Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Stability estimates for recovering the potential by the impedance boundary map
HTML articles powered by AMS MathViewer

by M. I. Isaev and R. G. Novikov
Translated by: the authors
St. Petersburg Math. J. 25 (2014), 23-41
DOI: https://doi.org/10.1090/S1061-0022-2013-01278-7
Published electronically: November 20, 2013

Abstract:

The impedance boundary map (or Robin-to-Robin map) is studied for the Schrödinger equation in an open bounded domain for fixed energy in the multidimensional case. Global stability estimates are given for recovering the potential by these boundary data and, as a corollary, by the Cauchy data set. In particular, the results include an extension of the Alessandrini identity to the case of the impedance boundary map.
References
  • Giovanni Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1988), no. 1-3, 153–172. MR 922775, DOI 10.1080/00036818808839730
  • Giovanni Alessandrini and Sergio Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math. 35 (2005), no. 2, 207–241. MR 2152888, DOI 10.1016/j.aam.2004.12.002
  • R. Beals and R. R. Coifman, Multidimensional inverse scatterings and nonlinear partial differential equations, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 45–70. MR 812283, DOI 10.1090/pspum/043/812283
  • Heinrich Begehr and Tatyana Vaitekhovich, Some harmonic Robin functions in the complex plane, Adv. Pure Appl. Math. 1 (2010), no. 1, 19–34. MR 2679705, DOI 10.1515/APAM.2010.003
  • A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl. 16 (2008), no. 1, 19–33. MR 2387648, DOI 10.1515/jiip.2008.002
  • Alberto-P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980) Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65–73. MR 590275
  • V. L. Druskin, The unique solution of the inverse problem in electrical surveying and electrical well logging for piecewise-constant conductivity, Physics of the Solid Earth 18 (1982), no. 1, 51–53. (Russian)
  • L. D. Faddeev, Growing solutions of the Schrödinger equation, Dokl. Acad. Nauk SSSR 165 (1965), no. 3, 514–517; English transl., Sov. Phys. Dokl. 10 (1966), 1033–1035.
  • G. M. Stein, Conformal maps of electric and magnetic fields in transformers and similar apparatus, Construction and applications of conformal maps. Proceedings of a symposium, National Bureau of Standards Applied Mathematics Series, No. 18, U.S. Government Printing Office, Washington, D.C., 1952, pp. 31–57. MR 0052315
  • I. Gelfand, Some aspects of functional analysis and algebra, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957, pp. 253–276. MR 0095423
  • Fritz Gesztesy and Marius Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 2: Differential operators and mechanics, Oper. Theory Adv. Appl., vol. 191, Birkhäuser Verlag, Basel, 2009, pp. 81–113. MR 2569392, DOI 10.1007/978-3-7643-9921-4_{6}
  • R. G. Novikov and G. M. Khenkin, The $\overline \partial$-equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk 42 (1987), no. 3(255), 93–152, 255 (Russian). MR 896879
  • Mikhail Ismailovitch Isaev, Exponential instability in the Gel’fand inverse problem on the energy intervals, J. Inverse Ill-Posed Probl. 19 (2011), no. 3, 453–472. MR 2824620, DOI 10.1515/JIIP.2011.039
  • M. I. Isaev and R. G. Novikov, New global stability estimates for monochromatic inverse acoustic scattering, SIAM J. Math. Anal. 45 (2013), no. 3, 1495–1504. MR 3056754, DOI 10.1137/120897833
  • R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math. 38 (1985), no. 5, 643–667. MR 803253, DOI 10.1002/cpa.3160380513
  • Loredana Lanzani and Zhongwei Shen, On the Robin boundary condition for Laplace’s equation in Lipschitz domains, Comm. Partial Differential Equations 29 (2004), no. 1-2, 91–109. MR 2038145, DOI 10.1081/PDE-120028845
  • Richard B. Lavine and Adrian I. Nachman, On the inverse scattering transform for the $n$-dimensional Schrödinger operator, Topics in soliton theory and exactly solvable nonlinear equations (Oberwolfach, 1986) World Sci. Publishing, Singapore, 1987, pp. 33–44. MR 900385
  • Niculae Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems 17 (2001), no. 5, 1435–1444. MR 1862200, DOI 10.1088/0266-5611/17/5/313
  • Adrian I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2) 143 (1996), no. 1, 71–96. MR 1370758, DOI 10.2307/2118653
