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PTOLEMY SPACES WITH STRONG INVERSIONS

A. SMIRNOV

Abstract. It is proved that a compact Ptolemy space with many strong inversions
that contains a Ptolemy circle is Möbius equivalent to an extended Euclidean space.

§1. Introduction

This work is motivated by the papers [BS1] and [BS2] of S. Buyalo and V. Schroeder,
which give a Möbius characterization of the boundary at infinity of the rank one sym-
metric spaces of noncompact type. That characterization employs the notion of a space
inversion with respect to distinct points ω, ω′ ∈ X and a metric sphere S ⊂ X between
ω, ω′. By definition, such an inversion is a Möbius automorphism ϕ = ϕω,ω′,S : X → X
with the following properties:

(1) ϕ is an involution without fixed points, ϕ2 = id;
(2) ϕ(ω) = ω′ (and thus ϕ(ω′) = ω);
(3) ϕ preserves S, ϕ(S) = S;
(4) ϕ(σ) = σ for any Ptolemy circle σ ⊂ X through ω, ω′.

Recall that, however, a classical inversion of the Euclidean space R
n with respect to

a sphere S ⊂ R
n fixes S pointwise. In this paper we impose a stronger condition on an

s-inversion, assuming that ϕ preserves S pointwise, ϕ(x) = x for every x ∈ S; such an
inversion will be called a strong s-inversion. We study Ptolemy spaces with the following
two properties.

(E) Existence: there is at least one Ptolemy circle in X.
(sI) Strong inversions: for any distinct ω, ω′ ∈ X and any metric sphere S ⊂ X

between ω, ω′ there is a strong space inversion ϕω,ω′,S : X → X with respect to
ω, ω′ and S.

Our main goal is the proof of the following theorem.

Theorem 1. Let X be a compact Ptolemy space with properties (E) and (sI). Then X

is Möbius equivalent to the extended Euclidean space pR
n = R

n ∪ {∞} for some n ≥ 1.

Another Möbius characterization of pR
n was obtained in [FS]: a compact Ptolemy space

X is Möbius equivalent to pR
n if and only if any three points in X lie on a Ptolemy circle.

Despite the differences in the definition of s-inversions and strong s-inversions, some
properties of the spaces under study pertain to both cases. Thus, the definitions of
the homotheties and shifts, as well as Lemmas 4, 5, 6 were originally presented in [BS1].
Significant differences between the two classes arise when we consider the symmetry with
respect to a horosphere. In general, if we only assume the existence of s-inversions, there
is no reason for such a symmetry to exist.
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§2. Basic definitions

2.1. Möbius structures. In this section we follow the definitions in [BS1]. Namely, fix
a set X and consider the extended metrics on X for which the existence of an infinitely
remote point ω ∈ X is allowed, that is, d(x, ω) = ∞ for all x ∈ X, x �= ω. We always
assume that such a point is unique if it exists, and that d(ω, ω) = 0.

A quadruple Q = (x, y, z, u) of points in a set X is said to be admissible if each entry
occurs at most two times in Q. Two metrics d, d′ on X are Möbius equivalent if for
any admissible quadruple Q = (x, y, z, u) ⊂ X the respective cross-ratio triples coincide,
crtd(Q) = crtd′(Q), where

crtd(Q) = (d(x, y)d(z, u) : d(x, z)d(y, u) : d(x, u)d(y, z)) ∈ RP 2.

If ∞ occurs once in Q, say u = ∞, then crtd(x, y, z,∞) = (d(x, y) : d(x, z) : d(y, z)).
If ∞ occurs twice, say z = u = ∞, then crtd(x, y,∞,∞) = (0 : 1 : 1).

A Möbius structure on a set X is a class M = M(X) of metrics on X that are pairwise
Möbius equivalent.

The topology on (X, d) is that with the base consisting of all open distance balls
Br(x) around points in x ∈ Xω and the complements X \D of all closed distance balls
D = sBr(x). Möbius equivalent metrics give rise to one and the same topology on X.
When a Möbius structure M on X is fixed, we say that (X,M) or simply X is a Möbius
space.

A map f : X → X ′ between two Möbius spaces is said to be Möbius if f is injective
and for all admissible quadruples Q ⊂ X we have

crt(f(Q)) = crt(Q),

where the cross-ratio triples are taken with respect to some (and hence an arbitrary)
metric of the Möbius structures of X, X ′. Möbius maps are continuous. If a Möbius
map f : X → X ′ is bijective, then f−1 is Möbius, f is a homeomorphism, and the Möbius
spaces X, X ′ are said to be Möbius equivalent.

