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HOMOGENIZATION OF THE CAUCHY PROBLEM
FOR PARABOLIC SYSTEMS
WITH PERIODIC COEFFICIENTS

YU. M. MESHKOVA

ABSTRACT. In La(R%;C"), a class of matrix second order differential operators Be
with rapidly oscillating coefficients (depending on x/¢) is considered. For a fixed
s > 0 and small € > 0, approximation is found for the operator exp(—Bes) in the
(Lz — L2)- and (L2 — H')-norm with an error term of order of e. The results are
applied to homogenization of solutions of the parabolic Cauchy problem.

INTRODUCTION

0.1. In this paper, we deal with homogenization theory for periodic differential opera-
tors (DO’s). A broad literature is devoted to homogenization problems (see, for example,
[ZhKO| [BaPal,[BeLP]). We rely on the operator-theoretic (spectral) approach to homoge-
nization problems. This approach was developed in the papers [BSull, [BSu2| BSu3|, [BSu4]
by Birman and Suslina.

0.2. We study homogenization in the small period limit € — 0 for the following Cauchy
problem:

(0.1) p({:‘*lx)asus(x, s) = _B\sue(xa s) + F(x, s); p(gilx)us(xv 0) = p(x).

Here ¢ € Ly(R%C") and F € L,((0,T); Lo(R% C")) for some p. The solution u.(x, s)
is a C"-valued function of x € R? and s > 0; l:j’\a is a matrix elliptic second order DO
acting in Ly(R%;C"). A measurable (n x n)-matrix-valued function p(x) is assumed to
be bounded, uniformly positive definite, and periodic relative to some lattice I' C R,
Let Q be the cell of the lattice I'. We use the notation ¢°(x) = (¢~ 1x), where p(x) is
a measurable I'-periodic function in R?.

The principal part ﬁs of the operator l:j’\a is given in a factorized form

(0.2) A. = b(D)" g% (x)b(D),

where b(D) is a matrix homogeneous first order DO and g(x) is a I'-periodic, bounded,
and positive definite matrix-valued function in R?. (The precise assumptions on b(D)
and g(x) are given below, see §4.) Homogenization problems for the operator (0.2) were
analyzed in detail in [BSull [BSu2 BSu3, [BSud]. Now we study more general operators
l§6 that include first and zero order terms:

d
(0.3) B.u= A.u+ Z (a5(x)Dju+ Dj(a5(x))*u) + Q°(x)u + Au.
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Here the aj(x), j = 1,...,d, are I'-periodic (n x n)-matrix-valued functions such that
a; € Lo(Q), o =2ford =1, o > d for d > 2. In general, the potential Q°(x) is
a distribution (with values in the class of Hermitian matrices) generated by a rapidly
oscillating matrix-valued measure. The constant A is chosen so that the operator l§€ is
positive definite. The coefficients of the operator (03] oscillate rapidly as e — 0. Elliptic
homogenization problems for the operator (03] were studied in [Su3l [Su6].

Our aim in this paper is to find approzimation as € — 0 for the solutions of prob-
lem (0I). Approximation in Lo(R?; C") is given in terms of the solutions of the “ho-
mogenized” problem. Approximation in H!(R? C") requires taking the corrector term
into account.

The homogenized problem has the form

(0.4) pOsug(x, s) = —Bug(x, s) + F(x, ), pug(x,0) = ¢(x).

Here p is the mean value of the matrix p over the cell Q: p = fQ p(x) dx; B° is the
effective operator with constant coeflicients (see (9.4)).

0.3. Main results. In the Introduction we only discuss the case where p = 1,,. In this
case the solution of ([0I)) is given by u, = exp(—gas)qﬂ—fos exp(—B.(s—3))F(-,3)ds. So,
the problem reduces to the study of the operator exponential exp( —l§as) for small € > 0.
(In the general case, we need to study the “bordered” operator exponential f&e=5=5(f)*
of the operator B, = (fs)*lifs, where p~t = ff*.)

The following estimates are the main results of the paper:

05) e B —e < Cre(e? +5) 20 >0

’ HLQ(]Rd)—>L2(]Rd)

(0.6) ||e‘BAES —e B _ k(e s < Cyes™le™ O 2 <512,

)"LQ(RG‘)—)Hl(Rd)
Here K (e, s) is the so-called corrector. The corrector has zero order with respect to e, but
involves rapidly oscillating factors. Estimates (L) and (0.6) are order-sharp for small e
and a fixed s > 0. The constants in estimates are controlled explicitly in terms of the
problem data. Estimate ((.5]) makes it possible to prove convergence in Ly (R%; C") of the
solutions u. of problem (O.1I) to the solution of the effective problem (0.4]). Estimate (0.6])
makes it possible to find approximation of the solutions u. in the H*(R¢; C")-norm. We
are interested in the behavior of the solutions u. for a fixed s, and do not strive for
accuracy of estimates as s — oo. So, for our goals it suffices to obtain estimates (0.5),
(0.6) with some positive Cs.

0.4. Homogenization problems for parabolic equations were studied by traditional meth-
ods (see [ZhKO| [BeLLP, BaPa]). We use the spectral approach developed for elliptic prob-
lems in [BSull BSu2| [BSu3, [BSud] and [Su3l, [Su6]. Parabolic problems were studied by
this method in the papers [Sull [Su2l [Sudl [Su5l [Vl [VSull [VSu2]. For the operator (0.2,
an estimate of the form (5] was obtained in [Su2], and an analog of estimate (0.G]) was
obtained in [Sub| by using that method. By a different method, similar estimates were
obtained in [ZhPas] for the acoustics operator A, = —div ¢¢(x)V. In the present paper,
the results of [Su2| [Sub] are generalized to the case of the operator family (0.3]).

0.5. The method of investigation. We explain the method of investigation in the
case where p = 1,,. It is easily seen that estimate (I.6]) reduces to the inequality

< Ces le 2%

(0.7) Hg;/z (e_BES —e B eK(e, 5)) ||L2(Rd)—>L2(Rd) =
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for s > 0, 0 < ¢ < s'/2. Using a scaling transformation, we reduce the proof of esti-
mates (0.5, ([@7) to the study of the exponential exp(—B(g)e~2s) of the operator

d
B(e) = b(D)*gh(D) + & Y _(a,;D; + Dja}) +€*Q + Al
j=1

which acts in Ly(R?;C") and depends on the parameter e. So, it is necessary to study
the behavior of exp(—g(E)E) for large values of § = e~ 2s.

Applying the Floquet-Bloch theory, we decompose the operator l§(€) into the direct
integral of operators l§(k, €) acting in Ly(£2; C") and depending on the parameter k € R?
(called the quasimomentum). The operator l§(k, €) is given by the expression

d
B(k,e) Z a;(D; + k;) + (D; + kj)a}) +e2Q + €Al

where A(k) = b(D + k)*gb(D + k), with periodic boundary conditions. The spectrum
of the operator B(k, ) is discrete. As in [Su3} Suf], we distinguish the one-dimensional
parameter T = (|k|? + £2)!/2 and study the family B(k, <) by methods of analytic per-
turbation theory with respect to 7.

0.6. The structure of the paper. The paper consists of three chapters. Chapter 1
(§81-3) is devoted to the abstract operator-theoretic method. In Chapter 2 (§54-8)
periodic DO’s acting in Ly(RY;C") are studied. Approximation of the “bordered” op-
erator exponential is obtained in §8. Chapter 3 (§§9-10) is devoted to homogenization
of the parabolic Cauchy problem. In §9, by a scaling transformation, the main results
of the paper are deduced from the results of §8. In §10, the results of §9 are applied to
homogenization for parabolic systems.

0.7. Notation. Let £ and ). be separable Hilbert spaces. The symbols (-, -)g and
I - |l stand for the inner product and the norm in ), respectively. The symbol || - |5,
denotes the norm of a bounded operator acting from $) to .. Sometimes we omit indices
if this does not lead to confusion. By I = Iy we denote the identity operator in $. If
A: ) — $, is a linear operator, then Dom A and Ker A denote the domain and the kernel
of A, respectively. If 9 is a subspace in §), then M+ := § ©N. If P is the orthogonal
projection of $ onto 9, then P is the orthogonal projection of £ onto 91*. The symbols
(-, ) and | - | stand for the usual inner product and the norm in C", respectively; 1,, is
the identity (n X n)-matrix. If a is an (n x n)-matrix, then |a| is the norm of the matrix
a viewed as an operator in C”, and a* denotes the adjoint matrix.

Next, x = (z1,...,2%) € RY, iD; = 9/027, j = 1,...,d, V = grad = (1, ...,04),
D=—-iV=(Dy,...,Dy).

The L,-classes of C"-valued functions on a domain O C R? are denoted by L,(O;C"),
1 <p < oo. By L,((0,T); $) we denote the L,-space of $)-valued functions on the interval
(0,T). The Sobolev classes of C"-valued functions (in a domain @ C R?) of order s are
denoted by H*(O;C™). If n = 1, we write simply L,(O), H*(O), but (if this does
not lead to confusion) we use this short notation also for the spaces of vector-valued or
matrix-valued functions.

By C, ¢, C, €, ¢ (possibly, with indices and marks) we denote various constants in
estimates.

0.8. The author is grateful to T. A. Suslina for formulation of the problem and careful
guidance.
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CHAPTER 1
ABSTRACT OPERATOR-THEORETIC METHOD

§1. QUADRATIC TWO-PARAMETRIC OPERATOR PENCILS

We study an operator family B(t,e) depending on two real-valued parameters ¢t € R
and 0 < e < 1. The family B(t, ) was studied in [Su6l [SuT].

1.1. The operators X (t) and A(t). Let $ and £, be complex separable Hilbert spaces.
Suppose that Xg: § — 9, is a densely defined and closed operator, and X; : § — $, is
a bounded operator. Then the operator

(1.1) X(t):=Xo+tX1: 9 — 9.

is closed on the domain Dom X (¢) = Dom Xy. In $, we consider the selfadjoint operator
A(t) = X (t)*X(t) generated by the closed quadratic form || X (t)ul|f , v € Dom Xj.
We put Ag := A(0) = XiXo and N := Ker Ay = Ker X;. Assume that the following
condition is fulfilled.

Condition 1.1. The point A\g = 0 is an isolated point of the spectrum of Ay, and
0<n:=dimMN < co.

Let d° be the distance from the point Ao = 0 to the rest of the spectrum of Ag. We
put M, = Ker X§, n, = dim M,.. Assume that n < n, < co. Let P and P, be the
orthogonal projections of §) onto 91 and of $, onto M., respectively.

1.2. The operators Y (¢) and Ys. Let 9 be yet another separable Hilbert space. Let
Yo: H— .% be a densely defined linear operator such that Dom Xy C Dom Yj; let Yi: $ —
§ be a bounded linear operator. We put Y (£) = Y + Y7, Dom Y (t) = Dom Yy, and
impose the following condition.

Condition 1.2. For some ¢y > 0, we have
(1.2) Y (#)ullg < erl| X (ulls., u€DomXop, teR.
Estimate (L2) with ¢ = 0 implies that Ker Xy C Ker Yy, i.e., Yo P = 0.

Let Y5: $H — 5 be a densely defined linear operator such that Dom Xy C Dom Y5. We
impose the following condition.

Condition 1.3. For any v > 0 there exists a number C(v) > 0 such that
||Y2u||% <v|X(t)uli. +Cw)|ul}, u€DomX,, teR.
1.3. The operator )y and the form q. Let Q)¢ be a bounded positive definite linear

operator on §, and let q[u,v] be a densely defined Hermitian sesquilinear form in $ such
that Dom Xy C Domgq. The form q is subject to the following condition.

Condition 1.4. There exist constants 0 < k < 1, cg € R, co > 0, c3 > 0 such that for
u € Dom X, t € R, we have

(1.3) —(1=R)[X(t)ul

&, — collull§ < alu,u] < e X (Dull§, + esllullf.

1.4. The operator B(t,¢). In £, we consider the quadratic form

b(t,e)[u,u] = || X (t)ul, +2eRe(Y (t)u, You)y + e2qlu, u] + \e*(Qou, u)g,
u € Dom Xj.

(1.4)

The parameter A € R is subject to the following restriction:
A > (1Q  I(co + ea) if A >0,

1.5
(1.5) )\>||Q0H_1(Co—‘r04) if )\<O(and co + ¢4 < 0),
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where ¢ is the constant as in (3], and the constant ¢4 is defined by
(1.6) cy =4k AC(v) for v = kK*(16¢7)7 .
As was noted in [Su7] Subsection 1.4], condition (L)) implies that
(1.7) b(t, e)[u, u] > g||X(t)u||%* +B%|ul3, u € Dom Xy,
where 8 > 0 is defined in terms of A as follows:
B=AQy"' ™" —co—cs if X>0,
B=AQol| —co—ca if X<O0 (and ¢+ cq <0).
In [Su6l (1.15)], it was shown that
(1.9) b(t,e)[u,u] < (2+ ¢} + o) | X (W)ull, + (C(1) + s + A Qoll) e[l

By () and (T3, the form (4] is closed and positive definite. The corresponding
selfadjoint operator in $ is denoted by B(t, ). Formally, we can write

(1.10) B(t,e) = A(t) + (Yo Y (1) + Y (£)*Y2) + £2Q + A\e2Qo.

(Here @ is a formal object that corresponds to the form q.)

