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ON δ-SUPERDERIVATIONS OF SIMPLE SUPERALGEBRAS

OF JORDAN BRACKETS

V. N. ZHELYABIN AND I. B. KAYGORODOV

Abstract. A complete description of δ-derivations and δ-superderivations is given
for simple unital superalgebras of Jordan brackets over a field of characteristic dif-
ferent from 2 and for simple unital finite-dimensional Jordan superalgebras over an
algebraically closed field of characteristic p �= 2. As a consequence, a criterion for
simple unital superalgebras of Jordan brackets to be special is obtained.

Introduction

The notion of a derivation of an algebra has been generalized by many mathematicians
in various directions. In particular, in [1] one can find the definition of a δ-derivation of
an algebra. We recall that for fixed δ ∈ F, a δ-derivation of an F -algebra A is a linear
map φ satisfying the condition

φ(xy) = δ(φ(x)y + xφ(y))

for any x, y ∈ A. In [1], the 1
2 -derivations were described for an arbitrary prime Lie

F -algebra A ( 16 ∈ F ) with a nondegenerate symmetric invariant bilinear form. Namely,

it was proved that a linear map φ : A → A is a 1
2 -derivation if and only if φ ∈ Γ(A),

where Γ(A) is the centroid of A. This implies that if A is a central simple Lie algebra
over a field of characteristic p �= 2, 3 with a nondegenerate invariant bilinear form, then
any 1

2 -derivation φ has the form φ(x) = αx for some α ∈ F .
In [2] Filippov proved that any prime Lie Φ-algebra admits no nonzero δ-variations

if δ �= −1, 0, 1
2 , 1. Also in [2], it was shown that any prime Lie Φ-algebra A ( 16 ∈ Φ)

with a nonzero antiderivation is a three-dimensional central simple algebra over the field
of fractions of the center ZR(A) for its algebra of right multiplications R(A). In the
same paper, a nontrivial 1

2 -derivation was constructed for the Witt algebra W1, i.e., a
1
2 -derivation that is not an element of the centroid of W1.

The paper [3] contains a description for the δ-derivations of the prime alternative and
non-Lie Maltsev Φ-algebras with some restrictions on the operator ring Φ. It was shown
that the algebras in these classes have no nonzero δ-derivations if δ �= 0, 1

2 , 1. The
results of Filippov were partially generalized by Luks and Leger in [9]. Those authors
considered quasiderivations of Lie algebras, i.e., linear maps f for which there exists a
linear map f ′ related to f by the formula f ′(xy) = f(x)y + xf(y). They proved that
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the space of quasiderivations of a simple finite-dimensional Lie algebra A of rank greater
than 1 coincides with the direct sum of the space of derivations and the centroid of A.

In [4], a description of δ-derivations was given for the simple finite-dimensional Jor-
dan superalgebras over an algebraically closed field of characteristic zero and for the
semisimple finite-dimensional Jordan algebras over an algebraically closed field of char-
acteristic different from 2. Later, in [5], the δ-derivations were described for the classical
Lie superalgebras. The paper [6] was devoted to a description of the δ-derivations of
Cartan Lie superalgebras. In that paper, the δ-superderivations were described for the
simple finite-dimensional Lie superalgebras. Also in [6], the δ-derivations of semisim-
ple finite-dimensional Jordan algebras and δ-superderivations of Jordan superalgebras
over an algebraically closed field of characteristic zero were described. For algebras
and superalgebras from the papers [4]–[6], the absence of nontrivial δ-derivations and
δ-superderivations was proved. Later, the results of [5] were generalized by Zusmanovich
in [8]. He described the δ-derivations and δ-superderivations of prime Lie superalge-
bras. He showed that a prime Lie superalgebra has no nontrivial δ-derivations and
δ-superderivations if δ �= −1, 0, 1

2 , 1. He proved that for a Lie superalgebra A with
zero center and a nondegenerate supersymmetric invariant bilinear form satisfying the
condition A = [A,A], the space of 1

2 -derivations (
1
2 -superderivations) coincides with the

centroid (supercentroid) of the superalgebra A. Also, Zusmanovich gave an affirmative
answer to the question of Filippov in [2] concerning the existence of zero divisors in the
ring of 1

2 -derivations of a prime Lie algebra. Subsequently, the δ-superderivations of the
generalized Kantor double constructed on a prime nonunital associative algebra were
considered in [7].

In the present paper, we consider the δ-derivations and δ-superderivations in the
case of simple superalgebras of Jordan brackets. We prove the absence of nontrivial
δ-derivations and δ-superderivations of simple superalgebras of Jordan brackets, which
are not superalgebras of vector type. A description is given for the δ-derivations and
δ-superderivations of simple Jordan superalgebras of vector type. As a consequence,
with the help of the classification of all simple finite-dimensional Jordan superalgebras,
as given in [13], we obtain a description of the δ-derivations and δ-superderivations of the
simple unital finite-dimensional Jordan superalgebras over an algebraically closed field
of characteristic p �= 2.

