by a certain series with coefficients in Z(fm)⊗1,
where Z(fm) is the center of the algebra U(fm).

The defining relations of the algebra X(gn) can be written as the reflection equation
(1.15) on the (n×n)-matrix S(u) whose (i, j) entry is the series Sij(u). This terminology
was introduced by physicists; see, e.g., [KS] and the references therein.
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Now, let V be any fm-module. Using the homomorphism βm, we turn the vector
space V ⊗ G(Cm ⊗ Cn) into a bimodule over fm and X(gn). We denote this bimodule
by Fm(V ). The functor Fm is our analog of the functor El for fm instead of gll. When
m = 0, we set F0(V ) = C, so that β0 is the composition of the canonical homomorphism
X(gn) → Y(gn) with the restriction of the counit homomorphism Y(gln) → C to Y(gn).

Here we show that the functor Fm shares the three fundamental properties of the
functor El considered in [KN2]. The first of these properties of El concerns parabolic
induction from the direct sum of Lie algebras glm ⊕ gll to glm+l. Let p be the maximal
parabolic subalgebra of glm+l containing the direct sum glm ⊕ gll. Let q ⊂ glm+l be
the Abelian subalgebra with glm+l = q ⊕ p. For any glm-module W , let W � U be the
glm+l-module parabolically induced from the glm ⊕ gll-module W ⊗U . This is a module
induced from the subalgebra p. Consider the space Em+l(W � U)q of q-coinvariants of
the glm+l-module Em+l(W � U). This space is a Y(gln)-module, which also inherits the
action of the Lie algebra glm⊕gll. The additive group C acts on the Hopf algebra Y(gln)
by automorphisms. Let E −z

l (U) be the Y(gln)-module obtained from El(U) by pulling it
back through the automorphism of Y(gln) corresponding to z ∈ C. The automorphism
itself is denoted by τz; see (1.2). Thus, the underlying vector space of the Y(gln)-module
E −z
l (U) is U ⊗ G(Cl ⊗ Cn), whereon the action of Y(gln) is defined by the composition

of two homomorphisms,

(0.1) Y(gln) −→
τz

Y(gln) −→
αl

U(gll)⊗ GD(Cl ⊗ C
n).

Here the target algebra acts on U ⊗ G(Cl ⊗ Cn) by definition. As a gll-module, E −z
l (U)

coincides with El(U). In [KN2] we proved that the bimodule Em+l(W � U)q over Y(gln)
and glm ⊕ gll is equivalent to Em(W )⊗ Em

l (U). We use the comultiplication on Y(gln).
Our Theorem 3.1 is an analog of this comultiplicative property of El. Take the maximal

parabolic subalgebra of the Lie algebra fm+l containing the direct sum fm⊕gll; we do not
exclude the case of m = 0 here. Using that subalgebra, we determine the fm+l-module
V � U parabolically induced from the fm ⊕ gll-module V ⊗ U . Consider the space of
coinvariants of the fm+l-module Fm+l(V � U) relative to the nilpotent subalgebra of
fm+l complementary to our parabolic subalgebra. This space is a bimodule over fm ⊕ gll
and X(gn). We prove that this bimodule is essentially equivalent to the tensor product
Fm(V ) ⊗ Ez

l (U) with z = m − 1
2 for fm = so2m, and z = m + 1

2 for fm = sp2m. More
precisely, the underlying vector space of the X(gn)-module Fm(V )⊗ Ez

l (U) is

(0.2) V ⊗ G(Cm ⊗ C
n)⊗ U ⊗ G(Cl ⊗ C

n),

whereon the action of X(gn) is defined by the composition of two homomorphisms,

X(gn) → X(gn)⊗Y(gln) → U(fm)⊗ GD(Cm ⊗ C
n)⊗U(gll)⊗ GD(Cl ⊗ C

n).

Here the first homomorphism is the coaction of Y(gln) on X(gn), while the second is the
tensor product of the homomorphisms βm : X(gn) → U(fm)⊗ GD(Cm ⊗ Cn) and

αl τ−z : Y(gln) → U(gll)⊗ GD(Cl ⊗ C
n);

see (0.1). By multiplying the image of Sij(u) ∈ X(gn)[[u
−1]] under this composition by

a certain series with coefficients in the subalgebra

1⊗ 1⊗ Z(gll)⊗ 1 ⊂ U(fm)⊗ GD(Cm ⊗ C
n)⊗U(gll)⊗ GD(Cl ⊗ C

n),

we get another homomorphism X(gn) → U(gll)⊗GD(Cl⊗Cn). The latter homomorphism
determines another action of X(gn) on the vector space (0.2). Theorem 3.1 states that this
action is equivalent to the action of X(gn) on the space of coinvariants of Fm+l(V � U).
Moreover, the actions of the direct summand fm of fm ⊕ gll on Fm(V ) ⊗ Ez

l (U) and on
the space of coinvariants of Fm+l(V � U) are also equivalent, while the actions of the
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direct summand gll differ only by the automorphism (3.6) of the Lie algebra gll. Hence,
Theorem 3.1 describes the first fundamental property of the functor Fm.

Now we discuss the second fundamental property of Fm. In [TV], Tarasov and
Varchenko established a correspondence between canonical intertwining operators on
the l-fold tensor products of certain Y(gln)-modules, and the extremal cocycle on the
Weyl group Sl of the reductive Lie algebra gll defined by Zhelobenko [Z]. In [TV], each

of l tensor factors was obtained from one of gln-modules SN (Cn) by pulling back through
the homomorphism Y(gln) → U(gln) and then back through one of the automorphisms

τz : Y(gln) → Y(gln). Here SN (Cn) is the Nth symmetric power of the vector space
C

n, while the homomorphism Y(gln) → U(gln) is defined by (1.4). In [KN1] we gave
a representation-theoretic explanation of that correspondence from [TV], by employing
the theory of Mickelsson algebras [M1, M2] as developed in [KO].

For any N ∈ {1, . . . , n} and any z ∈ C, we denote by PN
z the Y(gln)-module obtained

by pulling back the action of U(gln) on the subspace of G(Cn) of degree N through
the homomorphism Y(gln) → U(gln) and then through the automorphism τ−z of Y(gln).
The action of the algebra Y(gln) on PN

z is defined by the composition of homomorphisms

(0.3) Y(gln) −→
τ−z

Y(gln) → U(gln) → GD(Cn).

Here the second homomorphism is that defined by (1.4); the algebra GD(Cn) acts on
G(Cn) naturally. Using the functor El, in [KN2] we established a correspondence between
intertwining operators on the l-fold tensor products of modules of the form PN

z and the
same extremal cocycle on Sl as considered in [KN1]. This is an “antisymmetric ” version
of the correspondence first established in [TV]. The parameters z corresponding to the
l tensor factors are in general position, that is, their differences do not belong to Z.
Then each of the tensor products is irreducible as a Y(gln)-module [NT]. Hence, the
intertwining operators between them are unique up to factors from C.

In the present paper we show that the functor Fm plays a role similar to that of
El, when the Lie algebra gll is replaced by fm. Namely, we establish a correspondence
between intertwining operators of certain X(gn)-modules, and the extremal cocycle on
the hyperoctahedral group Hm corresponding to the reductive Lie algebra fm. Here Hm

is regarded as the Weyl group of fm = sp2m, and as an extension of the Weyl group
of fm = so2m by a Dynkin diagram automorphism. In both cases, the definition of the
extremal cocycle is essentially due to Zhelobenko [Z]. However, the original extremal
cocycle has been defined on the Weyl group of fm, which in the case of fm = so2m is only
a subgroup of Hm of index 2. An extension of the original definition to the entire group
Hm was given in [KN3]. All necessary details on the extremal cocycle corresponding to
fm are also reviewed in §4 below.

The twisted Yangian Y(gn) is determined by a distinguished involutive automorphism
(1.11) of the algebra Y(gln). The automorphism (1.11) corresponds to the automorphism

A(u) �→ −A′(−u)

of the Lie algebra gln[u] if the algebra Y(gln) is regarded as a deformation of the uni-
versal enveloping algebra of gln[u]. By pulling the Y(gln)-module PN

z back through the
automorphism (1.11), we get another Y(gln)-module, denoted by P−N

z . The underlying
vector space of P−N

z consists of elements of G(Cn) of degree N , whereon the action of
Y(gln) is defined by the composition of four homomorphisms

Y(gln) → Y(gln) −→
τ−z

Y(gln) → U(gln) → GD(Cn).

Here the first map is the automorphism (1.11); the other three are the same as in (0.3).
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Now take any ν1, . . . , νm ∈ {1, . . . , n} and any z1, . . . , zm ∈ C such that za − zb /∈ Z

and za + zb /∈ Z whenever a �= b. If fm = sp2m, we also assume that 2za /∈ Z for any
a. The hyperoctahedral group Hm can be realized as the group of all permutations σ of
−m, . . . ,−1, 1, . . . ,m such that σ(−c) = −σ(c) for any c. In §5 of the present paper, we
show how the value of the extremal cocycle for the Lie algebra fm at an element σ ∈ Hm

determines an intertwining operator of X(gn)-modules

(0.4) P νm
zm ⊗ · · · ⊗ P ν1

z1 → P δmrνm

rzm
⊗ · · · ⊗ P δ1rν1

rz1
,

where

(0.5) rνa = ν|σ−1(a)|, rza = z|σ−1(a)| and δa = sign σ−1(a)

for each a = 1, . . . ,m. The tensor products in (0.4) are those of Y(gln)-modules. By
restricting both tensor products to the subalgebra Y(gn) ⊂ Y(gln) and by pulling the
restrictions back through the canonical homomorphism X(gn) → Y(gn), both tensor
products in (0.4) become X(gn)-modules. Thus, the actions of the algebra X(gn) on
both tensor products in (0.4) are obtained by using the composition

X(gn) → Y(gn) → Y(gln) → Y(gln)
⊗n.

Here the first map is the canonical homomorphism, the second is the embedding defining
Y(gn), while the third is m-fold comultiplication. It was proved in [MN] that, under our
assumptions on z1, . . . , zm, the two tensor products in (0.4) are irreducible X(gn)-modules
equivalent to each other. Hence, an intertwining operator between them is unique up to
a factor from C. For our operator, this factor is determined by Proposition 5.9.

To obtain our intertwining operator (0.4), we use the theory of Mickelsson algebras,
just as we did in [KN1, KN2]. Our particular Mickelsson algebra is determined by the
pair formed by the tensor product U(fm) ⊗ GD(Cm ⊗ Cn) and by its subalgebra U(fm)
relative to the embedding (2.7). The extended twisted Yangian X(gn) appears naturally
here, because its image relative to βm commutes with the image of U(fm) in the tensor
product. Another expression for an intertwining operator (0.4) was given in [N].

In §2 we choose a triangular decomposition (2.17) of the Lie algebra fm into a direct
sum of a Cartan subalgebra h and two maximal nilpotent subalgebras n, n′. For any
formal power series f(u) in u−1 with coefficients in C and leading term 1, the assignments
(1.17) define an automorphism of the algebra X(gn). Up to pulling it back through such
an automorphism, the source X(gn)-module in (0.4) arises as the space of n-coinvariants
of weight λ for the fm-module Fm(Mµ), where Mµ is the Verma module over fm with the
highest vector of weight µ annihilated by the action of the subalgebra n′ ⊂ fm. Here the
weights λ and µ relative to the Cartan subalgebra h are determined by the parameters
ν1, . . . , νm and z1, . . . , zm occurring in (0.4). We denote the space of n-coinvariants of
weight λ by Fm(Mµ)

λ
n. The algebra X(gn) acts on the latter space, because the action

of X(gn) on Fm(Mµ) commutes with that of fm. We prove that the above action of the
algebra X(gn) on the source tensor product in (0.4) is equivalent to the action on the
vector space of Fm(Mµ)

λ
n defined by the composition

(0.6) X(gn) → X(gn) → End(Fm(Mµ)).

Here the first map is the automorphism (1.17) with f(u)−1 equal to the product (5.24).
The second map is the defining homomorphism of the X(gn)-module Fm(Mµ).

To get the target X(gn)-module in (0.4), we generalize our definition of the functor
Fm. At the beginning of §5, for any sequence δ = (δ1, . . . , δm) of m elements of the set
{1,−1}, we define a functor Fδ with the same source and target categories as the functor
Fm. Moreover, for any fm-modulef V , the underlying vector spaces of the bimodules
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Fδ(V ) and Fm(V ) are the same, that is, V ⊗G(Cm ⊗Cn). The actions of fm and X(gn)
on Fδ(V ) are obtained by pushing forward the defining homomorphisms

ζn : U(fm) → GD(Cm ⊗ C
n) and βm : X(gn) → U(fm)⊗ GD(Cm ⊗ C

n)

through a certain automorphism 
 of the ring GD(Cm ⊗ Cn) depending on δ. Namely,
the automorphism 
 is defined by the assignments (5.1). Thus, to define the functor Fδ,
we use the compositions 
 ζn and (1⊗
) βm instead of the homomorphisms ζn and βm,
respectively. In particular, we have Fδ(V ) = Fm(V ) for the sequence δ = (1, . . . , 1).

Up to pulling it back through an automorphism of the form (1.17), the target X(gn)-
module in (0.4) arises as the space of n-coinvariants of weight σ ◦ λ for the fm-module
Fδ(Mσ◦µ). The sequence δ = (δ1, . . . , δm) is as defined in (0.5), and the symbol ◦ here
indicates the shifted action of the group Hm on the weights of h. Our Proposition
5.4 states that the action of the algebra X(gn) on the target tensor product in (0.4) is
equivalent to the action on the vector space of Fδ(Mσ◦µ)

σ◦λ
n defined by the composition

(0.7) X(gn) → X(gn) → End(Fm(Mσ◦µ)).

Here the first map is the automorphism (1.17) with f(u)−1 equal to the product (5.24).
The second map is the defining homomorphism of the X(gn)-module Fm(Mσ◦µ).

In §5 we show that the value of the extremal cocycle for the Lie algebra fm at the
element σ ∈ Hm determines an intertwining operator of X(gn)-modules

(0.8) Fm(Mµ)
λ
n → Fδ(Mσ◦µ)

σ◦λ
n .

The product (5.24) does not depend on the element σ ∈ Hm, so that the automorphisms
(1.17) of the algebra X(gn) in (0.6) and (0.7) are the same. Hence, by replacing the source
and the target X(gn)-modules by their equivalent modules, we obtain our intertwining
operator (0.4). The role played by the functor Fm in this construction of the operator
(0.4) is the second fundamental property of that functor.

The third fundamental property of the functor El considered in [KN2] is its relationship
with the centralizer construction of the Yangian Y(gln) proposed by Olshanskĭı [O1].
For any two irreducible polynomial modules U and U ′ over the Lie algebra gll, the results
of [O1] provide an action of Y(gln) on the vector space

(0.9) Hom gll
(U ′, U ⊗ G(Cl ⊗ C

n)).

Moreover, this action is irreducible. In [KN2] we proved that the same action of Y(gln)
on the vector space (0.9) is obtained when the target gll-module U ⊗G(Cl⊗Cn) in (0.9)
is regarded as the bimodule El(U) over Y(gln) and gll.

There is a centralizer construction of Y(gn), again due to G. Olshanskĭı [O2]; see also
[MO] and §6 below. That construction served as a motivation for introducing the twisted
Yangians. For any irreducible finite-dimensional modules V and V ′ of the Lie algebra
fm, the results of [O2] provide an action of the algebra X(gn) on the vector space

(0.10) Hom fm(V ′, V ⊗ G(Cm ⊗ C
n)).

The group Gn also acts on this vector space, via its natural action on Cn.
If gn is an orthogonal Lie algebra, the space (0.10) is irreducible under the joint action

of X(gn) and Gn. If gn is symplectic, (0.10) is irreducible under the action of the X(gn)
alone. Our Theorem 6.1 states that the action of X(gn) on (0.10) is essentially the same
as the action obtained from the bimodule Fm(V ) = V ⊗ G(Cm ⊗ C

n) of X(gn) and fm.
More precisely, the action of X(gn) on the vector space (0.10) provided by [O2] can also
be obtained from an action of X(gn) on the target fm-module V ⊗G(Cm⊗Cn) in (0.10).
The latter action is not exactly that on Fm(V ), but is defined by the composition

X(gn) → X(gn) −→
βm

U(fm)⊗ GD(Cm ⊗ C
n),
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where the first map is the automorphism (1.17) with f(u) given by (6.6). The second map
is the defining homomorphism of the X(gn)-module Fm(V ). This third property of Fm

was the origin of our definition of that functor. Thus, we have two different descriptions
of the same action of X(gn) on (0.10). Another two still different descriptions of the same
action of X(gn) on the vector space (0.10) were provided in [M] and [N], respectively.

The functor Fm of the present paper is an “antisymmetric ” version of a functor
introduced in [KN3]. Here the exterior algebra Λ(Cm ⊗ Cn) replaces the symmetric
algebra S(Cm ⊗ C

n) in [KN3]. Analogs of the three fundamental properties of Fm were
also given in [KN3].

§1. Twisted Yangians

Let Gn be one of the complex Lie groups On and Spn. We regard Gn as the subgroup
of the general linear Lie group GLn, preserving a nondegenerate bilinear form 〈 , 〉 on
the vector space Cn. This form is symmetric in the case where Gn = On, and alternating
in the case of Gn = Spn. In the latter case, n must be even. We always assume that
the integer n is positive. Throughout this paper, we shall use the following convention.
Whenever the double sign ± or ∓ appears, the upper sign corresponds to the case of
Gn = On, while the lower sign corresponds to the case of Gn = Spn.

Let i be any of the indices 1, . . . , n. If i is even, put rı = i − 1. If i is odd and i < n,
put rı = i + 1. Finally, if i = n and n is odd, put rı = i. Let e1, . . . , en be the vectors
of the standard basis in Cn. Choose a bilinear form on Cn so that for any two basis
vectors ei and ej we have 〈ei, ej〉 = θi δrıj , where θi = 1 or θi = (−1)i−1 in the case of the
symmetric or alternating form.

Let Eij ∈ End(Cn) be the standard matrix units. We also regard these matrix units
as basis elements of the general linear Lie algebra gln. Let gn be the Lie algebra of the
group Gn, so that gn = son or gn = spn in the case of the symmetric or alternating form
on C

n. The Lie subalgebra gn ⊂ gln is spanned by the elements Eij − θiθjErjrı.
Take the Yangian Y(gln) of the Lie algebra gln. The unital associative algebra Y(gln)

over C has a family of generators T
(1)
ij , T

(2)
ij , . . ., where i, j = 1, . . . , n. Defining relations

for these generators can be written by using the series

Tij(u) = δij + T
(1)
ij u−1 + T

(2)
ij u−2 + · · · ,

where u is a formal parameter. Let v be another formal parameter. Then the defining
relations in the associative algebra Y(gln) can be written as

(1.1) (u− v) [Tij(u), Tkl(v)] = Tkj(u)Til(v)− Tkj(v)Til(u).

The algebra Y(gln) is commutative if n = 1. By (1.1), for any z ∈ C the assignments

(1.2) τz : Tij(u) �→ Tij(u− z)

determine an automorphism τz of the algebra Y(gln). Here each of the formal power
series Tij(u − z) in (u − z)−1 should be reexpanded in u−1, and every assignment (1.2)
is a correspondence between the respective coefficients of series in u−1. Relations (1.1)
also show that for any formal power series g(u) in u−1 with coefficients in C and leading
term 1, the assignments

(1.3) Tij(u) �→ g(u)Tij(u)

determine an automorphism of the algebra Y(gln). Using (1.1), one can directly verify
that the assignments

(1.4) Tij(u) �→ δij + Eiju
−1

determine a homomorphism of unital associative algebras Y(gln) → U(gln).
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There is an embedding U(gln) → Y(gln), defined by the mapping Eij �→ T
(1)
ij . So,

Y(gln) contains the universal enveloping algebra U(gln) as a subalgebra. The homomor-
phism (1.4) is identical on the subalgebra U(gln) ⊂ Y(gln).

Let T (u) be the (n× n)-matrix whose (i, j)-entry is the series Tij(u). Relations (1.1)
can be rewritten by using the Yang R-matrix . This is the (n2 × n2)-matrix

(1.5) R(u) = u−
n∑

i,j=1

Eij ⊗ Eji,

where the tensor factors Eij and Eji are regarded as (n× n)-matrices. Note that

(1.6) R(u)R(−u) = 1− u2.

Take (n2 × n2)-matrices whose entries are series with coefficients in Y(gln),

T1(u) = T (u)⊗ 1 and T2(v) = 1⊗ T (v).

The collection of relations (1.1) for all possible indices i, j, k, l can be written as

(1.7) R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v).