(1.8)

1.5. Passage to the parameter 7. The family B(t,¢) is an analytic operator family
with respect to the parameters t and €. If t = ¢ = 0, the operator (LI0]) coincides with Ag
and has an isolated eigenvalue Ag = 0 of multiplicity n. To apply the methods of analytic
perturbation theory, we introduce the one-dimensional parameter T = (t* + 52)1/ 2 and
also the additional parameters ¥ = t7=1, ¥ = et~ ¥ = (¥1,92). Then the operator
(CI0) can be rewritten as B(7;¥). Formally,

B(T; 19) = (Xg + T’l91Xik)(X0 + T’l91X1) + TﬂQ(Y;YO + }/O*YQ)
+ 720109 (Yo' Y1 + Y{'Ya) 4+ 7292(Q + \Qo).

The corresponding form will be denoted by b(7; ). We study the operator B(7;¥) as a
quadratic operator pencil with respect to the parameter T with the help of the tecniques of
analytic perturbation theory. Herewith, we should make our constructions and estimates
uniform with respect to the parameter 9, taking into account that 92 +93 = 1. In (LI
we may assume that 7 € R.

Let F(7;9;5s) be the spectral projection of the operator (ILII]) for the closed inter-
val [0, s]. We fix a number § € (0, xd°/13) and put

(1.11)

(1.12) 70 =02 (24 & + )| X112 + C(1) + e5 + [N Qo) 2.
In [Su6, Subsection 1.5], it was proved that
(1.13) F(r;9;0) = F(7;9;35), rank F(r;9;9) =n,

for |7| < 79. Instead of F(7;4;0) we shall use the shorter notation F(7;%).

1.6. The operators Z and Z. In Subsections 1.6 and 1.7, we introduce some operators
that arise in perturbation theory considerations. We denote D := Dom X, N M. Since
the point A\g = 0 is an isolated point of the spectrum of Ay, the form (Xo¢, Xo(), ¢,¢ € D,
determines an inner product in D, converting D into a Hilbert space.

For a given w € N, we consider the equation X§(Xop + Xiw) = 0 for ¢ € D. This
equation is understood in a weak sense. In other words, we look for an element ¢ € D
satisfying the identity

(114) (X()QD,X()C)Q* = —(Xlw,XOC)m for all ¢ eD.

Since the right-hand side of (ILI4]) is an antilinear continuous functional of ¢ € D, the
Riesz theorem shows that there exists a unique solution; denote this solution by ¢(w). We
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introduce a bounded operator Z: § — § as follows: Zw = p(w),w € N; Zz =0,z € Nt
Obviously, PZ = 0. Note that p(w) satisfies the estimate || Xop(w)|ls, < || Xiw|ls,,
whence

(1.15) [X0Z]l5—5. < [[Xill5-s.-

Similarly, given w € 91, suppose that ¢ € D satisfies the equation
(1.16) X;Xov + Yy Yow =0,

understood in the weak sense. Namely, 1) € D satisfies the identity
(1.17) (Xoth, XoC)s,, = —(Yaw, Yo()5 for all ¢ € D.

By Condition 1.2, the right-hand side of (ILI7) is a continuous antilinear functional of
¢ € D. Therefore, by the Riesz theorem, there exists a unique solution ¥ (w). We
introduce a bounded operator A acting in $ by Zw = Y(w), w € M; Zx = 0, x € N+
Obviously, PZ = 0. We estimate the norm of the operator XoZ. The solution P(w)
satisfies || Xo(w)n. < c1Yow||g, whence

(1.18) IXoZulls, = | XoZPulls. < c1]|YaPullg, ue $.

Note that Condition 1.3 with ¢ = 0 implies the estimate

(1.19) IVaPully < (CW)ulls, uweH, v>o0.

Combining (II8) with (TI9), we obtain

(1.20) 1X0Zllg5. < ar(C@)Y?, v>o0.

1.7. The operators R and S. We introduce the operator R := XoZ|m + X1|m: N —
MN.. As was shown in [BSull (1.1.11)], R = P.X1|n. In accordance with [BSull, Sub-
section 1.1.3], the operator S = R*R: M — 91 is called the spectral germ of the oper-

ator family A(t) at ¢ = 0. The germ S can be written as S = PX{P.X1|n, so that
S| < [l ]2

1.8. The spectral germ of the operator B(7;9). General facts of the analytic per-
turbation theory (see [K]) show that for |7| < 7¢ there exist functions A;(7;9) real-
analytic in 7 (the branches of eigenvalues) and real-analytic $-valued functions ¢;(7; 1)
(the branches of eigenvectors) such that

(1.21) B(r; %) (1;9) = Ni(m; D1 (159), || <710, 1=1,...,n.

The elements ¢, (7;9), 1 = 1,...,n, form an orthogonal basis in the eigenspace F(7;1%)$.
Relations (LZI]) are understood in the weak sense, namely,

b(7;9)[i(759), ¢l = Ni(759) (u(739), ()5, ¢ € Dom Xo.

Moreover, for sufficiently small 7, (7. < 79) and |7| < 7, we have the following convergent
power series expansions:

N(r30) = (T2 + @) + .. (@) 20, I=1,....n,
oi(730) = W (9) + TV (9) + ﬁﬂ(ﬁ) to, l=1...,n
Definition 1.5 (see [Su6]). The operator S(¢9): 91 — 91 defined by
S(9) = 928 — 9192(X0 2)* (X0 Z) | — 9102(X0Z)*(XoZ)|m
— 93(X02)" (XoZ) | + 0192 P(Y5 Y1 + Y7 Ya) ot + 93(Qon + AQom)
is called the spectral germ of the operator pencil (ILI1]) at 7 = 0.

(1.22)

(1.23)
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Here Qu is the selfadjoint operator in 91 generated by the form qfu,u], u € 9, and
Qom = PQo|n. Note that Condition 1.4 with ¢ = 0 implies the estimate [|@Qn| <

max{|col; c3}. Hence, by ([I5), (LI9), (C20) with v = 1, and by the estimate ||S]| <
[ X1][?, we have

(1.24) [S@)P| < cs,
(1.25) ¢ = (| X1l + e C(1)2)* + 20(1) 2 |[¥ || + max{]eols es} + M| Qo]

In accordance with [Su6l Proposition 1.6], the numbers 7;(9) and the elements w;(¢J)
are eigenvalues and eigenvectors of the selfadjoint operator S(9):

(1.26) S(wi () = v(Dwi(P), 1=1,...,n

1.9. Threshold approximations. In [Su6l Theorem 2.2], the following result was ob-
tained.

Theorem 1.6. For |7| < 79 we have

(1.27) F(r;0) = P = ®(7;9), [|®(739)]55 < Chl7],

(1.28) B(r;90)F(1;0) = 7S(0)P = U(r39), [ ¥(730)|l9-5 < Col7|*.

The constants Cy and Co depend on §, ¢, ca, c3, C(1), &, |A|, | X1, Y1, and ||Qo]|-
The constants C; and Cy can be written explicitly (see [Su6l §2]). We put

(1.29) ¢V =max {2+ ¢, (|| X1[|> + C(1))6 '},

(130)  OF =max {ez+ 1, (| X1 + ||Y1||2 +0(1) + s+ N[Qol)d ™},

(1.31)  Cp = + 70,

(132) 9 =32-13% V2(C))20r + 32 13x~ V200 O + 41657207 O
Then

(1.33) C1 =320+ 7 Hr V20, Cy=26(1+7 1)C%

Besides estimate ([27]), we need a more accurate approximation obtained in [Suf,
Subsection 2.5]:

(1.34) F(r;9) — P =1F(9) + Fa(1;9),
where the operator Fy(7;9) is of order of O(7?). In accordance with [Su6l (1.48)], the

operator F} () admits the representation Fy () = 91(Z + Z*) + 92(Z + Z*). Hence, the
identities PZ = 0, PZ = 0 imply that

(1.35) FL ()P =0Z+0:Z
Comparing (L24) and (28)), we obtain
(1.36) HB(T;ﬁ)F T 19)”)"3—”‘3 < Cs72, 7| < 719; C3:=c5+ Corp.

Hence, for || < 79, the eigenvalues of B(7;9) admit the estimate \;(7;9) < C372,
l=1,...,n. Therefore,

(1.37) |B(r:0) 2F(r;0)|| o < C3P17), |7l < 7o
We also need the following estimate obtained in [Su6l, Proposition 2.7]:
HB (73 9)Y 2 Fy(7;9) Hﬁﬁﬁ <C2(1+ 77 Y72 7| < 10,

(1.38)
Ci=V2(2+ A + ) 21267 + 2) 2490 O + 7CP).
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1.10. The operator family A(t) = M*ﬁ(t)M Let § be yet another Hilbert space,
and let )/(\'(t) = Xo+tX1: H — 9, be a family of the form (L) satisfying the assumptions
of Subsection 1.1. We emphasize that the space ), is the same as before. All the objects
corresponding to X (t) are marked by “~7. Suppose that M: $ — 5% is an isomorphism
and that

(1.39) M Dom X, = Dom X,

X(t) = X(OM: § — $H.; Xo = XoM, X1 = X;M. Then A(t) = M*A(t)M, where
A(t) = X(¢)*X (t). Observe that Bt = MM, 7 =n and N, = N,, A, = n,, P, = P.. We
denote

(1.40) G=(MM)": 58
Let G5 be the block of the operator G in the subspace N
(1.41) Gg = PG|g: M — 9.

Obviously, G is an 1somorphlsm in 9. It turns out (see [Su2, Proposition 1.2]) that the
orthogonal projections P and p satisfy the relation

(1.42) P=M"YGg) tP(M*)™}

Let S: 91 — N be the spectral germ of the operator family ﬁ(t) at t = 0. In accordance
with [BSull, Subsection 1.1.5], we have

(1.43) S =PM*SM]|,.

1.11. The operator family B(t,e) = M*é(t e)M Let }Afo' 5% — 5?) satisfy the as-
sumptions of Subsection 1.2. Note that the space § is the same as before We denote
Y, = YOM M DomY, = Dom Y. By (EB:QI) and the condition Dom X, C DomYO7
we have Dom X, C DomYo Suppose that Y1 53 - § is a bounded operator and that
Yi YlM H — H We put Y() Yo —l—tYl 53 — 53 DomY() = DomYO7 and
Y() = Y( )M =Yy +1tY;: H — 9, DomY(t) = DomY,. Suppose that the opera-
tors X (¢ (t) and Y( ) satisfy Condition 1.2 with some constant ¢;. Then, automatically,
Y (#)ully < er| X @)ulls., where e =&y

Let YQ Y) — § be an operator satlsfymg the assumptions of Subsection 1.2. We
put Yo = Y2M H — 5’3 MDomY; = Dong Since M is an isomorphism and the
operator Y2 is densely defined, the operator Y3 is also densely defined. By (L39), we
have Dom Xy C Dom Y;. We assume that the operators )A((t) and 172 satisfy Condition 1.3
with some constant C (v) > 0. Then, automatically, for any v > 0 there exists a constant
C(v) = C(w)|M|? > 0 such that HY2u||% < v X@t)ullf. + C(w)|ull? for t € R and
u € Dom Xj.

We put Qo := M*M. Then Qg is a bounded and positive definite operator in §. (The
role of Qo is played by the identity operator in 53 )

In 53 we consider the quadratic form q that satisfies the assumptions of Subsection 1.3.
We define the form g by the rule qlu, v] = q[Mu, MU] u,v € Domq, M Dom q = Dom .
Formally, Q@ = M*QM. Assume that the operator X (¢) and the form § satisfy Condi-
tion 1.4 with the constants k, ¢, ¢z and ¢3. By ([L39)), it is easily seen that the operator
X(t) = X(t)M and the form q also satisfy Condition 1.4 with the constants

(144) = HM||200 if CO > O Co — ||M71H72/C\0 if 60 < O,




HOMOGENIZATION OF THE PARABOLIC CAUCHY PROBLEM 989

co = Ca, C3 :A||M||2€3, and the same constant  as before. By (L6, the constants ¢s and
G4 = 4k 1e2C (v) with v = k?(16¢2) ! satisfy the relation
(1.45) ey = | M|%e,
Under the above assumptions, the operator pencil
(1.46) B(t,e) = A(t) +e(Ya Y (1) + Y (£)*Ya) + £2Q + Ae2T

and the operator pencil (1.10) satisfy B(t,e) = M*B(t,e)M. The constant A is chosen

in accordance with condition (LH]) for the operator (LI0). Comparing (L44), (T45), a
the identity Qo = M*M, we see that for such A\ condition (LI]) is also satisfied for the

operator (L40).
Note that for the operator (46 relations (L&) take the form g = X\ — ¢y — ¢4. Hence,

by (L]), (L44), (L45), we have

(1.47) B< M2,

1.12. The relationship between the spectral germs S(¢) and §(19) In this sub-
section, we generalize identity (L43) to the case 0£ the spectral germs of theA operator
families (I46]) and (I0) such that B(t,e) = M*B(t,e)M. For the family B(t,¢), we
introduce the operators Z and § as in Subsection 1.6. We prove the following result.
Lemma 1.7. Under the above assumptions, we have

(1.48) XoZM|y, = XoZlg, f(ﬁM}m = XoZ| g

Proof. The operator R is defined by the relation R:=(XoZ+X1)|m. On the other hand,

R = PX1|m Therefore, XOZ‘m ‘m Similarly, )/(\'02’ ’m’

because P, = P,. Comparing these relatlons and recalling that X; = XlM and N =
M9, we arrive at the first identity in (L48]).
The second identity in (L48]) is equivalent to

(1.49) (XoZ — XOEM)UJ, ()y. =0, weN, (e9h.

Since M, = ‘f‘(*, for ¢ € M. the identity (T49)) is obvious. Writing £, = Ran Xy & N.,
we see that it suffices to consider ( € Ran Xy. Then ¢ = Xy€ for some £ € D. Since
¢ = XoM¢ = XoP+ME, the required relation can be rewritten as

(1.50) (XoZw, Xo€) s, = (XoZMw, Xo P M¢)s,
By the definition of the operator Z (see (ILI7)), we have
(1.51) (XoZw, Xo€)s. = —(Yaw, Yo8);.