  • R. G. Novikov, A multidimensional inverse spectral problem for the equation $-\Delta \psi +(v(x)-Eu(x))\psi =0$, Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, 11–22, 96 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 4, 263–272 (1989). MR 976992, DOI 10.1007/BF01077418
  • Roman G. Novikov, $\overline \partial$-method with nonzero background potential. Application to inverse scattering for the two-dimensional acoustic equation, Comm. Partial Differential Equations 21 (1996), no. 3-4, 597–618. MR 1387462, DOI 10.1080/03605309608821199
  • R. G. Novikov, Approximate solution of the inverse problem of quantum scattering theory with fixed energy in dimension $2$, Tr. Mat. Inst. Steklova 225 (1999), no. Solitony Geom. Topol. na Perekrest., 301–318 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 2(225) (1999), 285–302. MR 1725948
  • R. G. Novikov, Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential, Inverse Problems 21 (2005), no. 1, 257–270. MR 2146175, DOI 10.1088/0266-5611/21/1/016
  • Roman G. Novikov, On non-overdetermined inverse scattering at zero energy in three dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 3, 279–328. MR 2274782
  • R. G. Novikov, New global stability estimates for the Gel’fand-Calderon inverse problem, Inverse Problems 27 (2011), no. 1, 015001, 21. MR 2746404, DOI 10.1088/0266-5611/27/1/015001
  • R. G. Novikov and N. N. Novikova, On stable determination of potential by boundary measurements, Mathematical methods for imaging and inverse problems, ESAIM Proc., vol. 26, EDP Sci., Les Ulis, 2009, pp. 94–99. MR 2498141, DOI 10.1051/proc/2009007
  • Roman Novikov and Matteo Santacesaria, A global stability estimate for the Gel′fand-Calderón inverse problem in two dimensions, J. Inverse Ill-Posed Probl. 18 (2010), no. 7, 765–785. MR 2772570, DOI 10.1515/JIIP.2011.003
  • Roman G. Novikov and Matteo Santacesaria, Global uniqueness and reconstruction for the multi-channel Gel’fand-Calderón inverse problem in two dimensions, Bull. Sci. Math. 135 (2011), no. 5, 421–434. MR 2817455, DOI 10.1016/j.bulsci.2011.04.007
  • Luca Rondi, A remark on a paper by G. Alessandrini and S. Vessella: “Lipschitz stability for the inverse conductivity problem” [Adv. in Appl. Math. 35 (2005), no. 2, 207–241; MR2152888], Adv. in Appl. Math. 36 (2006), no. 1, 67–69. MR 2198854, DOI 10.1016/j.aam.2004.12.003
  • Matteo Santacesaria, Global stability for the multi-channel Gel’fand-Calderón inverse problem in two dimensions, Bull. Sci. Math. 136 (2012), no. 7, 731–744. MR 2972558, DOI 10.1016/j.bulsci.2012.02.004
  • —, New global stability estimates for the Calderón inverse problem in two dimensions, J. Inst. Math. Jussieu, doi:10.1017/S147474801200076X, e-print: hal-00628403.
  • John Sylvester and Gunther Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2) 125 (1987), no. 1, 153–169. MR 873380, DOI 10.2307/1971291
  • I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962. MR 0150320
  • Ricardo Weder, Generalized limiting absorption method and multidimensional inverse scattering theory, Math. Methods Appl. Sci. 14 (1991), no. 7, 509–524. MR 1125019, DOI 10.1002/mma.1670140705
  • V. P. Palamodov, private communication of February 2011.
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35J10
  • Retrieve articles in all journals with MSC (2010): 35J10
Bibliographic Information
  • M. I. Isaev
  • Affiliation: Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France – and – Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
  • Email: isaev.m.i@gmail.com
  • R. G. Novikov
  • Affiliation: Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France – and – Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS, Moscow 117997, Russia
  • Email: novikov@cmap.polytechnique.fr
  • Received by editor(s): June 1, 2012
  • Published electronically: November 20, 2013
  • Additional Notes: This investigation was supported in part by the Federal Targeted Program no. 14.A18.21.0866 of the RF Ministry of Science and Education. The second author was partially supported by the Russian Federation Government grant no. 2010-220-01-077.
  • © Copyright 2013 American Mathematical Society
  • Journal: St. Petersburg Math. J. 25 (2014), 23-41
  • MSC (2010): Primary 35J10
  • DOI: https://doi.org/10.1090/S1061-0022-2013-01278-7
  • MathSciNet review: 3113427