We note that if two Möbius equivalent metrics have the same infinitely remote point,
then they are homothetic, see, e.g., [BS1, FS].

A classical example of a Möbius space is the extended pR
n = R

n ∪ ∞ = Sn, n ≥ 1,

where the Möbius structure is generated by some extended Euclidean metric on pR
n, and

R
n ∪∞ is identified with the unit sphere Sn ⊂ R

n+1 via the stereographic projection.

2.2. Ptolemy spaces. A Möbius space X is called a Ptolemy space if it satisfies the
Ptolemy property, that is, for all admissible quadruples Q ⊂ X the entries of the respec-
tive cross-ratio triple crt(Q) ∈ RP 2 satisfy the triangle inequality.

The Ptolemy property is equivalent to the fact that the Möbius structure M of X is
invariant under the metric inversions, or in other words, M is Ptolemy if and only if for
all z ∈ X there exists a metric dz ∈ M with infinitely remote point z.

Recall that the metric inversion (or m-inversion for brevity) of a metric d ∈ M(X)
with respect to z ∈ X \ ω (ω is infinitely remote for d) of radius r > 0 is the function

dz(x, y) =
r2d(x,y)

d(z,x)d(z,y) for all x, y ∈ X distinct from z, dz(x, z) = ∞ for all x ∈ X \ {z}
and dz(z, z) = 0.

The classical example of a Ptolemy space is pR
n with a standard Möbius structure.

An interesting basic fact about Ptolemy spaces is the following Schoenberg theorem.

Theorem 2 ([Sch]). If a real normed vector space is a Ptolemy space, then it is an inner
product space.
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A Ptolemy circle in a Ptolemy space X is a subset σ ⊂ X homeomorphic to S1 and
such that for every quadruple (x, y, z, u) ∈ σ of distinct points we have

d(x, z)d(y, u) = d(x, y)d(z, u) + d(x, u)d(y, z)

for some (and hence, an arbitrary) metric d of the Möbius structure, where it is assumed
that the pair (x, z) separates the pair (y, u), i.e., y and u are in different components of
σ \ {x, z}.

Given ω ∈ X, we use the notation Xω = X \ ω and always assume that a metric of
the Möbius structure on Xω is fixed. Note that every Ptolemy circle σ ⊂ X that passes
through ω is isometric to a geodesic line in Xω. Such a line � = σω is called a Ptolemy
line.

2.3. Space inversions. Given distinct ω, ω′ ∈ X, we say that a subset S ⊂ X is a
metric sphere between ω, ω′ if

S = {x ∈ X : d(x, ω) = r} = Sd
r (ω)

for some metric d ∈ M with infinitely remote point ω′ and some r > 0. Any two such
metrics d, d′ ∈ M are proportional to each other, d′ = λd for some λ > 0. Then Sd

r (ω) =

Sd′

λr(ω). Moreover, this notion is symmetric relative to ω, ω′, because any metric d′ ∈ M
with infinitely remote point ω is proportional to the m-inversion of d with respect to ω,
and we may assume that d′ is an m-inversion itself. Then S = {x ∈ X : d′(x, ω′) = 1/r}.

We define a strong space inversion, or s-inversion for brevity, with respect to distinct
ω, ω′ ∈ X and a metric sphere S ⊂ X between ω, ω′ as a Möbius automorphism
ϕ = ϕω,ω′,S : X → X such that

(1) ϕ is an involution, ϕ2 = id;
(2) ϕ(ω) = ω′ (and thus, ϕ(ω′) = ω);
(3) ϕ preserves S pointwise, ϕ(x) = x for every x ∈ S;
(4) ϕ(σ) = σ for any Ptolemy circle σ ⊂ X through ω, ω′.

Let ω ∈ X. Fix o ∈ Xω and consider a metric sphere S = Sr(o) between o and ω. Let
ϕ be an s-inversion with respect to o, ω and S. Now we prove two technical lemmas.

Lemma 1. Let x ∈ Xω. Then |ox| · |oϕ(x)| = r2.

