CORRECTIONS TO "JUNCTION OF NONCOMPOSITE POLYHEDRA"

A. V. TIMOFEENKO

The proof of the theorem on composite polyhedra, as presented in the paper [1], turned out to be incomplete. Namely, compositions along the newly formed faces were not considered. For this reason, the list in the theorem does not contain two 4-composite polyhedra $P_{4,30}$ and $P_{4,31}$, which cannot be obtained by composing a 3 -composite body and a noncomposite polyhedron. However, each of the two polyhedra $P_{4,30}$ and $P_{4,31}$ is a composition of two 2-composite polyhedra $\mathrm{P}_{2,22}$. This flaw, along with some misprints, require the corrections listed below.

Page	Line	Printed	Should be corrected to
484	12 from bottom	149 composite polyhedra	151 composite polyhedra
502	8 from bottom	classification of noncomposite regular-hedra	classification of composite regular-hedra
503	16 from top	$\mathrm{P}_{3,55}+\mathrm{M}_{6}$;	$\begin{aligned} & \frac{\mathrm{P}_{3,55}+\mathrm{M}_{6}, \overline{\mathrm{P}_{2,22}+\mathrm{P}_{2,22}},}{\mathrm{P}_{2,22}+\mathrm{P}_{2,22}^{\prime}} ; \end{aligned}$
504	Table 3, last column, $k=15-20,22$	$\begin{aligned} & 5 \\ & 4,6 \\ & 8 \\ & 10 \\ & 3,5 \\ & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 5 \\ & 6 \\ & 8 \\ & 10 \\ & 5,10 \\ & 4,3+3 \\ & \hline \end{aligned}$
509	line 2 of Subsection 3.3	Table 2,	Table 2, and composing the polyhedron $P_{2,22}$ with itself along rhombic faces,
509-510	Table 4, last column, $k=21,22,30$	5, 5	5
510	1 from bottom	$\begin{aligned} & P_{4,29} \\ & =M_{6}+M_{13}^{\prime}+M_{6}+M_{6} \\ & =J_{75} \end{aligned}$	$\begin{aligned} & P_{4,29} \\ & =M_{6}+M_{13}^{\prime}+M_{6}+M_{6} \\ & =J_{75}, \\ & P_{4,30}=\overline{M_{1}+M_{2}+P_{2,22}}, \\ & P_{4,31}=\overline{M_{1}+M_{2}+P_{2,22}^{\prime}} . \end{aligned}$
512	3 from top	68	70
512	7 from top	166	168

References

[1] A. V. Timofeenko, Junction of noncomposite polyhedra, St. Petersburg Math. J. 21 (2010), no 3, 483-512. MR 2588767 (2010m:52030)

Institute of Computational Modelling, Siberian Branch, Russian Academy of Sciences (Formerly Computing Center, Siberian Branch, Russian Academy of Sciences), Krasnoyarsk 660036, RussiA

