Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Estimates for functionals with a known, finite set of moments, in terms of moduli of continuity, and behavior of constants, in the Jackson-type inequalities
HTML articles powered by AMS MathViewer

by O. L. Vinogradov and V. V. Zhuk
Translated by: O. L. Vinogradov
St. Petersburg Math. J. 24 (2013), 691-721
DOI: https://doi.org/10.1090/S1061-0022-2013-01261-1
Published electronically: July 24, 2013

Abstract:

A new technique is developed for estimating functionals by moduli of continuity. The generalized Jackson inequality \[ A_{\sigma -0}(f)\leq \biggl \{\frac {1}{\binom {2m}{m}} \sum _{k=0}^{m-1}\frac {{\mathcal K}_{2k}}{(\gamma \pi )^{2k}} \nu _m^{k}+\frac {{\mathcal K}_{2m}}{(\gamma \pi )^{2m}} \frac {\nu _m^m}{2^{2m}}\biggr \} \omega _{2m}\Bigl (f,\frac {\gamma \pi }{\sigma }\Bigr ) \] is an example of such an estimate. Here $r,m\in \mathbb N$, $\sigma ,\gamma >0$, a function $f$ is uniformly continuous and bounded on $\mathbb R$, $A_{\sigma -0}$ is the best uniform approximation by entire functions of type less than $\sigma$, $\omega _{2m}$ is a uniform modulus of continuity of order $2m$, ${\mathcal K}_s$ are the Favard constants, and \[ \nu _m=\frac {8}{\binom {2m}{m}}\sum _{l=0}^{\lfloor (m-1)/2\rfloor }\frac {\binom {2m}{m-2l-1}}{(2l+1)^2}, \] where $\lfloor x\rfloor$ is the entire part of $x$. Similar inequalities are obtained for best approximations of periodic functions by splines. In some cases, the constants in inequalities are close to optimal.
References
  • V. V Zhuk, Structure properties of functions and correctness of approximation, Leningrad, 1984. (Russian)
  • N. P. Korneĭchuk, Tochnye konstanty v teorii priblizheniya, “Nauka”, Moscow, 1987 (Russian). MR 926687
  • S. Foucart, Y. Kryakin, and A. Shadrin, On the exact constant in the Jackson-Stechkin inequality for the uniform metric, Constr. Approx. 29 (2009), no. 2, 157–179. MR 2481587, DOI 10.1007/s00365-008-9039-6
  • O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known sequence of moments in terms of the deviation of Steklov-type means, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 25, 5–32, 204 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 2, 115–131. MR 2749339, DOI 10.1007/s10958-011-0531-3
  • O. L. Vinogradov and V. V. Zhuk, The rate of decrease of constants in Jackson-type inequalities depending on the order of the modulus of continuity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 383 (2010), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 25, 33–52, 204–205 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 2, 132–143. MR 2749340, DOI 10.1007/s10958-011-0532-2
  • N. I. Ahiezer, Lektsii po teorii approksimatsii, Second, revised and enlarged edition, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0188672
  • Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
  • B. M. Levitan, Počti-periodičeskie funkcii, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). MR 0060629
  • O. L. Vinogradov, Sharp Jackson-type inequalities for approximations of classes of convolutions by entire functions of finite degree, Algebra i Analiz 17 (2005), no. 4, 59–114 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 4, 593–633. MR 2173937, DOI 10.1090/S1061-0022-06-00922-8
  • O. L. Vinogradov and V. V. Zhuk, Estimates for functionals with a known finite collection of moments in terms of high-order moduli of continuity, Spline-Function Methods (Novosibirsk, 2011): Talk abstracts, Novosibirsk, 2011, pp. 29–30. (Russian)
  • V. V. Zhuk, Seminorms and moduli of continuity of higher orders, Trudy S.-Peterburg. Mat. Obshch. 2 (1993), 116–177, 335 (Russian, with Russian summary). MR 1296449