Proof. Let y ∈ S. Then

crt(x, y, o, ω) = (|xy| : |xo| : |yo|) = crt(ϕ(x), ϕ(y), ϕ(o), ϕ(ω))

= crt(ϕ(x), y, ω, o) = (|ϕ(x)y| : |yo| : |ϕ(x)o|).
It follows that |ϕ(x)o|/|yo| = |yo|/|xo| and |ox| · |oϕ(x)| = r2. �

Lemma 2. Let x, y ∈ Xω. Then |ϕ(x)ϕ(y)| = r2 · |xy|
|ox|·|oy| .

Proof. Note that

crt(x, y, o, ω) = (|xy| : |xo| : |yo|) = crt(ϕ(x), ϕ(y), ω, o) = (|ϕ(x)ϕ(y)| : |ϕ(y)o| : |ϕ(x)o|).
Consequently, |ϕ(x)ϕ(y)|/|ϕ(x)o| = |xy|/|yo|. By Lemma 1, |ϕ(x)o| = r2/|xo|. Then

|ϕ(x)ϕ(y)| = |ϕ(x)o| · |xy|
|yo| = r2 |xy|

|ox|·|oy| . �

We say that a Möbius space X possesses property (E) if there is a Ptolemy circle in
X. And we also say that a Möbius space X possesses property (sI) if for any distinct ω,
ω′ ∈ X and a metric sphere S ⊂ X between ω, ω′ there is an s-inversion ϕω,ω′,S : X → X
with respect to ω, ω′, and S.

From now on, we assume that X is a compact Ptolemy space with properties (E)
and (sI).
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§3. Homotheties and shifts

3.1. Homotheties. Fix ω ∈ X. Let o ∈ Xω, λ > 0. Consider r1, r2 > 0 such that
λ = r22/r

2
1. Let S1 = Sr1(o), S2 = Sr2(o) ⊂ Xω be metric spheres between o, ω. Denote

by ϕ1, ϕ2 s-inversions relative to o, ω, S1 and o, ω, S2, respectively.
We define a homothety with the center o and the coefficient λ as a Möbius authomor-

phism h : X → X such that h = ϕ2 ◦ ϕ1.
The next properties follow from the definition of an s-inversion and from Lemma 2.

(1) h(o) = o, h(ω) = ω.
(2) h(σ) = σ for any Ptolemy circle σ ⊂ X through o, ω.
(3) |h(x)h(y)| = λ|xy| for all x, y ∈ Xω.
(4) For each o ∈ Xω and each λ > 0, there exists a homothety with the center o and

the coefficient λ.

We denote a homothety with center o and coefficient λ by hλ,o.

Proposition 1. Let ω, ω′ ∈ X, let σ be a Ptolemy circle through ω, ω′, and let Γ ⊂ σ be
a connected component of σ \ {ω, ω′}. Consider x, x′ ∈ Γ. Then there exists a homothety
h with the center ω′ such that h(x) = x′.

Proof. Consider a metric space Xω. Since ω ∈ σ, Γ is a geodesic ray starting at ω′.
Define λ by |ω′x′| = λ|ω′x|. Then h(x) = x′ for h = hλ,ω′ . �

Corollary 1. Any two distinct Ptolemy circles in a Ptolemy space with properties (E)
and (sI) have at most two points in common.

Proof. Let σ, σ′ ⊂ X be intersecting Ptolemy circles with ω ∈ σ∩σ′. Consider the metric
space Xω. Arguing by contradiction, suppose that there exist x, x′ ∈ (σ ∩ σ′) \ {ω}. Let
Γ be a connected component of σ \ {x, ω} such that x′ ∈ Γ. Also, let Γ′ be a connected
component of σ′ \ {x, ω} such that x′ ∈ Γ′. Note that if x′′ ∈ Γ and λ = |xx′′|/|xx′|,
then for a homothety h = hλ,x we have h(x′) = x′′. Then x′′ ∈ Γ′ and Γ ⊂ Γ′. Similarly,
Γ′ ⊂ Γ, whence Γ ≡ Γ′. In the same way, if Γ1 is a connected component of σ \ {x′, ω}
such that x ∈ Γ1, and Γ′

1 is a connected component of σ′ \ {x′, ω} such that x ∈ Γ′
1, we

can check that Γ1 = Γ′
1. It follows that σ = σ′. �

3.2. Shifts. Note that X is Hausdorff and compact. If we fix a nonprincipal ultrafilter
θ on the set of natural numbers N, then for each sequence xn ∈ X there exists a unique
x ∈ X such x = limθ xn. Moreover, | limθ(xn) limθ(yn)| = limθ |xnyn| for all sequences
xn, yn ∈ X.