Using this form of the defining relations together with (1.6), one shows that

(1.8) T (u) �→ T (−u)−1

determines an involutive automorphism of the algebra Y(gln). Here each entry of the
inverse matrix T (−u)−1 is a formal power series in u−1 with coefficients in the algebra
Y(gln), and the assignment (1.8) is as a correspondence between the respective matrix
entries.

The Yangian Y(gln) is a Hopf algebra over the field C. The comultiplication ∆ :
Y(gln) → Y(gln)⊗Y(gln) is defined by the assignment

(1.9) ∆ : Tij(u) �→
n∑

k=1

Tik(u)⊗ Tkj(u).

When taking tensor products of Y(gln)-modules, we use the comultiplication (1.9). The
counit homomorphism Y(gln) → C is defined by the assignment Tij(u) �→ δij . The
antipodal map Y(gln) → Y(gln) is defined by the assignment T (u) �→ T (u)−1. This map
is an antiautomorphism of the associative algebra Y(gln). For further details on the Hopf
algebra structure on Y(gln), see [MNO, Chapter 1].

Let T ′(u) be the transpose to the matrix T (u) relative to the form 〈 , 〉 on C
n. The

(i, j)-entry of the matrix T ′(u) is θiθjTrjrı(u). Define the (n2 × n2)-matrices

T ′
1(u) = T ′(u)⊗ 1 and T ′

2(v) = 1⊗ T ′(v).

Note that the Yang R-matrix (1.5) is invariant under applying the transposition relative
to 〈 , 〉 to both tensor factors. Hence, relation (1.7) implies that

T ′
1(u)T

′
2(v)R(u− v) = R(u− v)T ′

2(v)T
′
1(u),

R(u− v)T ′
1(−u)T ′

2(−v) = T ′
2(−v)T ′

1(−u)R(u− v).
(1.10)

To obtain the latter relation, we have used (1.6). By comparing (1.7) and (1.10), an
involutive automorphism of the algebra Y(gln) can be defined by the assignment

(1.11) T (u) �→ T ′(−u).

This assignment is understood as a correspondence between respective matrix entries.
Now take the product T ′(−u)T (u). The (i, j)-entry of this matrix is the series

(1.12)
n∑

k=1

θiθk T rkrı(−u)Tkj(u).
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The twisted Yangian corresponding to the form 〈 , 〉 is the subalgebra of Y(gln) generated
by the coefficients of all series (1.12). We denote this subalgebra by Y(gn).

To give defining relations for these generators of Y(gn), we introduce the extended
twisted Yangian X(gn). The unital associative algebra X(gn) has a family of generators

S
(1)
ij , S

(2)
ij , . . ., where i, j = 1, . . . , n. Put

Sij(u) = δij + S
(1)
ij u−1 + S

(2)
ij u−2 + · · ·

and let S(u) be the (n × n)-matrix whose (i, j)-entry is the series Sij(u). Also, we
introduce the (n2 × n2)-matrix

(1.13) R′(u) = u−
n∑

i,j=1

θi θj Eij ⊗ E
rırj,

which is obtained from the Yang R-matrix (1.5) by applying the transposition relative
to the form 〈 , 〉 on Cn to any of the two tensor factors. Note the relation

(1.14) R′(u)R′(n− u) = u(n− u).

Take (n2 × n2)-matrices whose entries are series with coefficients in the algebra X(gn),

S1(u) = S(u)⊗ 1 and S2(v) = 1⊗ S(v).

Defining relations in the algebra X(gn) can then be written as a single matrix relation

(1.15) R(u− v)S1(u)R
′(−u− v)S2(v) = S2(v)R

′(−u− v)S1(u)R(u− v).

This is equivalent to the collection of relations

(u2 − v2) [Sij(u), Skl(v)] = (u+ v)(Skj(u)Sil(v)− Skj(v)Sil(u))(1.16)

∓ (u− v)(θkθj Sirk(u)Srjl(v)− θiθl Skrı(v)Srlj(u))

± θiθj (Skrı(u)Srjl(v)− Skrı(v)Srjl(u)).

As in the case of (1.3), this collection of relations shows that, for any formal power series
f(u) in u−1 with coefficients in C and leading term 1, the assignments

(1.17) Sij(u) �→ f(u)Sij(u)

determine an automorphism of the algebra X(gn). See [KN3, §1] for the proof of the
following statement.

Proposition 1.1. A homomorphism X(gn) → Y(gn) can be defined by assigning

(1.18) S(u) �→ T ′(−u)T (u).

By definition, the homomorphism (1.18) is surjective. Next, the algebra X(gn) has a
distinguished family of central elements. Indeed, by dividing each side of identity (1.15)
by S2(v) from the left and from the right and then setting v = −u, we get

R′(0)S1(u)R(2u)S2(−u)−1 = S2(−u)−1R(2u)S1(u)R
′(0).

The rank of the matrix R′(0) equals 1. So the identity last displayed implies the existence
of a formal power series O(u) in u−1 with coefficients in X(gn) and leading term 1, and
such that

(1.19) R′(0)S1(u)R(2u)S2(−u)−1 = (2u∓ 1)O(u)R′(0).

By [MNO, Theorem 6.3] all coefficients of the series O(u) belong to the center of X(gn).
We write

O(u) = 1 +O(1)u−1 +O(2)u−2 + · · · .
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By [MNO, Theorem 6.4], the kernel of the homomorphism (1.18) coincides with the (two-
sided) ideal generated by the central elements O(1), O(2), . . . defined as the coefficients of
the series O(u). Using (1.6), from (1.19) we deduce the relation O(u)O(−u) = 1.

Thus, the twisted Yangian Y(gn) can be defined as the associative algebra with the

generators S
(1)
ij , S

(2)
ij , . . . that satisfy the relation O(u) = 1 and the reflection equation

(1.15). For more details on the definition of the algebra Y(gn), see [MNO, Chapter 3].
In the present paper we need the algebra X(gn), which is determined by (1.15) alone,

because this algebra admits an analog of the automorphism (1.8) of the Yangian Y(gln).
Indeed, using (1.15) together with (1.6) and (1.14), we see that the assignment

(1.20) ωn : S(u) �→ S(−u− n/2)
−1

determines an involutive automorphism ωn of X(gn). However, ωn does not determine
an automorphism of the algebra Y(gn), because the map ωn does not preserve the ideal
of X(gn) generated by the elements O(1), O(2), . . .; see [MNO, Subsection 6.6]. Note that,
by multiplying (1.19) on the right by S2(−u), the relation O(u) = 1 can be rewritten as

(1.21) S′(u) = S(−u)± S(u)− S(−u)

2u
,

where S′(u) is the transpose of the matrix S(u) relative to the form 〈 , 〉 on Cn.
The definition (1.19) of the series O(u) implies that the assignment (1.17) determines

an automorphism of the quotient algebra Y(gn) of X(gn) if and only if f(u) = f(−u). If
z �= 0, the automorphism τz of Y(gln) does not preserve the subalgebra Y(gn) ⊂ Y(gln).
There is no analog of the automorphism τz for the algebra X(gn).

However, the homomorphism Y(gln) → U(gln) defined by (1.4) admits an analog.
Namely, we can define a homomorphism πn : X(gn) → U(gn) by the assignments

(1.22) πn : Sij(u) �→ δij +
Eij − θiθjErjrı

u± 1
2

.

This can be proved by using the defining relations (1.16); see [MNO, Proposition 3.11].
Furthermore, the central elements O(1), O(2), . . . of X(gn) belong to the kernel of πn.
Thus, πn factors through the homomorphism X(gn) → Y(gn) defined by (1.18).

Next, there is an embedding U(gn) → Y(gn) defined by mapping each element Eij −
θiθjErjrı ∈ gn to the coefficient of u−1 in the series (1.12). Hence, Y(gn) contains the
universal enveloping algebra U(gn) as a subalgebra. Clearly, the homomorphism Y(gn) →
U(gn) corresponding to πn is the identity map on the subalgebra U(gn) ⊂ Y(gn).

For any positive integer l, consider the vector space Cl and the corresponding Lie
algebra gll. Let Eab ∈ End(Cl) with a, b = 1, . . . , l be the standard matrix units. Re-
garding these matrix units as generators of the universal enveloping algebra U(gll), we
introduce the (l× l)-matrix E whose (a, b)-entry is the generator Eab. Denote by E′ the
(l × l)-matrix whose (a, b)-entry is the generator Eba. Then consider the inverse matrix
(u − E′)−1. Its (a, b)-entry (u − E′)−1

ab is a formal power series in u−1 with the leading
term δab u

−1 and with coefficients in the algebra U(gll).
Take the tensor product of vector spaces C

l ⊗ C
n. Let xai with a = 1, . . . , l and

i = 1, . . . , n be the standard coordinate functions on Cl ⊗ Cn. Consider the Grassmann
algebra G(Cl ⊗Cn). It is generated by the elements xai subject to the anticommutation
relations xai xbj = −xbj xai for all indices a, b = 1, . . . , l and i, j = 1, . . . , n. We shall
denote the operator of left multiplication by xai on G(Cl ⊗Cn) by the same symbol. Let
∂ai be the operator of left derivation on G(Cl ⊗ C

n) corresponding to the variable xai,
also called the inner multiplication in G(Cl ⊗ Cn) corresponding to xai.

The ring of C-endomorphisms of G(Cl⊗Cn) is generated by all operators xai and ∂ai;
see, e.g., [H, Appendix 2.3]. This ring will be denoted by GD(Cl ⊗ Cn). In this ring, we
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have

(1.23) xai ∂bj + ∂bj xai = δab δij .

Hence, the ring GD(Cl ⊗ C
n) is isomorphic to the Clifford algebra corresponding to the

direct sum of the vector space Cl ⊗ Cn with its dual.
The Lie algebra gll acts on the vector space G(Cl⊗Cn) so that the generator Eab acts

as the operator

(1.24)

n∑
k=1

xak ∂bk.

Denote by Al the tensor product of associative algebras U(gll)⊗GD(Cl ⊗C
n). We have

an embedding U(gll) → Al defined for a, b = 1, . . . , l by the mappings

(1.25) Eab �→ Eab ⊗ 1 +
n∑

k=1

1⊗ xak ∂bk.

The following proposition was proved in [KN2, §1]; see also [A, §3].

Proposition 1.2. (i) A homomorphism αl : Y(gln) → Al can be defined by

(1.26) αl : Tij(u) �→ δij +
l∑

a,b=1

(u− E′)−1
ab ⊗ xai ∂bj .

(ii) The image of Y(gln) in Al relative to this homomorphism commutes with the image
of U(gll) in Al relative to the embedding (1.25).

Note that

αl : T
(1)
ij �→

l∑
c=1

1⊗ xci ∂cj .

Hence, the restriction of αl to the subalgebra U(gln) ⊂ Y(gln) corresponds to the natural
action of the Lie algebra gln on G(Cl ⊗ Cn).

Denote by Z(u) the trace of the inverse matrix (u+ E)−1, so that

(1.27) Z(u) =
l∑

c=1

(u+ E)−1
cc .

Then Z(u) is a formal power series in u−1 with coefficients in the algebra U(gll). It is
well known that these coefficients actually belong to the center Z(gll) of U(gll). Note
that the leading term of this series is lu−1.

We choose the Borel subalgebra b of the Lie algebra gll spanned by the elements Eab,
where a ≤ b. Let t ⊂ b be the Cartan subalgebra of gll with the basis (E11, . . . , Ell).
Consider the corresponding Harish-Chandra homomorphism ϕl : U(gll)

t → U(t). By
definition, for any t-invariant element X ∈ U(gll), the difference X − ϕl(X) belongs to
the left ideal of U(gll) generated by the elements Eab, where a < b. The restriction of
the homomorphism ϕl to Z(gll) ⊂ U(gll)

t is injective. It is well known that

(1.28) 1 + ϕl(Z(u)) =

l∏
a=1

(
1 +

1

u+ l − a+ Eaa

)
;

see, e.g., [PP, Theorem 3]. For the proof of the next lemma, see [KN3, §1], where the
parameter u should be replaced by −u.

Lemma 1.3. For any indices a, d = 1, . . . , l, we have

(u+ E)−1
da = (1 + Z(u)) (u+ l + E′)−1

ad .
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Now, let U be a module of the Lie algebra gll. Using the homomorphism (1.26), we
can turn the tensor product of gll-modules U ⊗ G(Cl ⊗ Cn) to a bimodule over gll and
Y(gln). This bimodule is denoted by El(U). More generally, for z ∈ C, denote by Ez

l (U)
the Y(gln)-module obtained from El(U) via pull-back through the automorphism τ−z of
Y(gln); see (1.2). It is determined by the homomorphism Y(gln) → Al such that

Tij(u) �→ δij +

l∑
a,b=1

(u+ z − E′)−1
ab ⊗ xai ∂bj

for every i, j = 1, . . . , n. As a gll-module, Ez
l (U) coincides with El(U) by definition.

In the next section we shall introduce analogs of the homomorphism (1.25) and of the
correspondence U �→ El(U) for the twisted Yangian Y(gn) instead of Y(gln).

§2. Howe duality

We shall work with one of the pairs (so2m, On) and (sp2m, Spn). The second member
of the pair will be the Lie group Gn. The first member will be the Lie algebra fm defined
below. These pairs arise in the context of the skew Howe duality; see [H, Subsection 4.3].

Take the even-dimensional vector space C
2m. Equip C

2m with a nondegenerate bilin-
ear form, symmetric in the case of Gn = On, and alternating in the case of Gn = Spn.
Let fm be the subalgebra of the general Lie algebra gl2m preserving our bilinear form on
C2m. We have fm = so2m or fm = sp2m (respectively) in the case of a symmetric or an
alternating form on C

2m.
We label the standard basis vectors of C2m by the numbers −m, . . . ,−1, 1, . . . ,m. Let

Eab ∈ End(C2m) be the standard matrix units, where the indices a, b run through these
numbers. These matrix units will also be viewed as basis elements of gl2m. Put

(2.1) εab = 1 or εab = sgn a · sgn b
(respectively) in the case of a symmetric or an alternating form on C2m. Then choose
the form on C2m so that the Lie subalgebra fm ⊂ gl2m is spanned by the elements

(2.2) Fab = Eab − εab E−b,−a.

In the universal enveloping algebra U(fm) we have the commutation relations

(2.3) [Fab, Fcd] = δcb Fad − δad Fcb − εab δc,−a F−b,d + εab δ−b,d Fc,−a.

Let F be the (2m×2m)-matrix whose (a, b)-entry is the element Fab. Denote by F (u)
the inverse to the matrix u+F . Let Fab(u) be the (a, b)-entry of the inverse matrix. Any
of these entries may be regarded as a formal power series in u−1 with coefficients in the
algebra U(fm). Then

(2.4) Fab(u) = δab u
−1 +

∞∑
s=0

m∑
|c1|,...,|cs|=1

(−1)s+1 Fac1Fc1c2 · · ·Fcs−1csFcsb u
−s−2.

If s = 0, the sum over c1, . . . , cs in (2.4) is understood as −Fab u
−2. We denote by W (u)

the trace of the matrix F (u), that is,

(2.5) W (u) =

m∑
|c|=1

Fcc(u).

The coefficients of the series W (u) belong to the center Z(fm) of the algebra U(fm).
In what follows, the upper signs in ± and ∓ correspond to the case of a symmetric

form on C2m, while the lower signs correspond to the case of an alternating form on C2m.
In these cases we also have a symmetric or alternating form on Cn, respectively. Thus,
the choice of signs in ± and ∓ here agrees with our general convention on double signs.
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Let F ′(u) be the transpose to F (u) relative to our bilinear form on C2m, so that the
(a, b)-entry F ′

ab(u) of the matrix F ′(u) equals εab F−b,−a(u). For the proof of the next
proposition, see [KN3, §2], where u should now be replaced by −u.

Proposition 2.1. We have equality of (2m× 2m)-matrices:

−F ′(u) =
(
W (u)∓ 1

2u+ 2m∓ 1
+ 1

)
F (−u− 2m± 1)± F (u)

2u+ 2m∓ 1
.

Corollary 2.2. We have(
W (u)∓ 1

2u+ 2m∓ 1
+ 1

)(
W (−u− 2m± 1)± 1

2u+ 2m∓ 1
+ 1

)

= 1− 1

(2u+ 2m∓ 1)2
.

On the space Cm ⊗Cn, we have the coordinate functions xai, where a = 1, . . . ,m and
i = 1, . . . , n. Consider the Grassmann algebra G(Cm ⊗ Cn) corresponding to this vector
space. We shall denote the operator of left multiplication by xai on G(Cm ⊗ Cn) by the
same symbol. Let ∂ai be the left derivation on G(Cm ⊗ C

n) relative to xai. There is an
action of fm on G(Cm⊗Cn) that commutes with the natural action of the group Gn. The
corresponding homomorphism ζn : U(fm) → GD(Cm ⊗ Cn) is defined by the following
mappings for a, b = 1, . . . ,m:

ζn : Fab �→ −δab n/2 +
n∑

k=1

xak ∂bk,

Fa,−b �→
n∑

k=1

θk xark xbk, F−a,b �→
n∑

k=1

θk ∂ak ∂brk.

(2.6)

Here the homomorphism property can be verified by using relations (2.3). Moreover,
the image of the homomorphism ζn coincides with the subring of all Gn-invariants in
GD(Cm ⊗ Cn); see [H, Subsections 3.8.7 and 4.3.3]. Let Bm be the tensor product of
associative algebras U(fm) ⊗ GD(Cm ⊗ Cn). Take the embedding U(fm) → Bm defined
by

(2.7) X �→ X ⊗ 1 + 1⊗ ζn(X) for each X ∈ fm.

Proposition 2.3. (i) A homomorphism βm : X(gn) → Bm can be defined so that the
series Sij(u) is mapped to the following series with coefficients in the algebra Bm:

δij +
m∑

a,b=1

(
F−a,−b(u± 1

2 −m)⊗ xai ∂bj + F−a,b(u± 1
2 −m)⊗ θj xai xbrj(2.8)

+ Fa,−b(u± 1
2 −m)⊗ θi ∂arı ∂bj + Fab(u± 1

2 −m)⊗ θi θj ∂arı xbrj

)
.

(ii) The image of X(gn) in Bm relative to this homomorphism commutes with the
image of U(fm) in Bm relative to the embedding (2.7).

Proposition 2.3 can be proved by direct calculation using the defining relations (1.16).
That calculation is omitted here. In §6 we shall give a more conceptual proof of the
proposition. Now, let the indices c and d run through the sequence −m, . . . ,−1, 1, . . . ,m.
For c < 0 we put pci = x−c,i and qci = ∂−c,i. For c > 0 we put pci = θi ∂crı and qci = θi xcrı .
Then our definition of the homomorphism βm can be written as

(2.9) βm : Sij(u) �→ δij +

m∑
|c|,|d|=1

Fcd(u± 1
2 −m)⊗ pci qdj ,
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as in (1.26). Moreover, by the definition (2.6) we have

(2.10) ζn : Fcd �→ −δcd n/2 +
n∑

k=1

qck pdk.

Using (2.5), we define a formal power series ĎW (u) in u−1 with coefficients in the center
Z(fm) of the algebra U(fm) by the equation

(
1∓ 1

2u

)
ĎW (u) = W (u± 1

2 −m).

By Corollary 2.2,

(ĎW (u) + 1) (ĎW (−u) + 1) = 1.

Hence, there is a formal power series ĂW (u) in u−1 with coefficients in Z(fm), with leading
term 1, and such that

(2.11) ĂW (−u) ĂW (u)−1 = 1 + ĎW (u).

The series ĂW (u) is not unique. But its coefficient at u−1 is always −m, because the

leading term of the series W (u) is 2mu−1. Let rβm be the homomorphism X(gn) → Bm

defined by assigning to Sij(u) the series (2.8) multiplied by

(2.12) ĂW (u)⊗ 1 ∈ Bm[[u−1]].

The homomorphism property of rβm follows from part (i) of Proposition 2.3; see also the

defining relations (1.16). Part (ii) implies that the image of rβm commutes with the image
of U(fm) in the algebra Bm relative to the embedding (2.7).

Proposition 2.4. The elements O(1), O(2), . . . of X(gn) belong to the kernel of rβm.

Proof. Let rSij(u) denote the product of the series (2.8) and (2.12). Using the equivalent
presentation (1.21) of the relation O(u) = 1, we see that it suffices to prove the identity

(2.13) θi θj rS
rjrı(u) = rSij(−u)±

rSij(u)− rSij(−u)

2u

for any i, j = 1, . . . , n. By the definition of the series ĂW (u), we have

(2.14) ĂW (u) (1 +W (u± 1
2 −m)) = ĂW (−u)±

ĂW (u)− ĂW (−u)

2u
.

