REMARKS ON A_p -REGULAR LATTICES OF MEASURABLE FUNCTIONS

D. V. RUTSKY

ABSTRACT. A Banach lattice X of measurable functions on a space of homogeneous type is said to be A_p -regular if every $f \in X$ admits a majorant $g \ge |f|$ belonging to the Muckenhoupt class A_p with suitable control on the norm and the constant. It is well known that the A_p -regularity of the order dual X' of X implies the boundedness of the Hardy–Littlewood maximal operator on $X^{\frac{1}{p}}$ for p > 1 (equivalently, the A₁-regularity of this lattice), provided that X' is norming for X. This result admits a partial converse and an interesting characterization: the A₁-regularity of $X^{\frac{1}{p}}(\ell^p)$ implies the A_p -regularity of X', and for lattices X with the Fatou property these conditions are equivalent to the A₁-regularity of both $X^{\frac{1}{p}}$ and $(X^{\frac{1}{p}})'$. As an application, an exact form of the self-duality of BMO-regularity is obtained, the A_q -regularity of the lattices $L_{\infty}(\ell^p)$ for all $1 < p, q < \infty$ is established, and in many cases it is shown that the A₁-regularity of both Y and Y' yields the A₁-regularity of $Y(\ell^s)$ for all $1 < s < \infty$, which implies the boundedness of the Calderón–Zygmund operators in $Y(\ell^s)$.

INTRODUCTION

Let a quasimetric space S endowed with a measure ν be a space of homogeneous type, e.g., $S = \mathbb{R}^n$ or $S = \mathbb{T}^n$ with the Lebesgue measure, and let Ω be a σ -finite measurable space with measure μ . The generic point $\omega \in \Omega$ will be regarded as an additional variable. We consider quasinormed lattices X of measurable functions on $S \times \Omega$. For more details on lattices of measurable functions see, e.g., [11]; the definitions of most of the (standard) notions and properties can be found, e.g., in [14].

Let $p \ge 1$. A lattice X is said to be A_p -regular with constants (C, m) if for any $f \in X$ there exists a majorant $g \ge |f|$ such that $||g||_X \le m||f||_X$ and $g(\cdot, \omega) \in A_p$ with constant C for almost all $\omega \in \Omega$, where A_p is the Muckenhoupt class (see, e.g., [9, Chapter 5]).

As was demonstrated in [3], the mere existence of majorants of class A_1 already characterizes the natural ambient space $\bigcup_{p>1} L_p(\mathbb{T}^n) = \bigcup_{w \in A_2} L_2(\mathbb{T}^n, w)$; there are also some generalizations of this result to spaces on \mathbb{R}^n and also to the Hardy classes. The A_1 -regularity property, which is equivalent to the boundedness of the Hardy–Littlewood maximal operator M (see, e.g., [14, Proposition 1]), was found to be useful in the study of some properties related to the Calderón–Zygmund operators (see [14, 7, 8, 15, 6]).

The A_p -regularity property was introduced as a refinement of the following notion, which is related to the interpolation of Hardy-type spaces (see, e.g., [2]): a lattice X is said to be BMO-*regular* with constants (C, m) if for any $f \in X$ there exists a majorant $g \ge |f|$ such that $||g||_X \le m ||f||_X$ and $\log g(\cdot, \omega) \in BMO$ with norm of at most C for almost all $\omega \in \Omega$.

²⁰¹⁰ Mathematics Subject Classification. Primary 42B20; Secondary 46B42.

Key words and phrases. A p-regularity, BMO-regularity, Hardy–Littlewood maximal operator, Calderón–Zygmund operators.

An important feature of BMO-regularity is its *self-duality*: under suitable assumptions a lattice X is BMO-regular if and only if its order dual lattice X' is also BMO-regular. For the first time this property was proved, apparently, in [1] for the case of superreflexive spaces on the circle (see the remarks in the proof of [1, Theorem 5.12]). Later, it was extended in [10] to the general case of Banach lattices on the circle satisfying the Fatou property, by using real interpolation of Hardy-type spaces with an additional variable, and this generalization yielded the BMO-regularity of the lattices $L_{\infty}(\ell^q)$ (see also Corollary 6 below). Finally, in [14] an equivalent result on the divisibility of the BMO-regularity property was established by using only the real-variable techniques for lattices with the Fatou property on a space of homogeneous type.

