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SCATTERING PROBLEM FOR THE ORDINARY DIFFERENTIAL

OPERATOR OF ORDER FOUR ON THE HALF-LINE.

I. DIRECT PROBLEM

R. SHTERENBERG AND V. SUKHANOV

Dedicated to the memory of V. S. Buslaev

Abstract. Direct and inverse spectral problems are studies for ordinary differential
operators of order four on the half-line. This first part of the text is devoted to the
study of the direct problem.

§1. Introduction

Our ultimate goal is to study inverse and direct spectral problems for ordinary differ-
ential operators of order four on the the half-line. We consider the operator

(1.1) L =
d4

dx4
+

d

dx
u(x)

d

dx
+ v(x), x ∈ [0,+∞),

with the boundary conditions

(1.2) Ψ(0, k) = 0, Ψ′(0, k) = 0.

Here u(x) and v(x) are real-valued smooth potentials,

u(x), v(x) ∈ C∞[0,∞),

admitting smooth continuation to the interval [−ε,∞), ε > 0, and decaying rapidly as
x → +∞:

dl

dxl
u(x) = O(x−n),

dl

dxl
v(x) = O(x−n)

for any natural l and n.

Remark 1.1. It is possible to consider different boundary conditions for this opera-
tor. However, every boundary condition requires special algebraic calculations for the
Riemann–Hilbert problem (see §4). We consider a simplest version of these calculations.
For these boundary conditions, most of algebraic relations are similar to the correspond-
ing algebraic relations for the inverse problem on the entire line.

On the entire line, direct and inverse problems for differential operators of order n > 2
were investigated in the book [1]. We consider similar problems for a differential operator
on the half-line. We assume that the potentials are real-valued. In contrast to [1], we
use two symmetries for the operator L: selfadjoint and real (on the entire line such an
operator was studied in [6]). So, we consider operators with more specific potentials
possessing some new algebraic properties, which simplifies the analysis of the problem.
We use a Riemann–Hilbert problem as a main tool for investigating the inverse problem.
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Such an approach turned out to be very fruitful in the study of higher order operators
[1, 4]. Notice that the Riemann–Hilbert approach was also used in a number of other
related papers, see [2, 3, 6].

In the present paper, we consider the direct problem and state the Riemann–Hilbert
problem to be used in the study of the inverse problem.

§2. Solutions of the spectral equation

We introduce a basis {Ψj}4j=1 of solutions of the spectral equation
(

d4

dx4
+

d

dx
u(x)

d

dx
+ v(x)

)
Ψ = k4Ψ.

The functions {Ψj}4j=1 satisfy special boundary conditions. Consider the following set

of rays:

{γm}7m=0, γm = {k : arg k = mπ/4}.
These rays split the complex plane into eight domains

Ωm, m = 1, 2, . . . , 8; Ωm = {k : (m− 1)π/4 < arg k < mπ/4}.
The boundary conditions and the construction of solutions are different for different do-
mains. They depend on the “strength” of the exponentials corresponding to the solutions
of the free equation (with zero potentials). We start with the domain Ω1. If k ∈ Ω1, then

|e−kx| < |eikx| < |e−ikx| < |ekx|, x > 0.

We fix the functions {Ψj}4j=1 with the help of the following conditions:

Ψj = exp(kjx)(1 + o(1)), x → +∞;

kj = k exp(iπ(j − 1)/2),
(2.1)

and

Ψ1(0, k) = Ψ′
1(0, k) = Ψ′′

1(0, k) = 0,(2.2)

Ψ2(0, k) = 0,(2.3)

Ψ4(0, k) = Ψ′
4(0, k) = 0.(2.4)

A similar procedure can be used for the domain Ω2. If k ∈ Ω2, we have

|eikx| < |e−kx| < |ekx| < |e−ikx|, x > 0.

For k ∈ Ω2, we define {Ψj}4j=1 by the following conditions:

(2.5) Ψj = exp(klx)(1 + o(1)), x → +∞,

and

Ψ1(0, k) = Ψ′
1(0, k) = 0,

Ψ3(0, k) = 0,

Ψ4(0, k) = Ψ′
4(0, k) = Ψ′′

4(0, k) = 0.

Consider the vector-valued function

Ψ(x, k) = (Ψ1,Ψ2,Ψ3,Ψ4)
T .

For all other domains Ωm, the functions Ψj , will be fixed by the following relations:

(2.6) Ψ(x, ik) = σΨ(x, k).
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Here

σ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ .

We shall prove that the solutions Ψj(x, ·) exist and are meromorphic functions in the
sectors Ωm, m = 1, . . . 8,

Ωm = {k : π(m− 1)/4 < arg k < πm/4},
and that they have jumps on the set of rays γm.

We consider some algebraic properties of Ψl(x, k). The Wronskian of three functions
is introduced by the formula

W3[f, g, h] =

∣∣∣∣∣∣
f g h
f ′ g′ h′

f ′′ g′′ h′′

∣∣∣∣∣∣ .

Lemma 2.1. If f(x, k), g(x, k), h(x, k) are solutions of the spectral equation, then so
is the Wronskian

W3[f(x, k), g(x, k), h(x, k)].

This well-known statement follows from Liouville’s formula.

Lemma 2.2. The solutions Ψl(x, k) satisfy the following relations:

Ψ1(x, k) = Ψ1(x,sk), Ψ3(x, k) = Ψ3(x,sk),

Ψ2(x, k) = Ψ4(x,sk), Ψ1(x, k) = Ψ4(x, isk), Ψ2(x, k) = Ψ3(x, isk).

Proof. The left-hand sides of all these relations are solutions of the spectral equation and
satisfy the same conditions at +∞ and at 0 as the functions on the right-hand side. This
implies that they must be equal. �

Now we consider the construction of the functions Ψl. We need the following two
simple statements.

Lemma 2.3. There exist solutions {hl(x, k)}, l = 1, 2, 3, 4, of the spectral equation that
are analytic in k ∈ Ω1 and satisfy the boundary conditions

(2.7) hl(x, k) = eklx(1 + o(1)), x → +∞, l = 1, 2, 3, 4.

For a proof of this lemma see, e.g., [3].
The next fact is trivial.

Lemma 2.4. Let k ∈ Ω1. Then for any solution Φ(x, k) of the spectral equation there
exists l ∈ {1, 2, 3, 4} such that Φ(x, k) satisfies the boundary conditions

Φ(x, k) = eklx(�(k) + o(1)), x → +∞,

with some � �= 0.

Let k ∈ Ω1. Then the solution Ψ3 satisfies the Volterra integral equation

Ψ3(x, k) = e−kx +
1

4k3

∫ +∞

x

G(x, y)Ψ3(y, k) dy.

Here

G(x, y) = G0(x− y)v(y)− (u′(y)G0(x− y))′y + (u(y)G0(x− y))′′yy,

G0(x) = ekx + ieikx − e−kx − ie−ikx.
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Since the above integral equation is of Volterra type, it not difficult to show that the
function Ψ3(x, ·) is analytic for k ∈ Ω1.

In order to obtain the other functions Ψl, we introduce another set of solutions gl(x, k),
l = 1, 2, 3, 4, of the spectral equation that satisfy the following Volterra integral equations:

g1(x, k) = ekx + ieikx − e−kx − ie−ikx − 1

4k3

∫ x

0

G(x, y)g1(y, k) dy,

g2(x, k) = eikx − e−kx − 1

4k3

∫ x

0

G(x, y)g2(y, k) dy,

g3(x, k) = e−kx − 1

4k3

∫ x

0

G(x, y)g3(y, k) dy,

g4(x, k) = ieikx − (1 + i)e−kx + e−ikx − 1

4k3

∫ x

0

G(x, y)g4(y, k) dy.

The functions gl(x, k), l = 1, 2, 3, 4, are analytic in k ∈ Ω1.
In particular, we see that the functions gl(x, k) satisfy the same conditions (2.2)–(2.4)

at x = 0 as the functions Ψl(x, k). Consider the asymptotics of the functions gl(x, k) as
x → +∞:

gl(x, k) = ekx(cl(k) + o(1)).

The function cl(k) has the same analytical properties as the function gl(x, k). They are
analytic in the sector Ω1.

We have

(2.8) Ψ1(x, k) = g1(x, k)/c1(k).

Thus, Ψ1(x, ·) is meromorphic in the sector Ω1. The poles of Ψ1(x, ·) are zeros of c1(k).
If the coefficient c1(k) equals zero at the point k0 ∈ Ω1, then the asymptotics of the
function g1(x, k) as x → +∞ has the form

g1(x, k0) = e−ik0x(d0 + o(1)).