Next, we introduce the (2m× 2m)-matrix

(2.15) rF (u) = ĂW (u)F (u± 1
2 −m)

and its transpose rF ′(u) relative to our bilinear form on C
2m. By Proposition 2.1,

(2.16) rF ′(u) = − rF (−u)∓
rF (u)− rF (−u)

2u
.
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Changing the indices i, j in (2.8) to rj,rı (respectively), and multiplying the resulting
series by θi θj , we get

δij +

m∑
a,b=1

(
F−a,−b(u± 1

2 −m)⊗ θi θj xarj ∂brı ± F−a,b(u± 1
2 −m)⊗ θj xarj xbi

± Fa,−b(u± 1
2 −m)⊗ θi ∂aj ∂brı + Fab(u± 1

2 −m)⊗ ∂aj xbi

)
= (1 +W (u± 1

2 +m))⊗ δij

+

m∑
a,b=1

(
− F−b,−a(u± 1

2 −m)⊗ θi θj ∂arı xbrj ∓ F−b,a(u± 1
2 −m)⊗ θj xai xbrj

∓ Fb,−a(u± 1
2 −m)⊗ θi ∂arı ∂bj − Fba(u± 1

2 −m)⊗ xai ∂bj
)

= (1 +W (u± 1
2 −m))⊗ δij

−
m∑

a,b=1

(
F ′
ab(u± 1

2 −m)⊗ θi θj ∂arı xbrj + F ′
−a,b(u± 1

2 −m)⊗ θj xai xbrj

+ F ′
a,−b(u± 1

2 −m)⊗ θi ∂arı ∂bj + F ′
−a,−b(u± 1

2 −m)⊗ xai ∂bj
)
.

Multiplying the expression in the last three lines by ĂW (u) ⊗ 1 and using the definition
(2.15), we get

ĂW (u) (1 +W (u± 1
2 −m))⊗ δij

−
m∑

a,b=1

(
rF ′
ab(u)⊗ θi θj ∂arı xbrj + rF ′

−a,b(u)⊗ θj xai xbrj

+ rF ′
a,−b(u)⊗ θi ∂arı ∂bj + rF ′

−a,−b(u)⊗ xai ∂bj
)
.

Now, the required formula (2.13) follows from (2.14) and (2.16). �

So, the homomorphism rβm : X(gn) → Bm factors through a homomorphism Y(gn) →
Bm. This is an analog of the homomorphism (1.26) for the twisted Yangian Y(gn) instead
of Y(gln). Recall that

ĂW (u) = 1−mu−1 + · · · ,
so that

rβm : S
(1)
ij �→ −mδij +

m∑
c=1

(1⊗ xci ∂cj + 1⊗ θi θj ∂crı xcrj)

=
m∑
c=1

(1⊗ xci ∂cj − 1⊗ θi θj xcrj ∂crı).

Thus, for any formal power series ĂW (u) in u−1 that has its coefficients in Z(fm), has the
leading term 1, and satisfies (2.11), the restriction of the homomorphism Y(gn) → Bm

to the subalgebra U(gn) ⊂ Y(gn) corresponds to the natural action of the Lie algebra gn

on the vector space G(Cm ⊗ Cn).

The series ĂW (u) is not unique, and it will be more convenient for us to work with the
homomorphism βm : X(gn) → Bm defined in Proposition 2.3. Using this homomorphism
and the action of the Lie algebra fm on G(Cm ⊗Cn) as defined by (2.6), for an arbitrary
fm-module V , we can turn the tensor product V ⊗ G(Cm ⊗ Cn) to a bimodule over fm

and X(gn). This bimodule will be denoted by Fm(V ).
Consider the triangular decomposition of the Lie algebra fm,

(2.17) fm = n⊕ h⊕ n
′,
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where h is the Cartan subalgebra of fm with the basis (F−m,−m, . . . , F−1,−1). Next, n and
n′ are the nilpotent subalgebras of fm spanned by the elements Fab with a > b and a < b,
respectively; here the indices a, b can be positive or negative. For each fm-module V ,
we denote by Vn the vector space V/n · V of coinvariants of the action of the subalgebra
n ⊂ fm on V . The Cartan subalgebra h ⊂ fm acts on the vector space Vn.

Now consider the bimodule Fm(V ). The action of X(gn) on this bimodule commutes
with the action of the Lie algebra fm, and hence, with the action of the subalgebra
n ⊂ fm. Therefore, the space Fm(V )n of coinvariants of the action of n is a quotient of
the X(gn)-module Fm(V ). Thus, we get a functor from the category of all fm-modules
to the category of bimodules over h and X(gn),

(2.18) V �→ Fm(V )n = (V ⊗ G(Cm ⊗ C
n))n.

The assignments Eab �→ Fab for all a, b = 1, . . . ,m determine a Lie algebra embedding
glm → fm; see relations (2.3). Using this embedding, consider the decomposition

(2.19) fm = r⊕ glm ⊕ r
′,

where r and r′ are the Abelian subalgebras of fm spanned (respectively) by the elements
Fa,−b and F−a,b for all a, b = 1, . . . ,m. For any glm-module U , let V be the fm-module
parabolically induced from the glm-module U . To define V , first we extend the action
of the Lie algebra glm on U to the maximal parabolic subalgebra glm ⊕ r′ ⊂ fm, so that
every element of the summand r′ acts on U as zero. By definition, V is the fm-module
induced from the (glm ⊕ r′)-module U . Note that here we have a canonical embedding
U → V of (glm⊕ r′)-modules; we shall denote by su the image of an element u ∈ U under
this embedding. The fm-module V determines the bimodule Fm(V ) over fm and X(gn).
The space Fm(V )r of r-coinvariants is then a bimodule over glm and X(gn).

On the other hand, for any z ∈ C, consider the bimodule Ez
m(U) over the Lie algebra

glm and over the Yangian Y(gln). By restricting the module Ez
m(U) from the algebra

Y(gln) to its subalgebra Y(gn) and then using the homomorphism X(gn) → Y(gn) defined
by (1.18), we can regard Ez

m(U) as a module over the algebra X(gn) instead of Y(gln).
This module is determined by the homomorphism X(gn) → Am such that for any i, j =
1, . . . , n, the series Sij(u) is mapped to

(2.20)
n∑

k=1

θi θk αm

(
T

rkrı(−u+ z)Tkj(u+ z)
)
;

see (1.12) and (1.26). Now we map Sij(u) to the series (2.20) multiplied by

(2.21) (1 + Z(u− z −m))⊗ 1 ∈ Am[[u−1]];

see (1.27), where the positive integer l must be replaced by m. The latter mapping
determines another homomorphism X(gn) → Am. Using it, we turn the vector space
U ⊗G(Cm⊗Cn) of the X(gn)-module Ez

m(U) to another X(gn)-module, to be denoted by
rEz
m(U). Next, we define an action of the Lie algebra glm on rEz

m(U) by pulling its action
on Ez

m(U) back through the automorphism

(2.22) Eab �→ −δab n/2 + Eab for a, b = 1, . . . ,m.

Thus, the action of glm on rEz
m(U) is determined by the composition of homomorphisms

U(glm) → U(glm) → End(U ⊗ G(Cm ⊗ C
n)),

where the first map is the automorphism (2.22), while the second map corresponds to
the natural action of glm on Ez

m(U). The following proposition is a particular case of
Theorem 3.1 from the next section.
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Proposition 2.5. For the fm-module V parabolically induced from any glm-module U ,

the bimodule Fm(V )r over glm and X(gn) is equivalent to rEz
m(U), where z = ∓ 1

2 .

Now, let u and f range over the vector spaces U and G(Cm ⊗ Cn), respectively. In
the next section, we shall show that the linear map

U ⊗ G(Cm ⊗ C
n) → (V ⊗ G(Cm ⊗ C

n))r

defined by mapping u ⊗ f to the class of su ⊗ f in the space of r-coinvariants, is an

equivalence of bimodules rEz
m(U) → Fm(V )r over glm and X(gn).

An element µ of the vector space h∗ dual to h is called a weight . A weight µ can be
identified with the sequence (µ1, . . . , µm) of its labels, where

µa = µ(Fa−m−1,a−m−1) = −µ(Fm−a+1,m−a+1) for a = 1, . . . ,m.

The Verma module Mµ of the Lie algebra fm is the quotient of the algebra U(fm) by the
left ideal generated by all elements X ∈ n′ and all elements X − µ(X) with X ∈ h. The
elements of the Lie algebra fm act on this quotient via left multiplication. The image
of the identity element 1 ∈ U(fm) in this quotient is denoted by 1µ. Then X · 1µ = 0
for all X ∈ n′, and X · 1µ = µ(X) · 1µ for all X ∈ h. Let Lµ be the quotient of the
Verma module Mµ relative to the maximal proper submodule. This quotient is a simple
fm-module of the highest weight µ.

For z ∈ C, we denote by Pz the Y(gln)-module obtained by pulling the standard
action of U(gln) on G(Cn) back through the homomorphism Y(gln) → U(gln) defined
by (1.4), and then back through the automorphism τ−z of Y(gln). Let x1, . . . , xn be the
standard generators of G(Cn) and let ∂1, . . . , ∂n be the corresponding left derivations.
From (0.3) it follows that the action of Y(gln) on Pz is determined by the homomorphism
Y(gln) → GD(Cn) such that

(2.23) Tij(u) �→ δij +
xi∂j
u+ z

.

Using the comultiplication (1.9), for any z1, . . . , zm ∈ C we define the tensor product
of Y(gln)-modules

(2.24) Pzm ⊗ · · · ⊗ Pz1 .

For a = 1, . . . ,m, let dega be the linear operator on this tensor product corresponding
to evaluation of the total degree in x1, . . . , xn in the tensor factor Pza , i.e., in the ath
tensor factor when counting from right to left. By restricting this tensor product of
Y(gln)-modules to the subalgebra Y(gn) ⊂ Y(gln) and then using the homomorphism
X(gn) → Y(gn) defined by (1.18), we can regard the tensor product (2.24) as a module
over the extended twisted Yangian X(gn).

Corollary 2.6. The bimodule Fm(Mµ)n over h and X(gn) is equivalent to the tensor
product

(2.25) Pµm+z ⊗ Pµm−1+z+1 ⊗ · · · ⊗ Pµ1+z+m−1

pulled back through the automorphism of X(gn) defined by (1.17), where f(u) equals

(2.26)

m∏
a=1

(
1 +

1

u− z −m+ a− 1− µa

)
;

here z = ∓ 1
2 . The element Fm−a+1,m−a+1 ∈ h acts on (2.25) as the operator

(2.27) −n/2 + dega −µa.
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Proof. We have an embedding of glm to fm such that Eaa �→ Faa for a = 1, . . . ,m. Then
the Cartan subalgebra t of glm is identified with the Cartan subalgebra h of fm. Put
sa = m− a+ 1 for short. If we regard the weight µ as an element of t∗, then

µ(E
sasa) = −µa for a = 1, . . . ,m.

Let U be the Verma module of the Lie algebra glm corresponding to µ ∈ t∗. It is defined
as the quotient of the algebra U(glm) by the left ideal generated by all elements Eab with
a < b, and by all elements Eaa−µ(Eaa). Then the Verma module Mµ of the Lie algebra
fm is equivalent to the module V parabolically induced from the glm-module U . Here we
use the decomposition (2.19).

Let s denote the subalgebra of the Lie algebra glm spanned by all elements Eab with
a > b. Using our embedding of glm to fm, we can also regard s as a subalgebra of fm.
The Lie algebra n of fm is then spanned by r and s. By Proposition 2.5, the bimodule

Fm(Mµ)n over h and X(gn) is equivalent to rEz
m(U)s, where z = ∓ 1

2 . To describe the latter
bimodule, first we consider the bimodule Ez

m(U)s over t and Y(gln). By [KN2, Corollary
2.4], the bimodule Ez

m(U)s is equivalent to the tensor product of Y(gln)-modules (2.25),
where the element E

sasa ∈ t acts as dega −µa. After pulling the action of the Lie algebra
glm on Ez

m(U) back through the automorphism (2.22), the element E
sasa ∈ t will act on

the tensor product of vector spaces (2.25) as (2.27).

To complete the proof of Corollary 2.6, recall that the action of X(gln) on rEz
m(U)

differs from that on Ez
m(U) by multiplying the series (2.20) by (2.21). Using (1.28), we

see that the series 1 + Z(u − z −m) in u−1 with the coefficients in Z(glm) acts on the
Verma module U via scalar multiplication by the series (2.26). �

By definition, the vector spaces of the two equivalent bimodules in Corollary 2.6 are
(Mµ ⊗ G(Cm ⊗ Cn))n and G(Cn)⊗m, respectively. We can define a linear map from the
latter vector space to the former by mapping f1 ⊗ · · · ⊗ fm to the class of the element
1µ ⊗ f in the space of n-coinvariants. Here for any m polynomials f1, . . . , fm in the n
anticommuting variables x1, . . . , xn, the polynomial f in themn anticommuting variables
x11, . . . , xmn is defined by setting

(2.28) f(x11, . . . , xmn) = f1(x11, . . . , x1n) · · · fm(xm1, . . . , xmn).

This provides the bimodule equivalence in Corollary 2.6; see [KN2, Corollary 2.4] and
also the remarks made immediately after stating Proposition 2.5 in the present paper.

For any z ∈ C denote by P ′
z the Y(gln)-module obtained by pulling Pz back through

the automorphism (1.11) of Y(gln). In accordance with (2.23), the action of Y(gln) on
P ′
z is determined by the homomorphism Y(gln) → GD(Cn),

(2.29) Tij(u) �→ δij −
θiθjxrj ∂rı

u− z
.

Lemma 2.7. The Y(gln)-module P ′
z can also be obtained by pushing the action of Y(gln)

on P−z−1 forward through the automorphism of GD(Cn) such that for each i = 1, . . . , n,

(2.30) xi �→ θi ∂rı and ∂i �→ θi xrı, i = 1, . . . , n,

and by pulling the resulting action back through the automorphism (1.3) of Y(gln), where

(2.31) g(u) = 1− 1

u− z
.

Thus, the action of Y(gln) on P ′
z can also be determined by the composition

Y(gln) → Y(gln) −→
τz+1

Y(gln) → U(gln) → GD(Cn) → GD(Cn).
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Here the first map is the automorphism (1.3) of Y(gln), where the series g(u) is given by
(2.31), the last map is the automorphism (2.30) of GD(Cn), while the other three maps
are defined as in (0.3).

Proof. Applying the automorphism (2.30) to the right-hand side of (2.23) and replacing
the parameter z there by −z − 1, we get

δij +
θiθj∂rı xrj

u− z − 1
= δij +

δij − θiθjxrj ∂rı

u− z − 1
=

u− z

u− z − 1

(
δij −

θiθjxrj ∂rı

u− z

)
,

and after multiplying by (2.31), this becomes the right-hand side of (2.29). �

§3. Parabolic induction

The twisted Yangian Y(gn) is not merely a subalgebra of Y(gln), it is also a right
coideal of the coalgebra Y(gln) relative to the comultiplication (1.9). Indeed, apply this
comultiplication to the (i, j)-entry of the (n× n)-matrix T ′(−u)T (u). We get the sum

n∑
k=1

θiθk ∆(T
rkrı(−u)Tkj(u)) =

n∑
g,h,k=1

θiθj (Trkrg(−u)⊗ T
rgrı(−u)) (Tkh(u)⊗ Thj(u))

=
n∑

g,h,k=1

θgθk Trkrg(−u)Tkh(u)⊗ θiθg Trgrı(−u)Thj(u).

In the last displayed line, by performing summation over k = 1, . . . , n in the first tensor
factor, we get the (g, h)-entry of the matrix T ′(−u)T (u). Therefore,

∆(Y(gn)) ⊂ Y(gn)⊗Y(gln).

For the extended twisted Yangian X(gn), one can define a homomorphism of associative
algebras

X(gn) → X(gn)⊗Y(gln)

by assigning

(3.1) Sij(u) �→
n∑

g,h=1

Sgh(u)⊗ θiθg Trgrı(−u)Thj(u).

The homomorphism property can be verified directly; see [KN3, §3]. Via the homo-
morphism (3.1), the tensor product of any modules over the algebras X(gn) and Y(gln)
becomes another module over X(gn).

Furthermore, the homomorphism (3.1) is a coaction of the Hopf algebra Y(gln) on the
algebra X(gn). Formally, a homomorphism of associative algebras

X(gn) → X(gn)⊗Y(gln)⊗Y(gln)

can be defined in two different ways: either by using the assignment (3.1) twice, or by
using (3.1) and then (1.9). Both ways lead to the same result; see again [KN3, §3].

Now for any positive integer l we consider the general linear Lie algebra gl2m+2l and
its subalgebra fm+l. This subalgebra is spanned by the elements Fab with

(3.2) a, b = −m− l, . . . ,−1, 1, . . . ,m+ l.

We extend the notation (2.1) and (2.2) to all such indices a, b and identify fm with the
subalgebra of fm+l spanned by the elements Fab, where a, b = −m, . . . ,−1, 1, . . . ,m.
Choose the embedding of the Lie algebra gll to fm+l determined by the mappings

(3.3) Eab �→ Fm+a,m+b for a, b = 1, . . . , l.
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Let q, q′ be the subalgebras of fm+l spanned (respectively) by the elements Fab, Fba,
where

a = m+ 1, . . . ,m+ l and b = −m− l, . . . ,−1, 1, . . . ,m;

these two subalgebras of fm+l are nilpotent. Put p = fm ⊕ gll ⊕ q′. Then p is a maximal
parabolic subalgebra of the reductive Lie algebra fm+l, and fm+l = q ⊕ p. We do not
exclude the case of m = 0 here. In this case the nilpotent subalgebras q and q′ of fm+l

become the Abelian subalgebras r and r′ of the Lie algebra fl; see the decomposition
(2.19), where the positive integer m must be replaced by l. Note that here the meaning
of the symbols p and q is different from that in §0.

Let V and U be any modules of the Lie algebras fm and gll, respectively. Denote by
V � U the fm+l-module parabolically induced from the fm⊕ gll-module V ⊗U . To define
V � U , first we extend the action of the Lie algebra fm ⊕ gll on V ⊗U to the Lie algebra
p, so that every element of the subalgebra q′ ⊂ p acts on V ⊗ U as zero. By definition,
V � U is the fm+l-module induced from the p-module V ⊗ U . Note that here we have a
canonical embedding V ⊗U → V � U of p-modules; we denote by v ⊗ u the image of an
element v ⊗ u ∈ V ⊗ U under this embedding.

Consider the bimodule Fm+l(V � U) over fm+l and X(gn). Here the action of X(gln)
commutes with the action of the Lie algebra fm+l, and hence, with the action of the
subalgebra q ⊂ fm+l. Therefore, the vector space Fm+l(V � U)q of coinvariants of the
action of the subalgebra q is a quotient of the X(gn)-module Fm+l(V � U). Note that
the subalgebra fm ⊕ gll ⊂ fm+l also acts on this quotient.

For any z ∈ C, consider the bimodule Ez
l (U) over gll and Y(gln), defined as at the end

of §1. Also consider the bimodule Fm(V ) over fm and X(gn). Via the homomorphism
(3.1), the tensor product of vector spaces Fm(V )⊗Ez

l (U) becomes a module over X(gn).
This module is determined by the homomorphism X(gn) → Bm ⊗Al such that for any
i, j = 1, . . . , n the series Sij(u) is mapped to

(3.4)
n∑

g,h=1

βm

(
Sgh(u)

)
⊗ θiθg αl

(
T

rgrı(−u+ z)Thj(u+ z)
)
.

Now, we map the series Sij(u) to the series (3.4) multiplied by

(3.5)
(
1⊗ 1

)
⊗
(
(1 + Z(u− z − l))⊗ 1

)
∈ Bm ⊗Al [[u

−1]];

see (1.27). This mapping determines another homomorphism X(gn) → Bm ⊗Al. Us-
ing it, we turn the vector space of the X(gn)-module Fm(V ) ⊗ Ez

l (U) to yet another

X(gn)-module, which will be denoted by Fm(V ) r⊗Ez
l (U). Define an action of the Lie

algebra gll on the latter X(gn)-module by pulling the action of gll on El(U) back through
the automorphism

(3.6) Eab �→ −δab n/2 + Eab for a, b = 1, . . . , l.

The Lie algebra fm acts on the X(gn)-module Fm(V ) r⊗Ez
l (U) via the tensor factor

Fm(V ). Thus, Fm(V ) r⊗Ez
l (U) becomes a bimodule over the direct sum of Lie alge-

bras fm⊕gll and over the extended twisted Yangian X(gn). For m = 0, the next theorem
becomes Proposition 2.5, where the positive integer m must be replaced by l. Here we
assume that F0(V ) = C, so that β0(Sij(u)) = δij .