We note that the proofs in both [10] and [14] are rather involved and rely on a fixedpoint theorem. In §1 we give a simple and short proof of the self-duality of the BMOregularity property for lattices on \mathbb{R}^n and \mathbb{T} . This argument is based on well-known results of Rubio de Francia [5]; thus, in this case everything follows from the Hahn– Banach separation theorem and the Grothendieck theorem, without using fixed-point theorems or the divisibility property.

Furthermore, the results presented below yield an exact version for the self-duality of the BMO-regularity property, which can be stated in terms of the A_p -regularity property as follows. Recall that for every $1 the BMO-regularity of a lattice X is equivalent to the <math>A_p$ -regularity of the lattice X^{δ} for a sufficiently small $\delta > 0$ with suitable estimates (see, e.g., the remarks after [14, Definition 1]).

Theorem 1. Suppose that X is a Banach lattice of measurable functions on $S \times \Omega$ satisfying the Fatou property, and let $\alpha, \beta > 0$. The following conditions are equivalent:

1. $X^{\frac{1}{\alpha+1}}$ is $A_{\frac{\alpha+\beta+1}{\alpha+1}}$ -regular;

2.
$$X'^{\frac{1}{\beta+1}}$$
 is $A_{\frac{\alpha+\beta+1}{\beta+1}}$ -regular.

We note that, in general, Theorem 1 fails if either α or β is zero; see the paragraph below. Theorem 1 is a natural reformulation of Theorem 14 given in §1 below, which expresses this result rather concisely in terms of an F^{α}_{β} -regularity property introduced therein. The proof of Theorem 1 taken in complete detail is quite elementary, and it is based only on the Hahn-Banach separation theorem, without any need for either the Grothendieck theorem or a fixed point theorem.

The main property of the Muckenhoupt weights shows at once that if X' is a norming space for a lattice X (e.g., if X has either the Fatou property or an order continuous norm), then the A_p -regularity of X' implies the A_1 -regularity of $X^{\frac{1}{p}}$ (see, e.g., [14, Proposition 4]). The converse is false generally: for example, if $X = L_{\infty}$, then $X^{\frac{1}{p}} = L_{\infty}$ is an A_1 -regular lattice for all $1 \leq p < \infty$, but $X' = L_1$ is not A_p -regular for any p if $S = \mathbb{T}$ or $S = \mathbb{R}^n$ (see, e.g., [14, Proposition 3]). Nevertheless, we establish the following characterization whose proof is given in §2 below.

Theorem 2. Let X be a normed lattice of measurable functions on $S \times \Omega$ such that X' is a norming space for X. The following conditions are equivalent for all 1 :

- 1. $X^{\frac{1}{p}}(\ell^p) = [X(\ell^1)]^{\frac{1}{p}}$ is A₁-regular;
- 2. X' is A_p -regular.

If X has the Fatou property then these conditions are also equivalent to the following.

3. Both
$$X^{\frac{1}{p}}$$
 and $(X^{\frac{1}{p}})' = X'^{\frac{1}{p}} L_1^{1-\frac{1}{p}}$ are A₁-regular.

Thus A_p -regularity of lattices is closely related to the A_1 -regularity of some derived lattices. The A_1 -regularity of both Y and Y' implies (and often characterizes) the boundedness of the Calderón–Zygmund operators in Y and some other interesting properties (see [14, 7, 8, 15, 6]). In this regard, the following observations should be noted, which follow immediately from the equivalence of conditions 2 and 3 of Theorem 2; we also make use of the fact that the A_{∞} -regularity of a lattice is equivalent to its A_p -regularity for sufficiently large values of p.

Corollary 3. Suppose that a normed lattice Y of measurable functions on $S \times \Omega$ satisfies the Fatou property and is p-convex for some (finite) p > 1. The following conditions are equivalent.

- 1. Both Y and Y' are A_1 -regular.
- 2. $(Y^p)'$ is A_p -regular.

Corollary 4. Let X be a lattice of measurable functions on $S \times \Omega$ with the Fatou property. The following conditions are equivalent.

- 1. X' is A_{∞} -regular.
- 2. Both X^{δ} and $(X^{\delta})' = X'^{\delta} L_1^{1-\delta}$ are A_1 -regular for some $0 < \delta < 1$ (equivalently, for all sufficiently small δ).

