
Algebra i analiz St. Petersburg Math. J.
Tom 25 (2013), � 6 Vol. 25 (2014), No. 6, Pages 981–1019

S 1061-0022(2014)01326-X
Article electronically published on September 8, 2014

HOMOGENIZATION OF THE CAUCHY PROBLEM

FOR PARABOLIC SYSTEMS

WITH PERIODIC COEFFICIENTS

YU. M. MESHKOVA

Abstract. In L2(Rd;Cn), a class of matrix second order differential operators Bε

with rapidly oscillating coefficients (depending on x/ε) is considered. For a fixed
s > 0 and small ε > 0, approximation is found for the operator exp(−Bεs) in the

(L2 → L2)- and (L2 → H1)-norm with an error term of order of ε. The results are
applied to homogenization of solutions of the parabolic Cauchy problem.

Introduction

0.1. In this paper, we deal with homogenization theory for periodic differential opera-
tors (DO’s). A broad literature is devoted to homogenization problems (see, for example,
[ZhKO, BaPa, BeLP]). We rely on the operator-theoretic (spectral) approach to homoge-
nization problems. This approach was developed in the papers [BSu1, BSu2, BSu3, BSu4]
by Birman and Suslina.

0.2. We study homogenization in the small period limit ε → 0 for the following Cauchy
problem:

(0.1) ρ(ε−1x)∂suε(x, s) = − pBεuε(x, s) + F(x, s); ρ(ε−1x)uε(x, 0) = φ(x).

Here φ ∈ L2(R
d;Cn) and F ∈ Lp((0, T );L2(R

d;Cn)) for some p. The solution uε(x, s)

is a Cn-valued function of x ∈ Rd and s ≥ 0; pBε is a matrix elliptic second order DO
acting in L2(R

d;Cn). A measurable (n × n)-matrix-valued function ρ(x) is assumed to
be bounded, uniformly positive definite, and periodic relative to some lattice Γ ⊂ Rd.
Let Ω be the cell of the lattice Γ. We use the notation ϕε(x) = ϕ(ε−1x), where ϕ(x) is
a measurable Γ-periodic function in Rd.

The principal part pAε of the operator pBε is given in a factorized form

(0.2) pAε = b(D)∗gε(x)b(D),

where b(D) is a matrix homogeneous first order DO and g(x) is a Γ-periodic, bounded,
and positive definite matrix-valued function in Rd. (The precise assumptions on b(D)
and g(x) are given below, see §4.) Homogenization problems for the operator (0.2) were
analyzed in detail in [BSu1, BSu2, BSu3, BSu4]. Now we study more general operators
pBε that include first and zero order terms:

(0.3) pBεu = pAεu+

d∑
j=1

(
aεj(x)Dju+Dj(a

ε
j(x))

∗u
)
+Qε(x)u+ λu.
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Here the aj(x), j = 1, . . . , d, are Γ-periodic (n × n)-matrix-valued functions such that
aj ∈ L�(Ω), � = 2 for d = 1, � > d for d ≥ 2. In general, the potential Qε(x) is
a distribution (with values in the class of Hermitian matrices) generated by a rapidly

oscillating matrix-valued measure. The constant λ is chosen so that the operator pBε is
positive definite. The coefficients of the operator (0.3) oscillate rapidly as ε → 0. Elliptic
homogenization problems for the operator (0.3) were studied in [Su3, Su6].

Our aim in this paper is to find approximation as ε → 0 for the solutions of prob-
lem (0.1). Approximation in L2(R

d;Cn) is given in terms of the solutions of the “ho-
mogenized” problem. Approximation in H1(Rd;Cn) requires taking the corrector term
into account.

The homogenized problem has the form

(0.4) sρ∂su0(x, s) = − pB0u0(x, s) + F(x, s), sρu0(x, 0) = φ(x).

Here sρ is the mean value of the matrix ρ over the cell Ω: sρ =
∫
Ω
ρ(x) dx; pB0 is the

effective operator with constant coefficients (see (9.4)).

0.3. Main results. In the Introduction we only discuss the case where ρ = 1n. In this

case the solution of (0.1) is given by uε = exp(− pBεs)φ+
∫ s

0
exp(− pBε(s−rs))F( · , rs) drs. So,

the problem reduces to the study of the operator exponential exp(− pBεs) for small ε > 0.
(In the general case, we need to study the “bordered” operator exponential fεe−Bεs(fε)∗

of the operator Bε = (fε)∗ pBεf
ε, where ρ−1 = ff∗.)

The following estimates are the main results of the paper :∥∥e− pBεs − e−
pB0s

∥∥
L2(Rd)→L2(Rd)

≤ C1ε(ε
2 + s)−1/2e−C2s, s ≥ 0;(0.5) ∥∥e− pBεs − e−

pB0s − εK(ε, s)
∥∥
L2(Rd)→H1(Rd)

≤ C3εs
−1e−C2s, ε ≤ s1/2.(0.6)

Here K(ε, s) is the so-called corrector. The corrector has zero order with respect to ε, but
involves rapidly oscillating factors. Estimates (0.5) and (0.6) are order-sharp for small ε
and a fixed s > 0. The constants in estimates are controlled explicitly in terms of the
problem data. Estimate (0.5) makes it possible to prove convergence in L2(R

d;Cn) of the
solutions uε of problem (0.1) to the solution of the effective problem (0.4). Estimate (0.6)
makes it possible to find approximation of the solutions uε in the H1(Rd;Cn)-norm. We
are interested in the behavior of the solutions uε for a fixed s, and do not strive for
accuracy of estimates as s → ∞. So, for our goals it suffices to obtain estimates (0.5),
(0.6) with some positive C2.

0.4. Homogenization problems for parabolic equations were studied by traditional meth-
ods (see [ZhKO, BeLP, BaPa]). We use the spectral approach developed for elliptic prob-
lems in [BSu1, BSu2, BSu3, BSu4] and [Su3, Su6]. Parabolic problems were studied by
this method in the papers [Su1, Su2, Su4, Su5, V, VSu1, VSu2]. For the operator (0.2),
an estimate of the form (0.5) was obtained in [Su2], and an analog of estimate (0.6) was
obtained in [Su5] by using that method. By a different method, similar estimates were

obtained in [ZhPas] for the acoustics operator pAε = − div gε(x)∇. In the present paper,
the results of [Su2, Su5] are generalized to the case of the operator family (0.3).

0.5. The method of investigation. We explain the method of investigation in the
case where ρ = 1n. It is easily seen that estimate (0.6) reduces to the inequality

(0.7)
∥∥ pB1/2

ε

(
e−

pBεs − e−
pB0s − εK(ε, s)

)∥∥
L2(Rd)→L2(Rd)

≤ Cεs−1e−C2s
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for s > 0, 0 < ε ≤ s1/2. Using a scaling transformation, we reduce the proof of esti-

mates (0.5), (0.7) to the study of the exponential exp(− pB(ε)ε−2s) of the operator

pB(ε) = b(D)∗gb(D) + ε

d∑
j=1

(ajDj +Dja
∗
j ) + ε2Q+ ε2λI,

which acts in L2(R
d;Cn) and depends on the parameter ε. So, it is necessary to study

the behavior of exp(− pB(ε)rs) for large values of rs = ε−2s.

Applying the Floquet–Bloch theory, we decompose the operator pB(ε) into the direct

integral of operators pB(k, ε) acting in L2(Ω;C
n) and depending on the parameter k ∈ R

d

(called the quasimomentum). The operator pB(k, ε) is given by the expression

pB(k, ε) = pA(k) + ε

d∑
j=1

(
aj(Dj + kj) + (Dj + kj)a

∗
j

)
+ ε2Q+ ε2λI,

where pA(k) = b(D + k)∗gb(D + k), with periodic boundary conditions. The spectrum

of the operator pB(k, ε) is discrete. As in [Su3, Su6], we distinguish the one-dimensional

parameter τ = (|k|2 + ε2)1/2 and study the family pB(k, ε) by methods of analytic per-
turbation theory with respect to τ .

0.6. The structure of the paper. The paper consists of three chapters. Chapter 1
(§§1–3) is devoted to the abstract operator-theoretic method. In Chapter 2 (§§4–8)
periodic DO’s acting in L2(R

d;Cn) are studied. Approximation of the “bordered” op-
erator exponential is obtained in §8. Chapter 3 (§§9–10) is devoted to homogenization
of the parabolic Cauchy problem. In §9, by a scaling transformation, the main results
of the paper are deduced from the results of §8. In §10, the results of §9 are applied to
homogenization for parabolic systems.

0.7. Notation. Let H and H∗ be separable Hilbert spaces. The symbols ( · , · )H and
‖ · ‖H stand for the inner product and the norm in H, respectively. The symbol ‖ · ‖H→H∗

denotes the norm of a bounded operator acting from H to H∗. Sometimes we omit indices
if this does not lead to confusion. By I = IH we denote the identity operator in H. If
A : H → H∗ is a linear operator, then DomA and KerA denote the domain and the kernel
of A, respectively. If N is a subspace in H, then N⊥ := H 
N. If P is the orthogonal
projection of H onto N, then P⊥ is the orthogonal projection of H onto N⊥. The symbols
〈 · , · 〉 and | · | stand for the usual inner product and the norm in Cn, respectively; 1n is
the identity (n× n)-matrix. If a is an (n× n)-matrix, then |a| is the norm of the matrix
a viewed as an operator in C

n, and a∗ denotes the adjoint matrix.
Next, x = (x1, . . . , xd) ∈ Rd, iDj = ∂/∂xj , j = 1, . . . , d, ∇ = grad = (∂1, . . . , ∂d),

D = −i∇ = (D1, . . . , Dd).
The Lp-classes of C

n-valued functions on a domain O ⊆ Rd are denoted by Lp(O;Cn),
1 ≤ p ≤ ∞. By Lp((0, T );H) we denote the Lp-space of H-valued functions on the interval
(0, T ). The Sobolev classes of Cn-valued functions (in a domain O ⊆ Rd) of order s are
denoted by Hs(O;Cn). If n = 1, we write simply Lp(O), Hs(O), but (if this does
not lead to confusion) we use this short notation also for the spaces of vector-valued or
matrix-valued functions.

By C, c, C, C, c (possibly, with indices and marks) we denote various constants in
estimates.

0.8. The author is grateful to T. A. Suslina for formulation of the problem and careful
guidance.
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Chapter 1

Abstract operator-theoretic method

§1. Quadratic two-parametric operator pencils

We study an operator family B(t, ε) depending on two real-valued parameters t ∈ R

and 0 ≤ ε ≤ 1. The family B(t, ε) was studied in [Su6, Su7].

1.1. The operators X(t) and A(t). Let H and H∗ be complex separable Hilbert spaces.
Suppose that X0 : H → H∗ is a densely defined and closed operator, and X1 : H → H∗ is
a bounded operator. Then the operator

(1.1) X(t) := X0 + tX1 : H → H∗

is closed on the domain DomX(t) = DomX0. In H, we consider the selfadjoint operator
A(t) = X(t)∗X(t) generated by the closed quadratic form ‖X(t)u‖2H∗

, u ∈ DomX0.
We put A0 := A(0) = X∗

0X0 and N := KerA0 = KerX0. Assume that the following
condition is fulfilled.

Condition 1.1. The point λ0 = 0 is an isolated point of the spectrum of A0, and
0 < n := dimN < ∞.

Let d0 be the distance from the point λ0 = 0 to the rest of the spectrum of A0. We
put N∗ = KerX∗

0 , n∗ := dim N∗. Assume that n ≤ n∗ ≤ ∞. Let P and P∗ be the
orthogonal projections of H onto N and of H∗ onto N∗, respectively.

1.2. The operators Y (t) and Y2. Let rH be yet another separable Hilbert space. Let

Y0 : H → rH be a densely defined linear operator such that DomX0 ⊂ DomY0; let Y1 : H →
rH be a bounded linear operator. We put Y (t) = Y0 + tY1, DomY (t) = DomY0, and
impose the following condition.

Condition 1.2. For some c1 > 0, we have

(1.2) ‖Y (t)u‖
rH
≤ c1‖X(t)u‖H∗ , u ∈ DomX0, t ∈ R.

Estimate (1.2) with t = 0 implies that KerX0 ⊂ KerY0, i.e., Y0P = 0.

Let Y2 : H → rH be a densely defined linear operator such that DomX0 ⊂ DomY2. We
impose the following condition.

Condition 1.3. For any ν > 0 there exists a number C(ν) > 0 such that

‖Y2u‖2
rH
≤ ν‖X(t)u‖2H∗ + C(ν)‖u‖2H, u ∈ DomX0, t ∈ R.

1.3. The operator Q0 and the form q. Let Q0 be a bounded positive definite linear
operator on H, and let q[u, v] be a densely defined Hermitian sesquilinear form in H such
that DomX0 ⊂ Dom q. The form q is subject to the following condition.

Condition 1.4. There exist constants 0 < κ ≤ 1, c0 ∈ R, c2 ≥ 0, c3 ≥ 0 such that for
u ∈ DomX0, t ∈ R, we have

(1.3) −(1− κ)‖X(t)u‖2H∗ − c0‖u‖2H ≤ q[u, u] ≤ c2‖X(t)u‖2H∗ + c3‖u‖2H.
1.4. The operator B(t, ε). In H, we consider the quadratic form

b(t, ε)[u, u] = ‖X(t)u‖2H∗ + 2εRe(Y (t)u, Y2u)rH
+ ε2q[u, u] + λε2(Q0u, u)H,

u ∈ DomX0.
(1.4)

The parameter λ ∈ R is subject to the following restriction:

λ > ‖Q−1
0 ‖(c0 + c4) if λ ≥ 0,

λ > ‖Q0‖−1(c0 + c4) if λ < 0 (and c0 + c4 < 0),
(1.5)
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where c0 is the constant as in (1.3), and the constant c4 is defined by

(1.6) c4 := 4κ−1c21C(ν) for ν = κ2(16c21)
−1.

As was noted in [Su7, Subsection 1.4], condition (1.5) implies that

(1.7) b(t, ε)[u, u] ≥ κ

2
‖X(t)u‖2H∗ + βε2‖u‖2H, u ∈ DomX0,

where β > 0 is defined in terms of λ as follows:

β = λ‖Q−1
0 ‖−1 − c0 − c4 if λ ≥ 0,

β = λ‖Q0‖ − c0 − c4 if λ < 0 (and c0 + c4 < 0).
(1.8)

In [Su6, (1.15)], it was shown that

(1.9) b(t, ε)[u, u] ≤ (2 + c21 + c2)‖X(t)u‖2H∗ +
(
C(1) + c3 + |λ|‖Q0‖

)
ε2‖u‖2H.

By (1.7) and (1.9), the form (1.4) is closed and positive definite. The corresponding
selfadjoint operator in H is denoted by B(t, ε). Formally, we can write

(1.10) B(t, ε) = A(t) + ε(Y ∗
2 Y (t) + Y (t)∗Y2) + ε2Q+ λε2Q0.

(Here Q is a formal object that corresponds to the form q.)

1.5. Passage to the parameter τ . The family B(t, ε) is an analytic operator family
with respect to the parameters t and ε. If t = ε = 0, the operator (1.10) coincides with A0

and has an isolated eigenvalue λ0 = 0 of multiplicity n. To apply the methods of analytic
perturbation theory, we introduce the one-dimensional parameter τ = (t2 + ε2)1/2 and
also the additional parameters ϑ1 = tτ−1, ϑ2 = ετ−1, ϑ = (ϑ1, ϑ2). Then the operator
(1.10) can be rewritten as B(τ ;ϑ). Formally,

B(τ ;ϑ) = (X∗
0 + τϑ1X

∗
1 )(X0 + τϑ1X1) + τϑ2(Y

∗
2 Y0 + Y ∗

0 Y2)

+ τ2ϑ1ϑ2(Y
∗
2 Y1 + Y ∗

1 Y2) + τ2ϑ2
2(Q+ λQ0).

(1.11)

The corresponding form will be denoted by b(τ ;ϑ). We study the operator B(τ ;ϑ) as a
quadratic operator pencil with respect to the parameter τ with the help of the tecniques of
analytic perturbation theory. Herewith, we should make our constructions and estimates
uniform with respect to the parameter ϑ, taking into account that ϑ2

1+ϑ2
2 = 1. In (1.11)

we may assume that τ ∈ R.
Let F (τ ;ϑ; s) be the spectral projection of the operator (1.11) for the closed inter-

val [0, s]. We fix a number δ ∈ (0, κd0/13) and put

(1.12) τ0 = δ1/2
(
(2 + c21 + c2)‖X1‖2 + C(1) + c3 + |λ|‖Q0‖

)−1/2
.

In [Su6, Subsection 1.5], it was proved that

(1.13) F (τ ;ϑ; δ) = F (τ ;ϑ; 3δ), rankF (τ ;ϑ; δ) = n,

for |τ | ≤ τ0. Instead of F (τ ;ϑ; δ) we shall use the shorter notation F (τ ;ϑ).

1.6. The operators Z and rZ. In Subsections 1.6 and 1.7, we introduce some operators
that arise in perturbation theory considerations. We denote D := DomX0 ∩N⊥. Since
the point λ0 = 0 is an isolated point of the spectrum of A0, the form (X0φ,X0ζ), φ, ζ ∈ D,
determines an inner product in D, converting D into a Hilbert space.

For a given ω ∈ N, we consider the equation X∗
0 (X0ϕ + X1ω) = 0 for ϕ ∈ D. This

equation is understood in a weak sense. In other words, we look for an element ϕ ∈ D
satisfying the identity

(1.14) (X0ϕ,X0ζ)H∗ = −(X1ω,X0ζ)H∗ for all ζ ∈ D.