~

Similarly, by the definition of the operator Z , we have
(1.52) (XoZMw, XoPM¢)g, = —(i}gMW YoPME) g = —(Yaw, Yof) 5.
In the last identity we have used the relations YO =0,Y = YOM Yy = }A/QM . Formulas

(L5D) and (I52) imply (LED). 0

Now we return to the operator pencils B(t, ) and é(t, ¢) and pass to the parameters
7,v¢. Consider the spectral germ ([[23]) and a similar spectral germ for the family (46]):

S(W) =15 — 191192()?02)*()?02) o = 0102(R02)"(R02)) 5
_793()?0 Z)(XoZ )| + 919, P(YV5Y) + Y Ys) |m+192 Qm+>‘1 ).
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The identity %t = M9 implies that PM* = PM*P. Combining this with (s
([CZ]), and the relations Y1 = 1M, Yy, = YoM, Q = M*QM, we generalize iden-
tity (L43).

Proposition 1.8. The spectral germs S(¥) and §(19) of the operator families (L48) and
([CI0) satisfy

(1.53) S(9) = PM*S(9)M|,.

1.13. The operators 20 and Zg. Let ZG be the operator in .6 that takes an element
u € $ into a unique solution ¢g of the problem

(1.54) X;(Xode + X1@) =0, Gog L9,

where & = Pi. Problem (I54) is understood in the weak sense (cf. (ILI4)). Then, in
accordance with [BSu2, Lemma 6.1],

(1.55) Ze¢=MZM'P.

Similarly, let ZG be the operator in 5% that takes an element @ € 5% to a unique solution

~

1 of the problem
(1.56) XiXobe + YVt =0, Gig LM,

where & = Pai. Problem (CE0) is understood in the weak sense. By recalculation in
equation (LI6), we can use the relations M9 = N, (L39), and (40) to obtain

(1.57) Zg=MZM™'P.

§2. APPROXIMATION OF THE OPERATOR EXPONENTIAL

2.1. The principal term of approximation of the operator exp(—A(t)s) for large values
of the parameter s > 0 was obtained in [Su2| §2.1]. Approximation of the operator
exp(—A(t)s) in the “energy” norm with a corrector term taken into account was obtained
in [Subl §3.2]. Our goal in this section is to approximate the operator exp(—B(7;4)s)
for large values of s > 0.

In addition to the assumptions of Subsections 1.1-1.4, we impose the condition

(2.1) A(t) > eit®I, ¢ >0, |t <70

Hence, by (7)), we have

(2.2) B(1;9) > &%, |1| <719, & = %min{nc*,Zﬂ}.
Therefore, the eigenvalues \;(7; ) of the operator B(7;) satisfy the estimates
(2.3) X)) > &7 I=1,....n, |7| <.

Comparing this with ([22), we see that vy (¥) > &, | = 1,...,n. Then, by (20,
S(V¥) > ¢Im. Hence, by [22), it follows that

@) POy e T TS < e
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2.2. The principal term of approximation. Let |7| < 75. Obviously,
(2.5) e Bs = = BUsp(r:9) 4 e BN p(;9)

where F(7;9)" is the spectral projection of the operator B(7;4) for the interval (§; oc).
Then, by using the inequality exp(—ds/2) < (ds)~ /2, we get

(2.6) e BT P ()| Ly, < €7 < (ds) 722 s >0,
Next,
(2.7) e PO E(7;0) = Pe” PO F(759) + PLem P00 B(r;0).

By (L27), PLF(r;9) = (F(r;9) — P)F(1;9) = ®(7;9)F(r;9). Combining this with
(C27) and (22)), we obtain

28) |[PLe PO p(r)||, = ||@(ri9)e BEDI R ()| < Calrlem® T
We put
(2.9) S(s) i= Pe BTs p(r,9) — pe SW)Ps,
(2.10) E(s) == eTZS(ﬂ)PSE(s) = eTzS(ﬁ)PSPefB(T;ﬁ)SF(T; v) —
Differentiating ([2.10) with respect to s and using (L.28]), we obtain
E'(s) = e SIPSP (725(0) P — B(r;0)F(7:0)) e BT F(7;09)

—eTzS(ﬁ)PSP\I/(T' ﬁ)eiB(T;ﬂ)SF(T; 9).

From the identity £(s) )+ [ £'(3) d3, it follows that

E(s) = PF(r;9)— P — / 6725(0)P§P\If(7; 9)e BT E(1,9) ds.
0
Hence, by ([LZ7), the operator X(s) = e~ SWPsg(s) satisfies the identity
s
S(s) = e T SOP PR (7 9) — / e SOPE=3) py(r;9)e B3 R(r;9) d
0

Combining this with [2.4) and (L27)), (L28), we arrive at the estimate

(2.11) 12(8) 9oy < Calrle %% 4 Co|rPse 5775
Relations (Z7), 23), (9), and (ZIT) imply that

.9)s 2 —&.T2s
(2.12) ||e*B(”9) F(1;9) — Pe Hﬁﬂﬁ (2Cy|T| + C'2|7'\3 Je T8,

We put |7]/s =: a and write (2Cy|7| + Ca|73s)e=57"%/2 = s71/2¢(q), where @(a) :=
(2C1a + Cga3)e_5*°‘2/2. Denote

(2.13) Cs = max o(a) = max (2C1a + CyaP)e /2,

Then

(2.14) ’|e_B(T”9)SF(T; 9) — Pe ™ ﬂ)PSHﬁ < Cgs™ V2 BT5/2 550,
By (23, (24), and (ZI4), we obtain

(2.15) ||efB(T;19)s _ P67T2S(§)PSHFJ~>5§ < 05571/2675*725/2 +571/2571/26755/2_

Note that for |7| < 79 we have

2 = 2 2
(216) 6765/2 <e T C*s’ e G T s/2 <e T C*s’ ‘7_| < 70,
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with the constant

1
(2.17) C, = 3 min{&,; 675 2}.
From (ZI6) and 2I5) it follows that
5 S 77'2 S - - 77—2 S
(2.18) ||e*B(”9) — PemT 9P Hf)—»fj < (Cs 4 67 H2)s7 277 Cns,

Moreover, by (Z4) and ZI7), for all s > 0 the left-hand side of ([2I8) satisfies the

estimate
He—B(T;ﬁ)s _ Pe—TQS(ﬂ)PsH < 26_0*7—25
H=H — ’

For s > 0 we have min{2; (Cs + 6~1/2)s71/2} < C4(1 + 5)~'/2, where

(2.19) Cs := V2max{2; C5 + 6 1/2}.
Thus, we have proved that
(2.20)  [[emBOs — pemTISOIPs|| < Cg(145)T V27T 5 > 0, |r] < o

In accordance with [Su6l (3.26)], we denote L(t,¢) := 725(0):
L(t,e) = 28 + te( — (X0Z)"(XoZ)|n — (X02)*(X0Z)| )
+teP(Y5Y1 + Y7Ya) |, + 62 (= (X02)"(Xo02)| o, + Qo + AQom).
Cf. (L23). Note that the estimate S(¢) > ¢, I implies that
(2.22) L(t,e) > E.(t* + %) In.
Now we formulate (2.20) in terms of the operator L(t,¢).

(2.21)

Theorem 2.1. Let B(t,e) be the operator defined in Subsection 1.4. Suppose that con-
dition (Z1) is satisfied. Let L(t,e) be the operator 221)). Then

lem PR — e HEDp| < Col145) 72T 520, 7| <o

The constant Cg depends only on §, K, c., co, c1, C2, c3, ca, C(1), X, | X1, Y1, [|Qoll,
and ||Qpt||. The constant C., is defined by EIT).

2.3. Approximation with the corrector term taken into account. Approxima-
tion of the operator exp(—B(7;9)s) with the corrector term taken into account is given
by the following theorem.

Theorem 2.2. Under the assumptions of Theorem 2.1, let Z and Z be the operators

defined in Subsection 1.6. Then
||B(t, 6)1/2 (efB(t,E)S _ (I 4 tz + EZ)GiL(t’E)SP) S 08571677-2(}*‘97

7] <719, s>0.

(2.23) [

The constant Cy is defined below in ([2:32)).
Proof. We put 8(7;9; 5) := B(7;9)/2e~B(79)s Obviously,
U(r; 05 5) = U(r3 05 8)F(m39) + (7305 8) F(7;9) (F(7;9) — P)
+ F(r;9)U(T; 95 s) P.
Relations (LI3), ZI6), and the inequality e~ < a1, a > 0, imply
4475 9; S)F(T;ﬁ)LHf)—uj < 5;1};5 p2emis < 9(38) /251 m05/2

(2.24)

(2.25) 2
< 2(36)_1/25_16_T Cus I7] < 0.
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Next, using (Z3)) and ZI7), for s > 0 and |7| < 79 we get
(7595 ) F(739) 550 < sup (Au(r;9))H/ e M0
1<i<n

<257 sup (\(r30)) "M 2eMmDs/2 < 25*_1/2|T‘71871€7720*S.

1<I<n
Combining this with (I27), we see that
(2.26) 18475 95 8) F (73 9) (F(759) = P)|[ 905 < 2018 257 1e77 O

for s > 0 and |7| < 79. The last term on the right-hand side in (224]) is represented as
F(r;9)U(r;9;s)P = B(T; 19)1/2F(7'; 19)677—23(19)5]3

+ B(T; 19)1/2F(T; ) (e_B(T;ﬁ)SF(T; 9) — e_TQS(ﬁ)SP)P.
By ([37), 2I2), and (ZTI1), we have
HB(T; 19)1/2F(T; 9) (6_3(7”9)5F(T; 9) — e_TZS(ﬁ)SP)PHyJ_”5

(2.27)

(2.28) .

< C31/2\T|(201|T| + 02|7'|3$)676*723 < 0757167720*5,
where
(2.29) Cr = C§/2 sup(2C1a + Cha?)e /2,

a>0

Relations (Z24)-([228) yield
|B(r30) /2 (e BT — (T4 7(01 Z + 1922))67725(19)813)“&%%
(2.30) < (2(30) V2 42008 2 4 )R TIO
+[|B(r;0)! 2 (F(r;0)P = P = 7(01Z + 9:2))e 7 5P| .

From (L34) and (I30) it follows that F(r;0)P — P — 7(91Z + ¥,Z) = Fy(r;9)P. By
using (L38), 24), and ([ZI7), we estimate the last term in ([230):

||B(T;19)1/2F2(T; 19)677—25(19)SPH}§_>5 < 0451/2(1 + 71'71)7'267725*5

(2:31) 1/2 —1ygx—1,-1,-7%C

SO 2(1+ 725 s e ™S >0, |7 < 7.

Combining (230) and 231)), we arrive at estimate (2.23]) with the constant
(2.32) Cs 1= 2(38) Y2 + 2018 /% + Cp + 20,62 (1 + )& L.

83. APPROXIMATION OF THE “BORDERED” OPERATOR EXPONENTIAL

3.1. The principal term of approximation. Suppose that the assumptions of Sub-
sections 1.10 and 1.11 are satisfied, i.e., B(7;9) = M*é(T; Y)M. Our goal in this section
is to find an approximation for the operator Me~B(T?9)s M\[* acting in 5% The principal
term of approximation for Me~4®*M* was found in [Su2, Subsection 2.2], approxima-
tion with the corrector term taken into account was obtained in [Subl Theorem 4.1]. We

generalize these considerations to the case of the family B(7;¢).

We use the notation (L40), (L4I) and put

(3.1) My := (Gg)~V/2: N = N.
From (2.20) it follows that for s > 0 and |7| < 79 we have

—B(1,9):¢ * —72 * - —72C,
(3.2) [Me= BT M — Mem™ SO PM*|| o < Co|M|*(1+5)"/2e™™ <2,
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Proposition 3.1. The operator A(T;9; s) := Me=m"SWs ppr acting in the Hilbert space
£ admits the representation

(3.3) A(r30; 8) = Mye™™ MoS()Mos p .

Proof. Let i) € §, and let £(s) = A(7;9; s)7. Then M~1E(s) € M, £(s) € N, and M ~1E(s)
is the solution of the Cauchy problem

d

(3.4) TME(s) = P S)MTE(s),  MTIE(0) = PMY.

By (53), S(ﬂ)M‘lé\(s) = PM*§(19)§A(5) Next, from ([C42) we deduce that PM* =
M~Y(Gg)"*P. Then (34) and (B.I) show that

%5(3):_721\40 SW)E(s), €(0) = MEPR,

~

or equivalently, &My é(s) = —m2MoS(0)E(s), My €(0) = MoP7j. Hence, My *é(s) =
e~ MoS(9)Mos N[ PR, which implies B3). O

We introduce the operator f/(t7 £) := 725(¢9). The following result is a consequence of
B2) and @3).

Theorem 3.2. Under the above assumptions, we have

||Me—B(t,a)sM* . MOG_MOi(t7€)MOSMOﬁ’|§_>% < C6HM||2(1 + s)—1/2e—'r20*57

(3.5)
S Z Oa |T| § T0-

3.2. Approximation with the corrector term taken into account.

Theorem 3.3. Under the assumptions of Subsections 1.10 and 1.11, let 2@; and ZG be
the operators (L5) and (LX), respectively. Then

||§(t,6)1/2 (MefB(t,E)sM* _ (I—|— tZG + EZG)MOefMoI:(t,S)MosMOf))||§J_>§J
<Cg|M||sle T 530, 0<e<1, |r|<m.