As an interesting example, consider the following question: for what weights w, is the lattice $X = L_q(w) A_p$ -regular? We define (as in [14]) a weighted lattice Z(w) to be the set $\{wf \mid f \in Z\}$ endowed with the norm $||g||_{Z(w)} = ||gw^{-1}||_Z$. Thus, the weighted Lebesgue spaces with the "classical" weighted norm $||f|| = (\int |f|^p w)^{\frac{1}{p}}$ look like $L_p(w^{-\frac{1}{p}})$ in our notation. It is well known that in the case of p = 1 the necessary and sufficient condition is $w^{-q} \in A_q$, and such lattices X and X' are A_1 -regular only simultaneously. We have already noted that with q = 1 there are no A_p -regularity in the typical cases; see, e.g., [14, Proposition 3]. The equivalence of conditions 1 and 3 in Theorem 2 yields (after a simple computation) the following characterization (see also Proposition 12 below).

Corollary 5. Suppose that $1 \le p \le \infty$, $1 < q \le \infty$, and w is a weight. Then $X = L_q(w)$ is A_p -regular if and only if $w^{q'} \in A_{q'p}$.

Theorem 2 allows us to refine the BMO-regularity property of the lattices $L_{\infty}(\ell^q)$, which was first established, apparently, in [10] in the case of $S = \mathbb{T}$ by using the selfduality of the BMO-regularity.

Corollary 6. The lattices $L_{\infty}(\ell^q)$ on a measurable space $S \times \Omega \times \mathbb{Z}$ are A_p -regular for all $1 < p, q < \infty$.

It suffices to apply implication $3 \Rightarrow 2$ of Theorem 2 to $X = L_1(\ell^{q'})$; the A₁-regularity of the lattices $X^{\frac{1}{p}} = L_p(\ell^{q'p})$ and $(X^{\frac{1}{p}})' = L_{p'}(\ell^{(q'p)'})$ is well known (see, e.g., [9, Chapter 2, §1.3.1] or Corollary 8 below).

Earlier, in [14, §1, Proposition 10] the A_p -regularity of the lattices $L_{\infty}(\ell^q)$ was only proved for $q > 1 + \frac{1}{p}$. We mention that (at least for $S = \mathbb{R}^n$ or $S = \mathbb{T}$) the result of Proposition 6 is sharp in the sense of the admissible values of p and q: with q = 1 the conclusion of Proposition 6 is false for all p (see [14, §1, Proposition 10]), and its falseness for p = 1 and all q follows from the nonboundedness of the maximal operator on $L_{\infty}(\ell^q)$ (see, e.g., [9, Chapter 2, §5.2]).

Theorem 2 also has some interesting applications concerning the boundedness of operators on lattices with an additional variable. The proof of the following result is given in §2 below.

Theorem 7. Let Y be a normed lattice of measurable functions on $S \times \Omega$ satisfying the Fatou property. Suppose also that Y is p-convex with some p > 1. If both Y and Y' are A_1 -regular, then $Y(\ell^s)$ is also A_1 -regular for all $1 < s \le \infty$.

It is unclear whether the *p*-convexity assumption is indispensable in the statement of Theorem 7; it might already follow from the assumed A_1 -regularity of *Y*.

Combined with [7, Proposition 5], duality yields the following result. For the generalities concerning the Calderón–Zygmund operators, see, e.g., [9].

Corollary 8. Let Y be a normed lattice of measurable functions on $S \times \Omega$ satisfying the Fatou property. Suppose also that Y is p-convex and q-concave with some $1 < p, q < \infty$. If both Y and Y' are A₁-regular, then $Y(\ell^s)$ and $Y'(\ell^{s'})$ are also A₁-regular for all $1 < s < \infty$, and, thus, any Calderón–Zygmund operator is bounded in $Y(\ell^s)$ for all $1 < s < \infty$.

The main result of [7] and [8] yields yet another corollary. The definition of a nondegenerate operator can be found in [8]; we only note that the Hilbert transform on the circle and all Riesz transforms on \mathbb{R}^n are nondegenerate.

Corollary 9. Suppose that Y is a normed lattice of measurable functions on $\mathbb{R}^n \times \Omega$ or $\mathbb{T} \times \Omega$ such that Y is p-convex and q-concave with some $1 < p, q < \infty$ and Y satisfies the Fatou property. Then the boundedness of any nondegenerate Calderón–Zygmund operator T on Y implies the A₁-regularity of both Y and Y', and the boundedness of all Calderón–Zygmund operators on $Y(\ell^s)$ for all $1 < s < \infty$.