In this section we need the following well-known fact, see, e.g., [BS1, Lemma 6.7].

Lemma 3. Assume that, for a nondegenerate triple T = (x, y, z) ⊂ X and a se-
quence ϕi ∈ MobX, the sequence Ti = ϕi(T ) θ-converges to a nondegenerate triple
T ′ = (x′, y′, z′) ⊂ X. Then there exists ϕ = limθ ϕi ∈ MobX with ϕ(T ) = T ′.

Fix ω ∈ X and let x, x′ ∈ Xω. Let λn > 0, n ∈ N, be a sequence that goes to zero.
Consider the homothety hn with center x and coefficient λ−1

n and the homothety h′
n with

center x′ and coefficient λn. We denote their composition h′
n ◦ hn by ηn. Note that ηn is

an isometry for each n ∈ N. Then, by Lemma 3, η = limθ ηn is a Möbius automorphism
with η(x) = x′ and η(ω) = ω. Moreover η : Xω → Xω is an isometry. We denote it by
ηxx′ and call a shift from x to x′. For every x, x′ ∈ Xω, there exists a shift from x to x′.
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§4. Foliations by parallel lines

Since each Ptolemy line � ⊂ Xω is isometric to R, for every x0 ∈ � the Busemann
functions b±�,x0

: Xω → R are well defined by the formula

b±�,x0
(x) = lim

t→±∞
|xc(t)| − |x0c(t)|,

where c(t) : R → � is a unit speed parametrization.
Two Ptolemy lines �, �′ ⊂ Xω are said to be Busemann parallel if �, �′ share Busemann

functions, that is, any Busemann function associated with � is also a Busemann function
associated with �′ and vice versa.

The following lemmas were proved in [BS1], and the proofs go without changes in our
case.

Lemma 4 ([BS1, Lemma 4.11]). Let �, �′ ⊂ Xω be Ptolemy lines with a common point
o ∈ l ∩ �′ and let b : Xω → R be a Busemann function of � with b(o) = 0. Assume that
b ◦ c(t) = −t = b ◦ c′(t) for all t ≥ 0 and for appropriate unit speed parametrizations
c, c′ : R → Xω of �, �′ (respectively) with c(0) = o = c′(0). Then l = l′. In particular,
Busemann parallel Ptolemy lines coincide if they have a common point.

Lemma 5 ([BS1, Lemma 4.12]). Let c, c′ : R → Xω be unit speed parametrizations
of Ptolemy lines �, �′ ⊂ Xω, respectively. If |c(ti)c′(ti)|/|ti| → 0 for some sequences
ti → ±∞, then the lines �, �′ are Busemann parallel.

Vice versa, if �, �′ ⊂ Xω are Busemann parallel lines, then

lim
t→∞

|c(t)c′(t)|/t = 0

for their unit speed parametrizations c, c′ : R → Xω chosen appropriately.

Lemma 6 ([BS1, Lemma 4.13]). A shift ηxx′ moves any Ptolemy line � through x to a
Busemann parallel Ptolemy line ηxx′(l) through x′.

From Lemma 4 and Lemma 6 we immediately obtain the following claim.

Corollary 2. Given a Ptolemy line � ⊂ Xω, through any point x ∈ Xω there is a unique
Ptolemy line lx Busemann parallel to �.

§5. Symmetries with respect to horospheres

In this section we construct a symmetry with respect to a horosphere.
Fix ω ∈ X and a Ptolemy line � ⊂ Xω, and let c : R → Xω be a unit speed

parametrization of �. For t > 0, the metric sphere St = {x ∈ Xω : |xc(t)| = t}
passes through z = c(0) and lies between ω and c(t). By (sI), there is an s-inversion
ϕt = ϕω,c(t),St

: X → X. By the compactness of X, the s-inversions ϕt subconverge as
t → ∞ to a map ϕ∞ : X → X. Note that ϕ∞(ω) = ω because ϕt(c(t)) = ω and c(t) → ω
as t → ∞.

Lemma 7. Let x ∈ Hz, where Hz ⊂ Xω is the horosphere through z ∈ � of the Busemann
function b+(y) = limt→∞(|yc(t)| − t), y ∈ Xω. Then ϕ∞(x) = x.