Since the right-hand side of (1.14) is an antilinear continuous functional of ζ ∈ D, the
Riesz theorem shows that there exists a unique solution; denote this solution by ϕ(ω). We
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introduce a bounded operator Z : H → H as follows : Zω = ϕ(ω), ω ∈ N; Zx = 0, x ∈ N⊥.
Obviously, PZ = 0. Note that ϕ(ω) satisfies the estimate ‖X0ϕ(ω)‖H∗ ≤ ‖X1ω‖H∗ ,
whence

(1.15) ‖X0Z‖H→H∗ ≤ ‖X1‖H→H∗ .

Similarly, given ω ∈ N, suppose that ψ ∈ D satisfies the equation

(1.16) X∗
0X0ψ + Y ∗

0 Y2ω = 0,

understood in the weak sense. Namely, ψ ∈ D satisfies the identity

(1.17) (X0ψ,X0ζ)H∗ = −(Y2ω, Y0ζ)rH
for all ζ ∈ D.

By Condition 1.2, the right-hand side of (1.17) is a continuous antilinear functional of
ζ ∈ D. Therefore, by the Riesz theorem, there exists a unique solution ψ(ω). We

introduce a bounded operator rZ acting in H by rZω = ψ(ω), ω ∈ N; rZx = 0, x ∈ N⊥.

Obviously, P rZ = 0. We estimate the norm of the operator X0
rZ. The solution ψ(ω)

satisfies ‖X0ψ(ω)‖H∗ ≤ c1‖Y2ω‖rH
, whence

(1.18) ‖X0
rZu‖H∗ = ‖X0

rZPu‖H∗ ≤ c1‖Y2Pu‖
rH
, u ∈ H.

Note that Condition 1.3 with t = 0 implies the estimate

(1.19) ‖Y2Pu‖
rH
≤ (C(ν))1/2‖u‖H, u ∈ H, ν > 0.

Combining (1.18) with (1.19), we obtain

(1.20) ‖X0
rZ‖H→H∗ ≤ c1(C(ν))1/2, ν > 0.

1.7. The operators R and S. We introduce the operator R := X0Z|N +X1|N : N →
N∗. As was shown in [BSu1, (1.1.11)], R = P∗X1|N. In accordance with [BSu1, Sub-
section 1.1.3], the operator S = R∗R : N → N is called the spectral germ of the oper-
ator family A(t) at t = 0. The germ S can be written as S = PX∗

1P∗X1|N, so that
‖S‖ ≤ ‖X1‖2.

1.8. The spectral germ of the operator B(τ ;ϑ). General facts of the analytic per-
turbation theory (see [K]) show that for |τ | ≤ τ0 there exist functions λl(τ ;ϑ) real-
analytic in τ (the branches of eigenvalues) and real-analytic H-valued functions ϕl(τ ;ϑ)
(the branches of eigenvectors) such that

(1.21) B(τ ;ϑ)ϕl(τ ;ϑ) = λl(τ ;ϑ)ϕl(τ ;ϑ), |τ | ≤ τ0, l = 1, . . . , n.

The elements ϕl(τ ;ϑ), l = 1, . . . , n, form an orthogonal basis in the eigenspace F (τ ;ϑ)H.
Relations (1.21) are understood in the weak sense, namely,

b(τ ;ϑ)[ϕl(τ ;ϑ), ζ] = λl(τ ;ϑ)(ϕl(τ ;ϑ), ζ)H, ζ ∈ DomX0.

Moreover, for sufficiently small τ∗ (τ∗ ≤ τ0) and |τ | ≤ τ∗, we have the following convergent
power series expansions:

λl(τ ;ϑ) = γl(ϑ)τ
2 + μl(ϑ)τ

3 + . . . , γl(ϑ) ≥ 0, l = 1, . . . , n,

ϕl(τ ;ϑ) = ωl(ϑ) + τϕ
(1)
l (ϑ) + τ2ϕ

(2)
l (ϑ) + . . . , l = 1, . . . , n.

(1.22)

Definition 1.5 (see [Su6]). The operator S(ϑ) : N → N defined by

S(ϑ) = ϑ2
1S − ϑ1ϑ2(X0Z)∗(X0

rZ)|N − ϑ1ϑ2(X0
rZ)∗(X0Z)|N

− ϑ2
2(X0

rZ)∗(X0
rZ)|N + ϑ1ϑ2P (Y ∗

2 Y1 + Y ∗
1 Y2)|N + ϑ2

2(QN + λQ0N)
(1.23)

is called the spectral germ of the operator pencil (1.11) at τ = 0.
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Here QN is the selfadjoint operator in N generated by the form q[u, u], u ∈ N, and
Q0N = PQ0|N. Note that Condition 1.4 with t = 0 implies the estimate ‖QN‖ ≤
max{|c0|; c3}. Hence, by (1.15), (1.19), (1.20) with ν = 1, and by the estimate ‖S‖ ≤
‖X1‖2, we have

‖S(ϑ)P‖ ≤ c5,(1.24)

c5 :=
(
‖X1‖+ c1C(1)1/2

)2
+ 2C(1)1/2‖Y1‖+max{|c0|; c3}+ |λ|‖Q0‖.(1.25)

In accordance with [Su6, Proposition 1.6], the numbers γl(ϑ) and the elements ωl(ϑ)
are eigenvalues and eigenvectors of the selfadjoint operator S(ϑ):

(1.26) S(ϑ)ωl(ϑ) = γl(ϑ)ωl(ϑ), l = 1, . . . , n.

1.9. Threshold approximations. In [Su6, Theorem 2.2], the following result was ob-
tained.

Theorem 1.6. For |τ | ≤ τ0 we have

F (τ ;ϑ)− P = Φ(τ ;ϑ), ‖Φ(τ ;ϑ)‖H→H ≤ C1|τ |,(1.27)

B(τ ;ϑ)F (τ ;ϑ)− τ2S(ϑ)P = Ψ(τ ;ϑ), ‖Ψ(τ ;ϑ)‖H→H ≤ C2|τ |3.(1.28)

The constants C1 and C2 depend on δ, c1, c2, c3, C(1), κ, |λ|, ‖X1‖, ‖Y1‖, and ‖Q0‖.

The constants C1 and C2 can be written explicitly (see [Su6, §2]). We put

C
(1)
T = max

{
2 + c21, (‖X1‖2 + C(1))δ−1

}
,(1.29)

C
(2)
T = max

{
c2 + 1, (‖X1‖2 + ‖Y1‖2 + C(1) + c3 + |λ|‖Q0‖)δ−1

}
,(1.30)

CT = C
(1)
T + τ0C

(2)
T ,(1.31)

C0
T = 32 · 132κ−1/2(C

(1)
T )2CT + 32 · 13κ−1/2C

(1)
T C

(2)
T + 416κ−1/2C

(2)
T CT .(1.32)

Then

(1.33) C1 = 32(1 + π−1)κ−1/2CT , C2 = 2δ(1 + π−1)C0
T .

Besides estimate (1.27), we need a more accurate approximation obtained in [Su6,
Subsection 2.5]:

(1.34) F (τ ;ϑ)− P = τF1(ϑ) + F2(τ ;ϑ),

where the operator F2(τ ;ϑ) is of order of O(τ2). In accordance with [Su6, (1.48)], the

operator F1(ϑ) admits the representation F1(ϑ) = ϑ1(Z +Z∗) + ϑ2( rZ + rZ∗). Hence, the

identities PZ = 0, P rZ = 0 imply that

(1.35) F1(ϑ)P = ϑ1Z + ϑ2
rZ.

Comparing (1.24) and (1.28), we obtain

(1.36)
∥∥B(τ ;ϑ)F (τ ;ϑ)

∥∥
H→H

≤ C3τ
2, |τ | ≤ τ0; C3 := c5 + C2τ0.

Hence, for |τ | ≤ τ0, the eigenvalues of B(τ ;ϑ) admit the estimate λl(τ ;ϑ) ≤ C3τ
2,

l = 1, . . . , n. Therefore,

(1.37)
∥∥B(τ ;ϑ)1/2F (τ ;ϑ)

∥∥
H→H

≤ C
1/2
3 |τ |, |τ | ≤ τ0.

We also need the following estimate obtained in [Su6, Proposition 2.7]:∥∥B(τ ;ϑ)1/2F2(τ ;ϑ)
∥∥
H→H

≤ C4δ
1/2(1 + π−1)τ2, |τ | ≤ τ0,

C4 :=
√
2(2 + c21 + c2)

1/2(12κ−1 + 2)1/2(49C
(1)
T CT + 7C

(2)
T ).

(1.38)
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1.10. The operator family A(t) = M∗
pA(t)M . Let pH be yet another Hilbert space,

and let pX(t) = pX0+t pX1 : pH → H∗ be a family of the form (1.1) satisfying the assumptions
of Subsection 1.1. We emphasize that the space H∗ is the same as before. All the objects

corresponding to pX(t) are marked by “p ”. Suppose that M : H → pH is an isomorphism
and that

(1.39) M DomX0 = Dom pX0,

X(t) = pX(t)M : H → H∗; X0 = pX0M , X1 = pX1M . Then A(t) = M∗
pA(t)M , where

pA(t) = pX(t)∗ pX(t). Observe that pN = MN, pn = n and pN∗ = N∗, pn∗ = n∗, pP∗ = P∗. We
denote

(1.40) G = (MM∗)−1 : pH → pH.

Let G
pN
be the block of the operator G in the subspace pN:

(1.41) G
pN
= pPG

∣∣
pN
: pN → pN.

Obviously, G
pN
is an isomorphism in pN. It turns out (see [Su2, Proposition 1.2]) that the

orthogonal projections P and pP satisfy the relation

(1.42) P = M−1(G
pN
)−1

pP (M∗)−1.

Let pS : pN → pN be the spectral germ of the operator family pA(t) at t = 0. In accordance
with [BSu1, Subsection 1.1.5], we have

(1.43) S = PM∗
pSM

∣∣
N
.

1.11. The operator family B(t, ε) = M∗
pB(t, ε)M . Let pY0 : pH → rH satisfy the as-

sumptions of Subsection 1.2. Note that the space rH is the same as before. We denote

Y0 = pY0M , M DomY0 = Dom pY0. By (1.39) and the condition Dom pX0 ⊂ Dom pY0,

we have DomX0 ⊂ DomY0. Suppose that pY1 : pH → rH is a bounded operator and that

Y1 = pY1M : H → rH. We put pY (t) = pY0 + tpY1 : pH → rH, Dom pY (t) = Dom pY0, and

Y (t) = pY (t)M = Y0 + tY1 : H → rH, DomY (t) = DomY0. Suppose that the opera-

tors pX(t) and pY (t) satisfy Condition 1.2 with some constant pc1. Then, automatically,
‖Y (t)u‖

rH
≤ c1‖X(t)u‖H∗ , where c1 = pc1.

Let pY2 : pH → rH be an operator satisfying the assumptions of Subsection 1.2. We

put Y2 = pY2M : H → rH, M DomY2 = Dom pY2. Since M is an isomorphism and the

operator pY2 is densely defined, the operator Y2 is also densely defined. By (1.39), we

have DomX0 ⊂ DomY2. We assume that the operators pX(t) and pY2 satisfy Condition 1.3

with some constant pC(ν) > 0. Then, automatically, for any ν > 0 there exists a constant

C(ν) = pC(ν)‖M‖2 > 0 such that ‖Y2u‖2
rH
≤ ν‖X(t)u‖2H∗

+ C(ν)‖u‖2H for t ∈ R and

u ∈ DomX0.
We put Q0 := M∗M . Then Q0 is a bounded and positive definite operator in H. (The

role of pQ0 is played by the identity operator in pH.)

In pH, we consider the quadratic form pq that satisfies the assumptions of Subsection 1.3.
We define the form q by the rule q[u, v] = pq[Mu,Mv], u, v ∈ Dom q, M Dom q = Dompq.

Formally, Q = M∗
pQM . Assume that the operator pX(t) and the form pq satisfy Condi-

tion 1.4 with the constants κ, pc0, pc2 and pc3. By (1.39), it is easily seen that the operator

X(t) = pX(t)M and the form q also satisfy Condition 1.4 with the constants

(1.44) c0 = ‖M‖2pc0 if pc0 ≥ 0, c0 = ‖M−1‖−2
pc0 if pc0 < 0,
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c2 = pc2, c3 = ‖M‖2pc3, and the same constant κ as before. By (1.6), the constants c4 and

pc4 = 4κ−1
pc 2
1

pC(ν) with ν = κ2(16pc 2
1 )

−1 satisfy the relation

(1.45) c4 = ‖M‖2pc4.

Under the above assumptions, the operator pencil

(1.46) pB(t, ε) = pA(t) + ε(pY ∗
2

pY (t) + pY (t)∗ pY2) + ε2 pQ+ λε2I

and the operator pencil (1.10) satisfy B(t, ε) = M∗
pB(t, ε)M . The constant λ is chosen

in accordance with condition (1.5) for the operator (1.10). Comparing (1.44), (1.45), and
the identity Q0 = M∗M , we see that for such λ condition (1.5) is also satisfied for the
operator (1.46).

Note that for the operator (1.46) relations (1.8) take the form pβ = λ−pc0−pc4. Hence,
by (1.8), (1.44), (1.45), we have

(1.47) β ≤ ‖M−1‖−2
pβ.

1.12. The relationship between the spectral germs S(ϑ) and pS(ϑ). In this sub-
section, we generalize identity (1.43) to the case of the spectral germs of the operator

families (1.46) and (1.10) such that B(t, ε) = M∗
pB(t, ε)M . For the family pB(t, ε), we

introduce the operators pZ and
p

rZ as in Subsection 1.6. We prove the following result.

Lemma 1.7. Under the above assumptions, we have

(1.48) pX0
pZM

∣∣
N
= X0Z

∣∣
N
, pX0

p

rZM
∣∣
N
= X0

rZ
∣∣
N
.

Proof. The operator R is defined by the relation R := (X0Z+X1)|N. On the other hand,

R = P∗X1

∣∣
N
. Therefore, X0Z

∣∣
N

= (P∗ − I)X1

∣∣
N
. Similarly, pX0

pZ
∣∣

pN
= (P∗ − I) pX1

∣∣
pN
,

because pP∗ = P∗. Comparing these relations and recalling that X1 = pX1M and pN =
MN, we arrive at the first identity in (1.48).

The second identity in (1.48) is equivalent to

(1.49)
(
(X0

rZ − pX0
p

rZM)ω, ζ
)
H∗

= 0, ω ∈ N, ζ ∈ H∗.

Since N∗ = pN∗, for ζ ∈ N∗ the identity (1.49) is obvious. Writing H∗ = RanX0 ⊕N∗,
we see that it suffices to consider ζ ∈ RanX0. Then ζ = X0ξ for some ξ ∈ D. Since

ζ = pX0Mξ = pX0
pP⊥Mξ, the required relation can be rewritten as

(1.50) (X0
rZω,X0ξ)H∗ = ( pX0

p

rZMω, pX0
pP⊥Mξ)H∗ .

By the definition of the operator rZ (see (1.17)), we have

(1.51) (X0
rZω,X0ξ)H∗ = −(Y2ω, Y0ξ)rH

.

Similarly, by the definition of the operator
p

rZ, we have

(1.52) ( pX0
p

rZMω, pX0
pP⊥Mξ)H∗ = −(pY2Mω, pY0

pP⊥Mξ)
rH
= −(Y2ω, Y0ξ)rH

.

In the last identity we have used the relations pY0
pP = 0, Y0 = pY0M , Y2 = pY2M . Formulas

(1.51) and (1.52) imply (1.50). �

Now we return to the operator pencils B(t, ε) and pB(t, ε) and pass to the parameters
τ, ϑ. Consider the spectral germ (1.23) and a similar spectral germ for the family (1.46):

pS(ϑ) = ϑ2
1

pS − ϑ1ϑ2( pX0
pZ)∗( pX0

p

rZ)
∣∣

pN
− ϑ1ϑ2( pX0

p

rZ)∗( pX0
pZ)
∣∣

pN

− ϑ2
2( pX0

p

rZ)∗( pX0
p

rZ)
∣∣

pN
+ ϑ1ϑ2

pP (pY ∗
2

pY1 + pY ∗
1

pY2)
∣∣

pN
+ ϑ2

2( pQ
pN
+ λI

pN
).



990 YU. M. MESHKOVA

The identity pN = MN implies that PM∗ = PM∗
pP . Combining this with (1.43),

(1.48), and the relations Y1 = pY1M , Y2 = pY2M , Q = M∗
pQM , we generalize iden-

tity (1.43).

Proposition 1.8. The spectral germs S(ϑ) and pS(ϑ) of the operator families (1.46) and
(1.10) satisfy

(1.53) S(ϑ) = PM∗
pS(ϑ)M

∣∣
N
.

1.13. The operators pZG and
p

rZG. Let pZG be the operator in pH that takes an element

pu ∈ pH into a unique solution pφG of the problem

(1.54) pX∗
0 ( pX0

pφG + pX1pω) = 0, GpφG ⊥ pN,

where pω = pP pu. Problem (1.54) is understood in the weak sense (cf. (1.14)). Then, in
accordance with [BSu2, Lemma 6.1],

(1.55) pZG = MZM−1
pP .

Similarly, let
p

rZG be the operator in pH that takes an element pu ∈ pH to a unique solution
pψG of the problem

(1.56) pX∗
0

pX0
pψG + pY ∗

0
pY2pω = 0, G pψG ⊥ pN,

where pω = pP pu. Problem (1.56) is understood in the weak sense. By recalculation in

equation (1.16), we can use the relations MN = pN, (1.39), and (1.40) to obtain

(1.57)
p

rZG = M rZM−1
pP .

§2. Approximation of the operator exponential

2.1. The principal term of approximation of the operator exp(−A(t)s) for large values
of the parameter s ≥ 0 was obtained in [Su2, §2.1]. Approximation of the operator
exp(−A(t)s) in the “energy” norm with a corrector term taken into account was obtained
in [Su5, §3.2]. Our goal in this section is to approximate the operator exp(−B(τ ;ϑ)s)
for large values of s ≥ 0.