If d0 = 0, then k40 is an eigenvalue of the initial operator, which is impossible for a
formally selfadjoint operator L. Thus,

d0 �= 0.

Let c1(k) �= 0. Then the function

rg = g4 −
c4
c1

g1

satisfies the boundary conditions (1.2) and has the following asymptotics as x → +∞:

rg(x, k) = e−ikx(rc(k) + o(1)).

Therefore,

(2.9) Ψ4(x, k) = rg(x, k)/rc(k).

For any k ∈ Ω1 we have
rc(k) �= 0,

because a zero of the function rc(k) gives us an eigenvalue of the initial operator L. If
c1(k0) = 0, then

(2.10) Ψ4(x, k0) = g1(x, k0)/d0.

So, the function Ψ4(x, k) is analytic in Ω1.
Finally, the function Ψ2 can be found with the help of Lemma 2.3. We have a function

h2(x, k) analytic in Ω1,

h2(x, k) = eikx(1 + o(1)), x → +∞,
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which is a solution of the spectral equation.
Now

(2.11) Ψ2(x, k) = h2(x, k)− h2(0, k)Ψ3(x, k)(Ψ3(0, k))
−1.

This function is meromorphic in Ω1. The poles of Ψ2(x, ·) are zeros of Ψ3(0, k).

§3. Properties of the coefficients aj(k)

We consider the behavior of the functions Ψl for x = 0. We introduce the following
functions {aj(k)}4j=1 (k ∈ Ω1):

Ψ′′′
1 (0, k) = 4k3a1(k),(3.1)

Ψ′
2(0, k) = (1 + i)ka2(k),(3.2)

Ψ3(0, k) = a3(k),(3.3)

Ψ′′
4(0, k) = −2(1 + i)k2a4(k).(3.4)

Lemma 3.1. The functions {aj(k)}4j=1 satisfy the relations

a1(k) = a1(sk), a3(k) = a3(sk),

a2(k) = a4(sk), a1(k) = a4(isk), a2(k) = a3(isk).

Lemma 3.2. The functions {aj(k)}4j=1 satisfy the asymptotic relations

al(k) = 1 + o(1), |k| → ∞.

Lemma 3.3. The functions al(k) satisfy the identities

(3.5) a1(k) a3(k) = 1, a2(k) a4(k) = 1.

Proof. The proofs of the two identities in (3.5) are similar, so we consider only the first.
Now we introduce the following Wronskian of two functions:

(3.6) W2[f, g] = f ′′′g − f ′′g′ + f ′g′′ − fg′′′.

Using the spectral equation, we obtain

(W2[Ψ1,Ψ3])
′ = Ψ′′′′

1 Ψ3 −Ψ1Ψ
′′′′
3 = (uΨ1Ψ

′
3 − uΨ′

1Ψ3)
′,

whence
W2[Ψ1,Ψ3](c)−W2[Ψ1,Ψ3](0) = (uΨ1Ψ

′
3 − uΨ′

1Ψ3)|c0.
The limit of the right-hand side as c → +∞ equals zero. Thus,

W2[Ψ1,Ψ3](0, k) = lim
x→+∞

W2[Ψ1,Ψ3](x, k).

Combined with relations (3.1), (3.3), and (2.1) (which are true even together with the
derivatives with respect to x), this completes the proof of the lemma. �

Similar relations were found for the first time in [5] for the problem on the entire line.
As a result, from Lemma 3.3 and the analytic properties of the functions Ψl we obtain

the following statement.

Lemma 3.4. The functions al(k) possess the following properties:
1) a3(k) and a4(k) are analytic in Ω1;
2) a1(k) and a2(k) are meromorphic in Ω1;
3) a1(k) �= 0 and a2(k) �= 0, k ∈ Ω1;
4) if k0 is a zero of a3(k), then k0 is simultaneously a pole of a1(k), a zero of a4(k),

and a pole of a2(k).

Finally, we arrive at the following theorem.
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Theorem 3.1. The solutions Ψl(x, ·) of the spectral equation possess the following prop-
erties:

1) Ψ3(x, ·) and Ψ4(x, ·) are analytic in Ω1;
2) Ψ1(x, ·) and Ψ2(x, ·) are meromorphic in Ω1;
3) the poles Ψ1(x, ·) and Ψ2(x, ·) in Ω1 are zeros of a3(k).

This theorem, Lemma 2.2, and formula (2.6) give us full information about analytic
properties of the functions Ψl(x, k) in all domains Ωm.