§1. The main facts and definitions

Let F be a field of characteristic p �= 2. An algebra A over the field F is said to be
Jordan if it satisfies the identities

xy = yx, (x2y)x = x2(yx).

Let G be a Grassmann algebra over F , given by generators 1, ξ1, . . . , ξn, . . . and the
defining relations ξ2i = 0, ξiξj = −ξjξi. The unity 1 and the products ξi1ξi2 · · · ξik ,
i1 < i2 < · · · < ik, form a basis of the algebra G over F . Denote by G0 and G1 the
subspaces generated by products of even and odd length, respectively; then G is a direct
sum of these subspaces: G = G0 ⊕ G1; moreover, we have the inclusions GiGj ⊆ Gi+j

(mod 2), i, j = 0, 1. In other words, G is a Z2-graded algebra (or a superalgebra) over F .
Now, let A = A0 ⊕ A1 be an arbitrary superalgebra over F . Consider the tensor

product G⊗A of F -algebras. Its subalgebra

G(A) = G0 ⊗A0 +G1 ⊗A1

is called the Grassmann envelope of the superalgebra A.
Let Ω be a variety of algebras over F . A superalgebra A = A0 ⊕ A1 is called an

Ω-superalgebra if its Grassmann envelope G(A) is an algebra in Ω.
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In particular, J = J0 ⊕ J1 is a Jordan superalgebra if its Grassmann envelope G(J)
is a Jordan algebra. In what follows, for a homogeneous element x of a superalgebra
J = J0 ⊕ J1 we put p(x) = i if x ∈ Ji. We denote the even part J0 of a Jordan
superalgebra by A and the odd part J1 by M .

A classification of the simple finite-dimensional Jordan superalgebras over an alge-
braically closed field of characteristic zero was given in [10, 11]. In [12, 13], all simple
finite-dimensional Jordan superalgebras over an algebraically closed field of arbitrary
characteristic different from 2 were described.

We give several examples of Jordan superalgebras.

1.1. The Kantor double [10]. Let Γ = Γ0 ⊕ Γ1 be an associative supercommutative
superalgebra with unity 1, and let { , } : Γ× Γ → Γ be a superskewsymmetric bilinear
map, which we shall call a bracket. Starting with the superalgebra Γ and the bracket
{ , }, one can construct a superalgebra J(Γ, { , }). Consider the following direct sum of
spaces: J(Γ, { , }) = Γ⊕ Γx, where Γx is an isomorphic copy of the space Γ. Let a and
b be homogeneous elements in Γ. Then multiplication · on J(Γ, { , }) is defined by the
relations

a · b = ab, a · bx = (ab)x, ax · b = (−1)p(b)(ab)x, ax · bx = (−1)p(b){a, b}.
We set A = Γ0 ⊕ Γ1x and M = Γ1 ⊕ Γ0x. Then J(Γ, { , }) = A ⊕M is a Z2-graded

algebra.
A bracket { , } is said to be Jordan if the superalgebra J(Γ, { , }) is a Jordan superal-

gebra. It is well known [14] that, for homogeneous elements, the Jordan bracket satisfies
the relations

{a, bc} = {a, b}c+ (−1)p(a)p(b)b{a, c} − {a, 1}bc,(1)

{a, {b, c}} = {{a, b}, c}+ (−1)p(a)p(b){b, {a, c}}+ {a, 1}{b, c}
+ (−1)p(a)(p(b)+p(c)){b, 1}{c, a}+ (−1)p(c)(p(a)+p(b)){c, 1}{a, b}.

(2)

Since the superalgebra J(Γ, { , }) is Jordan, we see that D : a → {a, 1} is a derivation
of the superalgebra Γ.

If D is the zero derivation, then { , } is a Poisson bracket, i.e.,

{a, bc} = {a, b}c+ (−1)p(a)p(b)b{a, c},
and Γ is a Lie superalgebra with respect to the operation { , }. An arbitrary Poisson
bracket is a Jordan bracket (see [15]).

It is well known [14] that the Jordan superalgebra J = Γ ⊕ Γx obtained with the
help of the Kantor doubling process is simple if and only if Γ has no nonzero ideals B
satisfying {Γ, B} ⊆ B.

1.2. A superalgebra of vector type J(Γ, D). Let Γ = Γ0 ⊕ Γ1 be an associative
supercommutative superalgebra with a nonzero even derivation D. We define a bracket
{ , } on Γ by setting

{a, b} = D(a)b− aD(b).

Then the bracket { , } is Jordan. We denote by J(Γ, { , }) the resulting superalgebra
J(Γ, D). Multiplication “ · ” in J(Γ, D) is defined by

a · b = ab, a · bx = (ab)x, ax · b = (−1)p(b)(ab)x,

ax · bx = (−1)p(b)(D(a)b− aD(b)),

where a and b are homogeneous elements in Γ and ab is the product in Γ. The superalge-
bra J(Γ, D) is called a superalgebra of vector type. If the superalgebra J(Γ, D) is simple,
then Γ1 = 0 (see [14]).
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1.3. The Cheng–Kac superalgebra CK(Z, d) [16]. Let Z be an arbitrary unital
associative commutative algebra with a nonzero derivation d : Z → Z. Consider two
free Z-modules of rank 4:

A = Z +

3∑
i=1

wiZ, M = xZ +

3∑
i=1

xiZ.