In addition to the assumptions of Subsections 1.1–1.4, we impose the condition

(2.1) A(t) ≥ c∗t
2I, c∗ > 0, |t| ≤ τ0.

Hence, by (1.7), we have

(2.2) B(τ ;ϑ) ≥ qc∗τ
2I, |τ | ≤ τ0, qc∗ =

1

2
min{κc∗, 2β}.

Therefore, the eigenvalues λl(τ ;ϑ) of the operator B(τ ;ϑ) satisfy the estimates

(2.3) λl(τ ;ϑ) ≥ qc∗τ
2, l = 1, . . . , n, |τ | ≤ τ0.

Comparing this with (1.22), we see that γl(ϑ) ≥ qc∗, l = 1, . . . , n. Then, by (1.26),
S(ϑ) ≥ qc∗IN. Hence, by (2.2), it follows that

(2.4)
∥∥e−B(τ ;ϑ)s

∥∥
H→H

≤ e−qc∗τ
2s,

∥∥e−τ2S(ϑ)sP
∥∥
H→H

≤ e−qc∗τ
2s.
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2.2. The principal term of approximation. Let |τ | ≤ τ0. Obviously,

(2.5) e−B(τ ;ϑ)s = e−B(τ ;ϑ)sF (τ ;ϑ) + e−B(τ ;ϑ)sF (τ ;ϑ)⊥,

where F (τ ;ϑ)⊥ is the spectral projection of the operator B(τ ;ϑ) for the interval (δ;∞).
Then, by using the inequality exp(−δs/2) ≤ (δs)−1/2, we get

(2.6)
∥∥e−B(τ ;ϑ)sF (τ ;ϑ)⊥

∥∥
H→H

≤ e−δs ≤ (δs)−1/2e−δs/2, s ≥ 0.

Next,

(2.7) e−B(τ ;ϑ)sF (τ ;ϑ) = Pe−B(τ ;ϑ)sF (τ ;ϑ) + P⊥e−B(τ ;ϑ)sF (τ ;ϑ).

By (1.27), P⊥F (τ ;ϑ) = (F (τ ;ϑ) − P )F (τ ;ϑ) = Φ(τ ;ϑ)F (τ ;ϑ). Combining this with
(1.27) and (2.2), we obtain

(2.8)
∥∥P⊥e−B(τ ;ϑ)sF (τ ;ϑ)

∥∥
H→H

=
∥∥Φ(τ ;ϑ)e−B(τ ;ϑ)sF (τ ;ϑ)

∥∥
H→H

≤ C1|τ |e−qc∗τ
2s.

We put

Σ(s) := Pe−B(τ ;ϑ)sF (τ ;ϑ)− Pe−τ2S(ϑ)Ps,(2.9)

E(s) := eτ
2S(ϑ)PsΣ(s) = eτ

2S(ϑ)PsPe−B(τ ;ϑ)sF (τ ;ϑ)− P.(2.10)

Differentiating (2.10) with respect to s and using (1.28), we obtain

E ′(s) = eτ
2S(ϑ)PsP

(
τ2S(ϑ)P −B(τ ;ϑ)F (τ ;ϑ)

)
e−B(τ ;ϑ)sF (τ ;ϑ)

= −eτ
2S(ϑ)PsPΨ(τ ;ϑ)e−B(τ ;ϑ)sF (τ ;ϑ).

From the identity E(s) = E(0) +
∫ s

0
E ′(rs) drs, it follows that

E(s) = PF (τ ;ϑ)− P −
∫ s

0

eτ
2S(ϑ)P rsPΨ(τ ;ϑ)e−B(τ ;ϑ)rsF (τ ;ϑ) drs.

Hence, by (1.27), the operator Σ(s) = e−τ2S(ϑ)PsE(s) satisfies the identity

Σ(s) = e−τ2S(ϑ)PsPΦ(τ ;ϑ)−
∫ s

0

e−τ2S(ϑ)P (s−rs)PΨ(τ ;ϑ)e−B(τ ;ϑ)rsF (τ ;ϑ) drs.

Combining this with (2.4) and (1.27), (1.28), we arrive at the estimate

(2.11) ‖Σ(s)‖H→H ≤ C1|τ |e−qc∗τ
2s + C2|τ |3se−qc∗τ

2s.

Relations (2.7), (2.8), (2.9), and (2.11) imply that

(2.12)
∥∥e−B(τ ;ϑ)sF (τ ;ϑ)− Pe−τ2S(ϑ)Ps

∥∥
H→H

≤ (2C1|τ |+ C2|τ |3s)e−qc∗τ
2s.

We put |τ |√s =: α and write (2C1|τ | + C2|τ |3s)e−qc∗τ
2s/2 = s−1/2ϕ(α), where ϕ(α) :=

(2C1α+ C2α
3)e−qc∗α

2/2. Denote

(2.13) C5 := max
α≥0

ϕ(α) = max
α≥0

(2C1α+ C2α
3)e−qc∗α

2/2.

Then

(2.14)
∥∥e−B(τ ;ϑ)sF (τ ;ϑ)− Pe−τ2S(ϑ)Ps

∥∥
H→H

≤ C5s
−1/2e−qc∗τ

2s/2, s > 0.

By (2.5), (2.6), and (2.14), we obtain

(2.15)
∥∥e−B(τ ;ϑ)s − Pe−τ2S(ϑ)Ps

∥∥
H→H

≤ C5s
−1/2e−qc∗τ

2s/2 + δ−1/2s−1/2e−δs/2.

Note that for |τ | ≤ τ0 we have

(2.16) e−δs/2 ≤ e−τ2C∗s, e−qc∗τ
2s/2 ≤ e−τ2C∗s, |τ | ≤ τ0,
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with the constant

(2.17) C∗ :=
1

2
min{qc∗; δτ

−2
0 }.

From (2.16) and (2.15) it follows that

(2.18)
∥∥e−B(τ ;ϑ)s − Pe−τ2S(ϑ)Ps

∥∥
H→H

≤ (C5 + δ−1/2)s−1/2e−τ2C∗s.

Moreover, by (2.4) and (2.17), for all s ≥ 0 the left-hand side of (2.18) satisfies the
estimate ∥∥e−B(τ ;ϑ)s − Pe−τ2S(ϑ)Ps

∥∥
H→H

≤ 2e−C∗τ
2s.

For s > 0 we have min{2; (C5 + δ−1/2)s−1/2} ≤ C6(1 + s)−1/2, where

(2.19) C6 :=
√
2max{2;C5 + δ−1/2}.

Thus, we have proved that

(2.20)
∥∥e−B(τ ;ϑ)s − Pe−τ2S(ϑ)Ps

∥∥
H→H

≤ C6(1 + s)−1/2e−τ2C∗s, s ≥ 0, |τ | ≤ τ0.

In accordance with [Su6, (3.26)], we denote L(t, ε) := τ2S(ϑ):

L(t, ε) = t2S + tε
(
− (X0Z)∗(X0

rZ)|N − (X0
rZ)∗(X0Z)

∣∣
N

)
+ tεP (Y ∗

2 Y1 + Y ∗
1 Y2)

∣∣
N
+ ε2

(
− (X0

rZ)∗(X0
rZ)
∣∣
N
+QN + λQ0N

)
.

(2.21)

Cf. (1.23). Note that the estimate S(ϑ) ≥ qc∗IN implies that

(2.22) L(t, ε) ≥ qc∗(t
2 + ε2)IN.

Now we formulate (2.20) in terms of the operator L(t, ε).

Theorem 2.1. Let B(t, ε) be the operator defined in Subsection 1.4. Suppose that con-
dition (2.1) is satisfied. Let L(t, ε) be the operator (2.21). Then∥∥e−B(t,ε)s − e−L(t,ε)sP

∥∥
H→H

≤ C6(1 + s)−1/2e−τ2C∗s, s ≥ 0, |τ | ≤ τ0.

The constant C6 depends only on δ, κ, c∗, c0, c1, c2, c3, c4, C(1), λ, ‖X1‖, ‖Y1‖, ‖Q0‖,
and ‖Q−1

0 ‖. The constant C∗ is defined by (2.17).

2.3. Approximation with the corrector term taken into account. Approxima-
tion of the operator exp(−B(τ ;ϑ)s) with the corrector term taken into account is given
by the following theorem.

Theorem 2.2. Under the assumptions of Theorem 2.1, let Z and rZ be the operators
defined in Subsection 1.6. Then∥∥B(t, ε)1/2

(
e−B(t,ε)s −

(
I + tZ + ε rZ

)
e−L(t,ε)sP

)∥∥
H→H

≤ C8s
−1e−τ2C∗s,

|τ | ≤ τ0, s > 0.
(2.23)

The constant C8 is defined below in (2.32).

Proof. We put U(τ ;ϑ; s) := B(τ ;ϑ)1/2e−B(τ ;ϑ)s. Obviously,

U(τ ;ϑ; s) = U(τ ;ϑ; s)F (τ ;ϑ)⊥ + U(τ ;ϑ; s)F (τ ;ϑ)(F (τ ;ϑ)− P )

+ F (τ ;ϑ)U(τ ;ϑ; s)P.
(2.24)

Relations (1.13), (2.16), and the inequality e−α ≤ α−1, α > 0, imply∥∥U(τ ;ϑ; s)F (τ ;ϑ)⊥
∥∥
H→H

≤ sup
μ≥3δ

μ1/2e−μs ≤ 2(3δ)−1/2s−1e−3δs/2

≤ 2(3δ)−1/2s−1e−τ2C∗s, |τ | ≤ τ0.

(2.25)
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Next, using (2.3) and (2.17), for s > 0 and |τ | ≤ τ0 we get

‖U(τ ;ϑ; s)F (τ ;ϑ)‖H→H ≤ sup
1≤l≤n

(λl(τ ;ϑ))
1/2e−λl(τ ;ϑ)s

≤ 2s−1 sup
1≤l≤n

(λl(τ ;ϑ))
−1/2e−λl(τ ;ϑ)s/2 ≤ 2qc

−1/2
∗ |τ |−1s−1e−τ2C∗s.

Combining this with (1.27), we see that

(2.26) ‖U(τ ;ϑ; s)F (τ ;ϑ)(F (τ ;ϑ)− P )‖H→H ≤ 2C1qc
−1/2
∗ s−1e−τ2C∗s

for s > 0 and |τ | ≤ τ0. The last term on the right-hand side in (2.24) is represented as

F (τ ;ϑ)U(τ ;ϑ; s)P = B(τ ;ϑ)1/2F (τ ;ϑ)e−τ2S(ϑ)sP

+B(τ ;ϑ)1/2F (τ ;ϑ)
(
e−B(τ ;ϑ)sF (τ ;ϑ)− e−τ2S(ϑ)sP

)
P.

(2.27)

By (1.37), (2.12), and (2.17), we have∥∥B(τ ;ϑ)1/2F (τ ;ϑ)
(
e−B(τ ;ϑ)sF (τ ;ϑ)− e−τ2S(ϑ)sP

)
P
∥∥
H→H

≤ C
1/2
3 |τ |(2C1|τ |+ C2|τ |3s)e−qc∗τ

2s ≤ C7s
−1e−τ2C∗s,

(2.28)

where

(2.29) C7 := C
1/2
3 sup

α>0
(2C1α+ C2α

2)e−qc∗α/2.

Relations (2.24)–(2.28) yield∥∥B(τ ;ϑ)1/2
(
e−B(τ ;ϑ)s −

(
I + τ (ϑ1Z + ϑ2

rZ)
)
e−τ2S(ϑ)sP

)∥∥
H→H

≤ (2(3δ)−1/2 + 2C1qc
−1/2
∗ + C7)s

−1e−τ2C∗s

+
∥∥B(τ ;ϑ)1/2

(
F (τ ;ϑ)P − P − τ (ϑ1Z + ϑ2

rZ)
)
e−τ2S(ϑ)sP

∥∥
H→H

.

(2.30)

From (1.34) and (1.35) it follows that F (τ ;ϑ)P − P − τ (ϑ1Z + ϑ2
rZ) = F2(τ ;ϑ)P . By

using (1.38), (2.4), and (2.17), we estimate the last term in (2.30):∥∥B(τ ;ϑ)1/2F2(τ ;ϑ)e
−τ2S(ϑ)sP

∥∥
H→H

≤ C4δ
1/2(1 + π−1)τ2e−τ2

qc∗s

≤ C4δ
1/2(1 + π−1)2qc−1

∗ s−1e−τ2C∗s, s > 0, |τ | ≤ τ0.
(2.31)

Combining (2.30) and (2.31), we arrive at estimate (2.23) with the constant

(2.32) C8 := 2(3δ)−1/2 + 2C1qc
−1/2
∗ + C7 + 2C4δ

1/2(1 + π−1)qc−1
∗ .

�

§3. Approximation of the “bordered” operator exponential

3.1. The principal term of approximation. Suppose that the assumptions of Sub-

sections 1.10 and 1.11 are satisfied, i.e., B(τ ;ϑ) = M∗
pB(τ ;ϑ)M . Our goal in this section

is to find an approximation for the operator Me−B(τ ;ϑ)sM∗ acting in pH. The principal
term of approximation for Me−A(t)sM∗ was found in [Su2, Subsection 2.2], approxima-
tion with the corrector term taken into account was obtained in [Su5, Theorem 4.1]. We
generalize these considerations to the case of the family B(τ ;ϑ).

We use the notation (1.40), (1.41) and put

(3.1) M0 := (G
pN
)−1/2 : pN → pN.

From (2.20) it follows that for s ≥ 0 and |τ | ≤ τ0 we have∥∥Me−B(τ,ϑ)sM∗ −Me−τ2S(ϑ)sPM∗∥∥
pH→pH

≤ C6‖M‖2(1 + s)−1/2e−τ2C∗s.(3.2)
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Proposition 3.1. The operator Λ(τ ;ϑ; s) := Me−τ2S(ϑ)sPM∗ acting in the Hilbert space
pH admits the representation

(3.3) Λ(τ ;ϑ; s) = M0e
−τ2M0

pS(ϑ)M0sM0
pP .

Proof. Let pη ∈ pH, and let pξ(s) = Λ(τ ;ϑ; s)pη. ThenM−1
pξ(s) ∈ N, pξ(s) ∈ pN, andM−1

pξ(s)
is the solution of the Cauchy problem

(3.4)
d

ds
M−1

pξ(s) = −τ2S(ϑ)M−1
pξ(s), M−1

pξ(0) = PM∗
pη.

By (1.53), S(ϑ)M−1
pξ(s) = PM∗

pS(ϑ)pξ(s). Next, from (1.42) we deduce that PM∗ =

M−1(G
pN
)−1

pP . Then (3.4) and (3.1) show that

d

ds
pξ(s) = −τ2M2

0
pS(ϑ)pξ(s), pξ(0) = M2

0
pP pη,

or equivalently, d
dsM

−1
0

pξ(s) = −τ2M0
pS(ϑ)pξ(s), M−1

0
pξ(0) = M0

pP pη. Hence, M−1
0

pξ(s) =

e−τ2M0
pS(ϑ)M0sM0

pP pη, which implies (3.3). �

We introduce the operator pL(t, ε) := τ2 pS(ϑ). The following result is a consequence of
(3.2) and (3.3).

Theorem 3.2. Under the above assumptions, we have∥∥Me−B(t,ε)sM∗ −M0e
−M0

pL(t,ε)M0sM0
pP
∥∥

pH→pH
≤ C6‖M‖2(1 + s)−1/2e−τ2C∗s,

s ≥ 0, |τ | ≤ τ0.
(3.5)

3.2. Approximation with the corrector term taken into account.

Theorem 3.3. Under the assumptions of Subsections 1.10 and 1.11, let pZG and
p

rZG be
the operators (1.55) and (1.57), respectively. Then∥∥ pB(t, ε)1/2

(
Me−B(t,ε)sM∗ − (I + t pZG + ε

p

rZG)M0e
−M0

pL(t,ε)M0sM0
pP
)
‖

pH→pH

≤ C8‖M‖s−1e−τ2C∗s, s > 0, 0 < ε ≤ 1, |τ | ≤ τ0.

Proof. The required estimate follows from (2.23) by recalculation. Combining (1.55),
(1.57), and Proposition 3.1, we obtain∥∥ pB(τ ;ϑ)1/2

(
Me−B(τ ;ϑ)sM∗ − (I + τ (ϑ1

pZG + ϑ2
p

rZG))Λ(τ ;ϑ; s)
)∥∥

pH→pH

=
∥∥ pB(τ ;ϑ)1/2M

(
e−B(τ ;ϑ)s − (I + τ (ϑ1Z + ϑ2

rZ))e−τ2S(ϑ)sP
)
M∗∥∥

pH→pH

=
∥∥B(τ ;ϑ)1/2

(
e−B(τ ;ϑ)s − (I + τ (ϑ1Z + ϑ2

rZ))e−τ2S(ϑ)sP
)
M∗∥∥

pH→H

≤ ‖M‖
∥∥B(τ ;ϑ)1/2

(
e−B(τ ;ϑ)s − (I + τ (ϑ1Z + ϑ2

rZ))e−τ2S(ϑ)sP
)∥∥

H→H
.

Together with (2.23), this implies the claim. �

Chapter 2

Periodic differential operators in L2(R
d;Cn)

§4. Basic definitions

4.1. The lattices Γ and rΓ. Let Γ be a lattice in Rd generated by a basis a1, . . . , ad : Γ ={
a ∈ Rd : a =

∑d
j=1 n

jaj , n
j ∈ Z

}
. Let Ω denote the elementary cell of the lattice

Γ: Ω =
{
x ∈ Rd : x =

∑d
j=1 ξ

jaj , 0 < ξj < 1
}
. The basis b1, . . . ,bd dual to a1, . . . , ad

is defined by the relations 〈bl, aj〉 = 2πδlj . This basis generates the lattice rΓ dual to



HOMOGENIZATION OF THE PARABOLIC CAUCHY PROBLEM 995

the lattice Γ. Let rΩ denote the Brillouin zone of the lattice rΓ: rΩ =
{
k ∈ Rd : |k| <

|k−b|, 0 �= b ∈ rΓ
}
. The domain rΩ is a fundamental domain for rΓ. We use the notation

|Ω| = measΩ, |rΩ| = meas rΩ. Let r0 be the radius of the ball inscribed in clos rΩ, and let

2r1 = diam rΩ.