The poles of Ψl(x, k) can accumulate to the boundaries of domains. Unfortunately, we
have no efficient procedure to investigate the direct and inverse problems with an infinite
number of singularities. We shall consider only finitely many singularities. Moreover, we
impose some technical restrictions on the spectral data (in particular, we consider only
simple poles for the function aj). So, in the further constructions we restrict ourselves
to the following class of operators.

Definition 3.1. The data of the inverse problem belong to the generic class R if:
1) the function a3(k) has finitely many zeros k∗1 , . . . , k

∗
N in Ω1;

2) the zeros of a3(k) in Ω1 are simple;
3) the limits of a3(k) on the boundary of the domain Ω1 have no zeros for k ∈ γ0 and

k ∈ γ1;
4) the functions a1,2,3,4(k) have finite nonzero limits as k → 0;
5) the function a2(k) is smooth for k ∈ γ1 and has finitely many simple zeros k1, . . . kM ,

kj ∈ γ1 (respectively, the function a4(k) has singularities at these points)
6) the functions a2,4(k) have nonzero smooth limit for k ∈ γ0

Remark 3.1. It is not hard to see that the zeros kj of the function a2(k) correspond to
the negative eigenvalues of the operator L.

§4. Riemann–Hilbert problem

Denote by Ψ+m (Ψ−m) the limits of Ψ as k approaches the ray γm in such a way that
arg k → πm/4 ± 0. Let Gm(k) be the matrices that relate the vector-valued functions
Ψ+m(x, k) and Ψ−m(x, k):

Ψ+m(x, k) = Gm(k)Ψ−m(x, k).

If m = 0, then

Ψ(+0)(x, k) =

⎛
⎜⎜⎝

ekx

eikx

e−kx

e−ikx + r0(k)e
ikx

⎞
⎟⎟⎠ (1 + o(1)), x → +∞,

and respectively,

Ψ(−0)(x, k) =

⎛
⎜⎜⎝

ekx

eikx + r0(k)e
−ikx

e−kx

e−ikx

⎞
⎟⎟⎠ (1 + o(1)), x → +∞.

Lemma 4.1. The coefficient r0 can be found by the formula

r0(k) = −ia4/sa4.
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Proof. Consider the function rΨ4(x, k) that satisfies the spectral equation and the follow-
ing boundary conditions:

rΨ4(0, k) = rΨ′
4(0, k) = 0, rΨ′′

4(0, k) = 1,

rΨ4(x, k) = O(| exp(−ikx)|), x → +∞, k ∈ Ω1.

It is easily seen that rΨ
(+0)
4 (x, k) is real for k ∈ R ( rΨ4(x, k) is a solution of the spectral

equation and satisfies the same conditions as rΨ4(x, k)). On the other hand,

Ψ4(x, k) = −2(1 + i)k2a4(k)rΨ4(x, k)

and

Ψ
(+0)
4 (x, k) = e−ikx(1 + o(1)) + r0(k)e

ikx, x → +∞.

Consequently,

r0(k) = −ia4/sa4. �

We have

G0(k) =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 −sr0
0 0 1 0
0 r0 0 1− |r0|2

⎞
⎟⎟⎠ .

If m = 1, then

Ψ(+1)(x, k) =

⎛
⎜⎜⎝

ekx

eikx

e−kx + r1(k)e
ikx

e−ikx + r2(k)e
kx

⎞
⎟⎟⎠ (1 + o(1)), x → +∞,

and

Ψ(−1)(x, k) =

⎛
⎜⎜⎝
ekx + r2(k)e

−ikx

eikx + r1(k)e
−kx

e−kx

e−ikx

⎞
⎟⎟⎠ (1 + o(1)), x → +∞,

Lemma 4.2. The coefficient r1 can be found by the formula

r1(k) = −sa2
a2

.

Proof. Consider the function rΨ2(x, k) that satisfies the following boundary conditions:

rΨ2(0, k) = 0, rΨ′
2(0, k) = 1,

rΨ2(x, k) = O(| exp(ikx)|), x → +∞, k ∈ Ω1.

Let k ∈ γ be not among the eigenvalues of the operator L. It is easily seen that rΨ
(−1)
2 (x, k)

is real for k ∈ γ1 (rΨ2(x, k) is the solution of the spectral equation and satisfies the same

conditions as rΨ2(x, k)). On the other hand,

Ψ2(x, k) = (1 + i)ka2(k)rΨ2(x, k)

and

Ψ
(−1)
2 (x, k) = eikx(1 + o(1)) + sr1(k)e

−kx, x → +∞.