Proof. The required estimate follows from ([223]) by recalculation. Combining (55,
([L57), and Proposition 3.1, we obtain

HB(T; 19)1/2 (MeiB(T;ﬁ)sM* - I+ 7'(19126‘ + 19250))/\(7'; v; 5>)H§g—>.%
= Hé(T;ﬂ)l/QM(e*B(mg)s —I4+7(MZ+ 1922))67#)5( )SP)M*
= ||B(r;0)/2(e BT — (I 4 7(61Z + 922))e ™ 5D P) M* 529
< |M[|B(r;0)! /(e P — (T4 7912 + 95 2))e 7 SO P) || o
Together with ([2.23]), this implies the claim. (Il

GEY;)

CHAPTER 2
PERIODIC DIFFERENTIAL OPERATORS IN Ly(R%;C")

§4. BASIC DEFINITIONS

4.1. The lattices I and I'. Let T be a lattice in R? generated by a basisay,...,aq: ' =
{a € Ri:a = Z;l=1 na;, nl € Z}. Let © denote the elementary cell of the lattice
IiQ={xeR!: x=39 ¢&a; 0<& <1}. Thebasis b',...,b? dual to ay,...,aq
is defined by the relations (b',a;) = 27r6§. This basis generates the lattice I' dual to
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the lattice . Let €2 denote the Brillouin zone of the lattice I': Q) = {keR?: K| <
k—b|,0#be IN’} The domain € is a fundamental domain for I'. We use the notation
Q2 = meas Q, |Q] = meas (). Let o be the radius of the ball inscribed in clos €}, and let
2r1 = diam Q.

4.2. Factorized second order operators. (See [BSul].) Let b(D) = sz=1 biDy:
Ly (R4 C") — La(R% C™) be a first order DO. Here the b, are constant (m x n)-matrices.
We assume that m > n. The symbol b(§) = Zfl:l bi& is assumed to be such that
rank b(€) = n, 0 # € € R%. Then for some g, a; > 0 we have

(4.1) aol, <b(O)*b(O) < ail,, 0S¥ 0<ag<a <o

Let an (n x n)-matrix-valued function f(x) and an (m x m)-matrix-valued function h(x),
x € R4, be bounded together with the inverses:

(4.2) fo fh e Loo(®Y);  h, bt € Loo(RY).

The functions f and h are assumed to be I'-periodic. Consider the DO
(4.3) X = hb(D)f: Ly(R% C") — Ly(REC™),

(4.4) Dom & := {u € Ly(R%: C") : fue H'(RYC™)}.

The operator (£3]) is closed on the domain ({Z)). Consider the selfadjoint operator
A= X*X in Ly(R% C") corresponding to the quadratic form afu,u] = ||Xul|7, , u €
Dom X. Formally, we can write A = f*b(D)*gb(D) f, where g = h*h. Using the Fourier
transformation and (@1l), [@.2]), it is easy to show that for u € Dom X we have

(4.5) aollg M ILL IDFWIL, @ < alu,u] < arllgllr D)7, e

4.3. The operators ) and ). Now we proceed to the description of lower order
terms. We introduce the operator Y: Ly(R%;C") — Lo(R%; C9") defined by

Yu =D(fu) =col{D;(fu),...,D4(fu)}, Dom) = Dom X.
The lower estimate (43 means that

(4.6) 190l ey < 1| Xl ey, u € Dom,
(4.7) er =g Plg 2

Let aj(x), j = 1,...,d, be bounded I'-periodic (n x n)-matrix-valued functions in R¢
such that

(4.8) a; € L,(Q), 0=2 for d=1, p>d for d>2; j=1,...,d

Consider the operator Vo: Ly(R% C") — Ly(RY; C9") acting on the domain Dom ), =
Dom X and defined by You = col{aj fu,...,a} fu}. Formally, we have (V5 Y+Y*V2)u =
iy (Fra;D;(fu) + fDj(al fu).

By using the Holder inequality, conditions (A2]), ([A8), and the compactness of the
embedding H'(Q) C L,(Q) for p = 20(0—2)~!, one can check (cf. [Su6l, Subsection 5.2])
that for any v > 0 there exists a constant C(v) > 0 such that

(49) 19203, o) < VXUl oy + COul, ey, € Dom .

For a fixed v, the constant C'(v) depends on the norms ||a;l|z, ), j = 1,...,d, [|fllL..,
llg7YL.., on g, d, o, and on the parameters of the lattice I
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Using (48), ([£9), it is easy to check that
K
(4.10) 2e| Re(Yu, You),| < §||Xu\|%2 + c4<€2||u||2L27 u € Dom X,
(4.11) cy = 4s71EC(v) for v =k2(16¢2)71.

4.4. The operator Qp and the form g[u,u]. Let Qy be the operator in Ly(R%;C™)
that acts as multiplication by the I'-periodic positive definite and bounded matrix-valued
function Qp(x) := f(x)* f(x).

Suppose that du(x) is a I-periodic o-finite Borel measure in R¢ with values in the
class of Hermitian (n x n)-matrices. Then du(x) = {du;i(x)}, 5,1 = 1,...,n. In other
words, dpj(x) is a complex-valued I'-periodic measure in R%, and du;; = dpj;. Suppose
that the measure dy is such that the function |v(x)[?
measure dy;; for any v € H'(R?).

In Ly(R%C"), we consider the form g[u,u] = [p.(du(x)fu, fu), u € Dom X. The
measure dy is subject to the following condition.

is integrable with respect to each

Condition 4.1. For any v € H'(Q;C"), we have
—2Dv|17 ) — V17, @) < /Q<d#(X)V7V> < &|Dv|[E, ) +ElvIE, @),

where ¢o € R, ¢ >0, ¢3 >0, and 0 <¢ < a0||g_1||zalo.

Note that Condition 4.1 implies the estimate

D)2, — collull?, 0 < /Q (dp(x) fu, fu)

< &[D(fw)L, @ + cslulli, o)

(4.12)

with the constants

(413) Co = /C\()HfH%OO if /C\O Z 0, Co = a)‘lf_lHEi if Eo < 0;
(4.14) cs = [IfII7..c.

For u € Dom X, writing inequality (I2) for the shifted cells 2 + a, a € T', and
summing up, we obtain

=Dl e — collullf, @ < alw,u] < &[D(fW)L, @) + csllulL, @)
Hence, by (&5,

—(1 = )| Xul|7, @) — collull], @) < glu,u] <ol XulF, ga) + eslulf, gay,

(4.15)
u € Dom X,
where

(4.16) e =0g g rws m=1-C05'lg7 2, O<m <L,
4.5. The operator B(e). In Ly(R%; C"), we consider the quadratic form

(4.17) b(e)[u,u] = afu,u] + 2e Re(Vu, You) 1, (ray + £2q[u,u] + Ae?(Qou, ), (k)
' u € Dom X,

where 0 < € <1 and the parameter A € R satisfies the following restriction:
A> 195 oo (co+ea) if A>0,

(4.18) 0 .
A>[|Qollp (co+eca) if A <0 (and ¢ +cq <0).
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Now we estimate the form ([I7) from below. Let 5 > 0 be defined by
B=AQ Iz, —co—ea if A20,

B=AQollL., —co—ca if A<0 (and ¢o + ¢4 <0).
Combining ([AI0), the lower estimate in ([@I5), (£I]), and (£I19), we arrive at
(4.20) b(e)[u,u] > ga[u, u] + Be%(|lull7,, u€DomX, 0<e<l.

(4.19)

Thus, the form b(e) is positive definite. From (@.6]), [@3) for » = 1, and the upper
estimate in ([@I5) it follows that

(4.21) b(e)[u,u] < (24 c% +co)alu,u] + (C(1) +¢3 + |)\|||Q0\|Lm)52\|u||%2,u € Dom X.

By (#20) and [@.21]), the form b(e) is closed. The corresponding positive definite operator
in Lo(R%;C") is denoted by B(e). Formally, we can write

Ble) = A+e(V3Y + YV Vo) + 2 f*Qf +2AQo
(4.22) Lo . o 2 2
= [*b(D)"gb(D)f +¢ Y f*(a;D; + Dja}) f + > f*Qf +e*AQy,
j=1
where Q can be interpreted as the generalized matrix-valued potential generated by the

measure d.
For further references, by the “initial data” we mean the following set of parameters:

d, m, n, o5 ao, a1, llgllze, g™ News Iflle, 17 2w, lasllz, @),

(4.23) . Lo .
j=1,...,d; ¢ ¢, C2, c3 from Condition 4.1; \.

We shall trace the dependence of constants in estimates on the initial data and the
parameters of the lattice. The constants ¢1, C(1), k, ¢, cs3, ¢4, co, § are determined by
the initial data and the lattice.

§5. DIRECT INTEGRAL DECOMPOSITION FOR THE OPERATOR B(¢)

5.1. The Gelfand transformation. Initially, the Gelfand transformation U is defined
on the functions of the Schwartz class v € S(R%; C") by the formula

V(k,x) = (Uv)(k,x) = Q72 "exp(—i(k,x +a))v(x+a), xeQ ke
ael’

Herewith, [ [, [¥(k,x)[?dxdk = [;, |[v(x)|*dx, and U extends by continuity to a uni-
tary operator

(5.1) U : Ly(RYC") — | @Ly(C") dk =: H.

Q
Let HY(Q; C™) denote the subspace of all functions in H*(€; C") whose D-periodic exten-
sion to R belongs to the class HL _(R% C"). The relation v € H'(R% C") is equivalent

loc

to the fact that v(k, -) € H(Q;C") for a. e. k € O, and

// (ID + k)¥(k, x)]* + [¥(k,x)|*) dx dk < oo.
QJQ

Under the Gelfand transformation U/, the operator of multiplication by a bounded peri-
odic matrix-valued function in Lo(R%; C") turns into multiplication by the same function
on the fibers of the direct integral H. On these fibers, the operator b(D) applied to
v € HY(R%; C™) turns into the operator b(D + k) applied to v(k, - ) € H(Q;C").
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5.2. The operators A(k). (See [BSull Subsection 2.2.1].) We put

(5.2) H=Ly(%C"), H.=La(C™), $H = Ly(C™M)

and consider the closed operator X(k) : § — 9., k € Rd, defined by the relations
(5.3) X(k)=hb(D+k)f, keR?

(5.4) 0:=DomX(k) ={ue$ : fue H(Q;C")}.

The selfadjoint operator A(k) := X(k)*X(k) :  — 9, k € R% is generated by the
quadratic form a(k)[u, u] := [|[X(k)ul? , u €0, k € R%. From ) and #2) it follows
that

aollgHZLIMD +X)vl7, o) < alk)[u,u] < arflgllz [I(D + K)v]Z,q).

(5:5) v =fuec H(Q;C").

By (5.5) and the compactness of the embedding of H(Q; C") into $, the spectrum of
A(k) is discrete. We put 91 := Ker . A(0) = Ker X(0). Inequality (2.5 for k = 0 implies
that

(5.6) N =Ker A(0) = {u e La(%C") : fu=ceC"}, dimMN=n.
As was shown in [BSull (2.2.11), (2.2.12)],
(5.7) A(k) 2 e.k’L, keclosQ, e = aollf I Mg LY -

In accordance with [BSull (2.2.14)], the distance d° from the point A\g = 0 to the rest of
the spectrum of A(0) satisfies the estimate

(5.8) d® > 4c,rd.

5.3. The operators Y (k) and Y. Consider the operator Y(k): $ — 5, that acts on
the domain Dom Y(k) = 9 and is defined by

(5.9) Y(k)u= (D +Xk)fu=-col{(D1 + ki1)fu,...,(Dg+ kq)fu}, ueo.

The lower estimate (5.5) implies that

(5.10) [YV(K)ullg < ci]| X (k)ul

H.: WED,

where the constant ¢; is as in ([{@1).
Consider the operator Y5: ) — $ defined by the relation

(5.11) You = col{a] fu,...,ajfu}, DomY,; =0o.

As was shown in [Su6l Subsection 5.7], for any v > 0 there exist constants C;(v) > 0,
j=1,...,d, such that for k € R? we have

HG;V”%Q(Q) <v|(D+ k)VH%Z(Q) + Cj(V)HVH%Q(Q)v veH (C), j=1,....d

Let v = fu, u € 0. Then, summing these inequalities over j and using ([4.2), (5.5]), we
see that for any v > 0 there exists a constant C(v) > 0 (the same as in (€9)) such that

(5.12) [Yau|} <vl|XX)ullf, + C@)|ullfy, ued keR™
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5.4. The operator Q; and the form ¢q[u,u]. Let Qg be the bounded operator in £
acting as multiplication by the matrix-valued function Qy(x) = f(x)* f(x).

In Ly(€;C"), we consider the form go[u,u] = [,(du(x)fu, fu), u € d. Replacing
f(x)u(x) by f(x)u(x)exp(i(k,x)) in [EI2) (these functions belong to H!(Q; C™) simul-
taneously) and using (B.3]), we get

(5:13) —=(1=r)[X(k)ul

2 —colluly < gofu.u] < ol X[ +eallulh, u e, ke R
Here the constants k, ¢, cg, ¢z are the same as in (@.13).

5.5. The operator pencil B(k,¢). In the space £, we consider the quadratic form
b(k,e)[u,u] = a(k)[u, u] + 2e Re(Y(k)u, YQU)% + 2qo[u,u] + Ae?(Qou,u)y, u €.

From ({I8), @19), (I10), (EI12), and EI3) it follows that

(5.14) b(k,e)[u, u] > ga(k)[u,u] +Bul?, ueo.

Next, using (510), (5I12) for » = 1, and the upper estimate in (B.13]), we obtain

(5.15) b(k,e)[u,u] < (2+cf +e2)alk)[u, u] + (C(1) +e3 + A Qoll . )e*[[ullf, ueo.