4.2. Factorized second order operators. (See [BSu1].) Let b(D) =
∑d

l=1 blDl:

L2(R
d;Cn) → L2(R

d;Cm) be a first order DO. Here the bl are constant (m×n)-matrices.

We assume that m ≥ n. The symbol b(ξ) =
∑d

l=1 blξl is assumed to be such that
rank b(ξ) = n, 0 �= ξ ∈ Rd. Then for some α0, α1 > 0 we have

(4.1) α01n ≤ b(θ)∗b(θ) ≤ α11n, θ ∈ S
d−1, 0 < α0 ≤ α1 < ∞.

Let an (n×n)-matrix-valued function f(x) and an (m×m)-matrix-valued function h(x),
x ∈ Rd, be bounded together with the inverses:

(4.2) f, f−1 ∈ L∞(Rd); h, h−1 ∈ L∞(Rd).

The functions f and h are assumed to be Γ-periodic. Consider the DO

X := hb(D)f : L2(R
d;Cn) → L2(R

d;Cm),(4.3)

DomX := {u ∈ L2(R
d;Cn) : fu ∈ H1(Rd;Cn)}.(4.4)

The operator (4.3) is closed on the domain (4.4). Consider the selfadjoint operator
A := X ∗X in L2(R

d;Cn) corresponding to the quadratic form a[u,u] = ‖Xu‖2L2
, u ∈

DomX . Formally, we can write A = f∗b(D)∗gb(D)f , where g = h∗h. Using the Fourier
transformation and (4.1), (4.2), it is easy to show that for u ∈ DomX we have

(4.5) α0‖g−1‖−1
L∞

‖D(fu)‖2L2(Rd) ≤ a[u,u] ≤ α1‖g‖L∞‖D(fu)‖2L2(Rd).

4.3. The operators Y and Y2. Now we proceed to the description of lower order
terms. We introduce the operator Y : L2(R

d;Cn) → L2(R
d;Cdn) defined by

Yu = D(fu) = col{D1(fu), . . . , Dd(fu)}, DomY = DomX .

The lower estimate (4.5) means that

‖Yu‖L2(Rd) ≤ c1‖Xu‖L2(Rd), u ∈ DomX ,(4.6)

c1 = α
−1/2
0 ‖g−1‖1/2L∞

.(4.7)

Let aj(x), j = 1, . . . , d, be bounded Γ-periodic (n× n)-matrix-valued functions in Rd

such that

(4.8) aj ∈ L�(Ω), � = 2 for d = 1, � > d for d ≥ 2; j = 1, . . . , d.

Consider the operator Y2 : L2(R
d;Cn) → L2(R

d;Cdn) acting on the domain DomY2 =
DomX and defined by Y2u = col{a∗1fu, . . . , a∗dfu}. Formally, we have (Y∗

2Y+Y∗Y2)u =∑d
j=1

(
f∗ajDj(fu) + f∗Dj(a

∗
jfu)

)
.

By using the Hölder inequality, conditions (4.2), (4.8), and the compactness of the
embedding H1(Ω) ⊂ Lp(Ω) for p = 2�(�−2)−1, one can check (cf. [Su6, Subsection 5.2])
that for any ν > 0 there exists a constant C(ν) > 0 such that

(4.9) ‖Y2u‖2L2(Rd) ≤ ν‖Xu‖2L2(Rd) + C(ν)‖u‖2L2(Rd), u ∈ DomX .

For a fixed ν, the constant C(ν) depends on the norms ‖aj‖L�(Ω), j = 1, . . . , d, ‖f‖L∞ ,

‖g−1‖L∞ , on α0, d, �, and on the parameters of the lattice Γ.
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Using (4.6), (4.9), it is easy to check that

2ε|Re(Yu,Y2u)L2
| ≤ κ

2
‖Xu‖2L2

+ c4ε
2‖u‖2L2

, u ∈ DomX ,(4.10)

c4 := 4κ−1c21C(ν) for ν = κ2(16c21)
−1.(4.11)

4.4. The operator Q0 and the form q[u,u]. Let Q0 be the operator in L2(R
d;Cn)

that acts as multiplication by the Γ-periodic positive definite and bounded matrix-valued
function Q0(x) := f(x)∗f(x).

Suppose that dμ(x) is a Γ-periodic σ-finite Borel measure in Rd with values in the
class of Hermitian (n × n)-matrices. Then dμ(x) = {dμjl(x)}, j, l = 1, . . . , n. In other
words, dμjl(x) is a complex-valued Γ-periodic measure in Rd, and dμjl = dμ∗

lj . Suppose

that the measure dμ is such that the function |v(x)|2 is integrable with respect to each
measure dμjl for any v ∈ H1(Rd).

In L2(R
d;Cn), we consider the form q[u,u] =

∫
Rd〈 dμ(x)fu, fu〉, u ∈ DomX . The

measure dμ is subject to the following condition.

Condition 4.1. For any v ∈ H1(Ω;Cn), we have

−rc‖Dv‖2L2(Ω) − pc0‖v‖2L2(Ω) ≤
∫
Ω

〈dμ(x)v,v〉 ≤ rc2‖Dv‖2L2(Ω) + pc3‖v‖2L2(Ω),

where pc0 ∈ R, rc2 ≥ 0, pc3 ≥ 0, and 0 ≤ rc < α0‖g−1‖−1
L∞

.

Note that Condition 4.1 implies the estimate

−rc‖D(fu)‖2L2(Ω) − c0‖u‖2L2(Ω) ≤
∫
Ω

〈 dμ(x)fu, fu〉

≤ rc2‖D(fu)‖2L2(Ω) + c3‖u‖2L2(Ω)

(4.12)

with the constants

c0 = pc0‖f‖2L∞ if pc0 ≥ 0, c0 = pc0‖f−1‖−2
L∞

if pc0 < 0;(4.13)

c3 = ‖f‖2L∞pc3.(4.14)

For u ∈ DomX , writing inequality (4.12) for the shifted cells Ω + a, a ∈ Γ, and
summing up, we obtain

−rc‖D(fu)‖2L2(Rd) − c0‖u‖2L2(Rd) ≤ q[u,u] ≤ rc2‖D(fu)‖2L2(Rd) + c3‖u‖2L2(Rd).

Hence, by (4.5),

−(1− κ)‖Xu‖2L2(Rd) − c0‖u‖2L2(Rd) ≤ q[u,u] ≤ c2‖Xu‖2L2(Rd) + c3‖u‖2L2(Rd),

u ∈ DomX ,
(4.15)

where

(4.16) c2 = rc2α
−1
0 ‖g−1‖L∞ , κ = 1− rcα−1

0 ‖g−1‖L∞ , 0 < κ ≤ 1.

4.5. The operator B(ε). In L2(R
d;Cn), we consider the quadratic form

b(ε)[u,u] = a[u,u] + 2εRe(Yu,Y2u)L2(Rd) + ε2q[u,u] + λε2(Q0u,u)L2(Rd),

u ∈ DomX ,
(4.17)

where 0 < ε ≤ 1 and the parameter λ ∈ R satisfies the following restriction:

λ > ‖Q−1
0 ‖L∞(c0 + c4) if λ ≥ 0,

λ > ‖Q0‖−1
L∞

(c0 + c4) if λ < 0 (and c0 + c4 < 0).
(4.18)
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Now we estimate the form (4.17) from below. Let β > 0 be defined by

β = λ‖Q−1
0 ‖−1

L∞
− c0 − c4 if λ ≥ 0,

β = λ‖Q0‖L∞ − c0 − c4 if λ < 0 (and c0 + c4 < 0).
(4.19)

Combining (4.10), the lower estimate in (4.15), (4.18), and (4.19), we arrive at

(4.20) b(ε)[u,u] ≥ κ

2
a[u,u] + βε2‖u‖2L2

, u ∈ DomX , 0 < ε ≤ 1.

Thus, the form b(ε) is positive definite. From (4.6), (4.9) for ν = 1, and the upper
estimate in (4.15) it follows that

(4.21) b(ε)[u,u] ≤ (2 + c21 + c2)a[u,u] + (C(1) + c3 + |λ|‖Q0‖L∞)ε2‖u‖2L2
,u ∈ DomX .

By (4.20) and (4.21), the form b(ε) is closed. The corresponding positive definite operator
in L2(R

d;Cn) is denoted by B(ε). Formally, we can write

B(ε) = A+ ε(Y∗
2Y + Y∗Y2) + ε2f∗Qf + ε2λQ0

= f∗b(D)∗gb(D)f + ε

d∑
j=1

f∗(ajDj +Dja
∗
j )f + ε2f∗Qf + ε2λQ0,

(4.22)

where Q can be interpreted as the generalized matrix-valued potential generated by the
measure dμ.

For further references, by the “initial data” we mean the following set of parameters :

d, m, n, �; α0, α1, ‖g‖L∞ , ‖g−1‖L∞ , ‖f‖L∞ , ‖f−1‖L∞ , ‖aj‖L�(Ω),

j = 1, . . . , d; rc, pc0, rc2, pc3 from Condition 4.1;λ.
(4.23)

We shall trace the dependence of constants in estimates on the initial data and the
parameters of the lattice. The constants c1, C(1), κ, c2, c3, c4, c0, β are determined by
the initial data and the lattice.

§5. Direct integral decomposition for the operator B(ε)
5.1. The Gelfand transformation. Initially, the Gelfand transformation U is defined
on the functions of the Schwartz class v ∈ S(Rd;Cn) by the formula

rv(k,x) = (Uv)(k,x) = |rΩ|−1/2
∑
a∈Γ

exp(−i〈k,x+ a〉)v(x+ a), x ∈ Ω, k ∈ rΩ.

Herewith,
∫

rΩ

∫
Ω
|rv(k,x)|2 dx dk =

∫
Rd |v(x)|2 dx, and U extends by continuity to a uni-

tary operator

(5.1) U : L2(R
d;Cn) →

∫
rΩ

⊕L2(Ω;C
n) dk =: H.

Let rH1(Ω;Cn) denote the subspace of all functions in H1(Ω;Cn) whose Γ-periodic exten-
sion to Rd belongs to the class H1

loc(R
d;Cn). The relation v ∈ H1(Rd;Cn) is equivalent

to the fact that rv(k, · ) ∈ rH1(Ω;Cn) for a. e. k ∈ rΩ, and∫
rΩ

∫
Ω

(
|(D+ k)rv(k,x)|2 + |rv(k,x)|2

)
dx dk < ∞.

Under the Gelfand transformation U , the operator of multiplication by a bounded peri-
odic matrix-valued function in L2(R

d;Cn) turns into multiplication by the same function
on the fibers of the direct integral H. On these fibers, the operator b(D) applied to

v ∈ H1(Rd;Cn) turns into the operator b(D+ k) applied to rv(k, · ) ∈ rH1(Ω;Cn).
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5.2. The operators A(k). (See [BSu1, Subsection 2.2.1].) We put

(5.2) H = L2(Ω;C
n), H∗ = L2(Ω;C

m), rH = L2(Ω;C
dn)

and consider the closed operator X (k) : H → H∗, k ∈ Rd, defined by the relations

X (k) = hb(D+ k)f, k ∈ R
d,(5.3)

d := DomX (k) = {u ∈ H : fu ∈ rH1(Ω;Cn)}.(5.4)

The selfadjoint operator A(k) := X (k)∗X (k) : H → H, k ∈ Rd, is generated by the
quadratic form a(k)[u,u] := ‖X (k)u‖2H∗

, u ∈ d, k ∈ Rd. From (4.1) and (4.2) it follows
that

α0‖g−1‖−1
L∞

‖(D+ k)v‖2L2(Ω) ≤ a(k)[u,u] ≤ α1‖g‖L∞‖(D+ k)v‖2L2(Ω),

v = fu ∈ rH1(Ω;Cn).
(5.5)

By (5.5) and the compactness of the embedding of rH1(Ω; Cn) into H, the spectrum of
A(k) is discrete. We put N := KerA(0) = KerX (0). Inequality (5.5) for k = 0 implies
that

(5.6) N = KerA(0) = {u ∈ L2(Ω;C
n) : fu = c ∈ C

n}, dim N = n.

As was shown in [BSu1, (2.2.11), (2.2.12)],

(5.7) A(k) ≥ c∗|k|2I, k ∈ clos rΩ, c∗ = α0‖f−1‖−2
L∞

‖g−1‖−1
L∞

.

In accordance with [BSu1, (2.2.14)], the distance d0 from the point λ0 = 0 to the rest of
the spectrum of A(0) satisfies the estimate

(5.8) d0 ≥ 4c∗r
2
0.

5.3. The operators Y(k) and Y2. Consider the operator Y(k) : H → rH, that acts on
the domain DomY(k) = d and is defined by

(5.9) Y(k)u = (D+ k)fu = col{(D1 + k1)fu, . . . , (Dd + kd)fu}, u ∈ d.

The lower estimate (5.5) implies that

(5.10) ‖Y(k)u‖H ≤ c1‖X (k)u‖H∗ , u ∈ d,

where the constant c1 is as in (4.7).

Consider the operator Y2 : H → rH defined by the relation

(5.11) Y2u = col{a∗1fu, . . . , a∗dfu}, DomY2 = d.

As was shown in [Su6, Subsection 5.7], for any ν > 0 there exist constants Cj(ν) > 0,
j = 1, . . . , d, such that for k ∈ Rd we have

‖a∗jv‖2L2(Ω) ≤ ν‖(D+ k)v‖2L2(Ω) + Cj(ν)‖v‖2L2(Ω), v ∈ rH1(Ω;Cn), j = 1, . . . , d.

Let v = fu, u ∈ d. Then, summing these inequalities over j and using (4.2), (5.5), we
see that for any ν > 0 there exists a constant C(ν) > 0 (the same as in (4.9)) such that

(5.12) ‖Y2u‖2
rH
≤ ν‖X (k)u‖2H∗ + C(ν)‖u‖2H, u ∈ d, k ∈ R

d.
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5.4. The operator Q0 and the form qΩ[u,u]. Let Q0 be the bounded operator in H

acting as multiplication by the matrix-valued function Q0(x) = f(x)∗f(x).
In L2(Ω;C

n), we consider the form qΩ[u,u] =
∫
Ω
〈 dμ(x)fu, fu〉, u ∈ d. Replacing

f(x)u(x) by f(x)u(x) exp(i〈k,x〉) in (4.12) (these functions belong to H1(Ω;Cn) simul-
taneously) and using (5.5), we get

(5.13) −(1−κ)‖X (k)u‖2H∗−c0‖u‖2H ≤ qΩ[u,u] ≤ c2‖X (k)u‖2H∗+c3‖u‖2H, u ∈ d, k ∈ R
d.

Here the constants κ, c0, c2, c3 are the same as in (4.15).

5.5. The operator pencil B(k, ε). In the space H, we consider the quadratic form

b(k, ε)[u,u] = a(k)[u,u] + 2εRe(Y(k)u, Y2u)rH
+ ε2qΩ[u,u] + λε2(Q0u,u)H, u ∈ d.

From (4.18), (4.19), (5.10), (5.12), and (5.13) it follows that

(5.14) b(k, ε)[u,u] ≥ κ

2
a(k)[u,u] + βε2‖u‖2H, u ∈ d.

Next, using (5.10), (5.12) for ν = 1, and the upper estimate in (5.13), we obtain

(5.15) b(k, ε)[u,u] ≤ (2+ c21+ c2)a(k)[u,u] + (C(1)+ c3+ |λ|‖Q0‖L∞)ε2‖u‖2H, u ∈ d.

The inequalities (5.14) and (5.15) show that the form b(k, ε) is closed on the domain (5.4)
and positive definite. The selfadjoint operator in H generated by this form is denoted by
B(k, ε). Formally, we can write

B(k, ε) = A(k) + ε(Y ∗
2 Y(k) + Y(k)∗Y2) + ε2f∗Qf + λε2Q0

= f∗b(D+ k)∗gb(D+ k)f + ε
d∑

j=1

f∗(aj(Dj + kj) + (Dj + kj)a
∗
j )f

+ ε2f∗Qf + λε2f∗f.

(5.16)

5.6. Direct integral expansion for the operator B(ε). Under the Gelfand trans-
formation U , the operator (4.22) acting in the space L2(R

d;Cn) expands into the direct
integral of the operators (5.16) acting in L2(Ω;C

n):

UB(ε)U−1 =

∫
rΩ

⊕B(k, ε) dk.

This means the following. Let ru = Uu, where u ∈ Dom b(ε). Then

ru(k, · ) ∈ d for a. e. k ∈ rΩ,(5.17)

b(ε)[u,u] =

∫
rΩ

b(k, ε)[ru(k, · ), ru(k, · )] dk.(5.18)

Conversely, if ru ∈ H satisfies (5.17) and the integral in (5.18) is finite, then u ∈ Dom b(ε)
and we have (5.18).