Consequently,

r1(k) = −sa2
a2

. �
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Lemma 4.3. The coefficients r1 and r2 satisfy

r2 = −ir1.

Proof. From Lemma 2.1 we know that

W3[Ψ1(x, k),Ψ2(x, k),Ψ3(x, k)]

is a solution of the spectral equation. The boundary conditions for the functions Ψl

imply that

W3[Ψ1(x, k),Ψ2(x, k),Ψ3(x, k)] = −4k3Ψ2(x, k).

We consider this relation for k such that arg k = π/4 − 0 in the limit as x → +∞. On
the one hand,

W3[Ψ
(−1)
1 (x, k),Ψ

(−1)
2 (x, k),Ψ

(−1)
3 (x, k)] = −4k3eikx(1+ o(1)) + 4ik3sr2e

−kx, x → +∞.

On the other hand,

−4k3Ψ
(−1)
2 (x, k) = −4k3(eikx(1 + o(1) + sr1e

−kx) x → +∞.

Consequently,

r2 = −ir1. �

We have

G1(k) =

⎛
⎜⎜⎝

1 0 0 −sr2
0 1 −sr1 0
0 r1 1− |r1|2 0
r2 0 0 1− |r2|2

⎞
⎟⎟⎠ .

By using the invariance of the spectral equation under the transformation k �→ ik, we
can find all matrices Gm:

Gm+2(ik) = σGm(k)σ−1, σ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ .

We have the following asymptotics as |k| → ∞:

Ψ(x, k) = exp(Jxk)(i0 + o(1)).

Here

J = diag(i,−1,−i, 1), i0 = (1, 1, 1, 1)T .

Lemma 4.4. The singularities of the limit of Ψ4 on γ1 satisfy the following relations:

(k − kj)Ψ
(−1)
4 (x, k) = DjΨ

(−1)
2 (x, kj) + o(1), k → kj j = 1, 2, . . . ,M.

Here Dj is some constant.

Proof. Let k = kj , kj ∈ γ1, be a simple zero of a2. Then kj is a singularity of the
the function a4(k) = (a2(k))

−1. Definition 3.1 and Lemma 3.3 show that a1(kj) �= 0,

a3(kj) �= 0. Consider the function rΨ4(x, k) that satisfies the boundary conditions

rΨ4(0, k) = rΨ′
4(0, k) = 0, rΨ′′

4(0, k) = 1,

rΨ4(x, k) = O(exp(−ikx)), x → +∞, k ∈ Ω1.

It differs from the function Ψ4(x, k):

Ψ4(x, k) = −2(1 + i)k2a4(k)rΨ4(x, k).
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Then for k = kj we have

lim
k→kj

(k − kj)Ψ
(−1)
4 (x, k) = −2(1 + i)k2j rΨ

(−1)
4 (x, kj) lim

k→kj

(k − kj)a4(k)

= −2(1 + i)k2j rΨ
(−1)
4 (x, kj)(a

′
2(kj))

−1.

On the other hand,

rΨ
(−1)
4 (x, kj) = αjΨ

(−1)
2 (x, kj).

Here αj is some constant. Thus,

Dj = −2(1 + i)k2j (a
′
2(kj))

−1αj . �

Lemma 4.5. The residues of the functions Ψ1 and Ψ2 satisfy

Resk=k∗
j
Ψ1(x, k) = C∗

jΨ4(x, k
∗
j ), j = 1, 2, . . . , N,

Resk=k∗
j
Ψ2(x, k) = −iC∗

jΨ3(x, k
∗
j ), j = 1, 2, . . . , N.

Proof. Consider an inverse problem belonging to the generic class R. Let k = k∗j , k
∗
j ∈

Ω1, be a simple zero of a3. Then k∗j is a simple pole of the function a1 and the function
Ψ1(x, k) (see Lemma 3.3), so that it is a simple zero of c1(k). From (2.8) and (2.10) we
immediately see that

Resk=k∗
j
Ψ1(x, k) = C∗

jΨ4(x, k
∗
j ).

Here C∗
j is some complex constant.