Proof. Since |zc(t)| = t for t ≥ 0, we have b+(z) = 0. Let �x be a line through x
Busemann parallel to �, and let c′ : R → Xω be its unit speed parametrization with
c′(0) = x such that b+ is the Busemann function associated with the ray c′([0,∞)). Fix
ε > 0 and let x′ = c′(ε). Note that the function |x′c(t)| − t is monotone decreasing and
tends to b+(x′) = −ε. On the other hand, |x′c(0)| > 0. This means that there exists
t > 0 such that |x′c(t)| − t = 0. Let xt = ϕt(x). Since ϕt(x

′) = x′, by Lemma 2 we have

|xtx
′| = t2

|xx′|
|c(t)x| · |c(t)x′| =

tε

|c(t)x| .
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Note that the function |xc(t)| − t is monotone decreasing and tends to b+(x) = 0. This
means that |xc(t)| ≥ t and |xtx

′| ≤ ε. It follows that |xxt| ≤ |xx′|+|x′xt| ≤ 2ε. Choosing
ε → 0, we see that ϕt(x) → x, and then ϕ∞(x) = x. �

Now we show that ϕ∞ is an isometry of Xω that, moreover, reflects the Ptolemy line
� in z. For each x, y ∈ Xω and every sufficiently large t > 0, by Lemma 2 we have

|ϕt(x)ϕt(y)| =
t2|xy|

|xc(t)| |yc(t)| ,

and |xc(t)| = t + b+(x) + o(1), |yc(t)| = t + b+(y) + o(1). Thus, |ϕ∞(x)ϕ∞(y)| = |xy|
for all x, y ∈ Xω, i.e., ϕ∞ is an isometry. It preserves the Ptolemy line � because every
ϕt preserves the Ptolemy circle σ = l ∪ ω, and it reflects � in z because ϕ∞(z) = z and
every ϕt is an s-inversion of σ.

§6. Proof of Theorem 1

6.1. Some metric relations. Recall that a Ptolemy space X is said to be Busemann
flat if for every Ptolemy circle σ ⊂ X and every point ω ∈ σ, we have b+ + b− ≡ const
for opposite Busemann functions b± : Xω → R associated with the Ptolemy line σω, see
[BS1, §3.2].

Lemma 8. X is Busemann flat.

Proof. Let � ⊂ Xω be a Ptolemy line, and let c : R → Xω be a unit speed parametrization
of �. Consider the horosphere Ho through o = c(0) of the Busemann function b+(x) =
limt→∞(|xc(t)| − t), x ∈ Xω. Let b−(x) = limt→∞(|xc(−t)| − t), x ∈ Xω, and let ϕ
be the symmetry with respect to Ho. Note that if x′ = ϕ(x), where x, x′ ∈ Xω, then
b+(x) = b−(x′). Indeed,

b−(x′) = lim
t→∞

(|x′c(−t)| − t) = lim
t→∞

(|ϕ(x)ϕ(c(t))| − t) = lim
t→∞

(|xc(t)| − t) = b+(x).

It follows that b+(z) = b−(z) for every z ∈ Ho. Therefore, Ho is also a horosphere of the
Busemann function b−, and then b+ + b− ≡ const. �

Corollary 3. For each horosphere H of the Busemann function b+, the set ϕ(H) is also
a horosphere of the Busemann function b+.

Lemma 9. Let �, �′ ⊂ Xω be Busemann parallel lines, and let ϕ : Xω → Xω be the
symmetry that reflects � at o ∈ �. Then ϕ reflects �′ at o′ = Ho ∩ �′, where Ho is the
horosphere of � through o.

Proof. Ho is the fixed point set of ϕ and ϕ(�′) is Busemann parallel to ϕ(�) = �. Thus,
by Lemma 4, ϕ(�′) = �′. �

Lemma 10. Let �, �′ be Busemann parallel lines in Xω, and let x, y ∈ �, x′, y′ ∈ �′ be
such that b(x) = b(x′), b(y) = b(y′), where b is a common Busemann function of � and
�′. Then |xy| = |x′y′|, |xx′| = |yy′|, |xy′| = |yx′|, and |x′y| ≥ |xx′|.