§6. Incorporation of the operators B(k, ε) into the abstract method

6.1. For d > 1, the operators B(k, ε) depend on the multidimensional parameter k. As
in [BSu1, Chapter 2], we distinguish a one-dimensional parameter t by putting k = tθ,
t = |k|, θ ∈ Sd−1. We apply the method of Chapter 1. Now, all the objects depend on
the additional parameter θ. We must make our considerations and estimates uniform

in θ. The spaces H, H∗, and rH are defined by (5.2). We put X(t) = X(t; θ) := X (tθ).
By (5.3), X(t; θ) = X0 + tX1(θ), where X0 = X (0) = h(x)b(D)f(x), DomX0 = d,
and X1(θ) is the bounded operator acting as multiplication by the matrix h(x)b(θ)f(x).
Next, we put A(t) = A(t; θ) := A(tθ). By (5.6), the kernel N = KerX0 = KerA(0) is



1000 YU. M. MESHKOVA

n-dimensional. Condition 1.1 is satisfied, and d0 obeys (5.8). As was shown in [BSu1,
Chapter 2, §3], the condition n ≤ n∗ = dimKerX∗

0 is also satisfied.
Next, the role of Y (t) is played by the operator Y (t; θ) := Y(tθ). By (5.9), we have

Y (t; θ) = Y0 + tY1(θ), where

Y0u = D(fu) = col{D1fu, . . . , Ddfu}, DomY0 = d;

Y1(θ)u = col{θ1fu, . . . , θdfu}.
(6.1)

Condition 1.2 is ensured by (5.10). The operator Y2 is defined by (5.11). By (5.12),
Condition 1.3 is fulfilled. The role of the form q from Subsection 1.3 is played by the
form qΩ. By (5.13), Condition 1.4 is fulfilled. The role of the operator Q0 from Subsec-
tion 1.3 is played by the operator of multiplication by the matrix-valued function Q0(x).
By (4.18), the parameter λ satisfies (1.5). Estimates (5.14) and (5.15) correspond to
(1.7) and (1.9).

Finally, the role of the operator pencil B(t, ε) (see (1.10)) is played by the operator
family (5.16): B(t, ε; θ) := B(tθ, ε).

Thus, all the assumptions of Chapter 1 are satisfied.

6.2. In accordance with Subsection 1.5, we should fix a positive number δ such that
δ < κd0/13. Taking (5.7) and (5.8) into account, we put

(6.2) δ =
1

4
κc∗r

2
0 =

1

4
κα0‖f−1‖−2

L∞
‖g−1‖−1

L∞
r20.

Relations (4.1), (4.2), and (6.1) show that

(6.3) ‖X1(θ)‖ ≤ α
1/2
1 ‖g‖1/2L∞

‖f‖L∞ , ‖Y1(θ)‖ = ‖f‖L∞ , θ ∈ S
d−1.

Instead of the sharp value of the constant (1.12), which depends on θ and is equal
to δ1/2((2 + c21 + c2)‖X1(θ)‖2 +C(1) + c3 + |λ|‖f‖2L∞

)−1/2, we take the following value,

which is suitable for all θ ∈ Sd−1:

(6.4) τ0 = δ1/2
(
(2 + c21 + c2)α1‖g‖L∞‖f‖2L∞ + C(1) + c3 + |λ|‖f‖2L∞

)−1/2
.

Condition (2.1) is satisfied due to (5.7). Then, by (5.14), the operator B(t, ε; θ)
satisfies a condition of the form (2.2):

B(t, ε; θ) ≥ qc∗(t
2 + ε2)I, k = tθ ∈ rΩ, 0 < ε ≤ 1,(6.5)

qc∗ =
1

2
min{κc∗, 2β}.(6.6)

6.3. The effective characteristics. In the case where f = 1n, the effective character-
istics were constructed in [Su6, Subsections 6.3, 6.4, 7.1]. In this subsection, we formulate
the necessary results.

Below, all the objects corresponding to f = 1n are marked by the upper hat “p”. We

have pH = H = L2(Ω;C
n). By Subsection 6.1, pX(t; θ) = pX0 + t pX1(θ), pX0 = h(x)b(D),

Dom pX0 = rH1(Ω;Cn), and pX1(θ) is the bounded operator of multiplication by the matrix

h(x)b(θ). Formally, pA(t; θ) = pX(t; θ)∗ pX(t; θ). If f = 1n, the kernel (5.6) coincides with

the subspace of constants pN = {u ∈ H : u = c ∈ Cn}. The orthogonal projection pP of

H = L2(Ω;C
n) onto the subspace pN = Cn is the operator of averaging over the cell Ω:

pPu = |Ω|−1
∫
Ω
u(x) dx.

Next, pY (t; θ) = pY0 + tpY1(θ) : H → rH, where pY0u = Du = col{D1u, . . . , Ddu},
Dom pY0 = rH1(Ω;Cn), and pY1(θ)u = col{θ1u, . . . , θdu}. The operator pY2 : H → rH acts

on the domain Dom pY2 = rH1(Ω;Cn) and is defined by pY2u = col{a∗1u, . . . , a∗du}. The

role of the form pq[u,u] is played by the form
∫
Ω
〈dμ(x)u,u〉; the role of the operator pQ0

is played by the identity operator I.
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The operator pencil pB(t, ε; θ) is formally given by the expression

pB(t, ε; θ) = pA(t; θ) + ε(pY ∗
2

pY (t; θ) + pY (t; θ)∗ pY2) + ε2Q+ λε2I.

In accordance with Subsection 1.6, we introduce the operators pZ and
p

rZ. Now the

operator pZ depends on θ. As was shown in [BSu3, (4.2)], pZ(θ) = Λb(θ) pP , where Λ(x)
is a Γ-periodic (n×m)-matrix-valued function satisfying

(6.7) b(D)∗g(x)(b(D)Λ(x) + 1m) = 0,

∫
Ω

Λ(x) dx = 0.

In accordance with [Su6, Subsection 6.3],
p

rZ = rΛ pP , where rΛ(x) is a Γ-periodic (n × n)-
matrix-valued function satisfying

(6.8) b(D)∗g(x)b(D)rΛ(x) +
d∑

j=1

Djaj(x)
∗ = 0,

∫
Ω

rΛ(x) dx = 0.

Now the spectral germ pS defined in Subsection 1.7 depends on θ. By [BSu1, Chapter 3,

§1], the operator pS(θ) : pN → pN acts as the operator of multiplication by the matrix
b(θ)∗g0b(θ), θ ∈ S

d−1. Here g0 is a constant positive (m×m)-matrix called the effective
matrix and defined by

(6.9) g0 = |Ω|−1

∫
Ω

g(x)(b(D)Λ(x) + 1m) dx.

As in [Su6, (7.2), (7.3)], we define the constant matrices

V := |Ω|−1

∫
Ω

(b(D)Λ(x))∗g(x)b(D)rΛ(x) dx,(6.10)

W := |Ω|−1

∫
Ω

(b(D)rΛ(x))∗g(x)b(D)rΛ(x) dx.(6.11)

Now the operator pL(t, ε) defined by (2.21) depends on θ. We return to the parameter

k = tθ: pL(t, ε; θ) = pL(k, ε). It turns out (see [Su6, (7.8)]) that

(6.12) pL(k, ε) = b(k)∗g0b(k)+ε(−b(k)∗V −V ∗b(k))+ε
d∑

j=1

(aj+ a∗j )kj+ε2(−W+ sQ+λI),

where (aj + a∗j ) := |Ω|−1
∫
Ω
(aj(x) + aj(x)

∗) dx and

(6.13) sQ := |Ω|−1

∫
Ω

dμ(x).

We put

pA0(k) = b(D+ k)∗g0b(D+ k), pY0(k) = −b(D+ k)∗V +

d∑
j=1

saj(Dj + kj),

pB0(k, ε) = pA0(k) + ε( pY0(k) + pY0(k)∗) + ε2( sQ−W + λI).

Then

(6.14) pL(k, ε) pP = pB0(k, ε) pP.
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6.4. The case where f �= 1n. Now we consider the operators B(ε) of the general
form (4.22) and the corresponding families B(t, ε; θ) described in Subsection 6.1. To
mark the objects corresponding to the case of f = 1n with the same b, g, aj , j = 1, . . . , d,
λ, Q, we use the upper hat “p”.

We apply the approach of Subsections 1.10–1.12. Now pH = H = L2(Ω;C
n), and

the isomorphism M is the operator of multiplication by the matrix-valued function f .
The role of the operator G of Subsection 1.10 (see (1.40)) is played by the operator
ρ acting as multiplication by the matrix-valued function ρ(x) := (f(x)f(x)∗)−1. The

block of ρ in the kernel pN = C
n is the operator of multiplication by the constant matrix

sρ = |Ω|−1
∫
Ω
(f(x)f(x)∗)−1 dx. The role of the operator M0 (see (3.1)) is played by the

operator of multiplication by the constant matrix f0 := (sρ)−1/2. Note that

(6.15) |f0| ≤ ‖f‖L∞ , |f−1
0 | ≤ ‖f−1‖L∞ .

By (5.7), pA(k) ≥ pc∗|k|2I, k ∈ rΩ, where pc∗ = α0‖g−1‖−1
L∞

. The constants c∗ and pc∗

satisfy c∗ = ‖f−1‖−2
L∞

pc∗. As in (1.47), β ≤ ‖f−1‖−2
L∞

pβ, and by (6.6), qc∗ = 1
2 min{κc∗, 2β},

p

qc∗ = 1
2 min{κpc∗, 2pβ}. Thus, qc∗ ≤ ‖f−1‖−2

L∞
p

qc∗. In accordance with (2.22), pL(k, ε) ≥
p

qc∗(|k|2 + ε2)1n. Hence, by (6.15), we have

(6.16) f0pL(k, ε)f0 ≥ qc∗(|k|2 + ε2)1n, k ∈ R
d.

§7. Approximation of the operator f exp(−B(k, ε)s)f∗

7.1. The principal term of approximation. The principal term of approximation
for the operator f exp(−A(k)s)f∗ was obtained in [Su2, Subsection 6.2], approximation
with the corrector term taken into account was found in [Su5, §8]. Now we consider the
exponential of the operator

(7.1) B(k, ε) = f∗
pB(k, ε)f.

To apply Theorem 3.2 to the operator (7.1), we need to specify the constants in
estimates. The constants c1, C(ν), κ, c0, c2, c3, c4 were defined in §4 (see (4.7), (4.9),
(4.11), (4.13), (4.14), (4.16)). The constant λ satisfies condition (4.18), β was defined in
(4.19), c∗ and qc∗ were defined in (5.7) and (6.6). The constants δ and τ0 are given by
(6.2) and (6.4).

In accordance with (1.29) and (1.30), we introduce the constants C
(1)
T and C

(2)
T , which

now depend on the additional parameter θ ∈ S
d−1. Using (4.7) and (6.3), we take the

following overstated constants suitable for all θ ∈ Sd−1:

C
(1)
T = max

{
2 + α−1

0 ‖g−1‖L∞ ,
(
α1‖g‖L∞‖f‖2L∞ + C(1)

)
δ−1

}
,

C
(2)
T = max

{
c2 + 1,

(
α1‖g‖L∞‖f‖2L∞ + ‖f‖2L∞ + C(1) + c3 + |λ|‖f‖2L∞

)
δ−1

}
.

Using these C
(1)
T and C

(2)
T , we define the constants CT , C

0
T , C1, C2, C5, C6 by (1.31),

(1.32), (1.33), (2.13), and (2.19); then these constants do not depend on θ. As in (2.17),
we put

(7.2) C∗ =
1

2
min{qc∗; δτ

−2
0 }.

We denote E0(k, ε, s) := f0e
−f0 pB0(k,ε)f0sf0 and apply Theorem 3.2. By (6.14), from

(3.5) it follows that

‖fe−B(k,ε)sf∗ − E0(k, ε, s) pP‖H→H ≤ C6‖f‖2L∞(1 + s)−1/2e−(|k|2+ε2)C∗s,

s ≥ 0, |k|2 + ε2 ≤ τ20 .
(7.3)
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Now we obtain estimates in the case where |k|2 + ε2 > τ20 . By (6.5),

(7.4) ‖fe−B(k,ε)sf∗‖H→H ≤ ‖f‖2L∞e−qc∗(|k|2+ε2)s.

Using (6.14), (6.15), and (6.16), we get

(7.5) ‖E0(k, ε, s) pP‖H→H ≤ |f0|2e−qc∗(|k|2+ε2)s ≤ ‖f‖2L∞e−qc∗(|k|2+ε2)s.

Combining (7.4), (7.5), and (7.2) and using the inequality e−α ≤ (1 + α)−1/2, α ≥ 0, we
see that for s ≥ 0 and |k|2 + ε2 > τ20 the following is true:

‖fe−B(k,ε)sf∗ − E0(k, ε, s) pP‖H→H

≤ 2‖f‖2L∞ max{1;
√
2qc

−1/2
∗ τ−1

0 }(1 + s)−1/2e−(|k|2+ε2)C∗s.
(7.6)

Estimates (7.3) and (7.6) imply

‖fe−B(k,ε)sf∗ − E0(k, ε, s) pP‖H→H

≤ ‖f‖2L∞ max{C6; 2
√
2qc

−1/2
∗ τ−1

0 }(1 + s)−1/2e−(|k|2+ε2)C∗s, k ∈ rΩ.
(7.7)

Now we show that the operator pP can be replaced by I in (7.7). Since E0(k, ε, s) is

the operator with the symbol f0 exp(−f0pL(b + k, ε)f0s)f0, relations (6.15), (6.16), and
(7.2) yield

‖E0(k, ε, s)(I − pP )‖H→H ≤ ‖f‖2L∞ sup
0
=b∈rΓ

e−qc∗(|k+b|2+ε2)s

≤ ‖f‖2L∞ max{1;
√
2qc

−1/2
∗ r−1

0 }(1 + s)−1/2e−(|k|2+ε2)C∗s, k ∈ rΩ.

(7.8)

Combining (7.7) and (7.8), we arrive at the following result.

Theorem 7.1. For s ≥ 0, k ∈ clos rΩ, and 0 < ε ≤ 1, we have

‖fe−B(k,ε)sf∗ − E0(k, ε, s)‖H→H ≤ C1(1 + s)−1/2e−(|k|2+ε2)C∗s.

Here C1 := ‖f‖2L∞
max{C6; 2

√
2qc

−1/2
∗ τ−1

0 }+ ‖f‖2L∞
max{1;

√
2qc

−1/2
∗ r−1

0 }.

7.2. Approximation with the corrector term taken into account. To apply The-
orem 3.3 to the operator family B(k, ε), we need to specify the values of the constants.
The constants CT , C1, C2 were defined in Subsection 7.1. In accordance with (1.25),
recalling (6.3), we can take the following overstated value of the constant c5:

c5 :=
(
α
1/2
1 ‖g‖1/2L∞

‖f‖L∞ + c1C(1)1/2
)2

+ 2C(1)1/2‖f‖L∞ +max{|c0|; c3}+ |λ|‖f‖2L∞ .

For this c5, we define the constants C3, C4, C7, C8 in accordance with (1.36), (1.38),
(2.29), and (2.32); then these constants do not depend on θ.

Now, by using the method of Subsection 1.13, we introduce the operators pZρ(θ) and
p

rZρ acting in H. Let a Γ-periodic (n ×m)-matrix-valued function Λρ(x) be the solution
of the problem

b(D)∗g(x) (b(D)Λρ(x) + 1m) = 0,

∫
Ω

ρ(x)Λρ(x) dx = 0.

Here the equation is understood in the weak sense. Cf. [BSu3, §5]. Obviously, Λρ(x)
differs from the solution Λ(x) of problem (6.7) by a constant summand:

(7.9) Λρ(x) = Λ(x) + Λ0
ρ, Λ0

ρ = −(sρ)−1(ĎρΛ).

In [BSu3, Subsection 7.3], it was checked that

(7.10) |Λ0
ρ| ≤ Cρ := m1/2(2r0)

−1α
−1/2
0 ‖g‖1/2L∞

‖g−1‖1/2L∞
‖f‖2L∞‖f−1‖2L∞ .
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As in [BSu3, §5], the role of the operator pZG of Subsection 1.13 is played by the

operator pZρ(θ) = Λρb(θ) pP . Since b(D) pP = 0, we have t pZρ(θ) = Λρb(D+ k) pP , k ∈ Rd.

In accordance with (1.56), we introduce the operator
p

rZρ in H that takes an element

pu ∈ H to the solution w(ρ) ∈ rH1(Ω;Cn) of the problem

b(D)∗g(x)b(D)w(ρ) +
d∑

j=1

Djaj(x)
∗c = 0,

∫
Ω

ρ(x)w(ρ)(x) dx = 0, c = pP pu.

Let a Γ-periodic (n× n)-matrix-valued function rΛρ(x) be the solution of the problem

b(D)∗g(x)b(D)rΛρ(x) +

d∑
j=1

Djaj(x)
∗ = 0,

∫
Ω

ρ(x)rΛρ(x) dx = 0.

This equation is understood in the weak sense. Note that

(7.11) rΛρ(x) = rΛ(x) + rΛ0
ρ, rΛ0

ρ = −(sρ)−1(ρrΛ),

where rΛ is the Γ-periodic solution of problem (6.8). As was shown in [Su6, (7.52)],

‖rΛ‖L2(Ω) ≤ (2r0)
−1Can

1/2α−1
0 ‖g−1‖L∞ ,

where the constant Ca is defined below in (7.24). Hence,

|ρrΛ| ≤ ‖f−1‖2L∞ |Ω|−1/2‖rΛ‖L2(Ω) ≤ (2r0)
−1Can

1/2α−1
0 ‖g−1‖L∞‖f−1‖2L∞ |Ω|−1/2.

Thus, rΛ0
ρ satisfies the estimate

(7.12) |rΛ0
ρ| ≤ rCρ := (2r0)

−1Can
1/2α−1

0 ‖g−1‖L∞‖f‖2L∞‖f−1‖2L∞ |Ω|−1/2.

By the definitions of
p

rZρ and rΛρ, we have
p

rZρ = rΛρ
pP .