It is not clear for what lattices E other than $E = \ell^s$ the results of Theorem 7 and its corollaries hold true. The proof suggests that this class of lattices probably includes all symmetric lattices on \mathbb{Z} that are *p*-convex and *q*-concave with some $1 < p, q < \infty$ (because it is well known that such lattices are interpolation spaces for the couple (ℓ^p, ℓ^q)). Is this also true for fairly arbitrary UMD spaces E?

§1. DUALITY AND FACTORISABLE WEIGHTS

It is well known that the A_p weights are characterized in terms of the P. Jones factorization theorem: $w \in A_p$ if and only if $w = w_0 w_1^{1-p}$ with some weights $w_0, w_1 \in A_1$ and with some estimates for the constants; see, e.g., [9, Chapter 5, §5.3]. It is also well known that $\log w \in BMO$ is equivalent to $w^{\delta} \in A_2$ for some $\delta > 0$ with some estimates for the constants (see, e.g., [9, Chapter 5, §6.2]). These observations motivate the following notions, which appear to be quite convenient for studying BMO-regularity.

Definition 10. Let $\alpha, \beta \geq 0$. A weight w on $S \times \Omega$ is said to belong to F^{α}_{β} with constant C if there exist weights $\omega_0, \omega_1 \in A_1$ with constant C such that $w = \frac{\omega_0^{\alpha}}{\omega_1^{\beta}}$.

Definition 11. Let $\alpha, \beta \geq 0$, and suppose that X is a quasinormed lattice of measurable functions on $S \times \Omega$. X is said to be $\mathbb{F}_{\beta}^{\alpha}$ -regular with constants (C, m) if for any $f \in X$ there exists a majorant $w \in X$, $w \geq |f|$, such that $||w||_X \leq m||f||_X$ and $w \in \mathbb{F}_{\beta}^{\alpha}$ with constant C.

We note that, like the Muckenhoupt classes A_p , the weights belonging to F^{α}_{β} and the F^{α}_{β} -regularity condition have quite natural algebraic and order properties, and F^{α}_{β} -regularity admits an exact version of the divisibility theorem; see [8, §3].

In the present paper, however, we shall only need the following elementary properties. An application of the Hölder inequality shows that $w \in A_1$ with the constant C implies $w^{\delta} \in A_1$ with a constant C^{δ} for all $0 < \delta < 1$, so the classes are monotone in the parameters: $F^{\alpha_1}_{\beta_1} \subset F^{\alpha}_{\beta}$ for all $0 \leq \alpha_1 \leq \alpha$ and $0 \leq \beta_1 \leq \beta$ with some estimates for the constants, and the $F^{\alpha_1}_{\beta_1}$ -regularity of a lattice X implies its F^{α}_{β} -regularity. An example of the weights $w(t) = \frac{t^{\gamma}}{(t-1)^{\delta}}$ on the line (with suitable generalizations for the cases of \mathbb{R}^n and \mathbb{T}) shows that the classes $\mathbb{F}^{\alpha}_{\beta}$ are distinct for distinct values of the parameters α and β .

For all $\alpha, \beta \geq 0, \delta > 0$, and weights w, the conditions $w \in F^{\alpha}_{\beta}, w^{\delta} \in F^{\delta\alpha}_{\delta\beta}$ and $w^{-\delta} \in F^{\delta\beta}_{\delta\alpha}$ are equivalent. For the latter equivalence we also need to suitably clarify its meaning for the case of weights taking zero values on sets of positive measure; however, for simplicity we shall assume that all weights are nonnegative almost everywhere (we may always assume this in the F^{α}_{β} -property when majorizing nonzero functions at the expense of an arbitrarily small increase of the constant m). A lattice X is F^{α}_{β} -regular if and only if X^{δ} is $F^{\delta\alpha}_{\delta\beta}$ -regular with appropriate estimates for the constants. By the factorization theorem already mentioned above, $w \in A_p$ with some p > 1 if and only if $w \in F^1_{p-1}$ (in the case where p = 1 this equivalence is trivial), and a lattice X is A_p -regular if and only if X is F^1_{p-1} -regular. Accordingly, $\log w \in BMO$ if and only if $w \in F^{\alpha}_{\beta}$ for some some $\alpha, \beta > 0$ with suitable estimates for the constants, and a lattice X is BMO-regular if and only if it is F^{α}_{β} -regular for some $\alpha, \beta > 0$.