Proof. The first identity is obvious because

|xy| = |b(x)− b(y)| = |b(x′)− b(y′)| = |x′y′|.
To prove the other two identities, consider the midpoint z ∈ � between x, y, that is,
|xz| = |zy|. Let Hx, Hy, Hz be horospheres of b through x, y, z (respectively), and let
ϕ be the symmetry with respect to Hz such that ϕ(�) = �. Note that ϕ(x) = y and
ϕ(�′) = �′. It follows that ϕ(Hx) = Hy. Moreover, ϕ(x′) = y′ and ϕ(y′) = x′. Then we
have |xx′| = |yy′| and |xy′| = |yx′|.
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Applying the Ptolemy inequality |xy| · |x′y′|+ |xx′| · |yy′| ≥ |xy′| · |yx′| to the quadruple
(x, x′, y, y′), we have

(♦) |xy|2 + |xx′|2 ≥ |yx′|2.

On the other hand, if y′′ is symmetric to y with respect to Hx, then |xy′′| = |xy| and
|x′y′′| = |x′y|. Applying the Ptolemy inequality to the quadruple (x, x′, y, y′′), we have
|x′y| · |xy′′|+ |x′y′′| · |xy| ≥ |xx′| · |yy′′|. It follows that 2|xy| · |x′y| ≥ 2|xy| · |xx′|. Thus,
|x′y| ≥ |xx′|. �

Fix a > 0 and let � ∈ Xω be a Ptolemy line. Consider x, y ∈ � such that |xy| = a/2.
Let Hx and Hy be horospheres through x and y, and let ϕx and ϕy be the symmetries
with respect to Hx and Hy. Consider the isometry ϕy ◦ ϕx and observe that it moves
every point along a line Busemann parallel to � at the distance a. We call such an
isometry a-shift along � and denote it by ηa,�. Let �′ be a Ptolemy line (not necessarily
Busemann parallel to �). Lemma 5 shows that �′ and ηa,�(�

′) are Busemann parallel.
This means that if Hz is the horosphere with respect to �′ through z, then ηa,�(Hz) is
the horosphere with respect to �′ through ηa,�(z).

6.2. Existence of nonparallel lines. Assume that X is not Möbius equivalent to pR.

Lemma 11. For each ω, ω′ ∈ X, there exist distinct Ptolemy lines �, �′ ∈ Xω such that
� ∩ �′ = {ω′}.

Proof. First, we find two Ptolemy circles with exactly two common points. Let σ ⊂ X

be a Ptolemy circle, and let ω ∈ σ. Since X is not Möbius equivalent to pR, there is
x′ ∈ X \σ. Let c : R → Xω be a unit speed parametrization of the Ptolemy line � = σ \ω
such that the horosphere H of � through c(0) contains x′. Suppose z = c(1), z′ = c(−1),
and |x′z| = |x′z′| = r. Consider an s-inversion ϕ with respect to x′, ω and the metric
sphere Sr = {x ∈ Xω : |x′x| = r}. By Lemma 2, the image ϕ(�) is a Ptolemy circle that
intersects � at two points z and z′.

Next let σ1, σ2 be the Ptolemy circles described above, σ1 ∩ σ2 = {z, z′}. The lines
�1,z′ = σ1 \ z, �2,z′ = σ2 \ z ⊂ Xz through z′ are not Busemann parallel. Let �1,ω, �2,ω be
the lines in Xz through ω that are Busemann parallel to �1,z′ , �2,z′ , respectively. Note
that �′1 = (�1,ω\{ω})∪{z} and �′2 = (�2,ω\{ω})∪{z} are Ptolemy lines inXω. Finally, the
Ptolemy lines �1, �2 through ω′ Busemann parallel to �′1, �

′
2 (respectively) are distinct. �

6.3. Homotheties preserve a foliation by horospheres. Suppose c : R → Xω is a
unit speed parametrization of a Ptolemy line � ⊂ Xω, o = c(0), z ∈ � and Hz is the
horosphere with respect to � through z.

Lemma 12. Let h be a homothety with the center o. Then h(Hz) is the horosphere with
respect to � through h(z).

Proof. Let x ∈ Hz, and let λ be the coefficient of h. Then limt→∞(|xc(t)| − |zc(t)|) = 0.
Multiplying by λ, we have limt→∞ λ(|xc(t)| − |zc(t)|) = 0. It follows that

lim
t→∞

(|h(x)h(c(t))| − |h(z)h(c(t))|) = lim
t→∞

(|h(x)c(λt)| − |h(z)c(λt)|) = 0,

whence h(Hz) ⊂ Hh(z). On the other hand, for each homothety h we can consider a
homothety h′ with the same center such that h′ ◦ h = id. This means that h(Hz) =
Hh(z). �
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6.4. Projection on horospheres. Here we assume that X is not Möbius equivalent

to pR. Let o, ω ∈ X, and let � ⊂ Xω be a Ptolemy line through o.
Suppose Ho ⊂ Xω is the horosphere with respect to � through o. We define the

projection πo : Xω → Ho as follows: if x ∈ Xω and �x is the Ptolemy line through x
Busemann parallel to �, then πo(x) := Ho ∩ �x.