Since t pZρ(θ) = Λρb(D+ k) pP and
p

rZρ = rΛρ
pP , Theorem 3.3 implies the estimate∥∥ pB(k, ε)1/2

(
fe−B(k,ε)sf∗ −

(
I + Λρb(D+ k) + εrΛρ

)
E0(k, ε, s) pP

)∥∥
H→H

≤ C8‖f‖L∞s−1e−(|k|2+ε2)C∗s, s > 0, 0 < ε ≤ 1, |k|2 + ε2 ≤ τ20 .
(7.13)

Now, using (7.9) and (7.11), we show that, in (7.13), Λρ and rΛρ can be replaced by

Λ and rΛ, respectively. By referring to (5.15) with f = 1n, it is easy to check (see [Su6,
(7.32)]) that

(7.14)
∥∥ pB(k, ε)1/2 pP

∥∥
H→H

≤ CP (|k|2 + ε2)1/2, k ∈ rΩ,

where CP = max{(2 + c21 + c2)
1/2α

1/2
1 ‖g‖1/2L∞

; ( pC(1) + pc3 + |λ|)1/2}. Combining (4.1),

(7.5), (7.10), (7.12), (7.14), the identity b(D) pP = 0, and (7.2), we obtain∥∥ pB(k, ε)1/2
(
Λ0
ρb(D+ k) + εrΛ0

ρ

)
E0(k, ε, s) pP‖H→H

≤
∥∥ pB(k, ε)1/2 pP

∥∥(α1/2
1 |Λ0

ρ||k|+ |rΛ0
ρ|ε)‖f‖2L∞e−qc∗(|k|2+ε2)s

≤ 2CP qc−1
∗ ‖f‖2L∞(α

1/2
1 Cρ + rCρ)s

−1e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ.

(7.15)

From (7.13), (7.15), and (7.9) it follows that∥∥ pB(k, ε)1/2
(
fe−B(k,ε)sf∗ −

(
I + Λb(D+ k) + εrΛ

)
E0(k, ε, s) pP

)∥∥
H→H

≤ C9s
−1e−(|k|2+ε2)C∗s, s > 0, 0 < ε ≤ 1, |k|2 + ε2 ≤ τ20 ,

(7.16)

where C9 = C8‖f‖L∞ + 2CP qc−1
∗ ‖f‖2L∞

(α
1/2
1 Cρ + rCρ).
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7.3. Estimates for |k|2 + ε2 > τ20 . Now we estimate each term under the norm sign in
(7.16). From (7.1) it follows that∥∥ pB(k, ε)1/2fe−B(k,ε)sf∗u

∥∥2
H
=

(
pB(k, ε)fe−B(k,ε)sf∗u, fe−B(k,ε

)
sf∗u

)
H

= ‖B(k, ε)1/2e−B(k,ε)sf∗u‖2H ≤
∥∥B(k, ε)1/2e−B(k,ε)s

∥∥2
H→H

‖f‖2L∞‖u‖2H.
(7.17)

By (6.5) and (7.2),∥∥B(k, ε)1/2e−B(k,ε)s
∥∥
H→H

≤ sup
α≥qc∗(|k|2+ε2)

2α−1/2s−1e−αs/2

≤ 2qc
−1/2
∗ τ−1

0 s−1e−(|k|2+ε2)C∗s, s > 0, |k|2 + ε2 > τ20 .

Hence, by (7.17), for s > 0 and |k|2 + ε2 > τ20 we have

(7.18)
∥∥ pB(k, ε)1/2fe−B(k,ε)sf∗∥∥

H→H
≤ 2‖f‖L∞qc

−1/2
∗ τ−1

0 s−1e−(|k|2+ε2)C∗s.

By (7.2), (7.5), and (7.14), for s > 0 and |k|2 + ε2 > τ20 we obtain

(7.19)
∥∥ pB(k, ε)1/2E0(k, ε, s) pP

∥∥
H→H

≤ 2‖f‖2L∞CP qc−1
∗ τ−1

0 s−1e−(|k|2+ε2)C∗s.

Now we estimate the norm of the corrector term:∥∥ pB(k, ε)1/2
(
Λb(D+ k) + εrΛ

)
E0(k, ε, s) pP

∥∥
H→H

≤
∥∥ pB(k, ε)1/2Λ pPm

∥∥
H→H

∥∥b(D+ k)E0(k, ε, s) pP
∥∥
H→H

+ ε
∥∥ pB(k, ε)1/2rΛ pP

∥∥
H→H

∥∥E0(k, ε, s) pP
∥∥
H→H

.

(7.20)

To estimate the norm of the operator b(D+ k)E0(k, ε, s) pP , we use (4.1), (7.2), (7.5),

and the identity b(D) pP = 0:∥∥b(D+ k)E0(k, ε, s) pP
∥∥
H→H

≤ α
1/2
1 |k|‖f‖2L∞e−qc∗(|k|2+ε2)s

≤ 2α
1/2
1 qc−1

∗ ‖f‖2L∞ |k|(|k|2 + ε2)−1s−1e−(|k|2+ε2)C∗s, k ∈ rΩ.
(7.21)

The operators pB(k, ε)1/2Λ pPm and pB(k, ε)1/2rΛ pP were estimated in [Su6, Lemmas 7.2
and 7.3]. Now we formulate the results.

Lemma 7.2. For k ∈ rΩ, 0 < ε ≤ 1 we have∥∥ pB(k, ε)1/2Λ pPm

∥∥
H→H

≤ CΛ(k, ε),(7.22) ∥∥ pB(k, ε)1/2rΛ pP
∥∥
H→H

≤ C
rΛ(k, ε),(7.23)

where CΛ(k, ε) and C
rΛ(k, ε) are defined by

CΛ(k, ε)
2 = (2 + c21 + c2)m

(
‖g‖1/2L∞

+ c(1)|k|
)2

+ c(2)ε2,

C
rΛ(k, ε)

2 = (2 + c21 + c2)n|Ω|−1
(
c(3) + c(4)|k|

)2
+ c(5)ε2.

Here

(7.24) C2
a =

d∑
j=1

∫
Ω

|aj(x)|2 dx,

c(1) = (2r0)
−1α

1/2
1 α

−1/2
0 ‖g−1‖1/2L∞

‖g‖L∞ ,

c(2) =
(

pC(1) + pc3 + |λ|
)
m(2r0)

−2α−1
0 ‖g−1‖L∞‖g‖L∞ ,

c(3) = Caα
−1/2
0 ‖g−1‖1/2L∞

, c(4) = (2r0)
−1Caα

−1
0 α

1/2
1 ‖g‖1/2L∞

‖g−1‖L∞ ,

c(5) =
(

pC(1) + pc3 + |λ|
)
(2r0)

−2C2
anα

−2
0 ‖g−1‖2L∞ |Ω|−1.
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Corollary 7.3. For k ∈ rΩ, 0 < ε ≤ 1 we have

(7.25)
∥∥ pB(k, ε)1/2Λ pPm

∥∥
H→H

≤ CΛ(r1, 1),
∥∥ pB(k, ε)1/2rΛ pP

∥∥
H→H

≤ C
rΛ(r1, 1).

Note that relations (7.21) and (7.22) imply the estimate∥∥ pB(k, ε)1/2Λ pPm

∥∥
H→H

∥∥b(D+ k)E0(k, ε, s) pP
∥∥
H→H

≤ CΛ(k, ε)α
1/2
1 2qc−1

∗ ‖f‖2L∞ |k|(|k|2 + ε2)−1s−1e−(|k|2+ε2)C∗s

≤ qc−1
∗ CΛ‖f‖2L∞s−1e−(|k|2+ε2)C∗s, |k|2 + ε2 > τ20 ,

(7.26)

where
C2

Λ = 4α1(2 + c21 + c2)m
(
‖g‖1/2L∞

τ−1
0 + c(1)

)2
+ α1c

(2).

Similarly, by (7.2), (7.5), and (7.23), for |k|2 + ε2 > τ20 we have

(7.27) ε
∥∥ pB(k, ε)1/2rΛ pP

∥∥
H→H

∥∥E0(k, ε, s) pP‖H→H ≤ qc−1
∗ C

rΛ‖f‖
2
L∞s−1e−(|k|2+ε2)C∗s,

where
C2

rΛ
= (2 + c21 + c2)n|Ω|−1(2c(3)τ−1

0 + c(4))2 + 4c(5).

Now we summarize the results. From (7.20), (7.26), and (7.27) it follows that∥∥ pB(k, ε)1/2
(
Λb(D+ k) + εrΛ

)
E0(k, ε, s) pP

∥∥
H→H

≤ qc−1
∗ ‖f‖2L∞(CΛ + C

rΛ)s
−1e−(|k|2+ε2)C∗s, s > 0, |k|2 + ε2 > τ20 .

(7.28)

Relations (7.18), (7.19), and (7.28) yield∥∥ pB(k, ε)1/2
(
fe−B(k,ε)sf∗ −

(
I + Λb(D+ k) + εrΛ

)
E0(k, ε, s) pP

)∥∥
H→H

≤ C10s
−1e−(|k|2+ε2)C∗s, s > 0, |k|2 + ε2 > τ20 ,

(7.29)

where C10 = 2‖f‖L∞qc
−1/2
∗ τ−1

0 + 2‖f‖2L∞
CP qc−1

∗ τ−1
0 + qc−1

∗ ‖f‖2L∞
(CΛ + C

rΛ) .

7.4. Combining (7.16) and (7.29), we arrive at the estimate∥∥ pB(k, ε)1/2
(
fe−B(k,ε)sf∗ −

(
I + Λb(D+ k) + εrΛ

)
E0(k, ε, s) pP

)∥∥
H→H

≤ max{C9;C10}s−1e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ.
(7.30)

Now we show that the operator pP can be replaced by I in the principal term of

approximation. For that, we estimate the norm of the operator pB(k, ε)1/2E0(k, ε, s) pP⊥.
By (5.15) with f = 1n, we have∥∥ pB(k, ε)1/2E0(k, ε, s) pP⊥u

∥∥2
H
≤ (2 + c21 + c2)

∥∥ pA(k)1/2E0(k, ε, s) pP⊥u
∥∥2
H

+ ( pC(1) + pc3 + |λ|)ε2‖E0(k, ε, s) pP⊥u‖2H, u ∈ H.
(7.31)

Since E0(k, ε, s) is the operator with the symbol f0 exp(−f0pL(b+k, ε)f0s)f0, we can use

(4.1), (6.15), (6.16), (7.2), and the estimate |b+k| ≥ r0, for k ∈ rΩ, 0 �= b ∈ rΓ, to obtain∥∥ pA(k)1/2E0(k, ε, s) pP⊥∥∥
H→H

≤ ‖g‖1/2L∞
‖f‖2L∞α

1/2
1 sup

0
=b∈rΓ

|b+ k|e−qc∗(|b+k|2+ε2)s

≤ 2‖g‖1/2L∞
‖f‖2L∞α

1/2
1 qc−1

∗ r−1
0 s−1e−(|k|2+ε2)C∗s, s > 0.

(7.32)

Similarly, by (6.16) and (7.2),

(7.33) ε
∥∥E0(k, ε, s) pP⊥∥∥

H→H
≤ ‖f‖2L∞qc−1

∗ r−1
0 s−1e−(|k|2+ε2)C∗s, s > 0.

Substituting (7.32) and (7.33) in (7.31) yields

(7.34)
∥∥ pB(k, ε)1/2E0(k, ε, s) pP⊥∥∥

H→H
≤ C11s

−1e−(|k|2+ε2)C∗s, s > 0,
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where C11 = r−1
0 qc−1

∗ ‖f‖2L∞
(4‖g‖L∞α1(2 + c21 + c2) + pC(1) + pc3 + |λ|)1/2.

Combining (7.30) and (7.34), we obtain the estimate∥∥ pB(k, ε)1/2
(
fe−B(k,ε)sf∗ −

(
I + Λb(D+ k) pP + εrΛ pP

)
E0(k, ε, s)

)∥∥
H→H

≤ C2s−1e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ,
(7.35)

with the constant C2 = max{C9;C10}+ C11.

7.5. Estimates for 0 < s < 1. Now we show that for s > 0 the left-hand side of (7.35)
can be also estimated by C3s−1/2 exp(−(|k|2 + ε2)C∗s), where C3 is some constant. For
0 < s < 1 this estimate is more preferable compared to (7.35), but estimate (7.35) is
preferable for s ≥ 1. Now we estimate each term under the norm sign in (7.35) separately.

Using (6.5), (7.2), (7.17), and the inequality e−α/2 ≤ α−1/2, α > 0, for s > 0, k ∈ rΩ
we get

(7.36)
∥∥ pB(k, ε)1/2fe−B(k,ε)sf∗∥∥

H→H
≤ ‖f‖L∞s−1/2e−(|k|2+ε2)C∗s.

By (5.15) with f = 1n, we obtain∥∥ pB(k, ε)1/2E0(k, ε, s)
∥∥2
H→H

≤ (2 + c21 + c2)
∥∥ pA(k)1/2E0(k, ε, s)

∥∥2
H→H

+ ( pC(1) + pc3 + |λ|)ε2
∥∥E0(k, ε, s)

∥∥2
H→H

.
(7.37)

Since E0(k, ε, s) is the operator with the symbol f0 exp(−f0pL(b+k, ε)f0s)f0, we can use
(4.1), (6.15), (6.16), (7.2), and the inequality e−α/2 ≤ α−1/2 to show that∥∥ pA(k)1/2E0(k, ε, s)

∥∥
H→H

≤ ‖g‖1/2L∞
‖f‖2L∞α

1/2
1 sup

b∈rΓ

|b+ k|e−qc∗(|b+k|2+ε2)s

≤ ‖g‖1/2L∞
‖f‖2L∞α

1/2
1 qc

−1/2
∗ s−1/2e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ.

(7.38)

Similarly,

(7.39) ε‖E0(k, ε, s)‖H→H ≤ ‖f‖2L∞qc
−1/2
∗ s−1/2e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ.

From (7.37), (7.38), and (7.39) it follows that

(7.40)
∥∥ pB(k, ε)1/2E0(k, ε, s)

∥∥
H→H

≤ C12s
−1/2e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ,

where C12 = qc
−1/2
∗ ‖f‖2L∞

(‖g‖L∞α1(2 + c21 + c2) + pC(1) + pc3 + |λ|)1/2.
Now we estimate the norm of the corrector term. Substituting (7.25) in (7.20) and

using (4.1), (7.2), (7.5), for s > 0 and k ∈ rΩ we get∥∥ pB(k, ε)1/2
(
Λb(D+ k) + εrΛ

)
E0(k, ε, s) pP

∥∥
H→H

≤ ‖f‖2L∞qc
−1/2
∗ (α

1/2
1 CΛ(r1, 1) + C

rΛ(r1, 1))s
−1/2e−(|k|2+ε2)C∗s.

(7.41)

Combining (7.36), (7.40), and (7.41) yields∥∥ pB(k, ε)1/2
(
fe−B(k,ε)sf∗ −

(
I + Λb(D+ k) pP + εrΛ pP

)
E0(k, ε, s)

)∥∥
H→H

≤ C3s−1/2e−(|k|2+ε2)C∗s, s > 0, k ∈ rΩ,
(7.42)

where C3 = ‖f‖L∞ + C12 + ‖f‖2L∞
qc
−1/2
∗ (α

1/2
1 CΛ(r1, 1) + C

rΛ(r1, 1)).
Using (7.42) for 0 < s < 1 and (7.35) for s ≥ 1, we obtain the following result.

Theorem 7.4. Under the above assumptions,∥∥ pB(k, ε)1/2
(
fe−B(k,ε)sf∗−

(
I+Λb(D+k) pP+εrΛ pP

)
E0(k, ε, s)

)
‖H→H ≤ Φ1(k, s, ε),

s > 0, k ∈ clos rΩ, 0 < ε ≤ 1,
(7.43)
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where

Φ1(k, s, ε) =

{
C2s−1e−(|k|2+ε2)C∗s if s ≥ 1,

C3s−1/2e−(|k|2+ε2)C∗s if 0 < s < 1.

§8. Approximation of the operator f exp(−B(ε)s)f∗

8.1. The principal term of approximation. Now we return to the study of the

operator B(ε) acting in L2(R
d;Cn). We also consider the operator pB(ε) corresponding

to the case where f = 1n. The operator pB(ε) is generated by the quadratic form pb(ε)
given by (4.17) with f = 1n.

In accordance with [BSu1, Chapter 3, §1], the operator

(8.1) pA0 = b(D)∗g0b(D)

is called the effective operator for pA = b(D)∗g(x)b(D). The effective matrix g0 is given
by (6.9). Next, we put

(8.2) pY0 = −b(D)∗V +
d∑

j=1

ajDj ,

where V is the matrix defined by (6.10). Consider the operator

pB0(ε) = pA0 + ε( pY0 + ( pY0)∗) + ε2( sQ−W + λI).

Here W is the matrix (6.11). The operator pB0(ε) is a second order DO with constant

coefficients. The symbol of the operator pB0(ε) is the matrix (6.12).

We denote E0(ε, s) := f0e
−f0 pB0(ε)f0sf0. By the direct integral expansions of the oper-

ators B(ε) and pB0(ε) (see §5), Theorem 7.1 implies the following result.

Theorem 8.1. Suppose that the operator B(ε) satisfies the assumptions of Subsection 4.5.
Then for s ≥ 0 and 0 < ε ≤ 1, we have∥∥fe−B(ε)sf∗ − E0(ε, s)

∥∥
L2(Rd;Cn)→L2(Rd;Cn)

≤ C1(1 + s)−1/2e−ε2C∗s.

8.2. Approximation with the corrector term taken into account. In this sub-
section we use Theorem 7.4 to obtain a more accurate approximation for the operator
fe−B(ε)sf∗. Note that the operator b(D) expands in the direct integral of the operators
b(D + k). Under the Gelfand transformation, the operators of multiplication by the

Γ-periodic matrices Λ and rΛ turn into operators of multiplication by the same matrices

Λ and rΛ. Next, we put Π = U−1[ pP ]U , where [ pP ] is an operator in H (see (5.1)) that

acts layerwise as the operator pP of averaging over the cell. In [BSu3, Subsection 6.1], it
was shown that Π is a pseudodifferential operator in L2(R

d;Cn) and its symbol is χ
rΩ(ξ).