The inequalities (5.14) and (B.I5]) show that the form b(k, ) is closed on the domain (5.4))
and positive definite. The selfadjoint operator in §) generated by this form is denoted by
B(k,¢e). Formally, we can write

Blk,2) = A(k) + (Y V(k) + Y(K)*Y) + 21" Qf + Ae*Qq
d
(5.16) = f*bD+K)*gh(D+K)f +e>_ f(a;(D; +k;) + (D; + kj)a}) f
j=1
+E2f*Qf+)\€2f*f~
5.6. Direct integral expansion for the operator B(c). Under the Gelfand trans-

formation U, the operator ([#22)) acting in the space Lo(R%; C") expands into the direct
integral of the operators ([.I6]) acting in Lo (€2; C™):

UB(EU™ = / ®B(k,¢) dk.
Q

This means the following. Let i = Uu, where u € Dom b(¢). Then
(5.17) li(k, -)edfora e ke,

(5.18) b(e)[u, u] = /S~2 b(k, e)[u(k, -), u(k, - )] dk.

Conversely, if U € H satisfies (517 and the integral in (5I8) is finite, then u € Dom b(¢)
and we have (B.I8]).

§6. INCORPORATION OF THE OPERATORS B(k,&) INTO THE ABSTRACT METHOD

6.1. For d > 1, the operators B(k,e) depend on the multidimensional parameter k. As
in [BSull, Chapter 2], we distinguish a one-dimensional parameter ¢ by putting k = ¢80,
t = |k|, @ € ST"1. We apply the method of Chapter 1. Now, all the objects depend on
the additional parameter 8. We must make our considerations and estimates uniform
in 6. The spaces $, §., and § are defined by (5.2). We put X(t) = X(t; 0) := X(10).
By &3), X(t;0) = Xo + tX1(0), where Xy = X(0) = h(x)b(D)f(x), Dom X, = 0,
and X1 (0) is the bounded operator acting as multiplication by the matrix h(x)b(0) f (x).
Next, we put A(t) = A(t; 0) := A(t6). By (&0, the kernel 91 = Ker X, = Ker A(0) is



1000 YU. M. MESHKOVA

n-dimensional. Condition 1.1 is satisfied, and d° obeys (5.8)). As was shown in [BSull
Chapter 2, §3], the condition n < n, = dim Ker X is also satisfied.

Next, the role of Y'(¢) is played by the operator Y (¢;0) := Y(t0). By (&.9), we have
Y (t;0) = Yy + tY1(0), where
You = D(fu) =col{D;fu,...,Dgfu}, DomY, =70;
Y1(0)u = col{f; fu,...,0;fu}.

Condition 1.2 is ensured by (G.I0). The operator Y3 is defined by (&I1). By (EI2),
Condition 1.3 is fulfilled. The role of the form g from Subsection 1.3 is played by the
form go. By (BI3), Condition 1.4 is fulfilled. The role of the operator Qo from Subsec-
tion 1.3 is played by the operator of multiplication by the matrix-valued function Qg (x).
By ([@I8)), the parameter A satisfies (LO). Estimates (5.I4) and (EI3) correspond to
(L2) and (T3).

Finally, the role of the operator pencil B(t,e) (see (LI0)) is played by the operator
family (5I6): B(t,¢;0) := B(t0,¢).

Thus, all the assumptions of Chapter 1 are satisfied.

(6.1)

6.2. In accordance with Subsection 1.5, we should fix a positive number § such that
§ < kd°/13. Taking (5.7) and (5.8) into account, we put

1 1 T 1
(6.2) 6 = qreary = graoll fHE2 g Iz -
Relations (1)), (£.2), and (6.1 show that
1/2 1/2 _
(6.3) 1X:0) < a9l 1 f s V2O = Ifllze, 6 €S

Instead of the sharp value of the constant (LI2]), which depends on 0 and is equal
to 6Y/2((24 ¢ + )| X1(0)]12 + C(1) + e3 + [ fI12 ) ~/2, we take the following value,
which is suitable for all 8 € S
64)  10=06"2(2+ +e)aulglle I fIT. +CO) +es+NIfIZL)

Condition (1) is satisfied due to (@X). Then, by (5I4), the operator B(t,e;0)
satisfies a condition of the form (Z2):

(6.5) B(t,e;0) > &>+, k=t0eQ, 0<e<1,

—1/2

1
(6.6) Gy = 3 min{ke,, 26}.

6.3. The effective characteristics. In the case where f = 1,,, the effective character-
istics were constructed in [Su6l Subsections 6.3, 6.4, 7.1]. In this subsection, we formulate
the necessary results.

Below, all the objects corresponding to f = 1, are marked by the upper hat “”. We
have § = $ = Lo(Q;C"). By Subsection 6.1, X (£;0) = Xo + tX1(8), Xo = h(x)b(D),
Dom X, = H'(Q;C"), and X;(0) is the bounded operator of multiplication by the matrix
h(x)b(8). Formally, A(t; 0) = X (t;0)* X (£;0). If f = 1,,, the kernel (5.0) coincides with
the subspace of constants 9 = {u€eH : u=ceC"}. The orthogonal projection P of
$ = L2(9;C™) onto the subspace 9 = C" is the operator of averaging over the cell Q:
Pu = Q| Jou(x) dx.

Next, f/(t; 0) = Yo + tf’l(ﬁ): H — 5, where You = Du = col{Dqu,...,Dgu},
Dom Y, = H'(Q;C"), and Yi(0)u = col{fiu,...,04u}. The operator Ya: $ — § acts
on the domain Dom Y, = H'(Q;C") and is defined by You = col{alu,.. .,aiu}. The
role of the form g[u, u] is played by the form [, (du(x)u, u); the role of the operator Qo
is played by the identity operator I.
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The operator pencil f?(t, g;0) is formally given by the expression
B(t,e;0) = A(t;0) + (Y5 YV (1:0) + YV (t;6)*V2) + £2Q + AL
In accordance with Subsection 1.6, we introduce the operators Z and g . Now the

operator Z depends on 6. As was shown in [BSu3l, (4.2)], ( ) = Ab(6 )P, where A(x)
is a T-periodic (n x m)-matrix-valued function satisfying

(6.7) B(D)*g(x)(B(DIAX) + 1,0) = 0, /Q A(x) dx =

~ ~

In accordance with [Su6l Subsection 6.3], Z = AP, where A(x) is a I-periodic (n x n)-
matrix-valued function satisfying

d
(6.8) b(D)*g(x)b(D)A(x) + > Dja;(x)* =0, / A(x) dx = 0.
j=1 @

Now the spectral germ S defined in Subsection 1.7 depends on 8. By [BSull Chapter 3,
§1], the operator S (0): N — N acts as the operator of multiplication by the matrix
b(0)*g°b(0), 8 € S¢=1. Here ¢ is a constant positive (m x m)-matrix called the effective
matriz and defined by

(6.9) =0 / 9(x)(B(D)A(x) + 1,,) dx.
Q

As in [Su6l (7.2), (7.3)], we define the constant matrices

(6.10) Vim0 [ (D)AG) g(x)PDIR () dx.
(6.11) W= Q! /Q(b(D)K(x))*g(x)b(D)X(x) dx.

Now the operator L(t, ) defined by (Z2I) depends on 6. We return to the parameter
k =1t0: L(t,&;0) = L(k,e). It turns out (see [Su6, (7.8)]) that

d
(6.12) L(k,e) = b(k)*g°b(k)+e(—b(k)*V—V*b(k))+e > (a;+ a})k;+e* (=W +Q+AI),
j=1

where (a; + a3) == [ [,(a;(x) + a;(x)*) dx and

(6.13) Q.= |Q|_1/Q dp(x)

We put
d

A’(k) = (D +k)*g°b(D + k), I°(k) = -b(D+k)*V+> a;(D; + k),
BO(k,e) = A%(k) + e(VO(k) + VO (K)*) +2(Q — W + AI). 7"
Then

~

(6.14) Lk, e)P = B°(k,e) P
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6.4. The case where f # 1,. Now we consider the operators B(e) of the general
form [@22) and the corresponding families B(t,;60) described in Subsection 6.1. To
mark the objects corresponding to the case of f = 1,, with the same b, g, a;, j =1,...,d,
A, @, we use the upper hat “~7”. R

We apply the approach of Subsections 1.10-1.12. Now $ = § = Ly(;C"), and
the isomorphism M is the operator of multiplication by the matrix-valued function f.
The role of the operator G of Subsection 1.10 (see (L40)) is played by the operator
p acting as multiplication by the matrix-valued function p(x) := (f(x)f(x)*)~!. The
block of p in the kernel 9N = C" is the operator of multiplication by the constant matrix

p =197 [,(f(x)f(x)*)tdx. The role of the operator M (see ([31))) is played by the
operator of multiplication by the constant matrix fy := (ﬁ)_l/ 2. Note that
(6.15) ol < fllzwes 1F6 <N lmwe:

By (.7), A(k) > &, |k[*I, k € ), where &, = a0||g’1||zolo. The constants ¢, and ¢,
satisfy ¢, = ||f_1||£305* Asin (T4D), g < ||f_1||ZiB, and by (G.6), ¢, = 3 min{xc.,28},
g = %min{mﬁ*,Q,@}. Thus, ¢ < ||f*1||zo2°g* In accordance with (222, L(k,¢) >
(k| + £2)1,,. Hence, by (6.1I5]), we have

(6.16) foL(k,e)fo > & (k| + €)1, keR%

Cx
Cu

§7. APPROXIMATION OF THE OPERATOR fexp(—B(k,¢e)s)f*

7.1. The principal term of approximation. The principal term of approximation
for the operator fexp(—.A(k)s)f* was obtained in [Su2, Subsection 6.2], approximation
with the corrector term taken into account was found in [Subl §8]. Now we consider the
exponential of the operator

(7.1) B(k,e) = f*B(k,e)f.

To apply Theorem 3.2 to the operator (7.I), we need to specify the constants in
estimates. The constants ¢1, C(v), K, co, C2, c3, ¢4 were defined in §4 (see (@1, (E9),

E11), @I13), (£14), [@I6). The constant A satisfies condition [@I]]), 8 was defined in
#I9), c. and ¢, were defined in (57) and (G:6). The constants § and 7y are given by

62) and [©3).

In accordance with ([29) and (L30)), we introduce the constants C’(Tl) and C(TQ), which
now depend on the additional parameter 8 € S¢~1. Using [@7) and (63)), we take the
following overstated constants suitable for all 8 € S4~1:

1 1y — -
0y = max {2+ ag g™ s (e lgllz 117 +C1))57),

2 _
O =max {cy + 1, (aullgll IfIF. + IFIF +CQ) +es+ NIFIF )6}

Using these C(Tl) and C’(TZ), we define the constants Cp, C%, Cy, Ca, Cs, Cs by (L31),
([C32), @33), (ZI3), and 2I9); then these constants do not depend on 8. As in (217),

we put
(7.2) C, = %min{é*;(STO_z}.
We denote E%(k,e,s) := foe_f‘)éo(k’s)f"sfo and apply Theorem 3.2. By (G.I4), from
B3) it follows that
[ fem B0 " — €%k, 8) Pl < CollFIIf . (1 -+ 8) /26 R0,

(7.3)
s>0, |k*+e*<7d
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Now we obtain estimates in the case where |k|? + &2 > 7. By (6.3,

(7.4) ||fe*B(k7s)Sf*||ﬁ_>ﬁ < ||f||2LmefE*(|k\2+s"‘)s'
Using (€14), (€15), and (GIG), we get
(75) ||€O(k,5, 8)13”5455 < |f0|26—5*(\k|2+5 < ||fH2 —c* (|k|%+e )

Combining (Z4), (ZH), and (Z2)) and using the inequality e~ < (14 a)~Y2 a >0, we
see that for s > 0 and |k|? + &2 > 7¢ the following is true:

||f678(k’5)sf* _ 50(1{ g, 5)18“55—”5

< 2|| f[|7 . max{1; V262 (1 4 5) 71 2e (6P 490
Estimates (T3)) and (Z.8) imply
| fe B f* — £0(k, e, 5)Pl|5s

< |12 max{Co; 235 V2rg (1 4 5) V2 (K40 g e )

(7.6)

(7.7)

Now we show that the operator P can be replaced by I in (7). Since £°%(k, ¢, s) is
the operator with the symbol fyexp(—foL(b + k,¢) fos) fo, relations (6.15), (6.16), and
[2) yield

10 (K, &, 8)(1 = P) gy < | fI3 . sup e (ktbleeds
(7.8) 0#bel’
< |1 F13 L max{1; V2&E Py (1 4 5) "V 2em (K0 e Q)

Combining (7)) and (Z8]), we arrive at the following result.

Theorem 7.1. For s > 0, k € clos SNI, and 0 < e <1, we have
er—B(k,s)s]c* _ go(k &, 8)lsos < Ci(1+ 8)—1/26—(|k\2+52)0*s.

Here Cy = ||fI|2_ max{Ce; 22 >3} + || £]12 _ max{1;v2& /*rg 1}

7.2. Approximation with the corrector term taken into account. To apply The-
orem 3.3 to the operator family B(k,¢), we need to specify the values of the constants.
The constants Cr, Cy, Cy were defined in Subsection 7.1. In accordance with ([25]),
recalling (G.3]), we can take the following overstated value of the constant cs:

2
cs = (g1 21l e + aC)Y2) 4 20(0) Y2\ f||1.. +max{|col; es} + NIFIIZ

For this ¢5, we define the constants Cs, Cy, C7, Cs in accordance with (36]), (I38),
229), and ([232)); then these constants do not depend on 6.

