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THE CLOSURE OF THE HARDY SPACE

IN THE BLOCH NORM

N. M. GALÁN AND A. NICOLAU

Dedicated to V. P. Havin
on the occasion of his 75th birthday

Abstract. A description of the closure in the Bloch norm of the Bloch functions
that are in a Hardy space is given. The result uses the classical estimates for the
Lusin area function.

§1. Introduction

This paper is devoted to the description of the closure in the Bloch norm of the space
Hp ∩ Bloch. First, we recall some definitions.

For 0 < p < ∞, the Hardy space Hp is the space of analytic functions f in the unit
disk such that

‖f‖pHp = sup
0<r<1

∫ 2π

0

|f(reiθ)|p dθ < +∞.

As usual, H∞ is the space of bounded analytic functions in the unit disk.
We also recall the definition of the space BMO of functions with bounded mean oscil-

lation. Let u be an integrable function on the unit circle T, and let uI denote the mean
of u over the arc I ⊂ T, that is,

uI =
1

|I|

∫
I

u(ξ) |dξ|.

Here |dξ| is the normalized Lebesgue measure on T. The function u is in BMO if

‖u‖BMO = sup
1

|I|

∫
I

|u(ξ)− uI | |dξ| < +∞,

where the supremum is taken over all arcs I ⊂ T. An analytic function f in the unit disk
D is in the space BMOA if it is the Poisson extension to the disk of a function in BMO.

Finally, recall that a function f is in the Bloch space, denoted by Bloch, if f is analytic
in D and

‖f‖Bloch = sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

It is well known that H∞
� BMOA � Bloch ∩ Hp for any p < ∞. Therefore, it is

natural to ask for a description of the closure of the spaces H∞, BMOA, and Hp ∩ Bloch
in the Bloch space.

Garnett and Jones gave a description of the closure of L∞ in the BMO norm, and
also of H∞ in BMOA, based on the John–Nirenberg inequality [6], stating that a function
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u ∈ L1(T) is in BMO if and only if there exists ε > 0 and a constant C > 0 such that for
any arc I ⊂ T and any λ > 0 we have

|{ξ ∈ I : |u(ξ)− uI | > λ}| ≤ Ce−λ/ε|I|.
In [3], Garnett and Jones showed that a function u is in the closure of L∞ in the BMO
norm if and only if for any ε > 0 there exists a constant C = C(ε) > 0 such that the
inequality above is satisfied.

A characterization of the closure of BMOA in the Bloch norm is also due to P. Jones.
Given a function f ∈ Bloch and ε > 0, define

Ωε(f) = {z ∈ D : (1− |z|2)|f ′(z)| ≥ ε}.
Then f is in the closure of BMOA in the Bloch norm if and only if for every ε > 0 there
exists a constant C = C(ε) > 0 such that∫

Q∩Ωε(f)

dA(z)

1− |z|2 ≤ C�(Q)

for any Carleson square Q of the form

Q =
{
reiθ : 0 < 1− r < �(Q), |θ − θ0| < �(Q)

}
, 0 ≤ θ0 < 2π.

In [5], Ghatage and Zheng gave a proof of this result and they attributed it to P. Jones.
Our main purpose in this paper is to adapt this proof to give a description of the Bloch
functions that can be approximated in the Bloch norm by functions in Bloch ∩Hp. This
result is stated in Theorem 1 below.

We start with some notation. Given a set Ω ⊆ D, let Ah(Ω) be the hyperbolic area
of Ω, that is,

Ah(Ω) =

∫
Ω

dA(z)

(1− |z|2)2 .

Also, for fixed M > 1 and for ξ ∈ T, let Γ(ξ) = {z ∈ D : |z − ξ| < M(1 − |z|)} be the
Stolz angle with vertex at ξ. Our main result is as follows.

Theorem 1. Let 1 < p < ∞, and let f be a function in the Bloch space. Then f is in
the closure in the Bloch norm of Bloch ∩ Hp if and only if for any ε > 0 the function

A
1/2
h (Ωε(f) ∩ Γ(ξ)) is in Lp(T).