Proposition 2. Let �′ �= � ⊂ Xω be Ptolemy lines through o. Then πo(�
′) is a Ptolemy

line.

Proof. We prove that there exists α > 0 such that |πo(c
′(t))πo(c

′(t′))| = α|t − t′| for all
t, t′ ∈ R, where c′ : R → Xω is a unit speed parametrizations of �′ with c′(0) = o. Put
z = c′(1), z′ = πo(z), and α := |oz′|/|oz|.

Lemma 13. Let xi = c′(ti), i = 1, 2, 3, where t1 < t2 < t3. Then

|πo(x1)πo(x2)|
|x1x2|

=
|πo(x2)πo(x3)|

|x2x3|
=

|πo(x1)πo(x3)|
|x1x3|

.

Proof. Let xi ∈ �i, where � and �i are Busemann parallel, and let xi ∈ Hi, where Hi is
the horosphere of �i, i = 1, 2, 3.

We observe that the homothety h1 : Xω → Xω with the center x1 and the coefficient
|x1x3|/|x1x2| moves x2 to x3, and h1(H1) = H1. It follows that h1(�2) = �3. So, if
y2 = H1 ∩ �2 and y3 = H1 ∩ �3, then h1(y2) = y3. Thus, |x1y3|/|x1y2| = |x1x3|/|x1x2|.
On the other hand, |x1y3| = |πo(x1)πo(x3)| and |x1y2| = |πo(x1)πo(x2)|. Consequently,

|πo(x1)πo(x2)|
|x1x2|

=
|πo(x1)πo(x3)|

|x1x3|
.

In the same way, considering the homothety h3 with the center x3 and the coefficient
|x1x3|/|x2x3|, we see that

|πo(x2)πo(x3)|
|x2x3|

=
|πo(x1)πo(x3)|

|x1x3|
. �

Now Lemma 13 shows that |πo(c
′(t))πo(c

′(t′))| = α|t− t′| for all t, t′ ∈ R. �

6.5. Horospheres invariance. Let Ho ⊂ Xω be the horosphere through o with respect
to some Ptolemy line � ⊂ Xω.

Proposition 3. The subspace X1 = Ho∪{ω} is a compact Ptolemy space with properties
(E) and (sI).

Proof. Let ϕ be an s-inversion with respect to o, ω ∈ X. Note that ϕ(X1) = X1. Indeed,
let z ∈ Ho ∪ {ω}, and let c : R → Xω be a unit speed parametrization of � such that
c(0) = o. Consider the Busemann function b : Xω → R of � such that b ◦ c(t) = −t. Then
b(z) = 0. On the other hand, if z′ = ϕ(z), then

|z′c(t)| = |zc(1/t)|
1
t · |xz|

=
t|zc(1/t)|

|xz| .

Therefore,
b(z′) = lim

t→∞
(|z′c(t)| − t) = lim

t→∞
(t|zc(1/t)|/|xz| − t).

Note that by (♦), we have

|zx|2 ≤ |zc(1/t)|2 ≤ |zx|2 + 1/t2.

Then
0 ≤ t|zc(1/t)|/|xz| − t ≤

√
t2 + 1/|zx|2 − t.

Thus, b(z′) = limt→∞(t|zc(1/t)|/|xz| − t) = 0.
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It follows that ϕx,y(X
1) = X1 for any x, y ∈ X1 and any s-inversion ϕx,y with respect

to x, y.
Let x, y ∈ X1, and let S′ ⊂ X1 be a metric sphere between x and y in X1. Note

that S′ = S ∩ X1, where S ⊂ X is a metric sphere between x and y in X. We define
an s-inversion ϕ′

x,y,S′ : X1 → X1 with respect to x, y ∈ X1 and a metric sphere S′ ⊂ X1

between x and y as a restriction of an s-inversion ϕx,y,S : X → X with respect to x, y ∈ X
and a metric sphere S ⊂ X to X1. It follows that X1 has property (sI).