As a typical example, we consider the ${\rm F}^\alpha_\beta\text{-regularity}$ property for weighted Lebesgue spaces.

Proposition 12. Let $\alpha, \beta > 0$ and $1 < q < \infty$ be such that $\alpha q > 1$, and let w be a weight. The space $L_q(w)$ is F^{α}_{β} -regular if and only if $w \in F^{\alpha-\frac{1}{q}}_{\beta+\frac{1}{\alpha}}$.

Indeed, the F^{α}_{β} -regularity of $L_q(w)$ is equivalent to the $F^1_{\frac{\beta}{\alpha}}$ -regularity of $[L_q(w)]^{\frac{1}{\alpha}} = L_{\alpha q}(w^{\frac{1}{\alpha}})$, that is, to its $A_{\frac{\beta}{\alpha}+1}$ -regularity, which by Corollary 5 is equivalent to

$$w^{\frac{1}{\alpha}(\alpha q)'} \in \mathcal{A}_{(\alpha q)'(\frac{\beta}{\alpha}+1)} = \mathcal{A}_{1+\frac{\beta q+1}{\alpha q-1}} = \mathcal{F}^{1}_{\frac{\beta q+1}{\alpha q-1}}$$

A simple computation shows that the latter is equivalent to $w \in \mathbf{F}_{\beta+\frac{1}{a}}^{\alpha-\frac{1}{q}}$.

Following [14, §2, Definition 2], we say that a mapping T is A_p -bounded with constants (C, m) if it is defined on a set Ω_T of measurable functions on $S \times \Omega$ such that the $(\nu \times \mu)$ -closure of Ω_T (i.e., its closure with respect to convergence in measure on all sets of finite measure) contains L_{∞} , and for any weight $w \in A_p$ with constant C we have

$$||T(f)||_{\mathcal{L}_p(w^{-\frac{1}{p}})} \le m ||f||_{\mathcal{L}_p(w^{-\frac{1}{p}})}$$

for all $f \in \Omega_T$. It is well known that the maximal operator and all Calderón–Zygmund operators are A_p -bounded for all 1 . It is easy to show that (see, e.g., [14, §2, $Proposition 13]) the <math>A_p$ -regularity of X' implies (under suitable conditions) the boundedness of the A_p -bounded operators in $X^{\frac{1}{p}}$, and, in particular, it implies the A_1 -regularity of $X^{\frac{1}{p}}$. Together with the divisibility property, this was is used in [14] in order to verify the self-duality of the BMO-regularity property.

However, a similar result can be established for the lattices XL_p by using the lattice product instead of duality (see also Proposition 18 below).

Proposition 13. Suppose that Z is a quasi-normed lattice of measurable functions on $S \times \Omega$, $1 , <math>\beta = \frac{1}{p}$, and Z is $F_{\beta}^{1-\beta}$ -regular with constants (C,m). Then all A_p -bounded operators T are bounded on ZL_p .

Indeed, due to order continuity, $ZL_p \cap \Omega_T$ is dense in ZL_p . Suppose that $f \in ZL_p \cap \Omega_T$ with norm 1. Then there exist $g \in Z$, $h \in L_p$ such that f = gh and $\|g\|_Z \leq 2$, $\|h\|_{L_p} \leq 1$. For simplicity we may assume (see, e.g., [14, §3, Proposition 14]) that g > 0 almost everywhere. The $F_{\beta}^{1-\beta}$ -regularity of Z implies that there exists a majorant $u \geq |g|$ such that $||u||_Z \leq 2m$ and $u \in \mathbf{F}_{\beta}^{1-\beta}$ with constant C, whence

$$u^{-p} \in \mathbf{F}_{p(1-\beta)}^{p\beta} = \mathbf{F}_{p-1}^1 = \mathbf{A}_p$$

with some constants independent of f. Thus,

$$\begin{aligned} \|Tf\|_{ZL_{p}} &= \|u \cdot u^{-1}(Tf)\|_{ZL_{p}} \le \|u\|_{Z} \|u^{-1}(Tf)\|_{L_{p}} \\ &\le 2m \|Tf\|_{L_{p}([u^{-p}]^{-\frac{1}{p}})} \le c \|f\|_{L_{p}([u^{-p}]^{-\frac{1}{p}})} \\ &= c \|h \cdot gu^{-1}\|_{L_{p}} \le c \|h\|_{L_{p}} \le c \end{aligned}$$

with a constant c independent of f. We see that T is indeed bounded on ZL_p .