In the case where p = 2, this condition can be written in a more pleasant way. The
Fubini theorem allows us to restate our result as follows: A function f ∈ Bloch is in the
closure of H2 ∩ Bloch if and only if for any ε > 0 we have∫

Ωε(f)

dA(z)

1− |z|2 < ∞.

Notice that the condition in Peter Jones’ result is the conformally invariant version of
the previous one.

The necessity in our result follows easily from well-known estimates on the Lusin area
function. For f ∈ Hp, the area function of f at the point ξ ∈ T is defined as

A(f)(ξ) =

(∫
Γ(ξ)

|f ′(z)|2 dA(z)

)1/2

.

The following characterization of Hp spaces in terms of the area function will be used
(see [7] and [8, p. 224]).

Theorem A. Let 0 < p < +∞, and let f be an analytic function in the unit disk.
Then f ∈ Hp if and only if A(f) ∈ Lp(T). Moreover, the norms ‖f‖Hp and ‖A(f)‖Lp are
comparable.
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The proof of the sufficiency in Theorem 1 is more difficult. Here we proceed as in the
proof of Jones’ theorem given in [5]. If f ∈ Bloch and f(0) = f ′(0) = 0, then for any
z ∈ D we have the following reproducing formula:

f(z) =

∫
D

(1− |w|2)f ′(w)

(1− swz)2 sw
dA(w);

see [2]. We shall show that the integral over D \Ωε(f) has small Bloch norm, so that we
shall need to check that the integral over Ωε(f) is in Hp. This will be accomplished by
a duality argument, again with the use of estimates of the Lusin area function.

It is important to remark that our arguments do not apply to the case of p = ∞,
because Theorem A fails for p = ∞. The problem of describing the closure of H∞ in the
Bloch norm, first stated in [1], remains an open problem.

§2. Proof of Theorem 1

Fix 1 < p < ∞. First, we show necessity. So, let f be a function in the closure
of the space Hp ∩ Bloch. Then, given ε > 0, we can find g ∈ Hp ∩ Bloch such that
‖f − g‖Bloch ≤ ε/2. Since Ωε(f) ⊆ Ωε/2(g), for any ξ ∈ T we have

Ah(Ωε(f) ∩ Γ(ξ)) ≤
∫
Ωε/2(g)∩Γ(ξ)

dA(z)

(1− |z|2)2 ≤
∫
Γ(ξ)

4

ε2
|g′(z)|2 dA(z).

Since g ∈ Hp, Theorem A shows that its area function is in Lp(T), and we deduce that

A
1/2
h (Ωε(f) ∩ Γ(ξ)) ∈ Lp(T).
Conversely, fix p with 1 < p < ∞, and let f be a function in the Bloch space such that

for any ε > 0 the function A
1/2
h (Ωε(f) ∩ Γ(ξ)), as a function of ξ ∈ T, is in Lp(T). Fix

ε > 0. We are going to construct a function f1 ∈ Hp ∩Bloch such that ‖f − f1‖Bloch < ε.
We proceed as in [5]. We may assume that f(0) = f ′(0) = 0 and ‖f‖Bloch = 1. In [2] it
was proved that

(1) f(z) =

∫
D

(1− |w|2)f ′(w)

(1− swz)2 sw
dA(w)

for all z ∈ D. We denote Ωε = Ωε(f), split the integral into two parts, and define

f1(z) =

∫
Ωε

(1− |w|2)f ′(w)

(1− swz)2 sw
dA(w)

and

f2(z) =

∫
D\Ωε

(1− |w|2)f ′(w)

(1− swz)2 sw
dA(w),

so that f = f1 + f2. Since

|f ′
2(z)| ≤ 2ε

∫
D

dA(z)

|1− swz|3 , z ∈ D,

we deduce that ‖f2‖Bloch ≤ Cε. Hence, we only need to show that f1 is in Hp. This will
be accomplished as in [5] by a duality argument.

Without loss of generality we may assume that f1(0) = 0. Let ĎHq be the space of
antianalytic functions in the unit disk such that sg ∈ Hq. Consider the operator

T (g) =

∫
D

sg′(z)f ′
1(z) log

1

|z| dA(z), g ∈ ĎHq.