Multiplication on A will be Z-linear, wiwj = 0, i �= j, w2
i = −1. We define

xi×i = 0, x1×2 = −x2×1 = x3, x1×3 = −x3×1 = x2, x2×3 = −x3×2 = x1.

Multiplication A×M → M is defined by the relations

(xf)g = x(fg), (xif)g = xi(fg),

(xf)(wjg) = xj(fd(g)), (xif)(wjg) = xi×j(fg).

Multiplication M ×M → A is given in accordance with the rules

(xf)(xg) = d(f)g − fd(g), (xf)(xjg) = −wj(fg),

(xif)(xg) = wi(fg), (xif)(xjg) = 0.

We also need the definition of a certain superalgebra B(n,m). Let F be an alge-
braically closed field of characteristic p > 2. Let B(m) = F [a1, . . . , am|api = 0] be the
algebra of truncated polynomials in m even variables. Let G(n) be the Grassmann su-
peralgebra with generators 1, ξ1, . . . , ξn. Then B(m,n) = B(m)⊗G(n) is an associative
supercommutative superalgebra.

The main result concerning classification of simple finite-dimensional unital Jordan
superalgebras over algebraically closed fields of characteristic p > 2 was obtained in the
paper [13] by Martinez and Zelmanov.

Theorem 1. Let J = J0 + J1 be a finite-dimensional simple unital Jordan superalgebra
over an algebraically closed field of characteristic p > 2, where J0 is not a semisimple
algebra. Then:

1) either there exist integers m and n and a Jordan bracket { , } on B(m,n) such that
J = J(B(m,n), { , }),

2) or J is isomorphic to the Cheng–Kac Jordan superalgebra CK(B(m), d), which is
defined by the derivation d : B(m) → B(m).

As has been mentioned above, for a fixed element δ of the ground field, by a δ-derivation
of a superalgebra A we mean a linear map φ : A → A such that

φ(xy) = δ(φ(x)y + xφ(y))

for all x, y ∈ A.
The centroid Γ(A) of a superalgebra A is the set of all linear maps χ : A → A such

that

χ(xy) = χ(x)y = xχ(y)

for all x, y ∈ A.
Note that the 1-derivation is the usual derivation and the 0-derivation is an arbitrary

endomorphism φ of the algebra A such that φ(A2) = 0. It is clear that any element of
the centroid of an algebra is a 1

2 -derivation.
A nonzero δ-derivation φ is said to be nontrivial if δ �= 0, 1 and φ /∈ Γ(A).
By a superspace we mean a Z2-graded space. A homogeneous element ψ of the super-

space of endomorphisms A → A is called a superderivation if

ψ(xy) = ψ(x)y + (−1)p(x)p(ψ)xψ(y).
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For a fixed element δ ∈ F , we define the notion of a δ-superderivation of the superal-
gebra A = A0 +A1. A homogeneous linear map φ : A → A is called a δ-superderivation
if for homogeneous x, y ∈ A we have

φ(xy) = δ(φ(x)y + (−1)p(x)p(φ)xφ(y)).

Consider a Lie superalgebra A = A0 +A1 and fix an element x ∈ Ai. Then Rx : y →
xy is an odd superderivation of the superalgebra A and its parity p(Rx) is equal to i.

The supercentroid Γs(A) of a superalgebra A is the set of all homogeneous linear maps
χ : A → A such that for arbitrary homogeneous elements a and b, we have

χ(ab) = χ(a)b = (−1)p(a)p(χ)aχ(b).

Note that a 1-superderivation is a usual superderivation; a 0-superderivation is an
arbitrary endomorphism φ of the superalgebra A such that φ(A2) = 0.

A nonzero δ-superderivation φ is said to be nontrivial if δ �= 0, 1 and φ /∈ Γs(A).
In accordance with [4, Theorem 2.1] (which is easily generalized to the case of δ-super-

derivations), for a unital superalgebra A, a map φ can be a nontrivial δ-derivation or
δ-superderivation only for δ = 1

2 . It is easily seen that, in this case, φ(x) = φ(1)x for
arbitrary x ∈ A.

§2. δ-derivations and δ-superderivations
of simple superalgebras of Jordan brackets

In the present section, we consider δ-derivations and δ-superderivations of a simple
unital Jordan superalgebra J = J(Γ, { , }). We assume that the characteristic of the field
F is different from 2.

Lemma 2. Let J = J(Γ, { , }) be a simple unital Jordan superalgebra. Then Γ = Γ{Γ,Γ}.
In particular, if z ∈ Γ0 ∪ Γ1 \ {0}, then z{Γ,Γ} �= 0.