Now, by using the method of Subsection 1.13, we introduce the operators ZP(O) and

Zp acting in $). Let a I'-periodic (n x m)-matrix-valued function A,(x) be the solution
of the problem

b(D)" g(x) ((D)A,(x) + L) = 0, /Q p(x)A, () dx — 0.

Here the equation is understood in the weak sense. Cf. [BSu3, §5]. Obviously, A,(x)
differs from the solution A(x) of problem (617) by a constant summand:

(7.9) Ap(x) = Ax) + Ay, AD=—(p)""(pA).

In [BSu3l Subsection 7.3], it was checked that

(710)  IAY] < Cpi=m 2 (2r0) Hag gl 2o 2 I IR
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As in [BSu3l §5], the role of the operator 2@ of Subsection 1.13 is played by the
operator Z,(8) = A,b(8)P. Since b(D)P = 0, we have tZ,(0) = A,b(D + k)P, k € R

In accordance with (58], we introduce the operator Zp in $ that takes an element
i € § to the solution w(?) € H'(€;C") of the problem

d
b(D)*g(x)b(D)w') + Z Djaj(x)*c=0, /Qp(x)w(p)(x) dx=0, c=Pu.

Let a I'-periodic (n x n)-matrix-valued function Kp(x) be the solution of the problem

d
b(D)*g(x)b(D)&,(x) + 3 Dja;(x)" =0, / p(x)R, () dx = 0.
=1 @

This equation is understood in the weak sense. Note that
(7.11) K,(x) = Ax)+A9, A =—(p) " (ph),
where A is the D-periodic solution of problem (6.8). As was shown in [Sul (7.52)],
1Al () < (2r0) " Can'2ag 197 l1we
where the constant C, is defined below in ([T224)). Hence,
ORI < 172 1902 K] Ly < (2r0) " Can2ag g™ nw £ 100 7Y2.
Thus, Ag satisfies the estimate
(7.12) AD] < Gy = (2r0) ' CanPag M g Ml 117N H I 1202
By the definitions of Zp and Kp, we have Zp = /N\p]?’.
Since t2p(0) = A b(D + k)P and Zp = [N\pﬁ, Theorem 3.3 implies the estimate
13) |B(k,e)'/2 (fe BR=f* — (I + Ab(D + k) +eR,)E0(k,e,5)P) |
13
< Csllfllpos te F+e9Cs o500 0<e<1, [k?+e2<72.

Now, using (Z9) and (ZII]), we show that, in (ZI3)), A, and /N\p can be replaced by
A and A, respectively. By referring to (BI5]) with f = 1,,, it is easy to check (see [Suf,
(7.32)]) that

(7.14) 1Bk, &) 2P|, <Cr(k*+2)"2, ke,
where Cp = max{(2 + ¢ + cQ)l/%&/?ngnl/2 (C(1) + & + |A)Y/2}. Combining @I,
3, [CI0), (C12), (1), the identity b(D)P = 0, and (2]), we obtain
1B(k,£)"/2(A%(D + k) + £A%) %k, e, 5) Pl g5
(7.15) < [|Blk,2)" 2P (o * A k| + [R5 [e) 11, e~ <D
< 2CpE M3 (a)?C, + Cp)s~le (=90 50 ke Q.
From (ZI3), (CI5), and ([T9) it follows that

(716 |B(k,e)t/?(fe B f* — (I + Ab(D + k) +eA)E%(k, e, 5) P) | .

2 2
< Cys7le (K00 o500 0<e<1, kP>+e2< 7,

where Cy = Cs||f|l 1. +2Cp& | f12_ (r/*C, + C,).
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7.3. Estimates for |k|>+c? > 73. Now we estimate each term under the norm sign in

([CI8). From () it follows that
Hé\(ka 6)1/2f-e—l3’(k,5)sf*u‘’526 — (é\(k78)f€_6(k’s)sf*u7 fe_B(k,g)sf*u)ﬁ
— S px — s|12
= 1B, e) 2 B frul < Bk, )2 B2 72l

By ([6.3) and (Z.2),
||Bk€1/2 —B(k,e)s

(7.17)

< sup 20471/287167(15/2
azé.(|k|>+<?)

< 2wl/z 11 ,~(|k|*+e?)Cus

||Y)—)f)

, 5>0, |k +e2> 73
Hence, by ([ZIT), for s > 0 and |k|? + &% > 7¢ we have

(7.18) 1Bk, &) /2 pe B0 g7 < 2l & Py s e R,
By (T2), (Z5), and ([Z.I4), for s > 0 and |k|? + 2 > 72 we obtain
(7.19) 1Bk, e)' /2% ke, 9) Pl < 207 Cp g ts™ e (RN,

Now we estimate the norm of the corrector term:
|B(k,£)/2(Ab(D + k) + R)E°(k, &, 5) P,
(7.20) < ||B(k, &) ?AP|, o [[b(D +K)E (K, e, 9) P o
+e||Bk,e)' 2AP| | [€%(k, e, 5) P -

To estimate the norm of the operator b(D + k)EY(k, ¢, 5)13, we use ([@1), (C2), (T30,
and the identity b(D)P = 0:

~ 1 2 _ 2 2
[b(D +K)E0(k, e, 8)P|, ., < oy *[K]|| )13 e (s
< 2041/2\/71||f-HL |k|(‘k|2 te ) 187167(“(‘24'62)0*5, k € ﬁ

The operators B(k, E)I/QAPm and B(k, 5)1/2AP were estimated in [Suf, Lemmas 7.2
and 7.3]. Now we formulate the results.

(7.21)

Lemma 7.2. Fork € ﬁ, 0 < e <1 we have

(7.22) 1Bk, &) /2APy |, < Calk,e),
(7.23) |B(k,e)'2AP|| ., < Cilke),

where Cp(k,€) and Cx(k, ) are defined by
Cnle)? = 2+ + eo)m(lgll2 +cVIkl)” + D22,
Ci(k,e)? = (24 ¢l +ca)n|Q 7 (c® +c4)|k\) + g2,

Here
d
(724) Cg:Z/ |a](x)|2an
=179
M = (2ro) " ad g g 12 gl

® = (C(1) + &+ N)m(2ro) 2ag g e gl
¢ = Coag g2, e = (2r0) T Caag 2l Nl e
® = (C(1) + & + |A]) (2r0) 2C2nag*|lg~ M7 121"
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Corollary 7.3. Fork € ﬁ, 0 <e <1 we have
(7.25) 1Bk, &) 2APn| 5 < Calr1, 1), ||B(k,e) AP, . < Cx(r,1).
Note that relations (ZZI) and (Z22) imply the estimate
1Bk, &) AP, oD+ K)E ke, )P o
(7.26) < Cnlk,2)ay 28 1 FII7 K| ([K[? 4 %)t e (M
A [ R I

where

2
0%24041(24—0%4—02) (HgHL Ty —|—c(1)) +agc?.

Similarly, by (Z.2), (T5), and ([Z.23), for [k|* + &2 > 78 we have
730 B 2RB 6K css) Pl < & O s~
where
C’i = (24 +e)n|Q 127yt 4 )2 4 460,
Now we summarize the results. From (20), (C26]), and ([T27) it follows that

[B(k, €)"/?(Ab(D + k) + eA)E%(k, &, 5) P||

SEYIFIR (O + Cy)ste K40 s 50, k2 42 > 72,
Relations (TI8), (ZI9), and (Z2])) yield

|B(k, &) /?(fe B f* — (I + Ab(D + k) + eA)E%(k, e, 5) P

2 2
< Chos te UKP+e0Cs o5 ) k> + &2 > 72,

(7.28)

(7.29) )Hﬁ%ﬁ

where Cho = 2| flo..& 2t + 2| fI3 _Cr& gt + &M IFIR L (Ca + C) -
7.4. Combining (CI6) and (29, we arrive at the estimate
Bk, e)/2(fe B f* — (I + Ab(D + k) + eA)E%(k, €, 5) P)

(7.30) ) o H’“f’
< max{Cy; C’lo}s_le_(‘kl +eCs g0, ke

Now we show that the operator P can be replaced by I in the principal term of
approximation. For that, we estimate the norm of the operator B(k,¢)'/2€%(k, ¢, s) P+.

By (&I5) with f =1, we have
(7.31) ||B (k,e) 1/280(k ,8 PluHS6 (242 4o ||A 1/26’0(k,573)16LuH523
' +(C(1) + 2+ )20k, 2, )PHul2, u e .

Since £°(k, ¢, s) is the operator with the symbol fy exp(—foL (b +k, 6)f08)f0, we can use
@), 6I5), 616), (Z2), and the estimate |b+k| > ro, for k € €2, 0 ;é b € I, to obtain

A 20, e, )P o < gl 2 A3 0r/? sup b+ ke (ke
(7.32) 0#bel’
< 2lgll/ 2 I f13 ay 2 g b e (P01 5 g,
Similarly, by (@I6) and (72),
(7.33) el|E0k, e, )P o < IR T g s e (KTHENCs g5,

Substituting (32)) and (33)) in (T3] yields
(7.34) 1Bk, e) /20 (e, )P ||, < Crys e (K0 g5 g,
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where Ciy =g & f113_ (4901 (2 + ¢ +e2) + C(1) + 8 + [ADY/2.
Combining (IBI]) and (IBZI), we obtain the estimate
|B(k,e)/?(fe BResf* — (I + Ab(D + k)P + cAP)E%(k,¢,5)) .,
< Cgs_le_(‘k|2+€2)c*s, s>0, ke (NZ,

with the constant Co = max{Cy; C10} + C11.

(7.35)

7.5. Estimates for 0 < s < 1. Now we show that for s > 0 the left-hand side of (Z.35)
can be also estimated by Czs~'/2 exp(—(|k|? + £2)C.s), where C3 is some constant. For
0 < s < 1 this estimate is more preferable compared to (35]), but estimate (33)) is
preferable for s > 1. Now we estimate each term under the norm sign in (Z.35)) separately
Using (65), (Z.2), (TI7), and the inequality e~/ < a~/2, a > 0, for s > 0, k € ()
we get
(7.36) e
By (BI5) with f = 1,, we obtain
B(k,£)Y/26%k, ¢, 5) < (243 + )| AK)V2E K, e, 5) ||
s | o < 4 e A0
+ (C(l) +e3+|A\)e HE (k’878)||5§—>5§'

Since £°(k, ¢, s) is the operator with the symbol f, exp(—fof/(b +k,¢)fos) fo, we can use
@I, ©I5), ©I6), (7J), and the inequality e~*/? < a~/? to show that
1A)2E0 (k2 8) | g < Mgl 2I1FI7 a1 sup [b + ke o (P
(7.38) ber
< g2 IF13 oy 2a 271 2em (P enCen g 50, ke .

Similarly,

(739) e,z 8)lgmg < [FI7 &2 2em (MHNCe 550, ke
From (Z37), (C38]), and [T39) it follows that

(7.40)  [|B(k,e)' 2%k e, 5)|, o < Cros™V2e (K00 550 ke,

where Cro = &2 f113 _ (gl 01 (2 + & + e2) + C(1) + 8 + [A)V/2.

Now we estimate the norm of the corrector term. Substituting (Z28) in (C20) and
using (1), (T2), (C3), for s > 0 and k € Q we get
|B(k,2)"/?(Ab(D + k) + eR)E°(k, e, 5) P
< AR B2 (@1 2Cn (1, 1) + Cx (1, 1)) V2 (s,
Combining (7.306]), (740), and (T41)) yields
|B(k,e)/?(fe BRI f* — (I + Ab(D + k)P + cAP)E%(k,¢,5)) .,

2 2 ~
< Cys 12 (K40 o500 ke (),

(7.41)

(7.42)

where Cs = || f.. +Cua + [/} & (@1 Ca(r1, 1) + Cx (1, 1)),
Using (C42) for 0 < s < 1 and ([C39) for s > 1, we obtain the following result.

Theorem 7.4. Under the above assumptions,
|B(k, ) /?(fe B f* (T4 Ab(D+k)P+eAP)E% (k¢ 5)) |5 < P1(k, 5,2),

(7.43) ~
s>0, keclos), 0<e<l,
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where

(e s.c) = | Cos Tl IPnef s 2,
) Cys 1/26_(““ )0 if 0 < s < 1.

§8. APPROXIMATION OF THE OPERATOR fexp(—B(e)s)f*

8.1. The principal term of approximation. Now we return to the study of the
operator B(e) acting in Lo(R?%; C"). We also consider the operator B(e) corresponding
to the case where f = 1,,. The operator B(e) is generated by the quadratic form b(e)

given by [@I7) with f =1,,.
In accordance with [BSull Chapter 3, §1], the operator

(8.1) A = b(D)*¢°b(D)

is called the effective operator for A = b(D)*g(x)b(D). The effective matrix ¢° is given
by (69). Next, we put

d
(8.2) V= -bD)*V +> aGD;,
=1

where V is the matrix defined by ([€.I0). Consider the operator

BO(e) = A° + (30 + (V°)") +%(Q — W + AI).
Here W is the matrix (GI1). The operator BO( ) is a second order DO with constant
coefficients. The symbol of the operator BO( ) is the matrix (6.12).

We denote E%(e, s) := foe~ foB°(e) fos f,. By the direct integral expansions of the oper-
ators B(e) and B°(e) (see §5), Theorem 7.1 implies the following result.