Theorem 3.1. The bimodule Fm+l(V � U)q over fm ⊕ gll and X(gn) is equivalent to

Fm(V ) r⊗Ez
l (U), where z = m∓ 1

2 .
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Proof. The remaining part of this section is devoted to the proof of Theorem 3.1. As
vector spaces,

Fm+l(V � U)q = (V � U ⊗ G(Cm+l ⊗ C
n))q,

Fm(V ) r⊗Ez
l (U) = V ⊗ G(Cm ⊗ C

n)⊗ U ⊗ G(Cl ⊗ C
n).

We can construct a linear map from the latter vector space to the former one by
mapping any element v ⊗ f ⊗ u ⊗ g to the class of v ⊗ u ⊗ f ⊗ g in the space of q-
coinvariants. Here v ∈ V , f ∈ G(Cm ⊗ Cn) and u ∈ U , g ∈ G(Cl ⊗ Cn), whereas the
tensor product f ⊗ g is identified with an element of G(Cm+l ⊗ Cn) in a natural way,
which corresponds to the decomposition

(3.7) C
m+l ⊗ C

n = C
m ⊗ C

n ⊕ C
l ⊗ C

n.

We shall show that this map establishes an equivalence of bimodules in Theorem 3.1.
The vector space of the fm+l-module V � U can be identified with the tensor product

U(q)⊗ V ⊗U , where the Lie subalgebra q ⊂ fm+l acts via left multiplication on the first
tensor factor. Then v ⊗ u = 1⊗ v ⊗ u, so that the tensor product V ⊗ U gets identified
with the subspace

(3.8) 1⊗ V ⊗ U ⊂ U(q)⊗ V ⊗ U.

On this subspace, every element of the subalgebra q′ ⊂ fm+l acts as zero, while the two
direct summands of the subalgebra fm ⊕ gll ⊂ fm+l act nontrivially only on the tensor
factors V and U , respectively. All this determines the action of the Lie algebra fm+l on
U(q)⊗V ⊗U . Now we view Fm+l(V � U) as a fm+l-module, denoting it by M for short.
Then M is the tensor product of two fm+l-modules,

(3.9) M = (V � U)⊗ G(Cm+l ⊗ C
n) = U(q)⊗ V ⊗ U ⊗ G(Cm+l ⊗ C

n).

The vector spaces of the X(gn)-module Fm(V ) and of the Y(gln)-module Ez
l (U) are

V ⊗ G (Cm ⊗ Cn) and U ⊗ G (Cl ⊗ Cn), respectively. The action of the Lie algebra fm

on the first vector space is defined by (2.6). By pulling back through the automorphism
(3.6), the action of the Lie algebra gll on the second vector space is defined by

Eab �→ −δab n/2 + Eab ⊗ 1 +
n∑

k=1

1⊗ xak ∂bk for a, b = 1, . . . , l.

We identify the tensor product of these two vector spaces with the vector space

(3.10) V ⊗ U ⊗ G (Cm ⊗ C
n)⊗ G (Cl ⊗ C

n) = V ⊗ U ⊗ G (Cm+l ⊗ C
n),

where we use the direct sum decomposition (3.7). We get an action of the direct sum of
Lie algebras fm ⊕ gll on the vector space (3.10).

Now we define a linear map

χ : V ⊗ U ⊗ G (Cm+l ⊗ C
n) → M/ q ·M

by the assignment

χ : y ⊗ x⊗ t �→ 1⊗ y ⊗ x⊗ t+ q ·M
for any vectors y ∈ V , x ∈ U and t ∈ G (Cm+l ⊗ Cn). The operator χ intertwines the
actions of the Lie algebra fm ⊕ gll; see the definition (2.6) with m replaced by m+ l. We
show that the operator χ is bijective.

First, consider the action of the Lie subalgebra q ⊂ fm+l on the vector space

G(Cm+l) = G(Cm)⊗ G(Cl);



132 M. NAZAROV AND S. KHOROSHKIN

the action is defined by (2.6), where n = 1 and the integer m is replaced by m+ l. This
vector space admits a descending filtration by the subspaces

l⊕
K=N

G (Cm)⊗ GK(Cl), where N = 0, 1, . . . , l.

Here GK(Cl) stands for the homogeneous subspace of G (Cl) of degree K. The action
of the Lie algebra q on G(Cm+l) preserves each of the filtration subspaces and becomes
trivial on the associated graded space.

Similarly, for any n = 1, 2, . . ., the vector space G (Cm+l ⊗ C
n) admits a descending

filtration by q-submodules such that q acts trivially on each of the corresponding graded
subspaces. The latter filtration induces a filtration of M by q-submodules such that, on
the corresponding graded quotient grM , the Lie algebra q acts via left multiplication
on the first tensor factor U(q) in (3.9). Therefore, the space V ⊗ U ⊗ G (Cm+l ⊗ C

n) is
isomorphic to the space of coinvariants (grM)q via the bijective linear map

y ⊗ x⊗ t �→ 1⊗ y ⊗ x⊗ t+ q · (grM).

Thus, the linear map χ is also bijective. Now it remains to show that the map χ inter-
twines the actions of the algebra X(gn).

In this section we shall use the symbol ≡ to indicate equalities in the algebra U(fm+l)
modulo the left ideal generated by the elements of the subalgebra q′ ⊂ fm+l. Any two
elements of U(fm+l) related by ≡ act on the subspace (3.8) in the same way. We shall
extend the relation ≡ to formal power series in u−1 with coefficients in U(fm+l), and
then to matrices whose entries are such series. Put

(3.11) v = u± 1
2 −m− l and w = −u± 1

2 −m− l.

The definition of the X(gn)-module M involves the ((2m + 2l) × (2m + 2l))-matrix
whose (a, b)-entry is δab v+Fab. The rows and columns of this matrix are labeled by the
indices (3.2). In [KN3, §3] we proved that the inverse to this matrix is related by ≡ to
the block matrix

(3.12)

⎡
⎣H 0 0

I J 0
P Q R

⎤
⎦ ,

where the blocks H, P , R are certain matrices of size l × l, while the blocks I, J , Q are
certain matrices of sizes 2m × l, 2m × 2m, and l × 2m, respectively. We label the rows
and columns of the blocks by the same indices as in the compound matrix (3.12). For
instance, the rows and columns of the (l × l)-matrix R are labeled by m+ 1, . . . ,m+ l.

Keeping the notation of §2, let F be the (2m × 2m)-matrix whose (c, d)-entry is Fcd

for c, d = −m, . . . ,−1, 1, . . . ,m. Let F (u) be the inverse to the matrix u+F . The entries
of the matrix F (u) are formal power series in u−1 with coefficients in the algebra U(fm);
see (2.4). But now the algebra U(fm) is regarded as a subalgebra of U(fm+l). We denote
by W (u) the trace of the matrix F (u), as we did in §2.

Let E denote the (l × l)-matrix whose (a, b)-entry is Fab for a, b = m + 1, . . . ,m + l.
Using our embedding (3.3) of the Lie algebra gll to fm+l, we see that this notation agrees
with that of §1. But now we use the indices a, b = m+1, . . . ,m+ l to label the rows and
columns of the matrix E. Let E(v) be the inverse to the matrix v+E. Let Eab(u) be the
(a, b)-entry of the inverse matrix and Z(v) the trace of the inverse matrix. The coefficients
of the formal power series Z(v) in v−1 belong to the center of the algebra U(gll), which
is now regarded as a subalgebra of U(fm+l). Next, for any indices a, b = m+1, . . . ,m+ l,

we put rEab(v) = (v + l + E′)−1
ba . Then, by Lemma 1.3,

(3.13) (1 + Z(v)) rEab(v) = Eab(v).
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Let a, b = m+ 1, . . . ,m+ l and c, d = −m, . . . ,−1, 1, . . . ,m. By [KN3, §3], we have

−H−b,−a = (1 + Z(v))
((

W (v + l)∓ 1

2u
+ 1

)
rEab(w)±

1

2u
rEab(v)

)
,

−I−d,−a =
∑

b>m≥c≥−m

εad Fbc (1 + Z(v))
(
εcd rEab(w)F−d,−c(v + l)

±
rEab(w)− rEab(v)

2u
Fcd(v + l)

)
,

Jcd = (1 + Z(v))Fcd(v + l),

Pb,−a =
∑

e,f>m

Ff,−eEbf (v) rEae(w)

±
∑

e,f>m
m≥c,d≥−m

εad Ff,−d Fec Ebe(v) rEaf (w)Fcd(v + l),

−Qad =
∑

e>m≥c≥−m

Fec Eae(v)Fcd(v + l), Rab = Eab(v).

By the definition of the X(gn)-module M , now the action of X(gn) on the elements of
the subspace

(3.14) 1⊗ V ⊗ U ⊗ G(Cm+l ⊗ C
n) ⊂ M

can be described by assigning the following sum of series with coefficients in the algebra
Bm+l = U(fm+l)⊗ GD(Cm+l ⊗ Cn) to every series Sij(u):

δij +
∑

a,b>m

Rab ⊗ θi θj ∂arı xsbrj +
∑

a,b>m

H−b,−a ⊗ xbi ∂aj(3.15)

+
∑

a>m≥d>0

( I−d,−a ⊗ xdi ∂aj + Id,−a ⊗ θi ∂drı ∂aj )

+
∑

m≥c,d>0

(J−c,−d ⊗ xci ∂dj + J−c,d ⊗ θj xci xdrj + Jc,−d ⊗ θi ∂crı ∂dj + Jcd ⊗ θi θj ∂crı xdrj)

+
∑

a,e>m

Pe,−a ⊗ θi ∂erı ∂aj

+
∑

a>m≥d>0

(Qa,−d ⊗ θi ∂arı ∂dj +Qad ⊗ θi θj ∂arı xdrj ).

Here for a = 1, . . . ,m + l and i = 1, . . . , n we use the standard generators xai of the
Grassmann algebra G(Cm+l ⊗ Cn). Then ∂ai is the left derivation on G(Cm+l ⊗ Cn)
relative to xai. The generators xai with a ≤ m and a > m correspond to the first and
the second direct summands in (3.7).

Consider the action of X(gn) on the elements of the subspace (3.14) modulo q ·M , in
accordance with the definition (2.6), where m must be replaced by m+ l. From now till
the end of this section, we assume that a, b, e, f = m+1, . . . ,m+ l, while c, d = 1, . . . ,m.
The indices g, h and k will run through 1, . . . , n.

By our description of the block R, the sum displayed in the first of the six lines in
(3.15) acts on the elements of the subspace (3.14) as the sum

(3.16) δij +
∑
a,b

Eab(v)⊗ θi θj ∂arı xbrj = δij (1 + Z(v))−
∑
a,b

Eab(v)⊗ θi θj xbrj ∂arı.
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By our description of the block H, the sum displayed in the second in (3.15) acts on
the elements of (3.14) as the sum over the indices a, b of the expressions

(3.17) −(1 + Z(v))
((

W (v + l)∓ 1

2u
+ 1

)
rEab(w)±

1

2u
rEab(v)

)
⊗ xbi ∂aj .

By our description of the block I, the sum in the third line in (3.15) acts on the
elements of (3.14) as the sum over the indices a, b, c, d of the expressions

∓ Fb,−c (1 + Z(v))
(

rEab(w)F−d,c(v + l) +
rEab(w)− rEab(v)

2u
F−c,d(v + l)

)
⊗ xdi ∂aj ,

− Fbc (1 + Z(v))
(

rEab(w)F−d,−c(v + l)±
rEab(w)− rEab(v)

2u
Fcd(v + l)

)
⊗ xdi ∂aj ,

∓ Fb−c (1 + Z(v))
(

rEab(w)Fdc(v + l)±
rEab(w)− rEab(v)

2u
F−c,−d(v + l)

)
⊗ θi ∂drı ∂aj ,

− Fbc (1 + Z(v))
(

rEab(w)Fd,−c(v + l) +
rEab(w)− rEab(v)

2u
Fc,−d(v + l)

)
⊗ θi ∂drı ∂aj .

Here Fb,−c ∈ q and Fbc ∈ q. Hence, modulo q ·M , the expression displayed in the last
four lines acts on the elements of (3.14) as the sum over the index k of the expressions

(
±
(

rEab(w)F−d,c(v − l) +
rEab(w)− rEab(v)

2u
F−c,d(v + l)

)
⊗ θk xbrk xck xdi ∂aj(3.18)

+
(

rEab(w)F−d,−c(v + l)±
rEab(w)− rEab(v)

2u
Fcd(v + l)

)
⊗ xbk ∂ck xdi ∂aj

±
(

rEab(w)Fdc(v + l)±
rEab(w)− rEab(v)

2u
F−c,−d(v + l)

)
⊗ θi θk xbrk xck ∂drı ∂aj

+
(

rEab(w)Fd,−c(v + l) +
rEab(w)− rEab(v)

2u
Fc,−d(v + l)

)
⊗ θi xbk ∂ck ∂drı ∂aj

)
×

(
(1 + Z(v))⊗ 1

)
.

By our description of the block J , the sum displayed in the fourth line in (3.15) acts
on the elements of (3.14) as the sum over c, d of the expressions(

(1 + Z(v))⊗ 1
) (

F−c,−d(v + l)⊗ xci ∂dj + F−c,d(v + l)⊗ θj xci xdrj(3.19)

+ Fc,−d(v + l)⊗ θi ∂crı ∂dj + Fcd(v + l)⊗ θi θj ∂crı xdrj

)
.

By our description of the block P , the sum displayed in the fifth line in (3.15) acts on
the elements of the subspace (3.14) as the sum over the indices a, b, e, f of the expressions

Ff,−b Eef (v) rEab(w)⊗ θi ∂erı ∂aj

plus the action of the sum over the indices a, b, c, d, e, f of the expressions

Ffd Fb,−c Eeb(v) rEaf (w)F−c,−d(v + l)⊗ θi ∂erı ∂aj ,

± Ff,−d Fb,−c Eeb(v) rEaf (w)F−c,d(v + l)⊗ θi ∂erı ∂aj ,

+ Ffd Fbc Eeb(v) rEaf (w)Fc,−d(v + l)⊗ θi ∂erı ∂aj ,

± Ff,−d Fbc Eeb(v) rEaf (w)Fcd(v + l)⊗ θi ∂erı ∂aj .

Here, modulo q ·M , the expression to be summed over the indices a, b, e, f acts on the
elements of the subspace (3.14) as the sum over the index k of the expressions

−Eef (v) rEab(w)⊗ θi θk xfrk xbk ∂erı ∂aj ,



TWISTED YANGIANS AND MICKELSSON ALGEBRAS. II 135

while the expression to be summed over a, b, c, d, e, f acts as the sum over g, h of the
expressions(

Eeb(v) rEaf (w)⊗ 1
) (

F−c,−d(v + l)⊗ θi θg xbrg xcg xfh ∂dh ∂erı ∂aj

± F−c,d(v + l)⊗ θi θg θh xbrg xcg xfrh xdh ∂erı ∂aj

+ Fc,−d(v + l)⊗ θi xbg ∂cg xfh ∂dh ∂erı ∂aj

± Fcd(v + l)⊗ θi θh xbg ∂cg xfrh xdh ∂erı ∂aj
)
.

We have θ
rk = ± θk for k = 1, . . . , n. Using the commutation relations in the ring

GD(Cm+l⊗Cn), the sum over the index k above equals the sum over k of the expressions

(3.20) Eef (v) rEab(w)⊗ θi θk xfrk ∂erı xbk ∂aj

plus

(3.21) ∓ δbe Eef (v) rEab(w)⊗ xfrı ∂aj .

Similarly, the sum over the indices g, h equals the sum over g, h of the expressions(
F−c,−d(v + l)⊗ xcg ∂dh + F−c,d(v + l)⊗ θh xcg xdrh(3.22)

+ Fc,−d(v + l)⊗ θg ∂crg ∂dh + Fcd(v + l)⊗ θg θh ∂crg xdrh

)
×
(
Eeb(v)⊗ θi θg xbrg ∂erı

) (
rEaf (w)⊗ xfh ∂aj

)
plus the sum over k of the expressions

(
δef Eeb(v) rEaf (w)⊗ 1

)(
−F−c,−d(v + l)⊗ θi θk xbrk xck ∂drı ∂aj

(3.23)

∓ F−c,d(v + l)⊗ θk xbrk xck xdi ∂aj

− Fc,−d(v + l)⊗ θi xbk ∂ck ∂drı ∂aj ∓ Fcd(v + l)⊗ xbk ∂ck xdi ∂aj
)
.

By our description of the block Q, the sum displayed in the last line in (3.15) acts on
the elements of (3.14) as the sum over a, b, c, d of the expressions

− (Fb,−c Eab(v)F−c,−d(v + l) + Fbc Eab(v)Fc,−d(v + l))⊗ θi ∂arı ∂dj

− (Fb,−c Eab(v)F−c,d(v + l) + Fbc Eab(v)Fcd(v + l))⊗ θi θj ∂arı xdrj.

Modulo q ·M , the expression in the above two lines acts on the elements of the subspace
(3.14) as the sum over k of the expressions(
Eab(v)⊗ 1

)(
F−c,−d(v + l)⊗ θi θk xbrk xck ∂arı ∂dj + Fc,−d(v + l)⊗ θi xbk ∂ck ∂arı ∂dj

+ F−c,d(v + l)⊗ θk xbrk xck θi θj ∂arı xdrj + Fcd(v + l)⊗ xbk ∂ck θi θj ∂arı xdrj

)
.

Note that this sum over the index k can be rewritten as the sum over k of the expressions(
F−c,−d(v + l)⊗ xck ∂dj + F−c,d(v + l)⊗ θj xck xdrj(3.24)

+ Fc,−d(v + l)⊗ θk ∂crk ∂dj + Fcd(v + l)⊗ θk θj∂crk xdrj

)
×
(
−Eab(v)⊗ θi θk xbrk ∂arı

)
.

Consider the sum of the expressions (3.23) over the running indices e, f . We add this
sum to the expression displayed in the five lines in (3.18). Using the relation

(3.25)
∑
e

rEeb(v) rEae(w) =
rEab(w)− rEab(v)

2u
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together with (3.13), and performing cancellations, we get the expression(
±F−d,c(v + l)⊗ θk xbrk xck xdi ∂aj + F−d,−c(v + l)⊗ xbk ∂ck xdi ∂aj

+ Fd,−c(v + l)⊗ θi xbk ∂ck ∂drı ∂aj ± Fdc(v + l)⊗ θi θk xbrk xck ∂drı ∂aj
)

×
(
(1 + Z(v)) rEab(w)⊗ 1

)
.

After exchanging the running indices c and d, the sum over the index k of the expressions
in the last three displayed lines can be rewritten as

(3.26) δcd (1 + Z(v))
(
F−c,−d(v + l) + Fcd(v + l)

)
rEab(w)⊗ xbi ∂aj

plus the sum over k of the expressions(
F−c,−d(v + l)⊗ xci ∂dk + F−c,d(v + l)⊗ θk xci xdrk(3.27)

+ Fc,−d(v + l)⊗ θi ∂crı ∂dk + Fcd(v + l)⊗ θi θk∂crı xdrk

)
×
(
− (1 + Z(v)) rEab(w)⊗ xbk ∂aj

)
.

Again, here we have used the commutation relations in the ring GD(Cm+l ⊗ Cn).
Now we perform summation over all running indices in the four expressions (3.19),

(3.22), (3.24), (3.27) and then take their total. By exchanging the running indices b and
f in (3.22), and by replacing the running index k in (3.24), (3.27) by g, h (respectively),
the total can be written as the sum over the indices c, d and g, h of the expressions(

(1 + Z(v))⊗ 1
)(
F−c,−d(v + l)⊗ xcg ∂dh + F−c,d(v + l)⊗ θh xcg xdrh(3.28)

+ Fc,−d(v + l)⊗ θg ∂crg ∂dh + Fcd(v + l)⊗ θg θh ∂crg xdrh

)
×
(
δig −

∑
e,f

rEef (v)⊗ θi θg xfrg ∂erı

)(
δhj −

∑
a,b

rEab(w)⊗ xbh ∂aj

)
.

We perform summation in (3.21) over the running indices b, e. Then we replace the
running index f by the index b, which becomes free after summation. By adding the
resulting sum to the expression (3.17), we get

− (1 + Z(v))
(
W (v + l) + 1

)
rEab(w)⊗ xbi ∂aj ,

by (3.13) and (3.25). Performing summation in (3.26) over the running indices c, d and
then adding the result to the last displayed expression, we get

(3.29) − (1 + Z(v)) rEab(w)⊗ xbi ∂aj .