Proof. Consider I = Γ{Γ,Γ}. It is clear that I is an ideal in Γ (I � Γ). By (1),

{Γ, I} = {Γ,Γ{Γ,Γ}} ⊆ {{Γ,Γ}, {Γ,Γ}}+ Γ{Γ, {Γ,Γ}}+ {Γ, 1}Γ{Γ,Γ} ⊆ Γ{Γ,Γ} = I.

By [14], the Jordan superalgebra J(Γ, { , }) is simple if Γ contains no nonzero ideals I
satisfying the condition {Γ, I} ⊆ I. If {Γ,Γ} = 0, then Γx � J . Consequently, Γx = J
and Γ0 = 0. Hence, {Γ,Γ} �= 0, and since Γ is unital, we have Γ = Γ{Γ,Γ}. Now if
z{Γ,Γ} = 0, then zΓ = zΓ{Γ,Γ} = 0. Since Γ is unital, we obtain z = 0. The lemma is
proved. �

Lemma 3. Let J = J(Γ, { , }) be a simple unital Jordan superalgebra, and let α ∈ J .
The map φ(z) = αz is a 1

2 -derivation if and only if α ∈ Γ0 and {α, b} = D(α)b− αD(b)
for any b ∈ Γ.

Proof. Let α = α0 + βx + γ + μx, where α0, μ ∈ Γ0 and β, γ ∈ Γ1. Clearly, the maps
φ1(z) = (γ + μx)z and φ2(z) = (α0 + βx)z are also 1

2 -derivations of the superalgebra
J . Moreover, φ1(1) = (γ + μx) and φ2(1) = (α0 + βx). For this reason, for arbitrary z,
w ∈ J we have

2φi(1)(zw) = (φi(1)z)w + z(φi(1)w).(3)

Setting i = 1, z = x, and w = 1 in (3), we get

2γx = γx+ xγ = 0,

i.e., γ = 0.
We prove that β = μ = 0. For this, we show that β{Γ,Γ} = 0 and μ{Γ,Γ} = 0.
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Now in (3) we set i = 2, z = a, and w = bx, obtaining

2{β, ab} = {βa, b}+ (−1)p(a)a{β, b}.
By (1), we have

2{β, ab} = −(−1)p(b)+p(a)p(b)2{b, β}a− (−1)p(a)p(b)β{b, a}
+ (−1)p(b)+p(b)p(a)D(b)βa.

(4)

Substituting i = 2, z = ax, and w = b in (3), we get

2{β, ab} = {β, a}b− (−1)p(a){a, βb}.
By (1), we have

2{β, ab} = 2{β, a}b− β{a, b} − βD(a)b.(5)

Substituting i = 2, z = ax, and w = bx in (3), we get

2β{a, b} = {β, a}b− (−1)p(a)a{β, b}.(6)

Comparison of (4) and (5) yields

2β{a, b} = 2{β, a}b− βD(a)b− (−1)p(b)+p(b)p(a)D(b)βa+ (−1)p(b)+p(b)p(a)2{b, β}a
= 2{β, a}b− βD(a)b− βaD(b)− (−1)p(a)2a{β, b}
= 2{β, a}b− βD(ab)− (−1)p(a)2a{β, b}.

(7)

This relation and (6) imply that

2β{a, b} = βD(ab).

Putting b = 1, we get βD(a) = 2βD(a). Hence, βD(a) = 0 and β{Γ,Γ} = 0. Thus,
β = 0 by Lemma 2.

Substituting i = 1, z = a, w = bx in (3), we obtain

2{μ, ab} = −{μa, b}+ (−1)p(a)a{μ, b}.(8)

Choosing i = 1, z = ax,w = b in (3), we get

2{μ, ab} = {μ, a}b+ (−1)p(a){a, μb}.(9)

For i = 1, z = ax, w = bx in (3), we have

2μ{a, b} = {μ, a}b+ (−1)p(a)a{μ, b}.(10)

For a = b = 1, relation (10) implies that D(μ) = 0. Substituting b = 1 in (8), we obtain

2{μ, a} = {μa, 1} = D(μa) = μD(a).

Taking a = 1 in (9), we have

2{μ, b} = {1, μb} = −D(μb) = −μD(b).

Comparing the expressions obtained, we get {μ,Γ} = 0. Therefore, μ{a, b} = 0 by (10).
Using Lemma 2, we see that μ = 0.

Thus, we have proved that φ(z) = αz, where α ∈ Γ0.
Putting i = 2, z = ax, and w = bx in (3), we obtain

2α{a, b} = {αa, b}+ {a, αb}.(11)

Note that identity (1) yields the relation

{αa, b}+{a, αb} = −(−1)p(b)p(a)({b, α}a+α{b, a}−D(b)αa)+{a, α}b+α{a, b}−D(a)αb.

Hence, (11) shows that

a{b, α} − {a, α}b = (aD(b)−D(a)b)α.
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Consequently, for b = 1,

{α, a} = D(α)a− αD(a).