Theorem 8.1. Suppose that the operator B(e) satisfies the assumptions of Subsection 4.5.
Then for s >0 and 0 < e < 1, we have

_ s — —£20,s
[ fe BEspr — €%, HLz R%;Cn)— Ly (R1;C7) <Ci(1+5) e e,

2. Approximation with the corrector term taken into account. In this sub-
section we use Theorem 7.4 to obtain a more accurate approximation for the operator
fe~B(E)s f* Note that the operator b(D) expands in the direct integral of the operators
b(D + k). Under the Gelfand transformation, the operators of multiplication by the
I'-periodic matrices A and A turn into operators of multiplication by the same matrices
A and A. Next, we put II = Z/lfl[ls}l/l, where []3] is an operator in H (see (B.I))) that
acts layerwise as the operator P of averaging over the cell. In [BSu3, Subsection 6.1], it
was shown that II is a pseudodifferential operator in Ly (R%; C™) and its symbol is X5 (8)-

Here x¢(§) is the characteristic function of the set Q. In other words,

() (x) = (2) /2 / ¢1008) (Fu) (€) d,

Q

where F stands for the Fourier transformation.
Thus, under the Gelfand transformation, the operator

B(e)Y?(fe BEs f* — (I + Ab(D)IT + eAT1)E% (e, )

expands in the direct integral of the operators under the norm sign in (43]). Hence, by
([T43]), we obtain the following result.
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Theorem 8.2. We have

5 Hé(a)l/Q(fe_B(E)sf* - (I—i—Ab(D)H—l—E/N\H)EO(E,s)

(8:3) M Loty 1oy < P2(s,),

s>0, 0<e<1,
where

Cos~le =0 if §>1,
8.4 0a(s,6) = <
(8.4) 2(s,¢€) {C35_1/26‘52C*S if 0<s<l.

8.3. Elimination of the operator Il from the corrector term for s > 1. Now
we analyze the possibility of replacing the operator II by the identity operator I in the
corrector term. For this, we estimate the norm of the operator

B(e)Y2 (Ab(D) + eR)E%(e, 5)(I — I0).
Proposition 8.3. Denote Z(¢,s) = £%¢, s)(I — ). Then, for any | > 0, the operators
b(D)Z(e, s) and €=(g, ) are continuous mappings of La(R%;C") to HY(RY;C"), and
2
(8.5) [b(D)E(E, $)| Ly ()t (1) < a}/zclsi(lﬂ)/zefs @5 5>0,
(8.6) ell=E(e, 8) | Ly (re)— HE (R < Cs~HD/2e=Cus o 5 .

Proof. Since E(e, s) is the pseudodifferential operator with the symbol

foe™ €0 (1 g (£)),
by (1), G5, and (6I6), we have

16D)E(e, )|l Lysrrt < (I FI2_ sup [€](1 + [€[2)1/ 26087 +Ds
(8.7) , [&l>ro e
elZ(e, )Lyt < |fI13 sup (1 + |€]%)1/2e (€74,
[€]>70

Here we have used the relation 1 — xg(§) = 0 for |§] < ro. Applying (Z2)) and 8.1,

we obtain estimates (8H) and ®8) with C; = || f||7_¢ lH)/Q( 52+ 1)/25; and v =
S, o g aUTD/2e=0/2 — (] 4 1)4HD/26-(4D)/2, O

Proposition 8.4. Suppose l =1 ford =1,1>1 ford =2, andl = d/2 for d > 3.
Let [A] and [A] be the operators of multiplication by the matriz-valued functions A(x)
and A(x ), respectively. Then the operators g'/?b(D)[A]: HY(R%; C™) — Ly(R% C") and
g /2b(D)[A]: H' (R C") — Lo(R% C™) are continuous mappings, and

(8.8) ngb(D)[A]HHL(WHMW) < €y,

(8.9) Hg1/2b(D A/N\]HHL(RL{)%LQ(RJ) < Cd.

The constants €4 and €4 depend only on l, the initial data [E23), and the parameters of
the lattice T'.

Proof. Estimate (8.8]) was obtained in [Subl Proposition 9.3]. The constant €4 can be
written explicitly (see [Subl, Subsection 9.2]).

Now we prove [83). Let v;(x),i = 1,...,n, be the columns of the matrix A(x). Then
vie H 1(Q;C") is a weak I-periodic solution of the problem

d
(8.10) b(D)*g(x)b(D)v; + Z Djaj(x)"e; =0, /Qvl-(x) dx = 0.
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Here {e;};=1,... n is the standard orthogonal basis in C™. Since v; is a I'-periodic function
with zero mean value, we have ||vi|[z,) < (2ro) '||Dv[|1,(0). Hence, by using the
“energy” inequality, it is easy to check that (see [Su6l (7.51) and (7.52)])

(8.11) IVill @) < (14 (2r0) %) *Caag g™ l1we
where C,is the constant (7.24]).
Recall that b(D) = S>¢_, by Dy, and, by (4.1), [bg| < al/?. Let u € H'(R?). We have
d

(8.12) g"?b(D)(viu) = g2 (D)vi)u + Y ¢"/*b(Dyu)v,.
k=1

We estimate the right-hand side in (812l):

d 1/2
813 | Semouv]  <laliZal e ([ e
k=1 Ly (R%) Rd
Next,
(8.14) /|Du|2|vi|2dx:2/ Dul2|v; 2 dx.
R4 Q+a

acl
Now we use the embedding H'(£2;C") C L,(£;C"), where ¢ = oo for d = 1, ¢ < oo for
d=2,and ¢ =2d/(d —2) for d > 3. For d =2 we choose ¢ = 2/(l — 1). Let C(d,n) be
the norm of the corresponding embedding operator. Then

(8.15) [Villz, @) < C(d n)[[villr1(0)-

By the Holder inequality,

(3.16) [ WP dx < il oy DUl
Q

where p=2ford=1,p=2q/(¢g—2)=2/(2—1) for d =2, and p = d for d > 3.

Also, we use the embedding H!=(Q;C%) C L,(;C?%), where | = 1 and p = 2 for
d=1,1<l<2andp=2/(2—1) ford=2,1=d/2 and p=d for d > 3. Let &; be the
norm of the corresponding embedding operator. Then

(8.17) IDullz, @) < Callull g
Substituting (B.I5) and (8I7) in (BIM), we obtain
/Q [vil*[Duf? dx < C(d, n)*E]|[Vill 1 o 1ull e 0)-

Hence, by ([8I4) and the periodicity of v;, we have

(5.18) [ DUl dx < €22 il o By
By [B13), inequality (8I8) implies the estimate
d
(819) || Y g"u(Druvi|| < gl 2en/*d" 2O m)2alVill o il o .
k=1 Lz (RY)

Next, ([8I0) yields the identity
d
(8.20) / (g(x)b(D)vs, b(D)w) dx + / S a; (%) es, Dyw) dx = 0
R4 Rd ©
Jj=1

for all w € H(R?;C") such that w(x) = 0 for x| > R (with some R > 0).
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Let u € C°(R?). We put w(x) = |u(x)|?v;. Substituting this in (820), we obtain
(ct. [Su6l (8.36)])

0 /d 19"/ 2b(D)v;|*|ul® dx = Ty + Ta,
R,

d
(8.21) S1=- /Rd <91/2b(D)Vi= > 9" 2br (D) + U(Dkﬁ))vz‘> dx,

k=1
/ Z ater, D;(|ul?v,) / Z ates, (D;(uvy))a+viu(D;n)) dx.

We follow [Su6] to estimate the term J:
1
1< 5 [ 192Dl dx -+ 2lglsard [ Dl dx.
2 R4 Rd
Combining this with ([8I8]), we see that

1 N
(8.22) 71l = 570 +2lg]l2.. 22dC(d, 0?2 1villE o Il ga)-

Now we proceed to estimating the term J>. By condition (£.8]) on the coefficients a; and
the condition on [,

(8.23) /]Rd laj ()P |ul* dx < CF llagll7, o) lulFp ga)-

Here Cq,, is the norm of the embedding operator H'(Q) C Loy (,—2)(€2). We have
(cf. [Subl)

d
%1 <Y [ (D wlagllal + il IDyla ) dx
j=1

d
1 1
2 2 2 20,12
< M/]Rd |D(v;u)|* dx + /Rd |v;]?|Du|” dx + (4M + Z) jgzl /Rd la;|*|ul® dx

for any p > 0. Combining this with (8I8) and (823), we arrive at the estimate

72| < M/Rd ID(viu)|? dx + C(d, n) 3 ||vill 72 o ull 37 o)

(8.24) 11 a
+ (34 22) e S sl 3 e
1 =

From BZI), 822]), and [824) it follows that

1 ~
5% < u/Rd ID(viu)[? dx + (2l|gll .. ord + 1)C(d, n)*eF [ Vil Fr o 1l o e

(8.25) .

d
1
(1 30) Bae Dot ool
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Comparing (812), (8I9), and ([B25]), we obtain the inequality

Zgl/Qbk Dru)v;
k=1

(8.26) < (10]lgll L rd +4)C(d, n)*EF Vil ) 1wl Fr gy
d

(14 )0 3 o ol + 40 [ ID(vin) e
Jj=1

2
lg* 26D (viu)l|7, ey < 270 +2

Ly (R%)

The lower estimate (L) with f = 1,, implies
1 1 _1y—
i [P dx < 5l D) i) 1= goolla” L
Together with (826) and ([&II) this yields |lg'/2b(D)(viu)|| p,ra) < € lull g1 ra), where

€} = (20]lgllz.rd + 8)C(d, n)*Ei (1 + (2r0) ") Cilag llg |11, 4
+ (24 1605 Mg 12 )CE 1) laslE, o

j=1

Thus, ||gl/2b(D)[Vi]||Hl(Rd)_)L2(Rd,) <¢&,,i=1,...,n, whence we see that (83 is fulfilled
with the constant &d =nl/2¢,. O
Proposition 8.5. Supposet =0 ford=1,t>0 ford=2, andv=d/2—1 ford > 3.
Then [A]: HY(R%; C™) — Ly(R%;,C™) and [A]: HY (R C™) — Ly(R% C™) are continuous
mappings, and

(8.27) AN e ey Lo ey < €,

(8.28) IA Hee®a)— Lo @) < €5

The constants € and € depend only on the initial data [E23) and the parameters of
the lattice T'; in the case where d = 2 they depend also on .

Proof. Estimate ([827]) was obtained in [Subl Proposition 11.3]. The constant €, can be
written explicitly (see [Subl, Subsection 11.2]).
Now we prove (828). Assume that 0 < v < 1 in the case where d = 2. As in

BIAD)-BI8) with I — 1 replaced by t, we obtain
[ GBI dx < OB e ey

Here ¢, is the norm of the embedding H*(2) C L,(£2), where t =0 and p = 2 for d = 1;
O<t<landp=2/(1—rt)ford=2;and t=d/2—1and p=d for d > 3. Together
with (RBII)), this implies (828]) with the constant

€ = n'20(d,n)e(1 + (2r0) %) 2 Cacy Mg |1 - O
Now, using Propositions 8.4 and 8.5, we arrive at the following result.

Proposition 8.6. Suppose l=1ford=1,1>1 ford=2, andl = d/2 ford > 3. Let
0 <e <1. Then B(e)Y/2[A]: H(R?;C™) — Ly(R%: C") and B(e)Y/2[A]: H'(R%;C") —
Lg(Rd,C”) are continuous mappings, and

829)  1BE" Al ey rame) < €. 1BEY2 Al i1(ao) s acae) < T

The constants €5 and Cg depend only on the initial data #23) and the parameters of
the lattice T'; in the case where d = 2, they depend also on .
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Proof. Let u € H'(R% C™). By ([@2I) with f = 1,,, we have
(830)  [IB(e)'/Aullf, < 2+ ¢f +e2) | AV Aul[F, + (C(1) +2 + A AulF,.
Obviously, v := [ —1 satisfies the assumptions of Proposition 8.5, so that (827]) implies
(8.31) 1Aulf?, ey < (€a)* a1 gay < (€a)° [ull37(gay -

By (B3), we have ||.A1/2Au||L2(Rd) < €2Hu||Hl(Rd) Together with (830) and (§31)), this
yields the first estimate in (829) with the constant €% = (2 + ¢f + ¢2)€% + (6’(1) +C3+

Al €3
Similarly, by usmg ®3) and (M) one can prove the second estimate ([829) with the
constant QfB =(2+ct+ 02)62 (C( )+ ¢é5+ \)\|)€~. O

Combining (&), (8.4]), and ([829]), we obtain
|B(e)Y/2 (AB(D) + A)E%(e, $)(I — I1)|| 1 (24) s Lo ()
< (€pay/?C+ &pCy) s~ 1HD2e="Cos 550, 0<e<],

where l = 1 ford = 1,1 > 1 ford = 2, and | = d/2 for d > 3. If s > 1, then
s~(+1/2 < s~1 In the case where d = 2, we fix [ (for instance, [ = 3/2). Combined
with Theorem 8.2, this implies the following result.

Theorem 8.7. We have

Hl?(e)l/z (fe*B(e)Sf* _ ([ + Ab(D) + 57\)50(6, s) <Cs —1,-¢*C.s

)||L2(Rd)—>L2(RC’) = ’
s>1, 0<e<l,

where Cy = Ca + @Ba}/zcl + EBCZ.

CHAPTER 3
HOMOGENIZATION OF PERIODIC DIFFERENTIAL OPERATORS

§9. APPROXIMATION OF THE OPERATOR f€exp(—B.s)(f¢)*

9.1. The operators l§€ and B.. For any I'-periodic function ¢(x), x € R?, we denote
¢°(x) := ¢(e~'x). Consider the operator A. = b(D)*g°b(D) in Ly(R%; C") generated by
the closed quadratic form . [u, u] = (¢°b(D)u, b(D)u)r, gy, u € H'(R%; C"). The form
a. satisfies the following estimates similar to (3):

(9-1) aollg™H Izl IDulZ, < 8cfu,u] < aiflglr. [DulZ,, uwe H'(RECH).