  • V. V. Zhuk and V. F. Kuzyutin, Approksimatsiya funktsiĭ i chislennoe integrirovanie, Izdatel′stvo Sankt-Peterburgskogo Universiteta, St. Petersburg, 1995 (Russian, with Russian summary). MR 1664064
  • V. V. Zhuk, Approksimatsiya periodicheskikh funktsiĭ, Leningrad. Univ., Leningrad, 1982 (Russian). MR 665432
  • Blagovest Sendov and Vasil A. Popov, The averaged moduli of smoothness, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1988. Applications in numerical methods and approximation; A Wiley-Interscience Publication. MR 995672
  • V. I. Ivanov, On the approximation of functions in $L_p$ spaces, Mat. Zametki 56 (1994), no. 2, 15–40, 158 (Russian, with Russian summary); English transl., Math. Notes 56 (1994), no. 1-2, 770–789 (1995). MR 1308919, DOI 10.1007/BF02110737
  • V. V. Zhuk and S. Yu. Pimenov, On norms of the Akhiezer–Kreĭn–Favard sums, Vestnik S.-Peterburg. Univ. Ser. 10 2006, vyp. 4, 37–47. (Russian)
  • V. V. Zhuk and G. I. Natanson, Trigonometricheskie ryady Fur′e i èlementy teorii approksimatsii, Leningrad. Univ., Leningrad, 1983 (Russian). MR 733637
  • O. L. Vinogradov and V. V. Zhuk, Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 290 (2002), no. Issled. po Lineĭn. Oper. i Teor. Funkts. 30, 5–26, 177–178 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 124 (2004), no. 2, 4845–4857. MR 1942534, DOI 10.1023/B:JOTH.0000042445.77567.18
  • O. L. Vinogradov, Analog of the Akhiezer-Krein-Favard sums for periodic splines of minimal defect, J. Math. Sci. (N.Y.) 114 (2003), no. 5, 1608–1627. Function theory and applications. MR 1981299, DOI 10.1023/A:1022360711364
  • O. L. Vinogradov, Sharp inequalities for approximations of classes of periodic convolutions by subspaces of shifts of odd dimension, Mat. Zametki 85 (2009), no. 4, 569–584 (Russian, with Russian summary); English transl., Math. Notes 85 (2009), no. 3-4, 544–557. MR 2549418, DOI 10.1134/S0001434609030250
  • N. I. Merlina, On sharp estimates for seminorms and best approximations by entire functions, Theory of Functions of a Complex Variable and Boundary Value Problems, Mezhvuz. Sb. No. 3, Chuvash. Univ., Cheboksary, 1979, pp. 20–26. (Russian)
  • O. L. Vinogradov and V. V. Zhuk, Sharp estimates for deviations of linear approximation methods for periodic functions by linear combinations of moduli of continuity of different order, J. Math. Sci. (N.Y.) 114 (2003), no. 5, 1628–1656. Function theory and applications. MR 1981300, DOI 10.1023/A:1022312828202
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 41A17
  • Retrieve articles in all journals with MSC (2010): 41A17
Bibliographic Information
  • O. L. Vinogradov
  • Affiliation: Department of mathematics and mechanics, St. Petersburg State University, Universitetskii pr. 28, Staryi Peterhof, St. Petersburg 198504, Russia
  • Email: olvin@math.spbu.ru
  • V. V. Zhuk
  • Affiliation: Department of mathematics and mechanics, St. Petersburg State University, Universitetskii pr. 28, Staryi Peterhof, St. Petersburg 198504, Russia
  • Email: zhuk@math.spbu.ru
  • Received by editor(s): September 22, 2011
  • Published electronically: July 24, 2013
  • Additional Notes: The authors were supported by the Federal Target Program (FTP) of the Ministry of Education and Science of Russian Federation (project no. 2010-1.1-111-128-033).
  • © Copyright 2013 American Mathematical Society
  • Journal: St. Petersburg Math. J. 24 (2013), 691-721
  • MSC (2010): Primary 41A17
  • DOI: https://doi.org/10.1090/S1061-0022-2013-01261-1
  • MathSciNet review: 3087819