It is easy to verify that, for any α ∈ Γ0 such that {α, a} = D(α)a−αD(a), φ(z) = αz
is a 1

2 -derivation of the superalgebra J . The lemma is proved. �

Thus, a δ-derivation of a simple unital superalgebra J = J(Γ, {, }) is an even δ-super-
derivation of the superalgebra J = J(Γ, { , }). For this reason, in the sequel we deal only
with δ-superderivations.

Remark 4. Let J = J(Γ, { , }) be a simple unital Jordan superalgebra. The map φ(z) =
αz is an odd 1

2 -superderivation if and only if α ∈ Γ1 and

{α, a} = D(α)a− αD(a)

for any a ∈ Γ.

Proof. This is proved by straightforward calculations similar to those in the proof of
Lemma 3. �

Corollary 5. If J is a simple unital superalgebra of vector type, then the map φ(z) = αz
is a 1

2 -superderivation if and only if α ∈ Γ0. If J is a superalgebra of the Poisson bracket,

then the map φ(z) = αz is a 1
2 -superderivation if and only if α ∈ Γ0∪Γ1 and {α,Γ} = 0.

Let J = J(Γ, D) be a superalgebra of vector type. The map φ(z) = αz with α ∈ Γ is
the trivial 1

2 -superderivation if φ ∈ Γs(J), i.e., if

α((bx)(cx)) = (−1)p(α)p(bx)(bx)(α(cx)),

which is equivalent to D(α)bc = 0. Consequently, φ is the trivial 1
2 -superderivation if

D(α) �= 0.
Let J = J(Γ, { , }) be a superalgebra of the Poisson bracket, and let φ(z) = αz be a

1
2 -superderivation of J . By Remark 4, we have

(ax)(α(bx)) = (−1)p(b)+p(α){a, αb} = (−1)p(b)+p(α)({a, α}b+ (−1)p(α)p(a)α{a, b})
= (−1)p(b)+p(α)+p(a)p(α)α{a, b} = (−1)p(α)(p(a)+1)α((ax)(bx)).

This easily implies that φ is the trivial 1
2 -superderivation.

We set

Φ = {α ∈ Γ0 ∪ Γ1 | {α, a} = D(α)a− αD(a), a ∈ Γ}.

Lemma 6. Suppose J = J(Γ, { , }) is a simple Jordan superalgebra, α ∈ Φ \ {0}, and
D(α) = 0. Then α is invertible in Γ and α ∈ Γ0. In particular, if J(Γ, { , }) is a
superalgebra of the Poisson bracket, then α is invertible in Γ and α ∈ Γ0.

Proof. Consider I = αΓ. It is clear that I � Γ. By the definition of Φ, we have

{I,Γ} = {αΓ,Γ} ⊆ {Γ, α}Γ + α{Γ,Γ}+D(Γ)αΓ ⊆ αΓ = I.

Using [14], we conclude that I = Γ. Since Γ is unital, it follows that α is invertible. The
lemma is proved. �

Lemma 7. Let J = J(Γ, { , }) be a Jordan superalgebra. Then Φ is closed with respect
to the derivation D, i.e., D(Φ) ⊆ Φ. In particular, Dk(Φ) ⊆ Φ, k > 0.
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Proof. Using (2), we obtain

{D(b), c}+ {b,D(c)} = −(−1)p(b)p(c){c, {b, 1}}+ {b, {c, 1}}
= −(−1)p(b)p(c){{c, b}, 1} − (−1)p(b)p(c)(−1)p(c)p(b){b, {c, 1}}
− (−1)p(b)p(c){c, 1}{b, 1} − (−1)p(b)p(c)(−1)p(c)p(b){b, 1}{1, c}+ {{b, c}, 1}
+ (−1)p(b)p(c){c, {b, 1}}+ {b, 1}{c, 1}+ (−1)p(b)p(c){c, 1}{1, b}

= 2D({b, c})− {D(b), c} − {b,D(c)}.
Consequently,

D({b, c}) = {D(b), c}+ {b,D(c)}.(12)

Therefore,

{D(α), a} = D({α, a})− {α,D(a)}
= D(D(α))a+D(α)D(a)−D(α)D(a)− αD(D(a))−D(α)D(a) + αD(D(a))

= D(D(α))a−D(α)D(a).

This completes the proof of the lemma. �

Lemma 8. Let J = J(Γ, { , }) be a Jordan superalgebra. Then for arbitrary b, c ∈ J
and α ∈ Φ we have

Dk(α){b, c} = Dk(α)(D(b)c− bD(c)).