Considering the case where $Z = L_{\infty}(w)$ and T = M shows that the conditions of Proposition 13 are sharp in the sense that the parameters $1 - \beta$ and β cannot be replaced by larger numbers. With the help of Proposition 12 it is easy to check that in the case where $Z = L_q(w)$ (with $\frac{1}{q} + \frac{1}{p} < 1$) and T = M the converse to Proposition 13 is also true. In general, however, the A₁-regularity of ZL_p is weaker than the $F_{\beta}^{1-\beta}$ -regularity of Z. For example, should the equivalence be true for $Z = L_{\infty}(\ell^q)$, this lattice would be $F_{\frac{1}{p}}^{\frac{1}{p'}}$ -regular for all 1 and (by raising to the power q) we would have the $<math>F_{\frac{q}{p}}^{\frac{q}{p'}}$ -regularity of $L_{\infty}(\ell^1)$, which is false for $\frac{q}{p'} \leq 1$ (see [14, §1, Proposition 10]).

Now we are ready to state the main result concerning the self-duality of F^{α}_{β} -regularity.

Theorem 14. Suppose that X is a Banach lattice of measurable functions on $S \times \Omega$ satisfying the Fatou property and $\alpha > 1$, $\beta > 0$. Then X is F^{α}_{β} -regular if and only if the lattice X' is $F^{\beta+1}_{\alpha-1}$ -regular.

As an illustration to Theorem 14, now we deduce Corollary 6 from this result. Indeed, the A₁-regularity of $L_t(\ell^s)$ for all $1 < t, s < \infty$ (see, e.g., [9, Chapter 2, §1.3.1], or Corollary 8) implies that under the assumptions of Corollary 6 the lattice $X = L_1(\ell^{q'})$ is $F_0^{1+\delta}$ -regular for any $\delta > 0$, which by Theorem 14 yields the F_{δ}^1 -regularity of $X' = L_{\infty}(\ell^q)$, i.e., its A_p-regularity for all $p = \delta + 1 > 1$.

The proof of Theorem 14 is given in §2 below. For now we present a relatively simple argument (but with coarser estimates) that proves the self-duality of the BMO-regularity property for lattices X on spaces of homogeneous type S such that $L_2(S)$ admits a linear operator T that is A_s-bounded for all $1 < s < \infty$ and A₂-nondegenerate (concerning A₂-nondegeneracy see, e.g., [14, Definition 3]). For example, in the case of $S = \mathbb{T}$ we can take the Hilbert transform T = H, and in the case where $S = \mathbb{R}^n$ any Riesz transform R_i will do for T.

We shall need the following known result (for the proof in the given form and some discussion see, e.g., $[14, \S6]$).

Theorem 15. Suppose that a Banach lattice Y of measurable functions on a measurable space $S \times \Omega$ has order continuous norm. If a linear operator T is bounded in $Y^{\frac{1}{2}}$, then for any $f \in Y'$ there exists a majorant $w \ge |f|, ||w||_{Y'} \le 2||f||_{Y'}$, such that $||T||_{L_2(w^{-\frac{1}{2}}) \to L_2(w^{-\frac{1}{2}})} \le C$ with a constant C independent of f.

To verify the self-duality of BMO-regularity, suppose that a Banach lattice X on $S \times \Omega$ satisfies the Fatou property and X is BMO-regular, so that it is F^{α}_{β} -regular with some $\alpha, \beta > 0$. We want to apply Theorem 15 to the lattice $Y = X^{\delta} L_1^{1-\delta}$ and to the operator T with some sufficiently small $0 < \delta < 1$. If the conditions of Theorem 15 are satisfied in this case, then by the assumed A₂-nondegeneracy of T, the lattice $Y' = X'^{\delta}$ is A₂-regular, and so $X' = Y'^{\frac{1}{\delta}}$ is BMO-regular.