Here χ
rΩ(ξ) is the characteristic function of the set rΩ. In other words,

(Πu)(x) = (2π)−d/2

∫
rΩ

ei〈x,ξ〉(Fu)(ξ) dξ,

where F stands for the Fourier transformation.
Thus, under the Gelfand transformation, the operator

pB(ε)1/2
(
fe−B(ε)sf∗ −

(
I + Λb(D)Π + εrΛΠ

)
E0(ε, s)

)
expands in the direct integral of the operators under the norm sign in (7.43). Hence, by
(7.43), we obtain the following result.
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Theorem 8.2. We have∥∥ pB(ε)1/2
(
fe−B(ε)sf∗ −

(
I + Λb(D)Π + εrΛΠ

)
E0(ε, s)

)∥∥
L2(Rd)→L2(Rd)

≤ Φ2(s, ε),

s > 0, 0 < ε ≤ 1,
(8.3)

where

(8.4) Φ2(s, ε) =

{
C2s−1e−ε2C∗s if s ≥ 1,

C3s−1/2e−ε2C∗s if 0 < s < 1.

8.3. Elimination of the operator Π from the corrector term for s ≥ 1. Now
we analyze the possibility of replacing the operator Π by the identity operator I in the
corrector term. For this, we estimate the norm of the operator

pB(ε)1/2
(
Λb(D) + εrΛ

)
E0(ε, s)(I −Π).

Proposition 8.3. Denote Ξ(ε, s) = E0(ε, s)(I − Π). Then, for any l > 0, the operators
b(D)Ξ(ε, s) and εΞ(ε, s) are continuous mappings of L2(R

d;Cn) to H l(Rd;Cn), and

‖b(D)Ξ(ε, s)‖L2(Rd)→Hl(Rd) ≤ α
1/2
1 Cls−(l+1)/2e−ε2C∗s, s > 0,(8.5)

ε‖Ξ(ε, s)‖L2(Rd)→Hl(Rd) ≤ Cls−(l+1)/2e−ε2C∗s, s > 0.(8.6)

Proof. Since Ξ(ε, s) is the pseudodifferential operator with the symbol

f0e
−f0 pL(ξ,ε)f0sf0(1− χ

rΩ(ξ)),

by (4.1), (6.15), and (6.16), we have

‖b(D)Ξ(ε, s)‖L2→Hl ≤ α
1/2
1 ‖f‖2L∞ sup

|ξ|>r0

|ξ|(1 + |ξ|2)l/2e−qc∗(|ξ|2+ε2)s,

ε‖Ξ(ε, s)‖L2→Hl ≤ ‖f‖2L∞ sup
|ξ|>r0

ε(1 + |ξ|2)l/2e−qc∗(|ξ|2+ε2)s.
(8.7)

Here we have used the relation 1 − χ
rΩ(ξ) = 0 for |ξ| ≤ r0. Applying (7.2) and (8.7),

we obtain estimates (8.5) and (8.6) with Cl = ‖f‖2L∞
qc
−(l+1)/2
∗ (r−2

0 + 1)l/2γl and γl =

supα>0 α
(l+1)/2e−α/2 = (l + 1)(l+1)/2e−(l+1)/2. �

Proposition 8.4. Suppose l = 1 for d = 1, l > 1 for d = 2, and l = d/2 for d ≥ 3.

Let [Λ] and [rΛ] be the operators of multiplication by the matrix-valued functions Λ(x)

and rΛ(x), respectively. Then the operators g1/2b(D)[Λ] : H l(Rd;Cm) → L2(R
d;Cn) and

g1/2b(D)[rΛ]: H l(Rd;Cn) → L2(R
d;Cn) are continuous mappings, and∥∥g1/2b(D)[Λ]

∥∥
Hl(Rd)→L2(Rd)

≤ Cd,(8.8) ∥∥g1/2b(D)[rΛ]
∥∥
Hl(Rd)→L2(Rd)

≤ rCd.(8.9)

The constants Cd and rCd depend only on l, the initial data (4.23), and the parameters of
the lattice Γ.

Proof. Estimate (8.8) was obtained in [Su5, Proposition 9.3]. The constant Cd can be
written explicitly (see [Su5, Subsection 9.2]).

Now we prove (8.9). Let vi(x), i = 1, . . . , n, be the columns of the matrix rΛ(x). Then

vi ∈ rH1(Ω;Cn) is a weak Γ-periodic solution of the problem

(8.10) b(D)∗g(x)b(D)vi +

d∑
j=1

Djaj(x)
∗ei = 0,

∫
Ω

vi(x) dx = 0.
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Here {ei}i=1,...,n is the standard orthogonal basis in Cn. Since vi is a Γ-periodic function
with zero mean value, we have ‖vi‖L2(Ω) ≤ (2r0)

−1‖Dvi‖L2(Ω). Hence, by using the
“energy” inequality, it is easy to check that (see [Su6, (7.51) and (7.52)])

(8.11) ‖vi‖H1(Ω) ≤ (1 + (2r0)
−2)1/2Caα

−1
0 ‖g−1‖L∞ ,

where Cais the constant (7.24).

Recall that b(D) =
∑d

k=1 bkDk and, by (4.1), |bk| ≤ α
1/2
1 . Let u ∈ H l(Rd). We have

(8.12) g1/2b(D)(viu) = g1/2(b(D)vi)u+

d∑
k=1

g1/2bk(Dku)vi.

We estimate the right-hand side in (8.12):

(8.13)

∥∥∥∥
d∑

k=1

g1/2bk(Dku)vi

∥∥∥∥
L2(Rd)

≤ ‖g‖1/2L∞
α
1/2
1 d1/2

(∫
Rd

|Du|2|vi|2 dx
)1/2

.

Next,

(8.14)

∫
Rd

|Du|2|vi|2 dx =
∑
a∈Γ

∫
Ω+a

|Du|2|vi|2 dx.

Now we use the embedding H1(Ω;Cn) ⊂ Lq(Ω;C
n), where q = ∞ for d = 1, q < ∞ for

d = 2, and q = 2d/(d− 2) for d ≥ 3. For d = 2 we choose q = 2/(l − 1). Let C(d, n) be
the norm of the corresponding embedding operator. Then

(8.15) ‖vi‖Lq(Ω) ≤ C(d, n)‖vi‖H1(Ω).

By the Hölder inequality,

(8.16)

∫
Ω

|vi|2|Du|2 dx ≤ ‖vi‖2Lq(Ω)‖Du‖2Lp(Ω),

where p = 2 for d = 1, p = 2q/(q − 2) = 2/(2− l) for d = 2, and p = d for d ≥ 3.
Also, we use the embedding H l−1(Ω;Cd) ⊂ Lp(Ω;C

d), where l = 1 and p = 2 for
d = 1, 1 < l < 2 and p = 2/(2− l) for d = 2, l = d/2 and p = d for d ≥ 3. Let rcd be the
norm of the corresponding embedding operator. Then

(8.17) ‖Du‖Lp(Ω) ≤ rcd‖u‖Hl(Ω).

Substituting (8.15) and (8.17) in (8.16), we obtain∫
Ω

|vi|2|Du|2 dx ≤ C(d, n)2rc 2
d ‖vi‖2H1(Ω)‖u‖2Hl(Ω).

Hence, by (8.14) and the periodicity of vi, we have

(8.18)

∫
Rd

|Du|2|vi|2 dx ≤ C(d, n)2rc 2
d ‖vi‖2H1(Ω)‖u‖2Hl(Rd).

By (8.13), inequality (8.18) implies the estimate

(8.19)

∥∥∥∥
d∑

k=1

g1/2bk(Dku)vi

∥∥∥∥
L2(Rd)

≤ ‖g‖1/2L∞
α
1/2
1 d1/2C(d, n)rcd‖vi‖H1(Ω)‖u‖Hl(Rd).

Next, (8.10) yields the identity

(8.20)

∫
Rd

〈g(x)b(D)vi, b(D)w〉 dx+

∫
Rd

d∑
j=1

〈aj(x)∗ei, Djw〉 dx = 0

for all w ∈ H1(Rd;Cn) such that w(x) = 0 for |x| > R (with some R > 0).
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Let u ∈ C∞
0 (Rd). We put w(x) = |u(x)|2vi. Substituting this in (8.20), we obtain

(cf. [Su6, (8.36)])

(8.21)

J0 :=

∫
Rd

|g1/2b(D)vi|2|u|2 dx = J1 + J2,

J1 = −
∫
Rd

〈
g1/2b(D)vi,

d∑
k=1

g1/2bk((Dku)su+ u(Dksu))vi

〉
dx,

J2 = −
∫
Rd

d∑
j=1

〈a∗jei, Dj(|u|2vi)〉 dx = −
∫
Rd

d∑
j=1

〈a∗jei, (Dj(uvi))su+viu(Djsu)〉 dx.

We follow [Su6] to estimate the term J1:

|J1| ≤
1

2

∫
Rd

|g1/2b(D)vi|2|u|2 dx+ 2‖g‖L∞α1 d

∫
Rd

|Du|2|vi|2 dx.

Combining this with (8.18), we see that

(8.22) |J1| ≤
1

2
J0 + 2‖g‖L∞α1dC(d, n)2rc 2

d ‖vi‖2H1(Ω)‖u‖2Hl(Rd).

Now we proceed to estimating the term J2. By condition (4.8) on the coefficients aj and
the condition on l,

(8.23)

∫
Rd

|aj(x)|2|u|2 dx ≤ C2
Ω,l,�‖aj‖2L�(Ω)‖u‖2Hl(Rd).

Here CΩ,l,� is the norm of the embedding operator H l(Ω) ⊂ L2�/(�−2)(Ω). We have
(cf. [Su6])

|J2| ≤
d∑

j=1

∫
Rd

(|Dj(viu)||aj ||u|+ |vi||Dju||aj ||u|) dx

≤ μ

∫
Rd

|D(viu)|2 dx+

∫
Rd

|vi|2|Du|2 dx+
( 1

4μ
+

1

4

) d∑
j=1

∫
Rd

|aj |2|u|2 dx

for any μ > 0. Combining this with (8.18) and (8.23), we arrive at the estimate

|J2| ≤ μ

∫
Rd

|D(viu)|2 dx+ C(d, n)2rc 2
d ‖vi‖2H1(Ω)‖u‖2Hl(Rd)

+
(1
4
+

1

4μ

)
C2

Ω,l,�

d∑
j=1

‖aj‖2L�(Ω)‖u‖2Hl(Rd).

(8.24)

From (8.21), (8.22), and (8.24) it follows that

1

2
J0 ≤ μ

∫
Rd

|D(viu)|2 dx+ (2‖g‖L∞α1d+ 1)C(d, n)2rc 2
d ‖vi‖2H1(Ω)‖u‖2Hl(Rd)

+
(1
4
+

1

4μ

)
C2

Ω,l,�

d∑
j=1

‖aj‖2L�(Ω)‖u‖2Hl(Rd).

(8.25)
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Comparing (8.12), (8.19), and (8.25), we obtain the inequality

‖g1/2b(D)(viu)‖2L2(Rd) ≤ 2J0 + 2

∥∥∥∥
d∑

k=1

g1/2bk(Dku)vi

∥∥∥∥
2

L2(Rd)

≤ (10‖g‖L∞α1d+ 4)C(d, n)2rc 2
d ‖vi‖2H1(Ω)‖u‖2Hl(Rd)

+ (1 + μ−1)C2
Ω,l,�

d∑
j=1

‖aj‖2L�(Ω)‖u‖2Hl(Rd) + 4μ

∫
Rd

|D(viu)|2 dx.

(8.26)

The lower estimate (4.5) with f = 1n implies

4μ

∫
Rd

|D(viu)|2 dx ≤ 1

2
‖g1/2b(D)(viu)‖2L2(Rd), μ =

1

8
α0‖g−1‖−1

L∞
.

Together with (8.26) and (8.11) this yields ‖g1/2b(D)(viu)‖L2(Rd) ≤ Cv‖u‖Hl(Rd), where

C
2
v = (20‖g‖L∞α1d+ 8)C(d, n)2rc 2

d (1 + (2r0)
−2)C2

aα
−2
0 ‖g−1‖2L∞

+ (2 + 16α−1
0 ‖g−1‖L∞)C2

Ω,l,�

d∑
j=1

‖aj‖2L�(Ω).

Thus, ‖g1/2b(D)[vi]‖Hl(Rd)→L2(Rd) ≤ Cv, i = 1, . . . , n, whence we see that (8.9) is fulfilled

with the constant rCd = n1/2Cv. �

Proposition 8.5. Suppose r = 0 for d = 1, r > 0 for d = 2, and r = d/2− 1 for d ≥ 3.

Then [Λ] : Hr(Rd;Cm) → L2(R
d;Cn) and [rΛ]: Hr(Rd;Cn) → L2(R

d;Cn) are continuous
mappings, and

‖[Λ]‖Hr(Rd)→L2(Rd) ≤ CΛ,(8.27)

‖[rΛ]‖Hr(Rd)→L2(Rd) ≤ C
rΛ.(8.28)

The constants CΛ and C
rΛ depend only on the initial data (4.23) and the parameters of

the lattice Γ; in the case where d = 2 they depend also on r.

Proof. Estimate (8.27) was obtained in [Su5, Proposition 11.3]. The constant CΛ can be
written explicitly (see [Su5, Subsection 11.2]).

Now we prove (8.28). Assume that 0 < r < 1 in the case where d = 2. As in
(8.14)–(8.18) with l − 1 replaced by r, we obtain∫

Rd

|vi(x)|2|u|2 dx ≤ C(d, n)2qc2d‖vi‖2H1(Ω)‖u‖2Hr(Rd).

Here qcd is the norm of the embedding Hr(Ω) ⊂ Lp(Ω), where r = 0 and p = 2 for d = 1;
0 < r < 1 and p = 2/(1 − r) for d = 2; and r = d/2 − 1 and p = d for d ≥ 3. Together
with (8.11), this implies (8.28) with the constant

C
rΛ = n1/2C(d, n)qcd(1 + (2r0)

−2)1/2Caα
−1
0 ‖g−1‖L∞ . �

Now, using Propositions 8.4 and 8.5, we arrive at the following result.

Proposition 8.6. Suppose l = 1 for d = 1, l > 1 for d = 2, and l = d/2 for d ≥ 3. Let

0 < ε ≤ 1. Then pB(ε)1/2[Λ] : H l(Rd;Cm) → L2(R
d;Cn) and pB(ε)1/2[rΛ]: H l(Rd;Cn) →

L2(R
d;Cn) are continuous mappings, and

(8.29) ‖ pB(ε)1/2[Λ]‖Hl(Rd)→L2(Rd) ≤ CB, ‖ pB(ε)1/2[rΛ]‖Hl(Rd)→L2(Rd) ≤ rCB.

The constants CB and rCB depend only on the initial data (4.23) and the parameters of
the lattice Γ; in the case where d = 2, they depend also on l.
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Proof. Let u ∈ H l(Rd;Cm). By (4.21) with f = 1n, we have

(8.30) ‖ pB(ε)1/2Λu‖2L2
≤ (2 + c21 + c2)‖ pA1/2Λu‖2L2

+
(

pC(1) + pc3 + |λ|
)
ε2‖Λu‖2L2

.

Obviously, r := l−1 satisfies the assumptions of Proposition 8.5, so that (8.27) implies

(8.31) ‖Λu‖2L2(Rd) ≤ (CΛ)
2 ‖u‖2Hl−1(Rd) ≤ (CΛ)

2 ‖u‖2Hl(Rd).

By (8.8), we have ‖ pA1/2Λu‖2L2(Rd) ≤ C2
d‖u‖2Hl(Rd). Together with (8.30) and (8.31), this

yields the first estimate in (8.29) with the constant C2
B = (2 + c21 + c2)C

2
d +

(
pC(1) + pc3 +

|λ|
)
C2
Λ.

Similarly, by using (8.9) and (8.28), one can prove the second estimate (8.29) with the

constant rC2
B = (2 + c21 + c2)rC

2
d +

(
pC(1) + pc3 + |λ|

)
C2

rΛ
. �

Combining (8.5), (8.6), and (8.29), we obtain∥∥ pB(ε)1/2
(
Λb(D) + εrΛ

)
E0(ε, s)(I −Π)‖L2(Rd)→L2(Rd)

≤
(
CBα

1/2
1 Cl + rCBCl

)
s−(l+1)/2e−ε2C∗s, s > 0, 0 < ε ≤ 1,

where l = 1 for d = 1, l > 1 for d = 2, and l = d/2 for d ≥ 3. If s ≥ 1, then
s−(l+1)/2 ≤ s−1. In the case where d = 2, we fix l (for instance, l = 3/2). Combined
with Theorem 8.2, this implies the following result.

Theorem 8.7. We have∥∥ pB(ε)1/2
(
fe−B(ε)sf∗ −

(
I + Λb(D) + εrΛ

)
E0(ε, s)

)∥∥
L2(Rd)→L2(Rd)

≤ C′
2s

−1e−ε2C∗s,

s ≥ 1, 0 < ε ≤ 1,

where C′
2 = C2 + CBα

1/2
1 Cl + rCBCl.

Chapter 3

Homogenization of periodic differential operators

§9. Approximation of the operator fε exp(−Bεs)(f
ε)∗

9.1. The operators pBε and Bε. For any Γ-periodic function φ(x), x ∈ Rd, we denote

φε(x) := φ(ε−1x). Consider the operator pAε = b(D)∗gεb(D) in L2(R
d;Cn) generated by

the closed quadratic form paε[u,u] = (gεb(D)u, b(D)u)L2(Rd), u ∈ H1(Rd;Cn). The form
paε satisfies the following estimates similar to (4.5):

(9.1) α0‖g−1‖−1
L∞

‖Du‖2L2
≤ paε[u,u] ≤ α1‖g‖L∞‖Du‖2L2

, u ∈ H1(Rd;Cn).