Proof. From the definition of Φ and (12), it follows that

{α, {b, c}} = D(α){b, c} − αD({b, c}) = D(α){b, c} − α{D(b), c} − α{b,D(c)}.(13)

Now we use relations (1), (2) and Lemmas 3 and 7 to write

{α, {b, c}} = {{α, b}, c}+ (−1)p(α)p(b){b, {α, c}}+D(α){b, c}
+ (−1)p(α)(p(b)+p(c))D(b){c, α}+ (−1)p(c)(p(α)+p(b))D(c){α, b}

= {D(α)b, c} − {αD(b), c}+ (−1)p(α)p(b){b,D(α)c} − (−1)p(α)p(b){b, αD(c)}
+D(α){b, c} − (−1)p(α)p(b)D(b)(D(α)c− αD(c))

+ (−1)p(c)(p(α)+p(b))D(c)(D(α)b− αD(b))

= −(−1)p(c)(p(α)+p(b)){c,D(α)b}+ (−1)p(c)(p(b)+p(α)){c, αD(b)}
+ (−1)p(α)p(b){b,D(α)c} − (−1)p(α)p(b){b, αD(c)}+D(α){b, c}
− (−1)p(α)p(b)D(b)D(α)c+ (−1)p(α)p(b)D(b)αD(c)

+ (−1)p(c)(p(α)+p(b))D(c)D(α)b− (−1)p(c)(p(α)+p(b))D(c)αD(b)

= −(−1)p(c)(p(b)+p(α)){c,D(α)}b− (−1)p(b)p(c)D(α){c, b}
+ (−1)p(c)(p(α)+p(b))D(c)D(α)b

+ (−1)p(c)(p(b)+p(α)){c, α}D(b) + (−1)p(b)p(c)α{c,D(b)}
+ (−1)p(c)(p(α)+p(b))D(c)αD(b) + (−1)p(α)p(b){b,D(α)}c+D(α){b, c}
− (−1)p(α)p(b)D(b)D(α)c− (−1)p(α)p(b){b, α}D(c)− α{b,D(c)}
+ (−1)p(α)p(b)D(b)αD(c) +D(α){b, c} − (−1)p(α)p(b)D(b)D(α)c

+ (−1)p(α)p(b)D(b)αD(c) + (−1)p(c)(p(α)+p(b))D(c)D(α)b

− (−1)p(c)(p(α)+p(b))D(c)αD(b)
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= (−1)p(b)p(c)D(D(α))cb− (−1)p(c)p(b)D(α)D(c)b

+D(α){b, c}+ (−1)p(c)(p(α)+p(b))D(c)D(α)b

− (−1)p(b)p(c)D(α)cD(b) + (−1)p(b)p(c)αD(c)D(b)− α{D(b), c}
+ (−1)p(c)(p(α)+p(b))D(c)αD(b)−D(D(α))bc+D(α)D(b)c+D(α){b, c}
− (−1)p(α)p(b)D(b)D(α)c+D(α)bD(c)− αD(b)D(c)− α{b,D(c)}
+ (−1)p(α)p(b)D(b)αD(c) +D(α){b, c} − (−1)p(α)p(b)D(b)D(α)c

+ (−1)p(α)p(b)D(b)αD(c) + (−1)p(c)(p(α)+p(b))D(c)D(α)b

− (−1)p(c)(p(α)+p(c))D(c)αD(b)

= 3D(α){b, c} − α{D(b), c} − α{b,D(c)} − 2D(α)(D(b)c− bD(c)).

Therefore,

(14) 3D(α){b, c} − α{D(b), c} − α{b,D(c)} − 2D(α)(D(b)c− bD(c)) = {α, {b, c}}.
Comparing (13) and (14), we obtain

D(α){b, c} = D(α)(D(b)c− bD(c)).

Lemma 7 allows us to generalize this relation as follows:

Dk(α){b, c} = Dk(α)(D(b)c− bD(c)).

The lemma is proved. �
Lemma 9. Let J = J(Γ, { , }) be a simple unital Jordan superalgebra, and let α ∈ Φ. If
D(α) �= 0, then J is a superalgebra of vector type. In particular, if J is not a superalgebra
of vector type, then D(α) = 0 and α is invertible in Γ.

Proof. We set I = ΓD(α) + ΓD2(α) + · · · . Note that I � Γ. Using (1), the definition of
Φ, and Lemma 7, it is easy to deduce that

{Γ,ΓDk(α)} ⊆ {Γ, Dk(α)}Γ +Dk(α){Γ,Γ}+D(Γ)Dk(α)Γ

⊆ D(Γ)Dk(α)Γ + ΓDk+1(α)Γ +Dk(α){Γ,Γ}+D(Γ)Dk(α)Γ

⊆ ΓDk(α) + ΓDk+1(α),

whence {Γ, I} ⊆ I. By [14], Γ contains no nonzero ideals I such that {Γ, I} ⊆ I. If
D(α) �= 0, then I = Γ. Therefore, 1 = γ1D(α) + · · · + γlD

l(α). Consequently, by
Lemma 8, for arbitrary b, c ∈ Γ we get

{b, c} = (γ1D(α) + · · ·+ γlD
l(α)){b, c}

= γ1D(α)(D(b)c− bD(c)) + · · ·+ γlD
l(α)(D(b)c− bD(c)) = D(b)c− bD(c).

Thus, J is a superalgebra of vector type.
If J is not a superalgebra of vector type, then the said above implies D(α) = 0. By

Lemma 6, α is an invertible element in Γ. The lemma is proved. �
The above results are generalized in the following theorem.