Next, let Y: Ly(R%:C™) — Ly(R%C4) be defined by Yu = col{Dyu, ..., Dgu},
where u € H*(R%;C"). Let 372,5: Ly(R%;,C") — Ly(R4;C9™) be the operator acting as
follows: ﬁgygu = col{(af(x))*u,..., (a5(x))*u}, u € H'(R%C").

Let du(x) be the matrix-valued measure in R¢ defined in Subsection 4.4. We define a
measure dy(x) as follows. For any Borel set A C R?, we consider the set e 7*A 1= {y =
e~ x: x € A} and put pf(A) := e?u(e71A). Consider the quadratic form g. defined by
ge[u,u] = fRd (dps(x)u,u), u € Hl(Rd; cn).

Suppose that all the assumptions of Subsections 4.1-4.5 are satisfied. In Ly(R%; C"),
we consider the quadratic form

bcu,u) = a.[u u] + 2Re(Vu, Vo cu)r, + G:[u,u] + Alull?,, ue H'(RY).
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Let T. be the unitary scaling transformation in Ly(R%; C") defined by (T.u)(y) =
£%?u(ey). For any u € H'(R% C"), we have

(9.2) a.[u,u] = e 241w, Teu],  befu,u] = e 2b(e)[Tou, Toul,

where @ is the form defined in Subsection 4.2 with f = 1,, and E(E) is the form (£17)
with f = 1,. From ([@2) and estimates (£20) and [@21)), it follows that

~

oy Mz Saluul+Bluli, weH'®ECY),
belu,u] < (246 + e2)efu,u) + (C(1) + & + AD[ullz,, ueH'R:GC.

Thus, the form EE is closed and positive definite. The selfadjoint operator in Ly(R%; C™)
generated by the form b, is denoted by B.. Formally, we can write

d
B. =b(D)"g*b(D) + Y (a5D; + D;(a5)*) + Q° + AI,
Jj=1

where Q° should be viewed as the generalized matrix-valued potential generated by the
measure dpu°.

Next, in the space Lo(R%; C"), we consider the selfadjoint positive definite operator
B. = (fa)*gaf6 generated by the quadratic form

be[u,u] := Eg[fsu, ffu], Domb, = {u € Ly(R%:C") : ffu e H'(R%C™)}.
9.2. The effective operator for l§€. Suppose that the operator A is defined by &),
and that Y°, Q, and W are defined by (82), (6.13), and (6.11]), respectively. The operator
(9.4) B = A"+ 3%+ (3% +Q—W + Al
is called the effective operator for gg. In other words,

~,

d
B% = b(D)"g°b(D) — b(D)*V — V*b(D) + Y (a; + a)D; + Q— W + AL
Jj=1

9.3. The principal term of approximation. Denote

(9.5) E%(s) = foe B Tos fy.

Observe that

(9:6) fre B (fo) = T fe PO PTL, £%(s) = T1E%(e, AT,

where B(e) is the operator ([E22)) and § = £ 2s. So, by the scaling transformation,
Theorem 8.1 implies the following result.

Theorem 9.1. Under the assumptions of Subsections 4.1-4.5, let B, be the operator
defined in Subsection 9.1, and let EY(s) be the operator [@X). Then

(9.7) ||fEe_BES(f‘5)*—€O(s)HLQ(Rd;Cn)_}LQ(Rd;Cn) <Cre(e®+s) V2% 5 0<e<1,5>0.

The constants Cy and Cy depend only on the initial data [@23)) and the parameters of
the lattice T
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9.4. Approximation in the (L, — H')-norm. First, by Theorem 8.2, we obtain
approximation with the corrector term taken into account.
Let II. denote the pseudodifferential operator in Lo(R%; C™) with the symbol Xﬁ/5(€)5

(9:8) (IL£) (x) = (2m) =%/ /

Q/e

Using (@.6) and the identities [A°] = T*[A]T., A*b(D) = e T*Ab(D)TL, II. = T IITL,
we get

¢! (FE)(€) dé.

BY2(f7e B (f°)" — (I + eA°b(D)ILL + eA°TL)E°(5))

— e M B(e) /2 (feBER £ — (14 AB(D)II + cAINE (<, 3)) T2,

where § = £72s. Hence, replacing s by 5 in (83) and recalling that 7. is a unitary

operator, we obtain the following estimate:

) 1B (575 = (= (ADD) + RVIE ) 5 sy ) = B205:),

(9.9
0<e<l, s>0.

Now, by (@), we obtain approximation for the operator fe=5<5(f¢)* in the norm of
the space of operators acting from Lo(R%; C") to H'(R?;C").

Theorem 9.2. Under the assumptions of Theorem 9.1, suppose that the matriz-valued
function A(x) is the periodic solution of problem ([GX), and the matriz-valued function
A(x) is the periodic solution of problem [©R). We put A°(x) = A(e™'x) and A®(x) =
A(e1x). Let 1. be the operator ([@R). Then

7767 B5(79) = (1 + £(ABD) + ANLIE ) | 0y sy < W12,

0<e<l, s>0.

(9.10)

Here U(s,¢€) is defined by
(9.11) U(s,e) = Cacs e O+ if s>0, 0<e<s'/?
’ T ) Gy /2 Cns if s>0, ¢>s/2,

where Cy = Cac, Cs = Csc¢, and ¢ = max{ﬁn*1/2a51/2||g’1HlL/:;3*1/2}. The constants
Cy, Cs, and C, depend only on the problem data [A23)) and the parameters of the lattice T.
Proof. Denote
T(e,s) = fee B3 (f9)* — (I + e(A°b(D) + A%)IL)E(s).
By [@3) and ([@9), we have
K ~ A
§||(g€)1/2b(D)T(E7S)”H%Q(Rd) + B (e, )mll7 ) < 1B Y (e, )7, (ga)
<e?0y(3,2)?|nll7, ey, M€ L2(R%GCM), 5> 0.
Combining this with the lower estimate ([@.1I), we obtain
R 1= > _ ~
(9.12) ECYOHQ 1||L;||DT(€75)"7H%2(W) + /8||T(575)77||2L2(Rd) <e 2¢2(575)2||"7H%2(Rd)7
n € Ly(RLGCY), 5> 0.
Obviously,
I (e, 8)mllp1 (g < max{26™ ag lg™ s 871

(9.13) k —1)-1 2 2 2
% (Saollg 2L IDY(E 9)ml ey + BIT ()13, ) ).
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Estimate (@.I0) is a consequence of (@12), [@I3), and (&4). O

9.5. Approximation for £ < s'/2. Similarly, by using Theorem 8.7, one can prove the
following statement.

Theorem 9.3. Under the assumptions of Theorem 9.2, we have

£7e7 52 (£9)" — (L + =(AB(D) + AE(S)]| . gy, ey < Chs™ e,

O<5§81/2, O0<e<l1.

The constants Cj := Che and C, depend only on the problem data @23)) and the param-
eters of the lattice T.

(9.14)

§10. APPLICATION TO HOMOGENIZATION OF THE PARABOLIC CAUCHY PROBLEM

10.1. The Cauchy problem. Let p(x) be a measurable I'-periodic (n X n)-matrix-
valued function in R?; we assume that it is bounded and uniformly positive definite. Let
0 < T < 0. Consider the following Cauchy problem:

101 o0 L B P s, ol x)n(x,0) = o),

x € RY s € (0,T), where ¢ € Ly(R%C") and F € H,(T) := L,((0,T); L2(R% C"))
for some 1 < p < oo. We factorize the matrix p(x) as p(x)™! = f(x)f(x)*. Then
ve := (f°)"tu. is the solution of the problem

8VE§? S_) = —(fs(x))*gefa(x)ve(x, s)+ (f°(x))"F(x,s),
ve(x,0) = (f5(x))"p(x).

Since B, = (fE(X))*EEfE(X), we have

ve = exp(—B:s)(f) o + /05 exp(—B:(s —3))(f*)*F(-,3) ds,

(10.2) u. = ffexp(—B.s)(f)" ¢ + /OS feexp(—B(s — 3)(f*)*'F(-,5)ds.

Let up(x, s) be the solution of the “homogenized” problem
_Oug(x,s)
0Os
where p = |Q| 7! [, p(x) dx. Note that p = f;*. As in ([[0.Z), we obtain

(10.3) = —Buy(x,s) + F(x,s), pug(x,0) = p(x),

(10.4) uy = foexp (—foB° fos) foop + /0s foexp (= foBB° fo(s — 3)) foF (-, 3) d5.

10.2. Convergence of the solutions in L,(R? C"). By (@.7),

lus(-,8) = uo(+, )| pymay < Cre(e® +5) 2™

D £ (R

(10.5) -
+C1€/ (€2 +s—3) "2 FETIF(-,3) ||, ray d5.
0

For 1 < p < oo, we estimate the integral on the right-hand side of (I05) by using the
Hélder inequality (p~! + (p/) " =1):
(& 5= 312 OB ) ey
0
(10.6) Uy

S HFHHP(S) </0 (52 + s — g’)fp,/2efc*p,(87§) dg)
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In the case where 2 < p < 0o (1 < p’ < 2), the right-hand side of (I0.0)) can be estimated
by HF||HP(S)(C*p’)1/2*1/P' (r(1 —p’/2))1/p . For 1 < p < 2, we estimate the integral with
the help of the inequality e~ P (5-8) < 1.

S
(10.7) / (245 —35) P2 CP =3 g5 < 2P (p /2 — 1)1,
0
For p = 2, we substitute ( = s — 5 and split the interval of integration:

/5(52 bs— ) L2069 gz < /1(52 O lde+ /S e=20+C g
’ g1£2+2|1n5|+(20*)1*1, 0<e<l.
Combining estimates (I0.5)—(I0.8]), we arrive at the following result.
Theorem 10.1. Suppose F € H,(T) for some 1 < p < co. Then for any s € (0,T) the

solutions u.(-,s) tend to ug(-,s) in the La(R%; C™)-norm. For 0 < e <1, we have
[uc(-,8) = o+, )| pyray < Cre(e® + )72l 1, may + 01(2. D) Fllne, s)-
Here 01 (e, p) is given by
e2-2/p¢, (p/ /2 — 1)1/ if 1<p<2,
61(e,p) = { eCy (In2+ 2| el + (20.)")*  if p=2,
€0 (Cup))VHYP (DA -/ 2D i 2<p < oo,

(10.8)

where p~! + (p/) 7! = 1.

10.3. Approximation in H'(R% C") for solutions of the homogeneous Cauchy
problem. Now we consider the homogeneous Cauchy problem

du.(x, s)
10.9 “lx)——
(109) e

where ¢ € Ly(R% C"). The corresponding “homogenized” problem has the form

= Bouc(x,9), ple)u.(x.0) = $(x),

_Oup(x, s)
0s
The following result is a direct consequence of (@.14).

(10.10) = —B%uy(x,s), pug(x,0) = ¢p(x).

Theorem 10.2. Under the assumptions of Subsections 4.1-4.4, let u. be the solution of
problem ([IT09), and let ug be the solution of problem [ITOIQ). Then

[uc(-,8) = uo(-,8) = (A°B(D) + Ao (-, 8) || 1 gy < Ches™'em

0<e<, O<5§51/2.

|¢||L2(Rd)7

The constants Cj and C, depend only on the problem data [@A23) and the parameters of
the lattice T'.

10.4. Approximation in H'(R? C") for solutions of the nonhomogeneous Cau-
chy problem. We return to problem (I0.1).

Theorem 10.3. Let u. be the solution of problem (IUJ)), where ¢ € La(R%C") and
F e H,(T), 2 < p < oo, and let ug be the solution of problem [I03)). Let II. be the
operator (Q8). Let 0 <e <1. Then for0 < s<T and 0 <e < s/2 we have

||us( ) S) - uO( ) S) - E(Aab(D) + KS)HEUO( i S)HHl(Rd)

(10.11) e
< Caes™e” Q|| Ly may + O2(e, D) [IF (|2, (5



1018

where

YU. M. MESHKOVA

ba(e.p) = VP (Cyp! — 1)V 4 C5(1—p'/2)" ) if 2<p < oo,
29PI = acse|ne| + CaeCole O 1 205e if p=oo.

Here p~t + (p')~1 = 1.

Proof.
follows

(10.12)

Let 0 < s < T, and let 0 < ¢ < min{s'/2,1}. From (@I0) and (0.2), (I04) it
that

[[us(-,s) —uo(-,s) —e(A°(D) + /NXE)HEuO( 3 8) | (e

< Cyesle 0 @l L, (me) +/0 (s =35 e)[[F(-, )L, ra)ds,

where U(s,¢) is defined by ([@I1)). Denote

(10.13)

T / U(s —3,6)|[F(-,3)|| Lya) d5.

The integral Z can be rewritten as

(10.14)

8—82
T=Cie [ (=3t SO IEC ) &5
0

R R e R TP
s—e2

For 2 < p < o0, the estimate e~ ©+(*=% < 1 and the Holder inequality (p~! + (p)~! = 1)
show that

(10.15)

I < |[F |3, sy 2P (Calp’ — 1)~V pcs(1—p'/2)7 ).

For p = oo, identity (I0.I4) yields the estimate

5752 S
(10.16) T < [|F I3 () <c4g/ (s —3)temC- =9 g5 + 05/ (s —3)"Y/2 dg).
0 s—e?
Note that
s—¢ N
(10.17) / (s —3)te =9 d3 < 2|Ine| + O te ™.
0

Using (I0.16) and (I0.I7), we obtain

(10.18) T < e|F|ln(s) (2Ca|Ine| + CaC e +2Cs) .

Combining (I012), (ITI3), (I0I5), and (I0IY), we arrive at (IOITI). O
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