Next, let pY : L2(R
d;Cn) → L2(R

d;Cdn) be defined by pYu = col{D1u, . . . , Ddu},
where u ∈ H1(Rd;Cn). Let pY2,ε : L2(R

d;Cn) → L2(R
d;Cdn) be the operator acting as

follows: pY2,εu = col{(aε1(x))∗u, . . . , (aεd(x))∗u}, u ∈ H1(Rd;Cn).
Let dμ(x) be the matrix-valued measure in Rd defined in Subsection 4.4. We define a

measure dμε(x) as follows. For any Borel set Δ ⊂ Rd, we consider the set ε−1Δ := {y =
ε−1x : x ∈ Δ} and put με(Δ) := εdμ(ε−1Δ). Consider the quadratic form pqε defined by
pqε[u,u] =

∫
Rd〈dμε(x)u,u〉, u ∈ H1(Rd;Cn).

Suppose that all the assumptions of Subsections 4.1–4.5 are satisfied. In L2(R
d;Cn),

we consider the quadratic form

pbε[u,u] = paε[u,u] + 2Re( pYu, pY2,εu)L2
+ pqε[u,u] + λ‖u‖2L2

, u ∈ H1(Rd).



1014 YU. M. MESHKOVA

Let Tε be the unitary scaling transformation in L2(R
d;Cn) defined by (Tεu)(y) =

εd/2u(εy). For any u ∈ H1(Rd;Cn), we have

(9.2) paε[u,u] = ε−2
pa[Tεu, Tεu], pbε[u,u] = ε−2

pb(ε)[Tεu, Tεu],

where pa is the form defined in Subsection 4.2 with f = 1n and pb(ε) is the form (4.17)
with f = 1n. From (9.2) and estimates (4.20) and (4.21), it follows that

pbε[u,u] ≥
κ

2
paε[u,u] + pβ‖u‖2L2

, u ∈ H1(Rd;Cn),

pbε[u,u] ≤ (2 + c21 + c2)paε[u,u] + ( pC(1) + pc3 + |λ|)‖u‖2L2
, u ∈ H1(Rd;Cn).

(9.3)

Thus, the form pbε is closed and positive definite. The selfadjoint operator in L2(R
d;Cn)

generated by the form pbε is denoted by pBε. Formally, we can write

pBε = b(D)∗gεb(D) +

d∑
j=1

(aεjDj +Dj(a
ε
j)

∗) +Qε + λI,

where Qε should be viewed as the generalized matrix-valued potential generated by the
measure dμε.

Next, in the space L2(R
d;Cn), we consider the selfadjoint positive definite operator

Bε = (fε)∗ pBεf
ε generated by the quadratic form

bε[u,u] := pbε[f
εu, fεu], Dom bε = {u ∈ L2(R

d;Cn) : fεu ∈ H1(Rd;Cn)}.

9.2. The effective operator for pBε. Suppose that the operator pA0 is defined by (8.1),

and that pY0, sQ, andW are defined by (8.2), (6.13), and (6.11), respectively. The operator

(9.4) pB0 = pA0 + pY0 + ( pY0)∗ + sQ−W + λI

is called the effective operator for pBε. In other words,

pB0 = b(D)∗g0b(D)− b(D)∗V − V ∗b(D) +

d∑
j=1

(aj + a∗j )Dj + sQ−W + λI.

9.3. The principal term of approximation. Denote

(9.5) E0(s) := f0e
−f0 pB0f0sf0.

Observe that

(9.6) fεe−Bεs(fε)∗ = T ∗
ε fe

−B(ε)rsf∗Tε, E0(s) = T ∗
ε E0(ε, rs)Tε,

where B(ε) is the operator (4.22) and rs = ε−2s. So, by the scaling transformation,
Theorem 8.1 implies the following result.

Theorem 9.1. Under the assumptions of Subsections 4.1–4.5, let Bε be the operator
defined in Subsection 9.1, and let E0(s) be the operator (9.5). Then

(9.7)
∥∥fεe−Bεs(fε)∗−E0(s)

∥∥
L2(Rd;Cn)→L2(Rd;Cn)

≤C1ε(ε2+s)−1/2e−C∗s, 0 < ε ≤ 1, s ≥ 0.

The constants C∗ and C1 depend only on the initial data (4.23) and the parameters of
the lattice Γ.
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9.4. Approximation in the (L2 → H1)-norm. First, by Theorem 8.2, we obtain
approximation with the corrector term taken into account.

Let Πε denote the pseudodifferential operator in L2(R
d;Cn) with the symbol χ

rΩ/ε(ξ):

(9.8) (Πεf)(x) = (2π)−d/2

∫
rΩ/ε

ei〈x,ξ〉(Ff)(ξ) dξ.

Using (9.6) and the identities [rΛε] = T ∗
ε [rΛ]Tε, Λ

εb(D) = ε−1T ∗
ε Λb(D)Tε, Πε = T ∗

ε ΠTε,
we get

pB1/2
ε

(
fεe−Bεs(fε)∗ − (I + εΛεb(D)Πε + εrΛεΠε)E0(s)

)
= ε−1T ∗

ε
pB(ε)1/2

(
fe−B(ε)rsf∗ − (I + Λb(D)Π + εrΛΠ)E0(ε, rs)

)
Tε,

where rs = ε−2s. Hence, replacing s by rs in (8.3) and recalling that Tε is a unitary
operator, we obtain the following estimate:∥∥ pB1/2

ε

(
fεe−Bεs(fε)∗−(I+ε(Λεb(D)+rΛε)Πε)E0(s)

)∥∥
L2(Rd)→L2(Rd)

≤ ε−1Φ2(rs, ε),

0 < ε ≤ 1, s > 0.
(9.9)

Now, by (9.9), we obtain approximation for the operator fεe−Bεs(fε)∗ in the norm of
the space of operators acting from L2(R

d;Cn) to H1(Rd;Cn).

Theorem 9.2. Under the assumptions of Theorem 9.1, suppose that the matrix-valued
function Λ(x) is the periodic solution of problem (6.7), and the matrix-valued function
rΛ(x) is the periodic solution of problem (6.8). We put Λε(x) = Λ(ε−1x) and rΛε(x) =
rΛ(ε−1x). Let Πε be the operator (9.8). Then∥∥fεe−Bεs(fε)∗ − (I + ε(Λεb(D) + rΛε)Πε)E0(s)

∥∥
L2(Rd)→H1(Rd)

≤ Ψ(s, ε),

0 < ε ≤ 1, s > 0.
(9.10)

Here Ψ(s, ε) is defined by

(9.11) Ψ(s, ε) =

{
C4εs−1e−C∗s if s > 0, 0 < ε ≤ s1/2,

C5s−1/2e−C∗s if s > 0, ε > s1/2,

where C4 = C2c, C5 = C3c, and c = max{
√
2κ−1/2α

−1/2
0 ‖g−1‖1/2L∞

; pβ −1/2}. The constants
C4, C5, and C∗ depend only on the problem data (4.23) and the parameters of the lattice Γ.

Proof. Denote

Υ(ε, s) := fεe−Bεs(fε)∗ − (I + ε(Λεb(D) + rΛε)Πε)E0(s).

By (9.3) and (9.9), we have

κ

2
‖(gε)1/2b(D)Υ(ε, s)η‖2L2(Rd) +

pβ‖Υ(ε, s)η‖2L2(Rd) ≤ ‖ pB1/2
ε Υ(ε, s)η‖2L2(Rd)

≤ ε−2Φ2(rs, ε)
2‖η‖2L2(Rd), η ∈ L2(R

d;Cn), s > 0.

Combining this with the lower estimate (9.1), we obtain

κ

2
α0‖g−1‖−1

L∞
‖DΥ(ε, s)η‖2L2(Rd) +

pβ‖Υ(ε, s)η‖2L2(Rd) ≤ ε−2Φ2(rs, ε)
2‖η‖2L2(Rd),

η ∈ L2(R
d;Cn), s > 0.

(9.12)

Obviously,

‖Υ(ε, s)η‖2H1(Rd) ≤ max{2κ−1α−1
0 ‖g−1‖L∞ ; pβ −1}

×
(κ
2
α0‖g−1‖−1

L∞
‖DΥ(ε, s)η‖2L2(Rd) +

pβ‖Υ(ε, s)η‖2L2(Rd)

)
.

(9.13)
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Estimate (9.10) is a consequence of (9.12), (9.13), and (8.4). �

9.5. Approximation for ε ≤ s1/2. Similarly, by using Theorem 8.7, one can prove the
following statement.

Theorem 9.3. Under the assumptions of Theorem 9.2, we have∥∥fεe−Bεs(fε)∗ − (I + ε(Λεb(D) + rΛε))E0(s)
∥∥
L2(Rd)→H1(Rd)

≤ εC′
4s

−1e−C∗s,

0 < ε ≤ s1/2, 0 < ε ≤ 1.
(9.14)

The constants C′
4 := C′

2c and C∗ depend only on the problem data (4.23) and the param-
eters of the lattice Γ.

§10. Application to homogenization of the parabolic Cauchy problem

10.1. The Cauchy problem. Let ρ(x) be a measurable Γ-periodic (n × n)-matrix-
valued function in Rd; we assume that it is bounded and uniformly positive definite. Let
0 < T ≤ ∞. Consider the following Cauchy problem:

(10.1) ρ(ε−1x)
∂uε(x, s)

∂s
= − pBεuε(x, s) + F(x, s), ρ(ε−1x)uε(x, 0) = φ(x),

x ∈ Rd, s ∈ (0, T ), where φ ∈ L2(R
d;Cn) and F ∈ Hp(T ) := Lp((0, T );L2(R

d;Cn))
for some 1 < p ≤ ∞. We factorize the matrix ρ(x) as ρ(x)−1 = f(x)f(x)∗. Then
vε := (fε)−1uε is the solution of the problem

∂vε(x, s)

∂s
= −(fε(x))∗ pBεf

ε(x)vε(x, s) + (fε(x))∗F(x, s),

vε(x, 0) = (fε(x))∗φ(x).

Since Bε = (fε(x))∗ pBεf
ε(x), we have

vε = exp(−Bεs)(f
ε)∗φ+

∫ s

0

exp(−Bε(s− rs))(fε)∗F( · , rs) drs,

uε = fε exp(−Bεs)(f
ε)∗φ+

∫ s

0

fε exp(−Bε(s− rs))(fε)∗F( · , rs) drs.(10.2)

Let u0(x, s) be the solution of the “homogenized” problem

(10.3) sρ
∂u0(x, s)

∂s
= − pB0u0(x, s) + F(x, s), sρu0(x, 0) = φ(x),

where sρ = |Ω|−1
∫
Ω
ρ(x) dx. Note that sρ = f−2

0 . As in (10.2), we obtain

(10.4) u0 = f0 exp (−f0 pB0f0s)f0φ+

∫ s

0

f0 exp (−f0 pB0f0(s− rs))f0F( · , rs) drs.

10.2. Convergence of the solutions in L2(R
d;Cn). By (9.7),

‖uε( · , s)− u0( · , s)‖L2(Rd) ≤ C1ε(ε2 + s)−1/2e−C∗s‖φ‖L2(Rd)

+ C1ε
∫ s

0

(ε2 + s− rs)−1/2e−C∗(s−rs)‖F( · , rs)‖L2(Rd) drs.
(10.5)

For 1 < p ≤ ∞, we estimate the integral on the right-hand side of (10.5) by using the
Hölder inequality (p−1 + (p′)−1 = 1):∫ s

0

(ε2 + s− rs)−1/2e−C∗(s−rs)‖F( · , rs)‖L2(Rd) drs

≤ ‖F‖Hp(s)

(∫ s

0

(ε2 + s− rs)−p′/2e−C∗p
′(s−rs) drs

)1/p′

.

(10.6)
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In the case where 2 < p ≤ ∞ (1 ≤ p′ < 2), the right-hand side of (10.6) can be estimated

by ‖F‖Hp(s)(C∗p
′)1/2−1/p′(

Γ(1−p′/2)
)1/p′

. For 1 < p < 2, we estimate the integral with

the help of the inequality e−C∗p
′(s−rs) ≤ 1:

(10.7)

∫ s

0

(ε2 + s− rs)−p′/2e−C∗p
′(s−rs) drs ≤ ε2−p′

(p′/2− 1)−1.

For p = 2, we substitute ζ = s− rs and split the interval of integration:∫ s

0

(ε2 + s− rs)−1e−2C∗(s−rs) drs ≤
∫ 1

0

(ε2 + ζ)−1 dζ +

∫ s

1

e−2C∗ζ dζ

≤ ln 2 + 2| ln ε|+ (2C∗)
−1, 0 < ε ≤ 1.

(10.8)

Combining estimates (10.5)–(10.8), we arrive at the following result.

Theorem 10.1. Suppose F ∈ Hp(T ) for some 1 < p ≤ ∞. Then for any s ∈ (0, T ) the
solutions uε( · , s) tend to u0( · , s) in the L2(R

d;Cn)-norm. For 0 < ε ≤ 1, we have

‖uε( · , s)− u0( · , s)‖L2(Rd) ≤ C1ε(ε2 + s)−1/2e−C∗s‖φ‖L2(Rd) + θ1(ε, p)‖F‖Hp(s).

Here θ1(ε, p) is given by

θ1(ε, p) =

⎧⎪⎨
⎪⎩
ε2−2/pC1(p′/2− 1)−1/p′

if 1 < p < 2,

εC1
(
ln 2 + 2| ln ε|+ (2C∗)

−1
)1/2

if p = 2,

εC1(C∗p
′)−1/2+1/p (Γ(1− p′/2))

1/p′
if 2 < p ≤ ∞,

where p−1 + (p′)−1 = 1.

10.3. Approximation in H1(Rd;Cn) for solutions of the homogeneous Cauchy
problem. Now we consider the homogeneous Cauchy problem

(10.9) ρ(ε−1x)
∂uε(x, s)

∂s
= − pBεuε(x, s), ρ(ε−1x)uε(x, 0) = φ(x),

where φ ∈ L2(R
d;Cn). The corresponding “homogenized” problem has the form

(10.10) sρ
∂u0(x, s)

∂s
= − pB0u0(x, s), sρu0(x, 0) = φ(x).

The following result is a direct consequence of (9.14).

Theorem 10.2. Under the assumptions of Subsections 4.1–4.4, let uε be the solution of
problem (10.9), and let u0 be the solution of problem (10.10). Then∥∥uε( · , s)− u0( · , s)− ε(Λεb(D) + rΛε)u0( · , s)

∥∥
H1(Rd)

≤ C′
4εs

−1e−C∗s‖φ‖L2(Rd),

0 < ε ≤ 1, 0 < ε ≤ s1/2.

The constants C′
4 and C∗ depend only on the problem data (4.23) and the parameters of

the lattice Γ.

10.4. Approximation in H1(Rd;Cn) for solutions of the nonhomogeneous Cau-
chy problem. We return to problem (10.1).

Theorem 10.3. Let uε be the solution of problem (10.1), where φ ∈ L2(R
d;Cn) and

F ∈ Hp(T ), 2 < p ≤ ∞, and let u0 be the solution of problem (10.3). Let Πε be the

operator (9.8). Let 0 < ε ≤ 1. Then for 0 < s ≤ T and 0 < ε ≤ s1/2 we have∥∥uε( · , s)− u0( · , s)− ε(Λεb(D) + rΛε)Πεu0( · , s)
∥∥
H1(Rd)

≤ C4εs−1e−C∗s‖φ‖L2(Rd) + θ2(ε, p)‖F‖Hp(s),
(10.11)
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where

θ2(ε, p) =

{
ε1−2/p

(
C4(p′ − 1)−1/p′

+ C5(1− p′/2)−1/p′)
if 2 < p < ∞,

2C4ε| ln ε|+ C4εC−1
∗ e−C∗ + 2C5ε if p = ∞.

Here p−1 + (p′)−1 = 1.

Proof. Let 0 < s ≤ T , and let 0 < ε ≤ min{s1/2, 1}. From (9.10) and (10.2), (10.4) it
follows that ∥∥uε( · , s)− u0( · , s)− ε

(
Λεb(D) + rΛε

)
Πεu0( · , s)‖H1(Rd)

≤ C4εs−1e−C∗s‖φ‖L2(Rd) +

∫ s

0

Ψ(s− rs, ε)‖F( · , rs)‖L2(Rd) drs,
(10.12)

where Ψ(s, ε) is defined by (9.11). Denote

(10.13) I :=

∫ s

0

Ψ(s− rs, ε)‖F( · , rs)‖L2(Rd) drs.

The integral I can be rewritten as

I = C4ε
∫ s−ε2

0

(s− rs)−1e−C∗(s−rs)‖F( · , rs)‖L2(Rd) drs

+ C5
∫ s

s−ε2
(s− rs)−1/2e−C∗(s−rs)‖F( · , rs)‖L2(Rd) drs.

(10.14)

For 2 < p < ∞, the estimate e−C∗(s−rs) ≤ 1 and the Hölder inequality (p−1 +(p′)−1 = 1)
show that

I ≤ ‖F‖Hp(s)ε
1−2/p

(
C4(p′ − 1)−1/p′

+ C5(1− p′/2)−1/p′)
.(10.15)

For p = ∞, identity (10.14) yields the estimate

I ≤ ‖F‖H∞(s)

(
C4ε

∫ s−ε2

0

(s− rs)−1e−C∗(s−rs) drs+ C5
∫ s

s−ε2
(s− rs)−1/2 drs

)
.(10.16)

Note that

(10.17)

∫ s−ε2

0

(s− rs)−1e−C∗(s−rs) drs ≤ 2| ln ε|+ C−1
∗ e−C∗ .

Using (10.16) and (10.17), we obtain

(10.18) I ≤ ε‖F‖H∞(s)

(
2C4| ln ε|+ C4C−1

∗ e−C∗ + 2C5
)
.

Combining (10.12), (10.13), (10.15), and (10.18), we arrive at (10.11). �
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