Now we sum over all running indices in the two expressions (3.20), (3.29) and then
add the two resulting sums to (3.16). By using (3.13) once again, the total can be written
as the sum over the index k of the expressions(

(1 + Z(v))⊗ 1
)

(3.30)

×
(
δik −

∑
e,f

rEef (v)⊗ θi θk xfrk ∂erı

)(
δkj −

∑
a,b

rEab(w)⊗ xbk ∂aj

)
.

By the definition of the series rEab(v), as given before (3.13), we have

rEef (v) = (v + l + E′)−1
fe = −

(
−u∓ 1

2
+m− E′

)−1

fe
,

rEab(w) = (w + l + E′)−1
ba = −

(
u∓ 1

2
+m− E′

)−1

ba
.
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We have also used the definitions (3.11). Hence, the sum of the expressions (3.28) over
the indices c, d and g, h plus the sum of the expressions (3.30) over the index k can be
rewritten as the sum over the indices g, h of the following series in u−1:((

1 + Z
(
u± 1

2
−m− l

))
⊗ 1

)
×
(
δgh +

∑
c,d

(
F−c,−d

(
u± 1

2
−m

)
⊗ xcg ∂dh + F−c,d

(
u± 1

2
−m

)
⊗ θh xcg xdrh

+ Fc,−d

(
u± 1

2
−m

)
⊗ θg ∂crg ∂dh + Fcd

(
u± 1

2
−m

)
⊗ θg θh ∂crg xdrh

))
×
(
δig +

∑
e,f

(
−u∓ 1

2
+m− E′

)−1

fe
⊗ θi θg xfrg ∂erı

)

×
(
δhj +

∑
a,b

(
u∓ 1

2
+m− E′

)−1

ba
⊗ xbh ∂aj

)

with coefficients in the algebra U(fm ⊕ gll) ⊗ GD(Cm+l ⊗ C
n). By mapping the series

Sij(u) to this sum, we describe the action of the extended twisted Yangian X(gn) on the
subspace (3.14) modulo q ·M . Comparing this sum with the product of the series (3.4)
and (3.5) with z = m ∓ 1

2 , we see that the map χ intertwines the actions of X(gn); we
have used (1.26) and (2.8). This completes the proof of Theorem 3.1. �

§4. Zhelobenko operators

Consider the hyperoctahedral group Hm. This is the semidirect product of the sym-
metric group Sm and the Abelian group Zm

2 , where Sm acts by permutations of m copies
of Z2. In this section, we assume that m > 0. The group Hm is generated by the elements
σa with a = 1, . . . ,m. The elements σa with indices a = 1, . . . ,m − 1 are elementary
transpositions generating the symmetric group Sm, so that σa = (a, a+ 1). Then σm is
the generator of the mth factor Z2 of Zm

2 . The elements σ1, . . . , σm ∈ Hm are involutions
and satisfy the braid relations

σa σa+1 σa = σa+1 σa σa+1 for a = 1, . . . ,m− 2;

σa σb = σb σa for a = 1, . . . , b− 2;

σm−1 σm σm−1 σm = σm σm−1 σm σm−1.

Note that Hm is the Weyl group of the simple Lie algebra sp2m. Let Bm be the braid
group corresponding to sp2m. It is generated by elements rσ1, . . . , rσm that, by definition,
satisfy the above displayed relations, instead of the involutions σ1, . . . , σm, respectively.
For any reduced decomposition σ = σa1

· · ·σaK
in Hm put

(4.1) rσ = rσa1
· · · rσaK

.

The definition of rσ is independent of the choice of a reduced decomposition of σ.
The group Hm also contains the Weyl group of the reductive Lie algebra so2m as a

subgroup of index two. This subgroup H′
m is generated by the elementary transpositions

σ1, . . . , σm−1 and by the involution σ′
m = σm σm−1 σm. Along with the braid relations

among σ1, . . . , σm−1, we also have braid relations involving σ′
m:

σa σ
′
m = σ′

m σa for a = 1, . . . ,m− 3,m− 1;

σm−2 σ
′
m σm−2 = σ′

m σm−2 σ
′
m.

For m > 1, the braid group of so2m is generated by m elements satisfying the same braid
relations instead of the m involutions σ1, . . . , σm−1, σ

′
m, respectively. When m = 1, the

braid group corresponding to fm = so2 consists of the identity element only.
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Now, let the indices c, d run through −m, . . . ,−1, 1, . . . ,m. For c > 0 we denote
sc = m + 1 − c; for c < 0 put sc = −m − 1 − c. Consider a representation σ �→ sσ of the
group Hm by permutations of −m, . . . ,−1, 1, . . . ,m such that

(4.2) sσ(c) = σ(sc) for σ ∈ Sm

and sσm(c) = −c if |c| = 1, while sσm(c) = c if |c| > 1. We can define an action of the
braid group Bm by automorphisms of the Lie algebra fm, by the assignments

rσ : Fcd �→ F
sσ(c)sσ(d) for σ ∈ Sm,(4.3)

rσm : Fcd �→ (±1)δc1+δd1F
sσm(c)sσm(d);(4.4)

cf. [T]. In accordance with our convention on double signs, the upper sign in ± corre-
sponds to fm = so2m, while the lower sign corresponds to fm = sp2m. The automor-
phism property can be checked by using relations (2.3); see the proof of statement (i)
in Lemma 4.1 below. This action of the group Bm on fm extends to an action of Bm

by automorphisms of the associative algebra U(fm). Note that if fm = so2m, then the
action of Bm on U(fm) factors through an action of the group Hm.

Next, an action of the braid group Bm by automorphisms of the algebra GD(Cm⊗Cn)
can be defined in the following way. Put

rσ(xai) = x
sσ(a)i and rσ(∂ai) = ∂

sσ(a)i for σ ∈ Sm ,

rσm(xai) = xai and rσm(∂ai) = ∂ai for a > 1,

rσm(x1i) = θi ∂1rı and rσm(∂1i) = θi x1rı,

(4.5)

where i = 1, . . . , n.
Note that in the case where fm = so2m, the element rσ 2

m ∈ Bm acts on x1i and on ∂1i
as the identity, so that the action of Bm on GD(Cm ⊗ C

n) factors through an action of
the group Hm. But if fm = sp2m, then the element rσ 2

m acts on x1i and on ∂1i as minus
the identity, because θi θrı = −1 in this case. This is why we use the braid group, rather
than the Weyl group Hm of the simple Lie algebra sp2m. Taking the tensor product of
the actions of Bm on the algebras U(fm) and GD(Cm ⊗C

n), we get an action of Bm by
automorphisms of the algebra Bm = U(fm)⊗ GD(Cm ⊗ Cn).

Lemma 4.1. (i) The map ζn : U(fm) → GD(Cm ⊗ Cn) is Bm-equivariant.
(ii) The action of Bm on Bm leaves invariant any element of the image of X(gn) under
the homomorphism βm.

Proof. We employ the elements pci and qci of GD(Cm ⊗ Cn), introduced immediately
after stating Proposition 2.3. In terms of these elements, the action of Bm on the
algebra GD(Cm ⊗ C

n) can be described by setting

rσ(pci) = p
sσ(c)i and rσ(qci) = q

sσ(c)i for σ ∈ Sm ,

rσm(pci) = (±1)δc1p
sσm(c)i and rσm(qci) = (±1)δc1q

sσm(c)i,

where c = −m, . . . ,−1, 1, . . . ,m. Statement (i) follows by comparing our definition of
the action of Bm on fm with the description (2.10) of the homomorphism ζn, and (ii)
follows similarly, with the help of the description (2.9) of βm. �

Consider the Cartan subalgebra h occurring in the triangular decomposition (2.17).
In the notation of this section, our chosen basis of h is (F−sa,−sa | a = 1, . . . ,m). Now,
let (εa | a = 1, . . . ,m) ⊂ h∗ be the dual basis, so that εb(F−sa,−sa) = δab. For c < 0 put
εc = −ε−c. Thus, the element εc ∈ h∗ is defined for every index c = −m, . . . ,−1, 1, . . . ,m.

Consider the root system of the Lie algebra fm in h∗. Put

ηa = εa − εa+1 for a = 1, . . . ,m− 1.
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Also, put ηm = εm−1 + εm if fm = so2m, and ηm = 2εm if fm = sp2m. Then η1, . . . , ηm
are simple roots of fm. Denote by ∆+ the set of positive roots of fm. These are the
weights εa − εb and εa + εb, where 1 ≤ a < b ≤ m if fm = so2m, and the same weights
together with 2εa, where 1 ≤ a ≤ m if fm = sp2m. We assume that in the case where
fm = so2 the root system of fm is empty. Let ρ be the half-sum of the positive roots of fm,
so that its sequence of labels (ρ1, . . . , ρm) is (m− 1, . . . , 0) if fm = so2m, and (m, . . . , 1)
if fm = sp2m. For each a = 1, ...,m− 1, we put

(4.6) Ea = F−sa,−Ęa+1 , Fa = F−Ęa+1,−sa , Ha = F−sa,−sa − F−Ęa+1,−Ęa+1.

Let

(4.7) Em = F−Ğm−1,Ďm, Fm = F
Ďm,−Ğm−1, Hm = F−Ğm−1,−Ğm−1 + F−Ďm,−Ďm

in the case where fm = so2m with m > 1. In the case where fm = sp2m, let

(4.8) Em = F−Ďm,Ďm /2, Fm = F
Ďm,−Ďm /2, Hm = F−Ďm,−Ďm .

For every possible index a, the three elements Ea, Fa, Ha of the Lie algebra fm span a
subalgebra isomorphic to sl2. They satisfy the commutation relations

(4.9) [Ea, Fa] = Ha, [Ha, Ea] = 2Ea, [Ha, Fa] = −2Fa.

So far we have denoted by Bm the associative algebra U(fm) ⊗ GD(Cm ⊗ Cn). Now
we use a different presentation of the same algebra. Namely, from now on until the end
of the next section, we regard Bm as the associative algebra generated by the algebras
U(fm) and GD(Cm ⊗ Cn) with the cross relations

(4.10) [X,Y ] = [ζn(X), Y ]

for anyX ∈ fm and Y ∈ GD(Cm⊗Cn). The brackets on the left-hand side of (4.10) denote
the commutator in Bm, and the brackets on the right-hand side denote the commutator
in the algebra GD(Cm⊗C

n) embedded in Bm. In particular, we regard U(fm) as a subal-
gebra of Bm. An isomorphism of this Bm with the tensor product U(fm)⊗GD(Cm⊗Cn)
can be defined by mapping elements X ∈ fm and Y ∈ GD(Cm⊗Cn) of Bm (respectively)
to the elements

X ⊗ 1 + 1⊗ ζn(X) and 1⊗ Y

of U(fm)⊗ GD(Cm ⊗ Cn). Here we have used (2.6). The action of the braid group Bm

on Bm is defined via its isomorphism with U(fm) ⊗ GD(Cm ⊗ Cn). Since the map ζn is
Bm-equivariant, the same action of Bm is obtained by extending the actions of Bm from
the subalgebras U(fm) and GD(Cm ⊗ Cn) to Bm.

Now consider the following two sets of elements of the algebra U(h) ⊂ U(fm):

{Faa − Fbb + z, Faa + Fbb + z | 1 ≤ a < b ≤ m, z ∈ Z} ,(4.11)

{Faa + z | 1 ≤ a ≤ m, z ∈ Z}.(4.12)

In the case where fm = so2m, we denote by ĘU(h) the ring of fractions of the commutative
algebra U(h) relative to the set of denominators (4.11). For fm = sp2m, we denote by
ĘU(h) the ring of fractions of U(h) relative to the union of the sets (4.11) and (4.12).

The elements of the ring ĘU(h) can also be regarded as rational functions on the vector

space h∗. The elements of the subalgebra U(h) ⊂ ĘU(h) are then regarded as polynomial
functions on h∗.

Denote by sBm the ring of fractions of Bm relative to the same set of denominators as
was used to define the ring of fractions ĘU(h). But now we regard these denominators as
elements of Bm, using the embedding of h ⊂ fm into Bm. The ring sBm is defined due to
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the following relations in Bm. For c < 0 put εc = −ε−c. Thus, the element εc ∈ h∗ is
defined for every c = −m, . . . ,−1, 1, . . . ,m. Then for any element H ∈ h we have

[H,Fcd] = (ε
sd − ε

sc)(H)Fcd for c, d = −m, . . . ,−1, 1, . . . ,m;

[H,xci] = −ε
sc(H) xci and [H, ∂ci] = ε

sc(H) ∂ci for c = 1, . . . ,m.

So, the ring Bm obeys the Ore condition relative to our set of denominators. Using left
multiplication by elements of ĘU(h), we turn the ring sBm into a ĘU(h)-module.

The ring sBm is also an associative algebra over C. The action of the braid group Bm

on Bm preserves the set of denominators, so that Bm also acts by automorphisms of the
algebra sBm. Using the elements (4.6) and (4.7) if fm = so2m, or the elements (4.6) and
(4.8) if fm = sp2m, for every simple root ηa of fm we can define a linear map

ξa : Bm → sBm

by setting

(4.13) ξa(Y ) = Y +
∞∑
s=1

(s!H(s)
a )−1Es

a
pF s
a (Y ),

where

H(s)
a = (Ha)(Ha − 1) · · · (Ha − s+ 1)

and pFa is the operator of adjoint action corresponding to the element Fa ∈ Bm,

pFa(Y ) = [Fa, Y ].

For a given element Y ∈ Bm, only finitely many terms of the sum (4.13) differ from zero.
In the case where fm = so2, there are no roots of fm, and no corresponding operators
Bm → sBm. On the other hand, if fm = so2m with m > 1, then, by (4.4),

ξm rσm = rσm ξm−1,

because

rσm : Em−1 �→ Em, Fm−1 �→ Fm, Hm−1 �→ Hm.

Let J and sJ be the right ideals of the algebras Bm and sBm (respectively) generated
by all elements of the subalgebra n ⊂ fm. The following two properties of the linear
operator ξa go back to [Z, §2]. For any elements X ∈ h and Y ∈ Bm,

ξa(XY ) ∈ (X + ηa(X)) ξa(Y ) + sJ,

ξa(Y X) ∈ ξa(Y )(X + ηa(X)) + sJ.
(4.14)

See [KN1, §3] for detailed proofs of these two properties. The proofs employ only the
commutation relations (4.9), not the actual form of the elements Ea, Fa, Ha.

Property (4.14) allows us to define a linear map sξa : sBm → sJ \ sBm by

sξa(X Y ) = Z ξa(Y ) + sJ for X ∈ ĘU(h) and Y ∈ Bm,

where the element Z ∈ ĘU(h) is defined by the relation

Z(µ) = X(µ+ ηa) for µ ∈ h
∗,

and both X and Z are regarded as rational functions on h∗. The backslash in sJ \ sBm

indicates that the quotient is taken relative to a right ideal of sBm. For the proofs of the
next two propositions, see [KN3, §4].

Proposition 4.2. For any simple root ηa of fm we have the inclusion rσ(sJ) ⊂ ker sξa,
where σ = σa unless fm = so2m and a = m, in which case σ = σ′

m.
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Recall that n′ denotes the nilpotent subalgebra of fm spanned by all the elements Fcd

with c < d. The relation Fcd = − εcd F−d,−c shows that the subalgebra n′ is also spanned
by the elements Fcd with c < d and c < 0. Now, for any a = 1, . . . ,m, denote by n′a the
vector subspace of fm spanned by all the elements Fcd with c < d and c < 0, except the
element Ea. Let J′ be the left ideal of Bm generated by the elements X − ζn(X) with
X ∈ n′. Under the isomorphism of Bm with U(fm)⊗ GD(Cm ⊗ Cn), for any X ∈ fm the
difference X − ζn(X) ∈ Bm is mapped to the element

(4.15) X ⊗ 1 ∈ U(fm)⊗ 1 ⊂ U(fm)⊗ GD(Cm ⊗ C
n).

Let J′a be the left ideal of Bm generated by the elements X − ζn(X) with X ∈ n′a, and

by the element Ea ∈ Bm. Denote sJ
′
= ĘU(h)J′ and sJ

′
a = ĘU(h)J′a. Then both sJ

′
and sJ

′
a

are left ideals of the algebra sBm.

Proposition 4.3. For any simple root ηa of fm we have sξa( rσ (sJ
′
a)) ⊂ sJ

′
+ sJ, where

σ = σa unless fm = so2m and a = m, in which case σ = σ′
m.

Proposition 4.2 allows us, for any simple root ηa, to define a linear map

qξa : sJ \ sBm → sJ \ sBm

as the composition sξa rσ applied to the elements of sBm taken modulo sJ. Here the simple
reflection σ ∈ Hm is chosen as in Proposition 4.2. In their present form, the operators
qξ1, . . . , qξm on the vector space sJ\ sBm were defined in [KO]. We call them the Zhelobenko
operators. For the proof of the next proposition, see [KO, §§4 and 6].

Proposition 4.4. The Zhelobenko operators satisfy the braid relations corresponding to
the Lie algebra fm. Namely, if fm = sp2m, then we have

qξa qξa+1
qξa = qξa+1

qξa qξa+1 for a = 1, . . . ,m− 2;(4.16)

qξa qξb = qξb qξa for a = 1, . . . , b− 2;(4.17)

qξm−1
qξm qξm−1

qξm = qξm qξm−1
qξm qξm−1.

If fm = so2m and m > 1, then we have the same relations (4.16) and (4.17) among
qξ1, . . . , qξm−1 as in the case of fm = sp2m above, and also the relations

(4.18)
qξa qξm = qξm qξa for a = 1, . . . ,m− 3,m− 1;

qξm−2
qξm qξm−2 = qξm qξm−2

qξm.

For fm = sp2m, by using any reduced decomposition of an element σ ∈ Hm in terms
of the involutions σ1, . . . , σm, we can define a linear operator

(4.19) qξσ : sJ \ sBm → sJ \ sBm

in the usual way, as in (4.1). By Proposition 4.4, this definition of qξσ is independent of
the choice of a reduced decomposition of σ.

When fm = sp2m, the number of the factors σ1, . . . , σm in any reduced decomposition
σ ∈ Hm will be denoted �(σ). This number is also independent of the choice of a
decomposition and is equal to the number of elements in the set

(4.20) ∆σ = {η ∈ ∆+ |σ(η) /∈ ∆+ },
where ∆+ denotes the set of positive roots of the Lie algebra sp2m.

Now suppose that fm = so2m. Then we can use any reduced decomposition in terms of
σ1, . . . , σm−1, σ

′
m to define a linear operator (4.19) for every element σ ∈ H′

m. Again, this
definition is independent of the choice of a reduced decomposition of σ, by Proposition
4.4. It turns out that in this case we can extend the definition of the operator (4.19)
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to any element σ ∈ Hm, where m ≥ 1. Note that in this case the action of the element
rσm on sBm preserves the ideal sJ, and therefore induces a linear operator on the quotient
vector space sJ \ sBm. This operator will still be denoted by rσm. The extension of the
definition of the operators (4.19) to σ ∈ Hm is based on the next lemma, which was
proved in [KN3, §4].

Lemma 4.5. If fm = so2m and m > 1, then the operators qξ1, . . . , qξm−1, rσm on sJ \ sBm

satisfy the same relations as the m generators of the braid group Bm, respectively. Also,
we have the relation

(4.21) qξm = rσm
qξm−1 rσm.

Now, if fm = so2m with any m ≥ 1, take any decomposition of an element σ ∈ Hm in
terms of the involutions σ1, . . . , σm such that the number of occurrences of σ1, . . . , σm−1

in the decomposition is the minimal possible. For fm = so2m, the symbol �(σ) will
denote this minimal number. Note that unlike for fm = sp2m, here we do not count
the occurrences of σm in the decomposition. All the decompositions of σ ∈ Hm with
the minimal number of occurrences of σ1, . . . , σm−1 can be obtained from each other by
using the braid relations among σ1, . . . , σm ∈ Hm along with the relation σ2

m = 1.

Substituting the operators qξ1, . . . , qξm−1, rσm on sJ \ sBm for the involutions σ1, . . . , σm

in such a decomposition of σ ∈ Hm, we obtain another operator on sJ\ sBm. This operator
does not depend on the choice of a decomposition, because of the first statement of
Lemma 4.5, and because the operator rσ 2

m on the vector space sJ \ sBm is the identity for
fm = so2m, which is the case considered here. Moreover, for σ ∈ H′

m ⊂ Hm, the operator
on sJ\ sBm obtained by the above substitution coincides with the operator (4.19). Indeed,
for fm = so2m, the operator (4.19) was defined by substituting the Zhelobenko operators
qξ1, . . . , qξm−1, qξm for σ1, . . . , σm−1, σ

′
m in any reduced decomposition of σ ∈ H′

m. The
coincidence of the two operators for σ ∈ H′

m now follows from (4.21). Thus, we have
extended the definition of the operator (4.19) from σ ∈ H′

m to all σ ∈ Hm.
Note that, for fm = so2m and σ ∈ H′

m, the number �(σ) is equal to the length of a
reduced decomposition of σ in terms of σ1, . . . , σm−1, σ

′
m. Thus, we have also extended

the standard length function from the Weyl group H′
m of so2m to the hyperoctahedral

group Hm. Moreover, for any σ ∈ Hm, not only for σ ∈ H′
m, the number �(σ) equals the

number of elements in the set (4.20), where ∆+ is the set of positive roots of so2m.
From now on we shall consider fm = so2m and fm = sp2m simultaneously, working

with the operators (4.19) for all elements σ ∈ Hm. In particular, for fm = so2m, we shall
assume that the operator (4.19) with σ = σm acts as rσm.