Thus, it suffices to prove that T is bounded on

$$Y^{\frac{1}{2}} = \left(X^{\delta} \mathcal{L}_{1}^{1-\delta}\right)^{\frac{1}{2}} = X^{\frac{\delta}{2}} \mathcal{L}_{\frac{2}{1-\delta}}.$$

For that, in its turn, it suffices to verify that $Z = X^{\frac{\delta}{2}}$ satisfies the conditions of Proposition 13 with $p = \frac{2}{1-\delta}$, i.e., that Z is $F_{\beta}^{1-\beta}$ -regular with $\beta = \frac{1-\delta}{2}$. The latter is equivalent to the $F_{\frac{2}{\delta}\beta}^{\frac{1}{\delta}(1-\beta)}$ -regularity of $X = Z^{\frac{2}{\delta}}$, which is the same as the $F_{\frac{1}{\delta}-1}^{\frac{1}{\delta}+1}$ -regularity of X. Choosing δ so small that $\frac{1}{\delta}+1 \ge \alpha$ and $\frac{1}{\delta}-1 \ge \beta$, we see that this assumption is satisfied.

The example of $X = L_{\infty}$ shows that the conclusion of the "only if" part of Theorem 14 is false for $\beta = 0$ and any α , because $X' = L_1$ is not A_p -regular with any p > 1 (see, e.g., [14, §1, Proposition 3]). It is not clear, however, whether the F^{α}_{β} -regularity of X with $\alpha \leq 1$ provides any additional information about the BMO-regularity of X'.

§2. Proof of the main results

The implication $2 \Rightarrow 1$ of Theorem 2 is established in the same way as [14, §1, Proposition 4]. To verify the other implications we introduce the following construction.

We fix some sequence $\{x_k\}_{k\in\mathbb{Z}}$ dense in S. For convenience, we enumerate all balls $B_j, j \in \mathbb{Z}$, of S with centers at these points and rational radii. Now we define a linear operator $\mathcal{M} = \{\mathcal{M}_j\}_{j\in\mathbb{Z}}$ on the functions $f = \{f_j\}_{j\in\mathbb{Z}}$ on $S \times \Omega \times \mathbb{Z}$ that are locally integrable in the first variable by

$$\mathcal{M}_j f_j(\,\cdot\,,\omega) = \left[\frac{1}{\nu(B_j)} \int_{B_j} f_j(t,\omega) \, dt\right] \chi_{B_j}(\,\cdot\,)$$

for all $j \in \mathbb{Z}$ and almost all $\omega \in \Omega$. \mathcal{M} is a positive linear operator closely related to the Hardy–Littlewood maximal operator M: it is easily seen $\mathcal{M}f \leq \widetilde{M}f \leq cMf$ with a constant c, where \widetilde{M} is the noncentered Hardy–Littlewood maximal operator, and $\|\mathcal{M}f(x,\omega,\cdot)\|_{1^{\infty}} = \bigvee_{j} (\mathcal{M}_{j}f(x,\omega))$ is pointwise equivalent to $Mf(x,\omega)$ for almost all $x \in S$ and $\omega \in \Omega$ provided f is nonnegative.

We shall show that the conditions of Theorem 2 are equivalent to the following auxiliary condition.

4. *M* is bounded on $X^{\frac{1}{p}}(\ell^p) = [X(\ell^1)]^{\frac{1}{p}}$.

The implication $1 \Rightarrow 4$ follows at once from the estimate $\mathcal{M}f \leq cMf$. To establish $4 \Rightarrow 2$, we need the following known generalization [5, §3] of Theorem 15.

Theorem 16. Suppose that a Banach lattice Y of measurable functions on $(S \times \Omega, \nu \times \mu)$ has order continuous norm, and let $1 . If a linear operator <math>T: Y^{\frac{1}{p}} \to Y^{\frac{1}{p}}$ is bounded (as an operator acting in the first variable) on $Y^{\frac{1}{p}}(\ell^p) = [Y(\ell^1)]^{\frac{1}{p}}$, then for any $f \in Y'$ there exists a majorant $w \ge |f|, ||w||_{Y'} \le 2||f||_{Y'}$, such that

$$\|T\|_{\mathcal{L}_p(w^{-\frac{1}{p}})\to\mathcal{L}_p(w^{-\frac{1}{p}})} \le C$$

with a constant C independent of f.

The proof is essentially contained in the proof for the case of p = 2 ([14, §2, Theorem 6]), we only need to replace 2 with p in the arguments and make direct use of the assumption that T is bounded on $Y^{\frac{1}{p}}(\ell^p)$ rather than applying the Grothendieck theorem. We omit the details.