The argument below will show that there exists a fixed constant C = C(ε) > 0 such that
|T (g)| ≤ C‖sg‖Hq for any g ∈ ĎHq. Once this inequality is established, we shall see that T
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gives rise to a bounded linear functional on ĎHq. Then, by duality, there exists F ∈ Hp

such that

T (g) =

∫
T

F (eiθ)g(eiθ) dθ

for any g ∈ ĎHq. Here dθ is the normalized angular measure. Since T (1) = 0, we have
F (0) = 0. By the Littlewood–Paley integral formula (see [4, p. 228]), we have

T (g) =

∫
D

F ′(z)sg′(z) log
1

|z| dA(z)

for all g ∈ ĎHq. Then F = f1, which shows that f1 ∈ Hp. So, we need to check that there
exists a constant C = C(ε) > 0 such that

(2)

∣∣∣∣
∫
D

sg′(z)f ′
1(z) log

1

|z| dA(z)

∣∣∣∣ ≤ C‖sg‖Hq , g ∈ ĎHq.

First, observe that the Fubini theorem gives

T (g) = 2

∫
Ωε

(1− |w|2)f ′(w)

∫
D

sg′(z)

(1− swz)3
log

1

|z| dA(z) dA(w).

Next, we show that the integral

(3)

∫
D

sg′(z)

(1− wsz)3
log

1

|z| dA(z)

is essentially the derivative of a certain function in Hq. To check this, we fix w ∈
D \ {0} and apply the Littlewood–Paley integral formula to the functions sg(z) and(
2w(1− wsz)2

)−1
to obtain

∫
D

sg′(z)

(1− wsz)3
log

1

|z| dA(z) =

∫ 2π

0

sg(eiθ)

2w(1− we−iθ)2
dθ − sg(0)

2w
.

Now we can use the variable ξ = eiθ, and by the Cauchy integral formula we can express
the right-hand side of the last identity as

1

2wi

∫
T

(sg(ξ)− sg(0))ξ

(ξ − w)2
dξ =

1

2w
h′(w),

where h(w) = (sg(w)− sg(0))w. So, finally we obtain

T (g) =

∫
D

(1− |w|2)f ′(w)χΩε
(w)

1

sw
h′(w) dA(w).

Since f ′(0) = 0, there exists C1 = C1(ε) such that Ωε ⊂ {w ∈ D : |w| ≥ C1}. Therefore,
taking modules, we deduce that

|T (g)| ≤ 1

C1

∫
D

(1− |w|2)|f ′(w)| |h′(w)|χΩε
(w) dA(w)

≤ 1

C1

∫
D

|h′(w)|χΩε
(w) dA(w).

By the Fubini theorem, we deduce that there exists a constant C2 > 0 such that

|T (g)| ≤ C2

∫
T

∫
Γ(ξ)∩Ωε

|h′(w)|
1− |w|2 dA(w) |dξ|.
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Applying the Cauchy–Schwarz inequality to the inner integral, we get

|T (g)| ≤ C2

∫
T

(∫
Ωε∩Γ(ξ)

dA(w)

(1− |w|2)2

) 1
2
(∫

Γ(ξ)

|h′(w)|2 dA(w)

) 1
2

|dξ|

= C2

∫
T

A
1/2
h (Ωε ∩ Γ(ξ))A(h)(ξ) |dξ|.

By the hypothesis that A
1/2
h (Ωε ∩Γ(ξ)) is in Lp(T) and by Theorem A, the area function

A(h) is in Lq(T); so using finally the Hölder inequality and the hypothesis, we deduce
that

|T (g)| ≤ C2

∥∥∥A1/2
h (Ωε ∩ Γ(ξ))

∥∥∥
Lp(T)

∥∥A(h)
∥∥
Lq(T)

≤ C3‖h‖Lq(T) ≤ 2C3‖g‖Lq(T)

for any g ∈ ĎHq. This inequality gives (2), so that T (g) determines a bounded linear
functional on ĎHq. Hence, Theorem 1 is proved.
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