The restriction of the action (4.3), (4.4) of the braid group Bm on fm to the Cartan
subalgebra h factors to an action of the hyperoctahedral group Hm. This is the standard
action of the Weyl group of fm = sp2m. The resulting action of the subgroup H′

m ⊂ Hm

on h is the standard action of the Weyl group of fm = so2m. The group Hm also
acts on the dual vector space h∗, so that σ(εc) = εσ(c) for any σ ∈ Hm and any c =
−m, . . . ,−1, 1, . . . ,m. Unlike in (4.2), here we use the natural action of the group Hm

by permutations of −m, . . . ,−1, 1, . . . ,m. Thus, σa ∈ Hm with 1 ≤ a < m exchanges
a, a + 1 and also exchanges −a,−a − 1, while σm ∈ Hm exchanges m,−m. Note that
we always have σ(−c) = −σ(c). If we identify each weight µ ∈ h∗ with the sequence
(µ1, . . . , µm) of its labels, then

σ : (µ1, . . . , µm) �→ (µσ−1(1), . . . , µσ−1(m)) for σ ∈ Sm,

σm : (µ1, . . . , µm) �→ (µ1, . . . , µm−1,−µm).

The shifted action of the group Hm on the set h∗ is defined by the assignment

µ �→ σ ◦ µ = σ(µ+ ρ)− ρ for σ ∈ Hm.
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By regarding the elements of the commutative algebra ĘU(h) as rational functions on the
vector space h∗, we can also define an action of the group Hm on this algebra:

(4.22) (σ ◦X)(µ) = X(σ−1 ◦ µ) for X ∈ ĘU(h).

The next proposition was also proved in [KN3, §4].

Proposition 4.6. For any σ ∈ Hm, X ∈ ĘU(h), and Y ∈ sJ \ sBm we have

qξσ(XY ) = (σ ◦X) qξσ(Y ),

qξσ(Y X) = qξσ(Y )(σ ◦X).
(4.23)

§5. Intertwining operators

Let δ = (δ1, . . . , δm) be any sequence ofm elements from {1,−1}. The hyperoctahedral
group Hm acts on the set of all such sequences naturally, so that the generator σa ∈ Hm

with a < m acts on δ as the transposition of δa and δa+1, while the generator σm ∈
Hm changes the sign of δm. Let δ+ = (1, . . . , 1) be the sequence of m elements 1.
Given any sequence δ, take the composition of the following automorphisms of the ring
GD(Cm ⊗ Cn):

(5.1) x
sai �→ θi ∂ sarı and ∂

sai �→ θi xsarı whenever δa = −1.

Here a ≥ 1 and i = 1, . . . , n. Let 
 denote this composition. In particular, the au-
tomorphism 
 corresponding to δ = (1, . . . , 1,−1) coincides with the action of rσm on
GD(Cm ⊗ Cn); see (4.5). For fm = so2m, the automorphism 
 is involutive for any δ.
But if fm = sp2m, then the square 
2 acts as follows:

x
sai �→ −x

sai and ∂
sai �→ −∂

sai whenever δa = −1.

For any fm-module V , the action of X(gn) on Fm(V ) = V ⊗G(Cm⊗Cn) is determined
by the homomorphism βm : X(gn) → U(fm)⊗GD(Cm ⊗C

n); see Proposition 2.3. Next,
the action of the Lie algebra fm on the second tensor factor G(Cm ⊗ Cn) of Fm(V ) is
defined via the homomorphism ζn : U(fm) → GD(Cm⊗Cn); see the definition (2.6). Here
any element of the ring GD(Cm ⊗ Cn) acts on the vector space G(Cm ⊗ Cn) naturally.
We can modify the latter action, by making any element Y ∈ GD(Cm ⊗ C

n) act on
G(Cm⊗Cn) via the natural action of 
(Y ). Then we get another GD(Cm⊗Cn)-module,
with the same underlying vector space G(Cm ⊗ Cn) for every δ.

For any fm-module V , we can now define a bimodule Fδ(V ) of fm and X(gn). Its
underlying vector space is the same V ⊗G(Cm⊗C

n) for every δ. The action of X(gn) on
Fδ(V ) is defined by pushing the homomorphism βm forward through the automorphism

, applied to GD(Cm ⊗ Cn) as to the second tensor factor of the target of βm. The
action of fm on Fδ(V ) is also defined by pushing the homomorphism ζn forward through
the automorphism 
. Thus, the actions of X(gn) and fm on the bimodule Fδ(V ) are
determined by the compositions of the homomorphisms

X(gn) −→
βm

U(fm)⊗ GD(Cm ⊗ C
n) −→

1⊗	
U(fm)⊗ GD(Cm ⊗ C

n),

U(fm) −→
1⊗ζn

U(fm)⊗ GD(Cm ⊗ C
n) −→

1⊗	
U(fm)⊗ GD(Cm ⊗ C

n),

respectively. Note that here we have Fm(V ) = Fδ+(V ).
Let µ ∈ h∗ be any weight of fm such that

(5.2) µa − µb /∈ Z and µa + µb /∈ Z whenever 1 ≤ a < b ≤ m.

In the case where fm = sp2m, we also suppose that, in addition to (5.2),

(5.3) 2µa /∈ Z whenever 1 ≤ a ≤ m.
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Our nearest goal is to show how the Zhelobenko operator (4.19) corresponding to an
arbitrary element σ ∈ Hm determines an X(gn)-intertwining operator

(5.4) Fm(Mµ)n → Fδ(Mσ ◦µ)n, where δ = σ(δ+).

In this section we keep regarding Bm as the associative algebra generated by U(fm)
and GD(Cm ⊗ Cn) with the cross relations (4.10). Let Iδ be the left ideal of the algebra
Bm generated by the elements x

sai with δa = −1 and the elements ∂
sai with δa = 1.

Here a = 1, . . . ,m and i = 1, . . . ,m. Note that, in terms of the elements qci introduced
immediately after stating Proposition 2.3, the left ideal Iδ is generated by the elements
q−δasa,i, where again a = 1, . . . ,m and i = 1, . . . ,m. In particular, the ideal Iδ+ is

generated by all the left derivations ∂ai. Let sIδ be the left ideal of sBm generated by the
same elements as the ideal Iδ of Bm.

Consider the image of the ideal sIδ in the quotient space sJ \ sBm, i.e., the subspace
sJ \ (sIδ + sJ) in the quotient space sJ \ sBm. The image will be denoted occasionally by the
same symbol sIδ. In the context of the next proposition, this will cause no confusion.

Proposition 5.1. For any σ ∈ Hm the operator qξσ maps the subspace Iδ+ to Iσ(δ+).

Proof. For any a = 1, . . . ,m− 1, consider the operator pFa corresponding to the element
Fa ∈ Bm. By (4.6) and also (2.6) and (4.10), for any Y ∈ GD(Cm ⊗ C

n) we have

pFa(Y ) = −
n∑

k=1

[x
sak ∂ Ęa+1k , Y ].

Similarly, in the case where fm = sp2m, for any Y ∈ GD(Cm ⊗ C
n) we have

pFm(Y ) =

n∑
k=1

[x
Ďmrk xĎmk , Y ] /2

by (4.8). If fm = so2m, then we do not need to consider the operator pFm, because in this
case the operator (4.19) corresponding to σ = σm acts on sJ\ sBm as rσm by our definition.

The above description of the action of pFa with a < m on GD(Cm ⊗ Cn) shows that
this action preserves each of the two 2n-dimensional subspaces spanned by the vectors

x
sai and x

Ęa+1i, where i = 1, . . . , n;(5.5)

∂
sai and ∂

Ęa+1i, where i = 1, . . . , n.(5.6)

This action also maps to zero the 2n-dimensional subspace spanned by

(5.7) x
sai and ∂

Ęa+1i, where i = 1, . . . , n.

Therefore, for any δ, the operator sξa with a < m maps the left ideal sIδ of sBm to the

image of sIδ in sJ \ sBm, unless δa = 1 and δa+1 = −1. The operator qξa on sJ \ sBm was

defined by taking the composition of sξa and rσa. Hence, qξa with a < m maps the image
of sIδ to the image of sIσa(δ), unless δa = −1 and δa+1 = 1.

For fm = sp2m, the action of pFm on the vector space GD(Cm ⊗ Cn) maps to zero the
n-dimensional subspace spanned by the elements

(5.8) x
Ďmi = x1i, where i = 1, . . . , n.

Therefore, the operator sξm maps the left ideal sIδ of sBm to the image of sIδ in sJ \ sBm,

unless δm = 1. Hence, the operator qξm on sJ \ sBm maps the image of sIδ to the image of
sIσm(δ), unless δm = −1. In the case where fm = so2m, we only note that rσm maps the

image of sIδ in sJ \ sBm to the image of sIσm(δ).
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From now on we shall denote the image of the ideal sIδ in the quotient space sJ \ sBm

by the same symbol. Put

pδ =

m∑
a=1

δaεa ∈ h
∗.

Then for every σ ∈ Hm we have yσ(δ) = σ( pδ ), where on the right-hand side we use the
action of the group Hm on h∗. Let ( , ) be the standard bilinear form on h∗, so that the
basis of weights εa with a = 1, . . . ,m is orthonormal. The above remarks on the action
of the Zhelobenko operators on sIδ can now be restated as follows:

if (pδ, εa − εa+1) ≥ 0, then qξa(sIδ) ⊂ sIσa(δ) for a = 1, . . . ,m− 1 ;(5.9)

if (pδ, εm) > 0, then qξm(sIδ) ⊂ sIσm(δ) for fm = sp2m.(5.10)

We shall prove Proposition 5.1 by induction on the length of a reduced decomposition
of σ ∈ Hm in terms of σ1, . . . , σm. This number was denoted by �(σ) in the case where
fm = sp2m, but may be different from the number denoted by �(σ) in the case of fm =
so2m. Recall that in both cases �(σ) equals the number of elements in the set (4.20),
where ∆+ is the set of positive roots of fm.

If σ is the identity element of Hm, Proposition 5.1 is tautological. Suppose that for
some σ ∈ Hm we have

qξσ(sIδ+) ⊂ sIσ(δ+).

Take σa ∈ Hm with 1 ≤ a ≤ m such that σaσ has a longer reduced decomposition in

terms of σ1, . . . , σm compared to σ. If fm = so2m and a = m, then qξσmσ = rσm
qξσ, and

we need the inclusion

(5.11) rσm(sIσ(δ+)) ⊂ sIσmσ(δ+),

which holds true by the definition of the action of Hm on sJ \ sBm.
We may exclude the case where fm = so2m and a = m, and assume that

(5.12) �(σaσ) = �(σ) + 1.

First, suppose that a < m here. Then we prove the inclusion

qξa(sIσ(δ+)) ⊂ sIσaσ(δ+).

By (5.9), this inclusion will be true if

({σ(δ+), εa − εa+1) = (σ(pδ+), εa − εa+1) ≥ 0.

But condition (5.12) for a < m implies that εa − εa+1 ∈ σ(∆+). Indeed, since the root
εa − εa+1 of fm is simple, we have σa(η) ∈ ∆+ for any η ∈ ∆+ such that η �= εa − εa+1.
Since �(σ) and �(σaσ) are the numbers of elements in ∆σ and ∆σaσ (respectively), here
εa− εa+1 ∈ σ(∆+). So, εa − εa+1 = σ(εb− εc), where 1 ≤ b ≤ m and 1 ≤ |c| ≤ m. Thus,

(σ(pδ+), εa − εa+1) = (σ(pδ+), σ(εb − εc)) = (pδ+, εb − εc) ≥ 0.

Now suppose that a = m. Here we assume that fm = sp2m. We need the inclusion

qξm(sIσ(δ+)) ⊂ sIσmσ(δ+).

It will be true if
({σ(δ+), εm) = (σ(pδ+), εm) > 0.

But condition (5.12) for a = m implies that 2εm ∈ σ(∆+), where ∆+ is the set of positive
roots of sp2m. Indeed, since the root 2εm of sp2m is simple, σm(η) ∈ ∆+ for any η ∈ ∆+

such that η �= 2εm. Since �(σ) and �(σmσ) are the numbers of elements in ∆σ and ∆σmσ

(respectively), we have 2εm ∈ σ(∆+). So εm = σ(εb), where 1 ≤ b ≤ m. Thus,

(σ(pδ+), εm) = (σ(pδ+), σ(εb)) = (pδ+, εb) > 0.
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�

Corollary 5.2. For any σ ∈ Hm the operator qξσ on sJ \ sBm maps

sJ \ (sJ′ +sIδ+ + sJ) to sJ \ (sJ′ +sIσ(δ+) + sJ).

Proof. We extend the arguments used in the proof of Proposition 5.1. In particular, we
shall again use the length of a reduced decomposition of σ in terms of σ1, . . . , σm. If σ
is the identity element of Hm, then the required statement is tautological. Now suppose
that the statement of Corollary 5.2 is true for some σ ∈ Hm. Take any simple reflection
σa ∈ Hm with 1 ≤ a ≤ m such that σaσ has a longer reduced decomposition in terms
of σ1, . . . , σm compared to σ. In the case where fm = so2m we may assume that a < m,
because in that case the required statement for σmσ in place of σ is provided by (5.11).

Thus, we may assume (5.12). With the above assumption on a, we have proved that
(5.12) implies

(5.13) ({σ(δ+), ηa) ≥ 0.

Here ηa is the simple root corresponding to σa. But (5.13) implies the identity

(5.14) sJ
′
+sIσ(δ+) = sJ

′
a +sIσ(δ+)

of left ideals of sBm. Indeed, the two sides of (5.14) differ by elements Y ζn(Ea), where Y
ranges over sBm. Condition (5.13) implies that ζn(Ea) ∈ sIσ(δ+); see the definition (2.6)
and the arguments at the beginning of the proof of Proposition 5.1. Using Proposition

4.3 and the induction step in our proof of Proposition 5.1, we see that qξa maps

sJ \ (sJ′ +sIσ(δ+) + sJ) = sJ \ (sJ′a +sIσ(δ+) + sJ) to sJ \ (sJ′ +sIσaσ(δ+) + sJ).

This constitutes the induction step of our proof of Corollary 5.2. �

Let Iµ,δ be the left ideal of the algebra Bm generated by Iδ +J′ and by the elements

F−sa,−sa − ζn(F−sa,−sa)− µa, where a = 1, . . . ,m.

Recall that under the isomorphism of the algebra Bm with U(fm) ⊗ GD(Cm ⊗ Cn), the
difference X − ζn(X) ∈ Bm for every X ∈ fm is mapped to the element (4.15). Denote

by sIµ,δ the subspace ĘU(h) Iµ,δ of sBm; this is also a left ideal of sBm.

Theorem 5.3. For any element σ ∈ Hm, the operator qξσ on sJ \ sBm maps

sJ \ (sIµ,δ+ + sJ) to sJ \ (sIσ◦µ,σ(δ+) + sJ).

Proof. Let κ be a weight of fm with sequence of labels (κ1, . . . , κm). Suppose that κ
satisfies conditions (5.2) instead of µ. For fm = sp2m, we also suppose that κ satisfies

conditions (5.3) instead of µ. Denote by Ĩκ,δ the left ideal of sBm generated by Iδ +J′ and
by the elements

F−sa,−sa − κa, where a = 1, . . . ,m.

Proposition 4.6 and Corollary 5.2 imply that the operator qξσ on sJ \ sBm maps

sJ \ (̃Iκ,δ+ + sJ) to sJ \ (̃Iσ◦κ,σ(δ+) + sJ).

Now we choose

(5.15) κa = µa + n/2 for a = 1, . . . ,m.

Then the conditions on κ stated at the beginning of this proof are satisfied. For every
σ ∈ Hm we shall prove the following identity of left ideals of sBm:

(5.16) Ĩσ◦κ,σ(δ+) = sIσ◦µ,σ(δ+).
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Theorem 5.3 will then follow. Denote δ = σ(δ+). By our choice of κ we have

(5.17) σ ◦ κ = σ ◦ µ+ nδ/2,

where the sequence δ is regarded as a weight of fm, by identifying the weights with their
sequences of labels. Let a run through 1, . . . ,m. If δa = 1, then, by the definition (2.6),

ζn(F−sa,−sa)− n/2 = −
n∑

k=1

x
sak ∂ sak ∈ Iδ .

If δa = −1, then the same definition (2.6) shows that

ζn(F−sa,−sa) + n/2 =

n∑
k=1

∂
sak xsak ∈ Iδ .

Hence, relation (5.17) implies (5.16). �
Consider the quotient vector space Bm / Iµ,δ for any sequence δ. The algebra U(fm),

viewed as a subalgebra of Bm, acts on this quotient via left multiplication. The algebra
X(gn) also acts on this quotient via left multiplication, via the homomorphism βm :
X(gn) → Bm. Recall that in §2, the target algebra Bm of the homomorphism βm was
defined as U(fm) ⊗ GD(Cm ⊗ Cn). Here we use a different presentation of the same
algebra, with the help of the cross relations (4.10). In particular, here the image of βm

commutes with the subalgebra U(fm) of Bm; see statement (ii) in Proposition 2.3. Thus,
the vector space Bm / Iµ,δ becomes a bimodule over fm and X(gn).

Consider the bimodule Fδ(Mµ) over fm and X(gn) defined at the beginning of this
section. This bimodule is equivalent to Bm / Iµ,δ. Indeed, let Z run through G(Cm⊗Cn).
Then a bijective linear map

Fδ(Mµ) → Bm / Iµ,δ

intertwining the actions of fm and X(gn) can be defined by mapping the element

1µ ⊗ Z ∈ Mµ ⊗ G(Cm ⊗ C
n)

to the image of

−1(Z) ∈ GD(Cm ⊗ C

n) ⊂ Bm

in the quotient Bm / Iµ,δ. Here the intertwining property follows from the definitions of
Fδ(Mµ) and Iµ,δ. The same mapping determines a bijective linear map

(5.18) Fδ(Mµ) → sBm/sIµ,δ.

In particular, the space Fδ(Mµ)n of n-coinvariants of Fδ(Mµ) is equivalent to the
quotient sJ \ sBm/sIµ,δ as a bimodule over the Cartan subalgebra h ⊂ fm and over X(gn).

But Theorem 5.3 implies that the operator qξσ on sJ \ sBm determines a linear map

(5.19) sJ \ sBm/sIµ,δ+ → sJ \ sBm/sIσ◦µ,σ(δ+).

The latter map intertwines the actions of X(gn) on the source and the target vector
spaces, because the image of X(gn) in Bm relative to βm commutes with the subalgebra
U(fm) ⊂ Bm; see the definition (4.13). We also use statement (ii) of Lemma 4.1. Recall
that Fm(V ) = Fδ+(V ). Hence, by using the equivalences (5.18) for the sequences δ = δ+
and δ = σ(δ+), we see that the operator (5.19) becomes the desired X(gn)-intertwining
operator (5.4).

As usual, for any fm-module V and any element λ ∈ h∗, let V λ ⊂ V be the subspace of
vectors of weight λ, so that any X ∈ h acts on V λ via multiplication by λ(X) ∈ C. By

the property (4.23) of qξσ, the restriction of our operator (5.4) to the subspace of weight
λ is an X(gn)-intertwining operator

(5.20) Fm(Mµ)
λ
n → Fδ(Mσ ◦µ)

σ ◦λ
n , where δ = σ(δ+).
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At the end of §2, we defined the modules Pz and P ′
z over the Yangian Y(gln). The

underlying vector space of these modules is the Grassmann algebra G (Cn). This algebra
is graded by 0, 1, . . . , n. The actions of Y(gln) on Pz and P ′

z preserve the degree. Now,
for any N = 1, . . . , n, denote by PN

z and P−N
z (respectively) the submodules in Pz and

P ′
z that consist of the elements of degree N . Note that Y(gln) acts on the subspace of Pz

of degree zero trivially, that is, via the counit homomorphism Y(gln) → C. That action
of Y(gln) does not depend on z. It will be convenient to denote by P 0

z the vector space
C with the trivial action of Y(gln).