Theorem 10. Let J = J(Γ, { , }) be a simple unital superalgebra of a Jordan bracket over
a field of characteristic different from 2. Then either J has no nontrivial δ-derivations
and δ-superderivations, or J is a superalgebra of vector type. If J is a superalgebra of
vector type, then Γ1 = 0 and the superalgebra J has no nontrivial odd δ-superderivations.
For δ �= 1

2 , the superalgebra J has no nontrivial δ-derivations. The space of 1
2 -derivations

coincides with R∗(J) = {Rz | z ∈ Γ0}, and if D(z) �= 0, then the map Rz is a nontrivial
1
2 -derivation.
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Let A = A0 ⊕ A1 be an associative superalgebra. On the vector space A, we define a
supersymmetric product ◦ by the rule

a ◦ b = 1

2
(ab+ (−1)p(a)p(b)ba).

We denote by A(+) the algebra obtained. A Jordan superalgebra B is said to be spe-
cial if it is isomorphically embedded in the superalgebra A(+) for a suitable associative
superalgebra A.

Using Theorem 10 and the well-known fact that the unital Jordan superalgebras of
vector type are special (see [14]), we obtain the following statement.

Corollary 11. If a simple unital superalgebra of a Jordan bracket J = J(Γ, { , }) has a
nontrivial δ-derivation, then J is special.

§3. The δ-derivations and δ-superderivations
of simple unital finite-dimensional Jordan superalgebras

Now we proceed to a description of the δ-derivations and δ-superderivations of simple
unital finite-dimensional Jordan superalgebras over an algebraically closed field of char-
acteristic p �= 2. We recall that the δ-derivations and δ-superderivations of simple unital
finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic
zero were described in [4, 6].

Recall that an algebra A is said to be alternative if the identities

(x, x, y) = 0, (x, y, y) = 0

are valid, where (x, y, z) = (xy)z − x(yz) is the associator of elements x, y, z ∈ A.
The algebra O of octonions or Cayley numbers (see [17]) is a classical example of an
alternative nonassociative algebra.

Now we give examples of simple nontrivial nonassociative alternative superalgebras of
characteristic 3. Below B denotes an alternative superalgebra over a field F , and C and
M are the even and the odd part of B, respectively.

3.1. The superalgebra B(1, 2). Let F be a field of characteristic 3, and let B(1, 2) =
C+M be a supercommutative superalgebra over F in which C = F ·1 andM = F ·x+F ·y,
where 1 is the unity of B and xy = −yx = 1. Note that the superalgebra B(1, 2) is
precisely the simple Jordan superalgebra of the supersymmetric bilinear form f(s, r) = sr
on the odd vector space M .

3.2. The superalgebra B(4, 2). Let F be a field of characteristic 3, let C = M2(F ) be
the algebra of (2×2)-matrices over F , and let M = F ·m1+F ·m2 be a two-dimensional
irreducible Cayley bimodule over C, i.e., C acts on M in the following way:

eij ·mk = δikmj , i, j, k ∈ {1, 2},
m · a = a ·m,

where a ∈ C, m ∈ M , and a 
→ a is the symplectic involution in C = M2(F ). Odd
multiplication on M is defined by the relations

m2
1 = −e21, m2

2 = e12, m1m2 = e11, m2m1 = −e22.

It is known (see [18]) that B(1, 2) and B(4, 2) are simple alternative superalgebras with
the superinvolutions

(a+m)∗ = a−m for B(1, 2), (a+m)∗ = a−m for B(2, 4).

An even linear transformation ∗ of a superalgebra A is called a superinvolution if

(a∗)∗ = a, (ab)∗ = (−1)p(a)p(b)b∗a∗, a, b ∈ A0 ∪ A1.
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In [18] it was shown that the superalgebras B(1, 2) and B(4, 2) give rise to the simple
Jordan superalgebras H3(B(1, 2)) and H3(B(4, 2)).

Lemma 12. The superalgebras H3(B(1, 2)) and H3(B(2, 4)) have no nontrivial δ-deri-
vations and δ-superderivations.

Proof. We denote by eij the matrix units of the algebras B(1, 2)3 and B(2, 4)3. Let φ be
a nontrivial δ-derivation or δ-superderivation. Clearly, δ = 1

2 .
Let

φ(eii) =

3∑
j=1

αi
jejj +

∑
k,l,k �=l

xi
klekl,

where xi
kl = xi

lk; then

2φ(eii) = 2eii ◦ φ(eii) = 2αi
ieii +

∑
k �=i

(xi
ikeik + xi

kieki).

Thus, φ(eii) = αi
ieii. If β ∈ F and

φ(β(e21 + e12)) =

⎛
⎝ γ1 x12 x13

x12 γ2 x23

x13 x23 γ3

⎞
⎠ ,

then⎛
⎝ 0 x12 +

1
2βα

2
2 0

x12 +
1
2βα

2
2 2γ2 x23

0 x23 0

⎞
⎠ = φ(β(e12 + e21)) ◦ e22 + β(e12 + e21) ◦ φ(e22)

= 2φ

⎛
⎝
⎛
⎝0 β 0
β 0 0
0 0 0

⎞
⎠ ◦ e22

⎞
⎠ = 2φ

⎛
⎝
⎛
⎝0 β 0
β 0 0
0 0 0

⎞
⎠ ◦ e11

⎞
⎠

=

⎛
⎝ 2γ1 x12 +

1
2βα

1
1 x13

x12 +
1
2βα

1
1 0 0

x13 0 0

⎞
⎠ .