By (2.11),

Resk=k∗
j
Ψ2(x, k) = Resk=k∗

j
(h2(x, k)− h2(0, k)Ψ3(x, k)(a3(k))

−1) rC∗
jΨ3(x, k

∗
j )

with some constant rC∗
j . On the other hand, from Lemma 2.1 we know that

W3[Ψ1(x, k),Ψ2(x, k),Ψ3(x, k)]

is a solution of the spectral equation. The boundary conditions for Ψl imply that

W3[Ψ1(x, k),Ψ2(x, k),Ψ3(x, k)] = −4k3Ψ2(x, k).

Similarly,

W3[Ψ4(x, k),Ψ2(x, k),Ψ3(x, k)] = 4ik3Ψ3(x, k).

Thus,

Resk=k∗
j
W3[Ψ1(x, k),Ψ2(x, k),Ψ3(x, k)] = W3[C

∗
jΨ4(x, k

∗
j ),Ψ2(x, k

∗
j ),Ψ3(x, k

∗
j )]

= 4i(k∗j )
3C∗

jΨ3(x, k
∗
j ) = −4(k∗j )

3
rC∗
jΨ3(x, k

∗
j ).

Therefore,

rC∗
j = −iC∗

j . �

Lemma 4.6. The function r1(k) satisfies the following conditions:
1) r1(k) ∈ C∞(γ1);
2) r1(k) admits the asymptotic expansion r1(k) ∼ −1 +

∑∞
l=1 r

1
l k

−l, k → +∞;
3) |r1(k)| = 1;
4) r1(0) = −1;
5) Δargγ1

r1(k) = −N .
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Proof. Statements 1)–4) are obvious. For the function r1 we have

r1(k) = isr2(k) =
a1(k)

sa1(k)
=

sa3(k)

a3(k)
.

Here the function a3(k) is analytic for k such that | arg k| < π/4. Therefore, the function
a3(

√
−iξ), | arg(

√
−iξ)| < π/4, is analytic for ξ ∈ C+. Then statement 5) is a consequence

of the argument principle for this function. �

Lemma 4.7. The function r0(k) satisfies the following conditions:
1) r0(k) ∈ C∞[0,∞);
2) r0(k) admits the asymptotic expansion

r0(k) ∼ −i+
∞∑
l=1

r0l k
−l, k → +∞;

3) |r0(k)| = 1;
4) r0(0) = −i;
5) Δ argγ0

r0(k) = M .

Proof. Statements 1)–4) are obvious. For the function r0 we have

r0(k) = −i
a4(k)

sa4(k)
= −i

sa2(k)

a2(k)
.

Consider the function α(k) = a2(k)a3(k). It is easily seen that this function is analytic
for k such that 0 < arg(k) < π/2. Therefore, the function α(

√
ξ), 0 < arg(

√
ξ) < π/2, is

analytic for ξ ∈ C+. Then statement 5) is a consequence of the argument principle for
this function. �

Finally, we arrive at the following problem.

Riemann–Hilbert problem 4.1. The functions Ψl possess the following properties.
1) All components of the vector-valued function Ψ(x, ·) are analytic in all domains

Ωm and have continuous limits on the boundaries of these domains except for following
points.

For the domain Ω1, the functions Ψ1 and Ψ2 have simple poles with the residues

Resk=k∗
j
Ψ2(x, k) = −iC∗

jΨ3(x, k
∗
j ), j = 1, 2, . . . , N, k∗j ∈ Ω1,

Resk=k∗
j
,Ψ1(x, k) = C∗

jΨ4(x, k
∗
j ), j = 1, 2, . . . , N,

and the function Ψ2 has singularities on the boundary of Ω1:

(k − kj)Ψ4(x, k) = DjΨ2(x, kj) + o(1), k → kj , j = 1, 2, . . . ,M, kj ∈ γ1.

For all other domains, the structure of the poles and singularities of the functions Ψl is
in agreement with the symmetry relations in Lemma 2.2 and relation (2.6).

2) Ψ+m(x, k) = Gm(k)Ψ−m(x, k).
3) Ψ(x, k) = exp(Jxk)(i0 + o(1)).

In order to fix the Riemann–Hilbert (RH) problem 1)–3), we should have the following
data of the inverse problem:

1) k∗j ∈ Ω1, C
∗
j ∈ C, j = 1, 2, . . . , N ;

2) kj ∈ γ1, Dj ∈ C, j = 1, 2, . . . ,M,
3) the coefficients r0(k) and r1(k) with the properties described in Lemmas 4.6 and 4.7.
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