Denote

(5.21) νa = n/2 + µa − λa for a = 1, . . . ,m.

Suppose that ν1, . . . , νm ∈ {0, 1, . . . , n}; otherwise, the source X(gn)-module in (5.20)
would be zero by Corollary 2.6. Under our assumption, Corollary 2.6 implies that the
the source X(gn)-module in (5.20) is equivalent to

(5.22) P νm
µm+z ⊗ P

νm−1

µm−1+z+1 ⊗ · · · ⊗ P ν1
µ1+z+m−1

pulled back through the automorphism (1.17) of X(gn), where f(u) is given by (2.26) and
z = ∓ 1

2 . A more general result is stated as Proposition 5.4 below. The tensor product in
(5.22) is that of Y(gln)-modules. Then we employ the embedding Y(gn) ⊂ Y(gln) and
the homomorphism X(gn) → Y(gn) defined by (1.18). By using the labels ρ1, . . . , ρm of
the half-sum ρ of the positive roots of fm, the tensor product (5.22) can be rewritten as

(5.23) P νm

µm− 1
2+ρm

⊗ · · · ⊗ P ν1

µ1− 1
2+ρ1

.

In terms of the labels ρ1, . . . , ρm we can also rewrite the product (2.26) as

(5.24)
m∏

a=1

u− µa +
1
2 − ρa

u− µa − 1
2 − ρa

.

Now, consider the target X(gn)-module in (5.20). For each a = 1, . . . ,m denote

rµa = µ|σ−1(a)|, rνa = ν|σ−1(a)|, rρa = ρ|σ−1(a)|.

The above description of the source X(gn)-module in (5.20) can be generalized to similar
X(gn)-modules depending on an arbitrary element σ ∈ Hm.

Proposition 5.4. For δ = σ(δ+), the X(gn)-module Fδ(Mσ ◦µ)
σ ◦λ
n is equivalent to the

tensor product

(5.25) P δmrνm

rµm− 1
2+rρm

⊗ · · · ⊗ P δ1rν1

rµ1− 1
2+rρ1

pulled back through the automorphism (1.17) of X(gn), where f(u) equals the product
(5.24).

Proof. First, consider the bimodule Fm(Mσ ◦µ)n of h and X(gn). By Corollary 2.6, this
bimodule is equivalent to the tensor product

(5.26) Pδm rµm− 1
2+δm rρm

⊗ · · · ⊗ Pδ1 rµ1− 1
2+δ1 rρ1

pulled back through the automorphism (1.17) of X(gn), where f(u) equals

(5.27)

m∏
a=1

u− δarµa +
1
2 − δarρa

u− δarµa − 1
2 − δarρa

.

For any a = 1, . . . ,m, the element F−sa,−sa ∈ h acts on the tensor product (5.26) as

n/2− dega +(σ ◦ µ)a,
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where dega is the degree operator on the ath tensor factor, counting the factors from
right to left. It acts on the vector space G(Cn) of that tensor factor as the Euler operator

(5.28)
n∑

k=1

xk∂k ∈ GD(Cn).

A bimodule equivalent to Fδ(Mσ ◦µ)n can be obtained by pushing forward the actions
of h and X(gn) on (5.26) through the composition of the automorphisms (2.30), for
every tensor factor with number a such that δa = −1. Here we number the m tensor
factors of (5.26) by 1, . . . ,m from right to left. Then we also need to pull the resulting
X(gn)-module back through the automorphism (1.17), where the series f(u) equals the
product (5.27). The automorphism (2.30) maps the element (5.28) to

n∑
k=1

∂
rkxrk = n−

n∑
k=1

xk∂k.

Hence, if δa = −1, then the element F−sa,−sa ∈ h acts on the modified tensor product as

−n/2 + (σ ◦ µ)a + dega .

Equating the last displayed expression to (σ ◦ λ)a and using (5.21) together with the
condition δa = −1, we get the equation dega = rνa. But by Lemma 2.7, pushing forward
the Y(gln)-module

P rνa

−rµa− 1
2−rρa

through the automorphism (2.30) of GD(Cn) yields the same Y(gln)-module as pulling

P−rνa

rµa− 1
2+rρa

back through the automorphism (1.3) of Y(gln), where

g(u) =
u− rµa +

1
2 − rρa

u− rµa − 1
2 − rρa

.

Thus, the X(gn)-module Fδ(Mσ ◦µ)
σ ◦λ
n is equivalent to the tensor product (5.25) pulled

back through the automorphism (1.17), where the series f(u) is obtained by multiplying
(5.27) by g(−u)g(u) for each index a such that δa = −1; see the definition (1.18). But
for any element σ ∈ Hm, the product (5.24) equals

(5.29)
m∏

a=1

u− rµa +
1
2 − rρa

u− rµa − 1
2 − rρa

.

If δa = −1, then the factors of (5.27) and (5.29) indexed by a are equal to g(−u)−1 and
g(u), respectively. If δa = 1, then the factors of (5.27) and (5.29) indexed by a coincide.
This comparison of (5.27) and (5.29) completes the proof. �

The vector spaces of two equivalent X(gn)-modules in Proposition 5.4 are

(Mσ ◦µ ⊗ G(Cm ⊗ C
n)) σ ◦λ

n and G rνm(Cn)⊗ · · · ⊗ G rν1(Cn),

respectively. We can define a linear map from the latter vector space to the former, by
mapping f1 ⊗ · · · ⊗ fm to the class of 1σ ◦µ ⊗ f in the space of n-coinvariants. Here

f1 ∈ G rνm(Cn) , . . . , fm ∈ G rν1(Cn)

and f ∈ G(Cm ⊗Cn) is defined by (2.28). This linear map realizes an equivalence of the
X(gn)-modules in Proposition 5.4; see the remarks after our proof of Corollary 2.6.

Thus, for any ν1, . . . , νm ∈ {0, 1, . . . , n} we have demonstrated how the Zhelobenko op-

erator qξσ on sJ\sBm determines an intertwining operator between the X(gn)-modules (5.23)
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and (5.25) pulled back via the automorphism (1.17) of X(gn), where f(u) is the same
product (5.24) for both modules. Hence, this operator also intertwines the X(gn)-modules

(5.30) P νm

µm− 1
2+ρm

⊗ · · · ⊗ P ν1

µ1− 1
2+ρ1

→ P δmrνm

rµm− 1
2+rρm

⊗ · · · ⊗ P δ1rν1

rµ1− 1
2+rρ1

,

neither of which is now pulled back via the automorphism (1.17). It was proved in
[MN] that the two X(gn)-modules in (5.30) are irreducible under our assumptions on
µ. Hence, an intertwining operator between them is unique up to a factor from C. For
our intertwining operator, this factor is determined by Proposition 5.9 below. Another
expression for an intertwining operator of the X(gn)-modules (5.30) was given in [N].

For any a = 1, . . . ,m and s = 1, . . . , n, we define elements fas and gas of the ring
GD(Cm ⊗ C

n) as follows. We arrange the indices 1, . . . , n in the sequence

(5.31) 1, 3, . . . , n− 1, n, . . . , 4, 2 or 1, 3, . . . , n− 2, n, n− 1, . . . , 4, 2

when n is even or odd, respectively. The mapping k �→ rk reverses the sequence (5.31).
We shall write i ≺ j if i precedes j in this sequence. Note that then the elements
Eij − θiθjErjrı ∈ gln with i ≺ j or i = j span a Borel subalgebra of gn ⊂ gln, while the
elements Eii − E

rırı span the corresponding Cartan subalgebra of gn. Then fas and gas
are defined as the products of the elements xak and ∂ark of GD(Cm ⊗ Cn), respectively,
taken over the first s indices k in the sequence (5.31). For example, if n ≥ 4, then
fa2 = xa1xa3 and ga2 = ∂a2∂a4. If n = 3, then fa2 = xa1xa3 but ga2 = ∂a2∂a3. We also
set fa0 = ga0 = 1.

Our proof of Proposition 5.9 will be based on four lemmas below. The proof of the
first lemma is quite similar to that of the second and will be omitted.

Lemma 5.5. For any a = 1, . . . ,m− 1 and s, t = 0, 1, . . . , n, the operator qξa on sJ \ sBm

maps the image in sJ \ sBm of g
sas gĘa+1t ∈ sBm to the image in sJ \ sBm of the product

rσa(gsas gĘa+1t) ·

⎧⎨
⎩

Ha − s+ t+ 1

Ha + 1
if s < t,

1 if s ≥ t,

plus the images in sJ \ sBm of elements of the left ideal in sBm generated by sJ
′
and (5.5).

Lemma 5.6. For any a = 1, . . . ,m− 1 and s, t = 0, 1, . . . , n, the operator qξa on sJ \ sBm

maps the image in sJ \ sBm of f
sas fĘa+1t ∈ sBm to the image in sJ \ sBm of the product

rσa(fsas fĘa+1t) ·

⎧⎨
⎩

Ha + s− t+ 1

Ha + 1
if s > t,

1 if s ≤ t,

plus the images in sJ \ sBm of elements of the left ideal in sBm generated by sJ
′
and (5.6).

Proof. By the definitions (2.6) and (4.6), we have

(5.32) ζn(Ea) = −
n∑

k=1

x
Ęa+1k ∂sak and ζn(Fa) = −

n∑
k=1

x
sak ∂Ęa+1k.

By (4.5), we also have

rσa(fsas fĘa+1t) = f
Ęa+1s fsat.

We shall use the symbol ≡ to indicate equality in the vector space sJ \ sBm modulo the

subspace that is the image of the left ideal in sBm generated by sJ
′
and the elements (5.6).
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The element Ea ∈ sBm belongs to this left ideal. Therefore, the operator qξa maps the
image of f

sas fĘa+1t ∈ sBm in sJ \ sBm to the image in sJ \ sBm of

ξa(fĘa+1s fsat) =

∞∑
r=0

(r!H(r)
a )−1Er

a
pF r
a (fĘa+1s fsat)

≡
∞∑
r=0

(r!H(r)
a )−1

pEr
a

pF r
a (fĘa+1s fsat).

Now we use (4.10) along with (5.32). By the definitions of f
Ęa+1s and f

sat we have

pFa(fĘa+1s fsat) = −
n∑

k=1

[x
sak ∂ Ęa+1k, fĘa+1s fsat].

If s ≤ t, then every summand above is zero, which proves the lemma in this case. Now
suppose that s > t. Then, using the proof of [KN2, Proposition 3.7], we obtain

ξa(fĘa+1s fsat) ≡
s−t∑
r=0

(s− t) · · · (s− t− r + 1)

Ha · · · (Ha − r + 1)
f

Ęa+1s fsat.

Here, the sum of the fractions corresponding to r = 0, . . . , s− t equals

Ha + 1

Ha − s+ t+ 1
;

this can easily be proved by induction on the difference s− t. Therefore,

ξa(fĘa+1s fsat) ≡
Ha + 1

Ha − s+ t+ 1
f

Ęa+1s fsat = f
Ęa+1s fsat

Ha + s− t+ 1

Ha + 1
,

as required in the case where s > t. Here we have also used the relation

Ha fĘa+1s fsat = f
Ęa+1s fsat (Ha + s− t)

in the ring Bm, which follows from (4.10), because

ζn(Ha) = ζn(FĘa+1,Ęa+1 − F
sasa) =

n∑
k=1

(x
Ęa+1k ∂Ęa+1k − x

sak ∂sak). �

Lemma 5.7. For any a = 1, . . . ,m− 1 and s, t = 0, 1, . . . , n, the operator qξa on sJ \ sBm

maps the image in sJ \ sBm of f
sas gĘa+1t ∈ sBm to the image in sJ \ sBm of the product

rσa(fsas gĘa+1t) ·

⎧⎨
⎩

Ha + s+ t+ 1

Ha + n+ 1
if s+ t > n,

1 if s+ t ≤ n,

plus the images in sJ \ sBm of elements of the left ideal in sBm generated by sJ
′
and (5.7).

Proof. By (4.5),

rσa(fsas gĘa+1t) = f
Ęa+1s gsat.

Now we use the symbol ≡ to indicate equality in sJ \ sBm modulo the subspace that is

the image of the left ideal in sBm generated by sJ
′
and the elements (5.7). The elements

Ea−ζn(Ea) and ζn(Fa) of sBm belong to this left ideal; see (5.32). By (4.10), the operator
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qξa maps the image f
sas gĘa+1t ∈ sBm in sJ \ sBm to the image in sJ \ sBm of

ξa(fĘa+1s gsat) =

∞∑
r=0

(r!H(r)
a )−1Er

a
pF r
a (fĘa+1s gsat)

≡
∞∑
r=0

(r!H(r)
a )−1ζn(Ea)

rζn(Fa)
rf

Ęa+1s gsat.

We have

ζn(Fa)fĘa+1s gsat = −
n∑

k=1

x
sak ∂Ęa+1k fĘa+1s gsat

by (5.32). If s+ t ≤ n, then every summand in the above displayed sum is zero modulo
the left ideal of sBm generated by the elements (5.7), because then there are no factors
x

Ęa+1i of fĘa+1s and ∂
sai of gsat with the same index i. This proves the lemma in this case.

Now suppose that s+ t > n. Then the proof of [KN2, Proposition 3.7] shows that

ξa(fĘa+1s gsat) ≡
s+t−n∑
r=0

(s+ t− n) · · · (s+ t− n− r + 1)

Ha · · · (Ha − r + 1)
f

Ęa+1s gsat

=
Ha + 1

Ha − s− t+ n+ 1
f

Ęa+1s gsat = f
Ęa+1s gsat

Ha + s+ t+ 1

Ha + n+ 1
,

as required. Here we have also used the following relation in the ring Bm, which follows
from (4.10):

Ha fĘa+1s gsat = f
Ęa+1s fsat (Ha + s+ t). �

Lemma 5.8. If fm = sp2m, then for any s = 0, 1, . . . , n, the operator qξm on sJ\ sBm maps
the image of f

Ďms ∈ sBm in sJ \ sBm to the image in sJ \ sBm of the product

rσm(f
Ďms) ·

⎧⎨
⎩

Ha + s+ 1

Ha + n/2 + 1
if s > n/2,

1 if s ≤ n/2,

plus the images in sJ \ sBm of elements of the left ideal in sBm generated by sJ
′
and (5.8).

Proof. Let fm = sp2m. Then gn = spn, so that the number n is even. By (4.5), we have

rσm(f
Ďms) = g

Ďms or rσm(f
Ďms) = (−1)s−n/2 g

Ďms

when s ≤ n/2 or s > n/2, respectively. Hence, it suffices to consider the image in sJ \ sBm

of the element ξm(g
Ďms) ∈ sBm, s = 0, 1, . . . , n. By the definitions (2.6) and (4.8),

ζn(Em) =

n∑
k=1

θk ∂Ďmk ∂
Ďmrk /2 and ζn(Fm) =

n∑
k=1

θk x
Ďmrk xĎmk /2.

Now we let the symbol ≡ indicate equality in sJ \ sBm modulo the subspace that is the

image of the left ideal in sBm generated by sJ
′
and the elements (5.8). The elements

Em − ζn(Em) and ζn(Fm) of sBm belong to this left ideal. Therefore, by (4.10),

ξm(g
Ďms) =

∞∑
r=0

(r!H(r)
m )−1Er

m
pF r
m(g

Ďms)

≡
∞∑
r=0

(r!H(r)
m )−1ζn(Em)rζn(Fm)rg

Ďms.
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We have

ζn(Fm) g
Ďms =

n∑
k=1

θk x
Ďmrk xĎmk gĎms /2.

If s ≤ n/2, then every summand in the above sum is zero modulo the left ideal of sBm

generated by the elements (5.8), because then for any index k there is no pair of factors
∂

Ďmk and ∂
Ďmrk in the product g

Ďms. This proves the lemma in this case. Now suppose that
s > n/2. Then, using the proof of [KN2, Proposition 3.7] once again, we obtain

ξm(g
Ďms) ≡

s−n/2∑
r=0

(s− n/2) · · · (s− n/2− r + 1)

Hm · · · (Hm − r + 1)
g

Ďms

=
Hm + 1

Hm − s+ n/2 + 1
g

Ďms = g
Ďms

Hm + s+ 1

Ha + n/2 + 1
,

as required. Here we have also used the relation Hm g
Ďms = g

Ďms (Hm+ s) in the ring Bm,
which follows from (4.10), because sm = 1 and for fm = sp2m we have

ζn(Hm) = −ζn(F11) = n/2−
n∑

k=1

x1k ∂1k

by (2.6) and (4.8). �

Now we state Proposition 5.9. We assume that the weight µ satisfies conditions (5.2)
and also satisfies conditions (5.3) if fm = sp2m. Moreover, we assume that ν1, . . . , νm ∈
{0, 1, . . . , n}; see the definition (5.21). Let (µ∗

1, . . . , µ
∗
m) be the sequence of labels of the

weight µ + ρ. Then for each a = 1, . . . ,m we have µ∗
a = µa +m − a if fm = so2m, and

µ∗
a = µa +m − a+ 1 if fm = sp2m. Let (λ∗

1, . . . , λ
∗
m) be the sequence of labels of λ+ ρ.

For each positive root η ∈ ∆+ we define a number zη ∈ C:

zη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ∗
b − λ∗

c

µ∗
b − µ∗

c

if η = εb − εc and νb > νc,

λ∗
b + λ∗

c

µ∗
b + µ∗

c

if η = εb + εc and νb + νc > n,

λ∗
b

µ∗
b

if η = 2εb and 2νb > n,

1 otherwise.

Note that in the first two cases, 1 ≤ b < c ≤ m, while in the third case, 1 ≤ b ≤ m
and fm = sp2m. Let vλµ be the image of the product f

s1ν1
· · · f

Ďmνm
∈ sBm in the quotient

vector space sJ\ sBm/sIµ,δ+ . This image is a highest vector relative to the action of the Lie
algebra gn on this space: it is annihilated by the elements Eij − θiθjErjrı ∈ gn with i ≺ j.

Proposition 5.9. (i) The vector vλµ is not in the zero coset of sJ \ sBm/sIµ,δ+ .

(ii) Under the action of h on sJ \ sBm/sIµ,δ+ , the vector vλµ is of weight λ.

(iii) For any σ ∈ Hm, the intertwining operator (5.19) determined by qξσ maps the
vector vλµ to the image in sJ \ sBm/sIσ◦µ,σ(δ+) of rσ(f

s1ν1
· · · f

Ďmνm
) ∈ sBm multiplied by the

product

(5.33)
∏

η∈∆σ

zη.

Proof. Statement (i) of the proposition follows directly from the definition of the ideal
sIµ,δ+ . We prove statement (ii). The elements of h act on sJ \ sBm/sIµ,δ+ via left multipli-

cation on sBm. Let ≡ indicate equality in sBm modulo the left ideal sIµ,δ+ . Then, by the
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definition (2.6), for each a = 1, . . . ,m in the algebra sBm we have

F−sa,−sa fs1ν1
· · · f

Ďmνm
= f

s1ν1
· · · f

Ďmνm
F−sa,−sa −

n∑
k=1

[x
sak ∂sak − n/2, f

s1ν1
· · · f

Ďmνm
]

= f
s1ν1

· · · f
Ďmνm

(F−sa,−sa − νa) ≡ f
s1ν1

· · · f
Ďmνm

(ζn(F−sa,−sa) + µa − νa)

≡ x ν1
s1k

· · · x νm

Ďmk (n/2 + µa − νa) = λa fs1ν1
· · · f

Ďmνm
.

Thus,
F−sa,−sa v

λ
µ = λa v

λ
µ for a = 1, . . . ,m.

Statement (iii) will be proved by induction on the length of a reduced decomposition of
σ in terms of σ1, . . . , σm. If σ is the identity element of Hm, then the required statement is
tautological. Now suppose that statement (iii) is true for some σ ∈ Hm. Take any simple
reflection σa ∈ Hm with 1 ≤ a ≤ m such that σaσ has a longer reduced decomposition in

terms of σ1, . . . , σm compared to σ. If fm = so2m and a = m, then we have qξσmσ = rσm
qξσ

and ∆σmσ = ∆σ, so that the induction step is immediate. Now we may assume that
a < m in the case where fm = so2m.

Take the simple root ηa corresponding to the reflection σa. Let η = σ−1(ηa). Then
η ∈ ∆+ and

σaσ(η) = σa(ηa) = −ηa /∈ ∆+.

Hence,
∆σaσ = ∆σ � {η}.

Let κ ∈ h∗ be the weight with the labels (5.15). Using the proof of Theorem 5.3, we see
that the following two left ideals of the algebra sBm coincide:

sI(σaσ)◦µ,(σaσ)(δ+) = Ĩ(σaσ)◦κ,(σaσ)(δ+).