On the other hand, by Lemma 11, there exists a Ptolemy line �′ �= � through o. By
Proposition 2, πo(�

′) is a Ptolemy line in Ho, and then X1 has property (E). �

6.6. Coordinates in Xω. From now on, we fix o, ω ∈ X and consider the metric space
Xω. Consider a Ptolemy line �0 through o with a unit speed parametrization c0 : R → Xω,
c0(0) = o. Let Ho be the horosphere with respect to �0 through o, and let b0 : Xω → R

be the Busemann function of �0 with b0(o) = 0. For each z ∈ Ho denote by �z the
line Busemann parallel to �0 through z and consider the unit speed parametrization
cz : R → Xω of �z such that b0 ◦ c0(t) = −t = b0 ◦ cz(t). From Lemma 4, Corollary 2,
and Lemma 8 it follows that the map i1 : �0 × Ho → Xω such that i1(t, z) = cz(t) is a
bijection.

Take x0 ∈ �0 with |ox0| = 1. Recall that |zx0| ≥ |ox0| = 1 for each z ∈ Ho. By
Proposition 3, X1 = Ho ∪ {ω} is a compact Ptolemy space with properties (E) and (sI).

Arguing by induction, we obtain a sequence

· · · ⊂ Xk ⊂ · · · ⊂ X1 ⊂ X0 = X

of compact Ptolemy spaces with properties (E) and (sI) and a sequence of points xi ∈
Xi \Xi+1, where |xio| = 1. Moreover, |xixk| ≥ 1 for i �= k. Since the ball B1(o) = {x ∈
X : |xo| ≤ 1} is compact, the sequence {xi} is finite, implying the existence of N ∈ N

such that XN is Möbius equivalent to pR. Then

pR = XN ⊂ · · · ⊂ X1 ⊂ X0 = X.

It follows that there is a bijection

i : �0 × �1 × · · · × �N → Xω.

This bijection induces on Xω a structure of the vector space R
N+1. This means that we

can add points of X and multiply them by real numbers. Note that o plays the role of a
neutral element.

Let bi : Xω → R, i = 1, . . . , N , be a Busemann function of �i with bi(o) = 0. Then
bi is the ith coordinate function. Moreover, if Hi(x) is the horosphere with respect

to bi through x, then x =
⋂N

i=0 Hi(x). Denote by x(i) the vector with coordinates
(0, . . . , bi(x), . . . , 0), where bi(x) appears at the ith place. Note that x = x0 + · · ·+ xN .

Let T i
x : Xω → Xω be the bi(x)-shift along �i, and let Tx : Xω → Xω be defined by

Tx(y) = x + y for each y ∈ Xω. Observe that Tx(i) = T i
x, and then Tx = TN

x ◦ · · · ◦ T 0
x .

Consequently, Tx is an isometry.
If hk is the homothety with the center o and coefficient k, then hk(x) = kx, where

k > 0. Indeed, note that hk(x(i)) = kx(i). Moreover,

hk(Hi(x)) = hk(Hi(x(i)) = Hi(kx(i)) = Hi(kx)

and

hk(x) = hk

( N⋂
i=0

Hi(x)
)
=

N⋂
i=0

Hi(kx) = kx.

Therefore, |o(kx)| = k|ox|, where k > 0.
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Let ν : Xω → R+ be defined by ν(x) = |ox|. We prove that ν is a norm on Xω. Indeed,
if ν(x) = 0, then |ox| = 0 and x = o. Moreover,

ν(x+ y) = |o(x+ y)| ≤ |ox|+ |x(x+ y)| = |ox|+ |Tx(o)Tx(y)| = |ox|+ |oy| = ν(x)+ ν(y).

Finally, observe that ν(−x) = |o(−x)| = |Tx(o)Tx(−x)| = |xo| = ν(x). So, if k ≥ 0,
then ν(kx) = |o(kx)| = k|ox| = kν(x). If k < 0, then ν(kx) = |o(kx)| =

∣∣o(|k|(−x)
)∣∣ =

|k| |o(−x)| = |k|ν(−x) = |k|ν(x).
Also we note that ν(·) induces the metric of Xω. Indeed, |xy| = |Tx(o)Tx(y − x)| =

ν(y − x). Applying the Schoenberg theorem, see Theorem 2, we conclude that X is

Möbius equivalent to pR
N .
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