This implies that α1
1 = α2

2 = α. Similarly, we can show that α3
3 = α. Let e = e11+e22+e33

be the unity of the superalgebra H3(B(1, 2)) (or H3(B(2, 4))). Thus, in the case of a
1
2 -derivation and an even 1

2 -superderivation, we have φ(e) = αe, and in the case of an

odd 1
2 -superderivation we have φ(e) = 0. This implies the triviality of φ. The lemma is

proved. �

Lemma 13. Let F be a field of characteristic p > 2, and let J = J(B(m,n), { , }) be a
Jordan superalgebra that is not a superalgebra of vector type. Then J has no nontrivial
δ-derivations and δ-superderivations.

Proof. Lemma 3 shows that every δ-derivation is an even δ-superderivation. Let φ be a
nontrivial δ-superderivation. Clearly, δ = 1

2 and, by Lemma 3, φ(x) = αx, where α ∈ Φ.
We see that α = β · 1 + r, where r is nilpotent and β ∈ F . Assume that r �= 0. We may
assume that α = r, so that α is not invertible. By Lemma 6, D(α) �= 0. Consequently,
by Lemma 9, J is a superalgebra of vector type. This contradiction implies that r = 0
and α ∈ F . The lemma is proved. �

Lemma 14. The superalgebra CK(Z, d) has no nontrivial δ-derivations and δ-superde-
rivations.
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Proof. Obviously, the even δ-superderivations are δ-derivations. Let φ0 be a nontrivial
δ-derivation and φ1 a nontrivial odd δ-superderivation of the superalgebra CK(Z, d). It
is clear that δ = 1

2 and φi(x) = φi(1)x for any x ∈ CK(Z, d). We set

φj(1) = αj +
3∑

i=1

wiα
j
i + xβj +

3∑
i=1

xiβ
j
i .

Note that, since φ1 is homogeneous, we have α1 = α1
i = 0. We show that βj = βj

i =

αj
i = 0.
It is easily seen that

0 = φj(xwk) =
1

2

(((
αj +

3∑
i=1

wiα
j
i + βjx+

3∑
i=1

xiβ
j
i

)
x

)
wk

+ (−1)jx

((
αj +

3∑
i=1

wiα
j
i + βjx+

3∑
i=1

xiβ
j
i

)
wk

))

=
1

2

(
− βj

k − (−1)j
(
xαj

k −
3∑

i=1

wi×kβi

))
.

This implies αj
i = βj

i = 0 and φ(1) = αj + βjx.
Now we have

xi×kα
j − wi×kβ

j = φj(xiwk) =
1

2
((φ(1)xi)wk + (−1)jxi(φ(1)wk)) = wi×kα

j ,

whence the required statement follows: φ0(x) = α0x, α0 ∈ Z, and φ1 = 0, i.e., φj is
trivial. The lemma is proved. �

By the results of [12, 18], the simple unital finite-dimensional Jordan superalgebras
with a semisimple even part over an algebraically closed field of characteristic p > 2 are
exhausted by the superalgebras H3(B(1, 2)) and H3(B(2, 4)), which are considered over
fields of characteristic 3. By [13], the simple unital finite-dimensional Jordan algebras
with a nonsemisimple even part over an algebraically closed field of characteristic p > 2
are exhausted by the superalgebras J = J(B(m,n), { , }) and CK(B(m), d). Thus, com-
bining the above classification of simple unital Jordan superalgebras over an algebraically
closed field of characteristic p > 2, the results of [4, 6], Corollary 5, and Lemmas 12–14,
we see that the following is true.

Theorem 15. Let J be a simple unital finite-dimensional Jordan superalgebra over an
algebraically closed field of characteristic p �= 2. Then either J has no nontrivial δ-
derivations and δ-superderivations, or J is a superalgebra of vector type over a field of
characteristic p > 2. If J = J(B(m,n), { , }) is a superalgebra of vector type, then
n = 0 and the superalgebra J has no nontrivial odd δ-superderivations. For δ �= 1

2 , the

superalgebra J has no nontrivial δ-derivations. The space of 1
2 -derivations coincides with

R∗(J) = {Rz | z ∈ B(m)}, and for D(z) �= 0 the map Rz is a nontrivial 1
2 -derivation.

In conclusion, it should be noted that, while this paper was being published, the
derivations of the Cheng–Kac superalgebras [19] and of the Kantor double of a sim-
ple unital Poisson superalgebra [20] were described. Also, a complete description was
obtained for the δ-(super)derivations of simple nonunital Jordan superalgebras over an
algebraically closed field and, as a consequence, for the δ-(super)derivations of semisimple
finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic
different from 2 (see [21]).
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