But modulo the second of these two ideals, the element Ha equals

((σaσ) ◦ κ)(Ha) = (σaσ(κ+ ρ)− ρ)(Ha) = (κ+ ρ)(σ−1σa(Ha))− ρ(Ha)(5.34)

= −(κ+ ρ)(σ−1(Ha))− 1 = − (κ+ ρ)(Hη)− 1 = − 2(κ+ ρ, η)

(η, η)
− 1.

Here Hη = σ−1(Ha) is the coroot corresponding to the root η, and we use the standard
bilinear form on h∗. Using only the definition (5.15), we can rewrite the right-hand side
of (5.34) in the form

−µ∗
b + µ∗

c − 1 if η = εb − εc,

−µ∗
b − µ∗

c − n− 1 if η = εb + εc,

−µ∗
b − n/2− 1 if η = 2εb.

Now we shall use (iii) as the induction assumption. Denote δ = σ(δ+). Consider
five cases.

I. Suppose η = εb − εc, where 1 ≤ b < c ≤ m, while σ(εb) = εa and σ(εc) = εa+1.
Then σa = εa − εa+1 and δa = δa+1 = 1. Hence,

rσ(f
s1ν1

· · · f
Ďmνm

) = f
saνb

f
Ęa+1νc

Y,

where Y is an element of the subalgebra of GD(Cm ⊗ Cn) generated by all xdk and ∂dk
with d �= sa, Ęa+ 1. Here Lemma 5.6 with s = νb and t = νc applies. With these s and t,
and with −µ∗

b+µ∗
c−1 in place of Ha in the fraction displayed in that lemma, the fraction

becomes

(5.35)
−µ∗

b + µ∗
c − 1 + νb − νc + 1

−µ∗
b + µ∗

c − 1 + 1
=

λ∗
b − λ∗

c

µ∗
b − µ∗

c

.

Here the condition s > t in Lemma 5.6 means that νb > νc.
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II. Suppose η = εb − εc, where 1 ≤ b < c ≤ m, but σ(εb) = −εa+1 and σ(εc) = −εa.
Then σa = εa − εa+1 again, but δa = δa+1 = −1. Hence,

rσ(f
s1ν1

· · · f
Ďmνm

) = g
saνc

g
Ęa+1νb

Y,

where Y is another element of the subalgebra of GD(Cm ⊗Cn) generated by all xdk and
∂dk with d �= sa, Ęa+ 1. Now Lemma 5.5 with s = νc and t = νb applies. With these
s and t, and with −µ∗

b + µ∗
c − 1 in place of Ha in the fraction displayed in Lemma 5.5,

the fraction becomes the same number (5.35) as in the preceding case, under the same
condition νb > νc.

III. Suppose η = εb + εc and 1 ≤ b < c ≤ m, while σ(εb) = εa and σ(εc) = −εa+1.
Then σa = εa − εa+1 again, but δa = 1 and δa+1 = −1. Hence,

rσ(f
s1ν1

· · · f
Ďmνm

) = f
saνb

g
Ęa+1νc

Y,

where Y is another element of the subalgebra of GD(Cm⊗C
n) generated by the xdk and

∂dk with d �= sa, Ęa+ 1. Here Lemma 5.7 with s = νb and t = νc applies. With these
s and t, and with −µ∗

b −µ∗
c −n−1 in place of Ha in the fraction displayed in that lemma,

the fraction becomes the number

(5.36)
−µ∗

b − µ∗
c − n− 1 + νb + νc + 1

−µ∗
b − µ∗

c − n− 1 + n+ 1
=

λ∗
b + λ∗

c

µ∗
b + µ∗

c

.

Here the condition s+ t > n in Lemma 5.7 means that νb + νc > n.
IV. Suppose η = εb + εc, where 1 ≤ b < c ≤ m, but σ(εb) = −εa+1 and σ(εc) = εa.

Then σa = εa − εa+1 again, but δa = 1 and δa+1 = −1. Hence,

rσ(f
s1ν1

· · · f
Ďmνm

) = f
saνc

g
Ęa+1νb

Y,

where Y is another element of the subalgebra of GD(Cm ⊗ Cn) generated by the xdk

and ∂dk with d �= sa, Ęa+ 1. Now Lemma 5.7 with s = νc and t = νb applies. With these
s and t, and with −µ∗

b −µ∗
c −n−1 in place of Ha in the fraction displayed in that lemma,

the fraction becomes the same number (5.36) as in the preceding case, under the same
condition νb + νc > n.

V. Suppose fm = sp2m and η = 2εb with 1 ≤ b ≤ m. Then σ(εb) = εm and σa = σm,
while δm = 1. Hence,

rσ(f
s1ν1

· · · f
Ďmνm

) = f
Ďmνb

Y,

where Y is now an element of the subalgebra of GD(Cm⊗Cn) generated by the xdk and ∂dk
with d �= sm = 1. Here Lemma 5.8 with s = νb applies. With this s, and with−µ∗

b−n/2−1
in place of Hm in the fraction displayed in that lemma, the fraction becomes

−µ∗
b − n/2− 1 + νb + 1

−µ∗
b − n/2− 1 + n/2 + 1

=
λ∗
b

µ∗
b

.

Here the condition s > n/2 in Lemma 5.8 means that 2νb > n.
Using the inductive hypothesis, we see that, in all the five cases above, the intertwining

operator

sJ \ sBm/sIµ,δ+ → sI(σaσ)◦µ,(σaσ)(δ+)

determined by qξσaσ maps the vector vλµ to the image in sJ \ sBm/sI(σaσ)◦µ,(σaσ)(δ+) of

rσarσ(f
s1ν1

· · · f
Ďmνm

) ∈ sBm

multiplied by the product (5.33) over the set ∆σ and by an extra factor zη corresponding
to the positive root η = σ−1(ηa). This completes the induction step. �
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The product (5.33) in Proposition 5.9 does not depend on the choice of a reduced
decomposition of σ ∈ Hm in terms of σ1, . . . , σm. Thus, the uniqueness of the intertwining
operator (5.30) provides another proof of the independence of our operator (5.20) of the
decomposition of σ, not involving Proposition 4.4. Proposition 5.9 also shows that our
intertwining operator (5.20) is not zero.

§6. Olshanskĭı homomorphism

For a positive integer l, take the vector space Cn+l. In the case of an alternating form
on Cn, we choose l to be even. Let e1, . . . , en+l be the vectors of the standard basis in
Cn+l. Consider the decomposition Cn+l = Cn ⊕Cl, where the direct summands Cn and
C

l are spanned by the vectors e1, . . . , en and en+1, . . . , en+l, respectively. This determines
an embedding of the direct sum gln ⊕ gll of Lie algebras to gln+l. As a subalgebra of
gln+l, the summand gln is spanned by the matrix units Eij ∈ gln+l, where i, j = 1, . . . , n.
The summand gll is spanned by the matrix units Eij , where i, j = n+ 1, . . . , n+ l.

The subspace Cn ⊂ Cn+l comes with the bilinear form chosen in §1. Now we choose
a bilinear form on the subspace C

l ⊂ C
n+l in a similar way. Namely, let i be any of

the indices n + 1, . . . , n + l. If i − n is even, then put rı = i − 1. If i − n is odd and
i < n+ l, then put rı = i+ 1. If i = n+ l and l is odd, then put rı = i. Next, put θi = 1
or θi = (−1)i−n−1 in the case of the symmetric or alternating form on Cn. For any basis
vectors ei and ej of the subspace C

l, put 〈ei, ej〉 = θi δrıj . We equip the vector space Cn+l

with the bilinear form that is the sum of the forms on the direct summands. The forms
on Cl and Cn+l are of the same type (symmetric or alternating) as the form on Cn.

Now we consider the subalgebras gn, gl, and gn+l of the Lie algebras gln, gll, and
gln+l, respectively. We have an embedding of the direct sum gn ⊕ gl to the Lie algebra
gn+l, in accordance with our choice of the bilinear forms made above. We also have
an embedding of the direct product of Lie groups Gn × Gl to Gn+l. Let Cl denote the
subalgebra ofGl-invariants in the universal enveloping algebra U(gn+l). Then Cl contains
the subalgebra U(gn) ⊂ U(gn+l). If gn = spn, then Cl coincides with the centralizer of
the subalgebra U(spl) ⊂ U(spn+l). If gn = son, then Cl is contained in the centralizer of
U(sol) ⊂ U(son+l), but may differ from the centralizer.

Take the extended twisted Yangian X(gn+l). The subalgebra of X(gln+l) generated by

S
(1)
ij , S

(2)
ij , . . . with i, j = 1, . . . , n

is isomorphic to X(gn) as an associative algebra; see [MNO, Subsection 3.14]. Thus, we
have a natural embedding X(gn) → X(gn+l); we denote it by ιl. We also have a surjective
homomorphism

πn+l : X(gn+l) → U(gn+l);

see (1.22). Note that the composition πn+l ιl coincides with the homomorphism πn.
Next, consider the involutive automorphism ωn+l of the algebra X(gn+l); see the

definition (1.20). The image of the composition of homomorphisms

(6.1) πn+l ωn+l ιl : X(gn) → U(gn+l)

belongs to the subalgebra Cl ⊂ U(gn+l). Moreover, together with the subalgebra of
Gn+l-invariants in U(gn+l), this image generates Cl. These two results are due to G. Ol-
shanskĭı [O2]; for their detailed proofs, see [MO, §4]. We shall use the composition of
homomorphisms

γl = πn+l ωn+l ιl ωn

and call it the Olshanskĭı homomorphism. The images of the homomorphisms γl and
(6.1) in U(gn+l) coincide. The reason for using the homomorphism γl rather than the
homomorphism (6.1) will become apparent when we state Theorem 6.1.
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An irreducible representation of the group Gn is said to be polynomial if it arises as a
subrepresentation of some tensor power of the defining representation Cn. In accordance
with [W, Subsections V.7 and VI.3], the irreducible polynomial representations of the
group Gn are parametrized by all the partitions ν of N = 0, 1, 2, . . . such that 2ν′1 ≤ n in
the case of Gn = Spn, and ν′1 + ν′2 ≤ n in the case of Gn = On. Here ν′ is the partition
conjugate to ν, while ν′1, ν

′
2, . . . are the parts of ν

′. Note that in the case where Gn = On

we still have 2ν′2 ≤ n. Denote by Wν the irreducible polynomial representation of the
group Gn corresponding to ν. Let ν1, ν2, . . . be the parts of ν.

Let sν be the weight of the Lie algebra fm with the sequence of labels

(n/2− ν′m, . . . , n/2− ν′1).

By the conditions on ν, for fm = sp2m, the labels sν1, . . . , sνm of sν are integers such that
sν1 ≥ · · · ≥ sνm ≥ 0. For fm = so2m, either all labels of sν are integers, or all of them are
half-integers. In the case where fm = so2m, we have sν1 ≥ · · · ≥ sνm−1 ≥ |sνm|.

Consider G(Cm ⊗ Cn) as a bimodule over fm and Gn. Then, by [H, Subsection 3.8.9]
when Gn = Spn, or by [H, Subsection 4.3.5] when Gn = On, we have a decomposition

(6.2) G(Cm ⊗ C
n) =

⊕
ν

L
sν ⊗Wν ,

where ν ranges over all parameters of the irreducible polynomial representations of Gn

such that ν1 ≤ m. Here L
sν is the irreducible fm-module of the highest weight sν.

Let λ and µ be parameters of any irreducible polynomial representations of the groups
Gn+l and Gl, respectively. Suppose that λ1, µ1 ≤ m. Using the action of the group Gl

on Wλ via its embedding to Gn+l as the second direct factor of the subgroup Gn ×Gl,
we consider the vector space

(6.3) HomGl
(Wµ,Wλ).

The subalgebra Cl ⊂ U(gn+l) acts on this vector space through the action of U(gn+l) on
Wλ. In the case where Gn = Spn, the vector space (6.3) is irreducible under the action
of the algebra Cl; see [D, Theorem 9.1.12]. If Gn = On, the Cl-module (6.3) is either
irreducible or splits into a direct sum of two irreducible Cl-modules. It is irreducible if
Wλ is irreducible as an son+l-module, that is, if 2λ′

1 �= n + l, by [W, Subsection V.9].
Note that for Gn = On, the condition 2λ′

1 �= n+ l is sufficient but not necessary for the
irreducibility of the Cl-module (6.3); see [N, Subsection 1.7].

In any case, the vector space (6.3) is irreducible under the joint action of the subalgebra
Cl ⊂ U(gn+l) and the subgroup Gn ⊂ Gn+l; see again [N, Subsection 1.7]. Hence, the
following identifications of bimodules over Cl and Gn are unique up to rescaling of their
vector spaces:

HomGl
(Wµ,Wλ) = HomGl

(Wµ,Hom fm(L
sλ ,G(Cm ⊗ C

n+l)))(6.4)

= HomGl
(Wµ,Hom fm(L

sλ ,G(Cm ⊗ C
l)⊗ G(Cm ⊗ C

n)))

= Hom fm(L
sλ , Lsµ ⊗ G(Cm ⊗ C

n)).

We use the decompositions (6.2) for n+ l and l instead of n, and the identification

(6.5) G(Cm ⊗ C
n+l) = G(Cm ⊗ C

l)⊗ G(Cm ⊗ C
n)

of vector spaces. Thus, in (6.4), the labels of the weights sλ and sµ of fm are (respectively)

(n/2 + l/2− λ′
m, . . . , n/2 + l/2− λ′

1) and (l/2− µ′
m, . . . , l/2− µ′

1).

By pulling back via the Olshanskĭı homomorphism γl : X(gn) → Cl, the vector space
(6.3) becomes a module over the extended twisted Yangian X(gn). Using the above
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identifications, we see that the vector space (6.4) also becomes a module over X(gn). But
the target fm-module L

sµ ⊗ G(Cm ⊗ Cn) in (6.4) coincides with the fm-module Fm(L
sµ).

Theorem 6.1. The action of X(gn) on the vector space (6.4) via the homomorphism γl
coincides with the action obtained by pulling the action of X(gn) on the bimodule Fm(L

sµ)
back through the homomorphism (1.17), where

(6.6) f(u) = 1−m(u− l/2± 1/2)−1.

Proof. Take the action of the subalgebra Cl ⊂ U(gln+l) on the space G(Cm ⊗ Cn+l).
The extended twisted Yangian X(gn) acts on this vector space via the homomorphism
γl : X(gn) → Cl. Using the decomposition (6.5), we show that for i, j = 1, . . . , n the

generators S
(1)
ij , S

(2)
ij , . . . of X(gn) act on this vector space respectively as the coefficients

of u−1, u−2, . . . in the series (2.8) multiplied by the series (6.6).
For any i, j = 1, . . . , n + l, the element Fij ∈ U(gn+l) acts on G(Cm ⊗ Cn+l) as the

operator
m∑
c=1

(xci ∂cj − θi θj xcrj ∂crı).

Here we use the standard coordinate functions xci on C
m ⊗ C

n+l with c = 1, . . . ,m and
i = 1, . . . , n+ l. Then ∂ci is the left derivation on the Grassmann algebra G(Cm ⊗Cn+l)
relative to xci. The functions xci with c ≤ n and c > n correspond to the direct summands
Cn and Cl of Cn+l. Consider the ((n+ l)× (n+ l))-matrix whose (i, j)-entry is

δij + (u− l/2± 1/2)−1
m∑
c=1

(xci ∂cj − θi θj xcrj ∂crı).

We can write this matrix and its inverse as block matrices[
A B
C D

]
and

[
rA rB
rC rD

]
,

where the blocks A,B,C,D and rA, rB, rC, rD are matrices of sizes n× n, n× l, l× n, and
l× l, respectively. Now the action of the algebra X(gn) on the vector space G(Cm⊗Cn+l)
via the homomorphism γl : X(gln) → Cl can be described by assigning the (i, j)-entry

of the matrix rA−1 to the series Sij(u) with i, j = 1, . . . , n.
We introduce the ((n + l) × 2m)-matrix whose (i, c)-entry for c = −m, . . . ,−1 is

the operator of left multiplication by xci on G(Cm ⊗ Cn+l). For c = 1, . . . ,m, let the
(i, c)-entry of this matrix be the operator θi ∂crı. We write this matrix as[

P
sP

]
,

where the blocks P and sP are matrices of sizes n× 2m and l × 2m, respectively. Next,
we introduce the (2m × (n + l))-matrix whose (c, j)-entry for c = −m, . . . ,−1 is the
operator ∂cj . For c = 1, . . . ,m, let the (c, j)-entry of this matrix be the operator of left
multiplication by θj xcrj. We write this matrix as[

Q sQ
]
,

where Q and sQ are matrices of sizes 2m× n and 2m× l, respectively. Then[
A B
C D

]
= 1 + (u− l/2± 1/2)−1

[
PQ−m P sQ

sPQ sP sQ−m

]
,

which can also be written as the matrix

1 + (u− l/2± 1/2−m)−1

[
PQ P sQ
sPQ sP sQ

]
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multiplied by the series f(u) determined by (6.6). Using a well-known formula for rA−1,
we obtain

rA−1 = A−BD−1C = f(u)
(
1 + (u− l/2± 1/2−m)−1PQ(6.7)

− (u− l/2± 1/2−m)−2 P sQ
(
1 + (u− l/2± 1/2−m)−1

sP sQ
)−1

sPQ
)

= f(u)
(
1 + P (u− l/2± 1/2−m+ sQ sP

)−1
Q
)
.

Consider the (2m × 2m)-matrix sQ sP appearing in the last line. For any indices a, b =
−m, . . . ,−1, 1, . . . ,m, the (a, b)-entry of this matrix is the operator

δab l/2 + sζl(Fab),

where sζl : U(fm) → GD(Cm ⊗ Cn+l) is the homomorphism corresponding to the action
of the Lie algebra fm on G(Cm⊗Cn+l) via the tensor factor G(Cm ⊗Cl) in (6.5), similar
to the homomorphism (2.6). Namely, for a, b = 1, . . . ,m we have

sζl(Fab) = −δab l/2 +
n+l∑

k=n+1

xak ∂bk,

sζl(Fa,−b) =

n+l∑
k=n+1

θk xark xbk, sζl(F−a,b) =

n+l∑
k=n+1

θk ∂ak ∂brk.

Hence, any entry of the (2m× 2m)-matrix

(u− l/2± 1/2−m+ sQ sP )−1

can be obtained by applying the homomorphism sζl to the corresponding entry of the
matrix F (u± 1

2−m); the last mentioned entries are series in u−1 with coefficients in U(fm).
Now we complete the proof by comparing the (i, j)-entry of the (n×n)-matrix (6.7) with
the series obtained from (2.8) by replacing Fab(u± 1

2 −m) there by sζl(Fab(u± 1
2 −m))

for all indices a, b = −m, . . . ,−1, 1, . . . ,m. �

Set C0 = U(gn) and γ0 = πn. Then Theorem 6.1 remains valid in the case where l = 0.
In this case we assume that gl = {0}. Note that our proof of Theorem 6.1 also implies
Proposition 2.3, because the kernels of the homomorphisms sζl with l = 0, 1, 2, . . . have
only zero intersection. For fm = so2, the latter fact follows directly from the definition
(2.6). For fm �= so2, all irreducible finite-dimensional fm-modules arise from the skew
Howe duality.

Let λ and µ be the parameters of any irreducible polynomial representations of Gn+l

and Gl, respectively. The vector space (6.3) is not zero if and only if

(6.8) λk ≥ µk and λ′
k − µ′

k ≤ n for every k = 1, 2, . . . ;

see [N, Subsection 1.3]. Suppose that λ1, µ1 ≤ m. Then we can identify the vector spaces
(6.3) and (6.4). Then the algebra Cl acts on (6.4) irreducibly if Gn = Spn. If Gn = On,
then (6.4) is irreducible under the joint action of the algebra Cl and the group On. In
both cases, the Gn+l-invariant elements of U(gln+l) act on (6.4) via multiplication by
scalars. Then Theorem 6.1 has a corollary, which refers to the action of X(gn) on the
vector space (6.4) inherited from the bimodule Fm(L

sµ).

Corollary 6.2. The algebra X(gn) acts on the space (6.4) irreducibly if Gn = Spn. If
Gn = On, the space (6.4) is irreducible under the joint action of X(gn) and On.

Now suppose that fm �= so2. Then any irreducible finite-dimensional module V of fm
is equivalent to L

sµ for some nonnegative integer l and the label µ of some irreducible
polynomial representation of the group Gl with µ1 ≤ m. If V ′ is another irreducible
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finite-dimensional fm-module such that the vector space (0.10) is nonzero, then V ′ must
be equivalent to L

sλ for the label λ of some irreducible polynomial representation of Gn+l

with λ1 ≤ m. Thus any nonzero vector space (0.10) must be of the form (6.4).
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