Now suppose that \mathcal{M} is bounded on $X^{\frac{1}{p}}(\ell^p)$ under the assumptions of Theorem 2, and let $f \in X'$, $||f||_{X'} = 1$; we need to construct a suitable A_p -majorant for f. First, we additionally assume that X has order continuous norm. Let $Y = X(\ell^1)$, which is a lattice of measurable functions on $S \times \Omega \times \mathbb{Z}$. Since \mathcal{M} is a positive operator, \mathcal{M} is bounded on the lattice $Y^{\frac{1}{p}}(\ell^p)$ of measurable functions on $S \times \Omega \times \mathbb{Z} \times \mathbb{Z}$ as well as on $Y^{\frac{1}{p}}$ (see, e.g., [4, Volume 2, Proposition 1.d.9]). Then, by Theorem 16 applied to \mathcal{M} and Y, for any function $g_k \in X'$ (to be exact, for the sequence $\{g_k\}_{j \in \mathbb{Z}}$; we construct the functions g_k inductively starting with $g_0 = f$), there exists a majorant $G_{k+1} = \{g_{k+1,j}\}_{j \in \mathbb{Z}} \in Y' = X'(\ell^\infty), g_{k+1,j} \ge |g_k|$ for all j, such that $\|\bigvee_j g_{k+1,j}\|_{X'} = \|G_{k+1}\|_{Y'} \le 2\|g_k\|_{X'}$ and

(1)
$$\|\mathcal{M}\|_{\mathcal{L}_p\left(G_{k+1}^{-\frac{1}{p}}\right) \to \mathcal{L}_p\left(G_{k+1}^{-\frac{1}{p}}\right)} \leq C$$

We choose $g_0 = f$ and set inductively

$$g_{k+1} = \bigvee_{j} g_{k+1,j}$$

Now let $w = \sum_{k \ge 0} 4^{-k} g_k$. It is easily seen that $w \ge |f|$ and

$$||w||_{X'} \le \sum_{k \ge 0} 2^{-k} = 2.$$

Estimate (1) implies

(2)
$$\int |\mathcal{M}h|^p g_k \leq \int |\mathcal{M}h|^p G_{k+1} \leq C \int |h|^p G_{k+1} \leq C \int |h|^p g_{k+1}$$

for any $h \in L_p(w^{-\frac{1}{p}})(\ell^p) \subset L_p(G_{k+1}^{-\frac{1}{p}})$. Multiplying inequalities (2) by 4^{-k} and summing yields

(3)
$$\|\mathcal{M}\|_{\mathcal{L}_p(w^{-\frac{1}{p}})(\ell^p) \to \mathcal{L}_p(w^{-\frac{1}{p}})(\ell^p)} \le 4C.$$

Thus, by (3) we have

$$\left\|\mathcal{M}_{j}\right\|_{\mathcal{L}_{p}(w^{-\frac{1}{p}})\to\mathcal{L}_{p}(w^{-\frac{1}{p}})} \leq 4C$$

for all $j \in \mathbb{Z}$. This implies that (see the proof of [14, §3, Proposition 19])

$$\left\|\mathcal{M}_{j}\right\|_{\mathcal{L}_{p}\left(w^{-\frac{1}{p}}\left(\cdot,\omega\right)\right)\to\mathcal{L}_{p}\left(w^{-\frac{1}{p}}\left(\cdot,\omega\right)\right)}\leq\epsilon$$

for all $j \in \mathbb{Z}$ and almost all $\omega \in \Omega$ with a constant c independent of f. Fixing such $\omega \in \Omega$ and applying this norm estimate to the functions $\chi_{B_j}h(\cdot, \omega)$ for arbitrary nonnegative $h \in L_p(w^{-\frac{1}{p}}(\cdot, \omega))$ shows that

(4)
$$\left[\frac{1}{\nu(B_j)}\int_{B_j}h(\cdot,\omega)\,d\nu(\cdot)\right]^p\int_{B_j}w(\cdot,\omega)\leq c^p\int_{B_j}[h(\cdot,\omega)]^pw(\cdot,\omega)$$

for every $j \in \mathbb{Z}$. It is easy to check (using the local integrability of w in the first variable, which follows from the estimates) that (4) implies the same estimate for arbitrary balls Bof S, which is equivalent to the fact that $w \in A_p$ with constant c^p (see, e.g., [9, Chapter 5, §1.4]). Thus, w is a suitable A_p -majorant for f, which proves $4 \Rightarrow 2$ under an additional assumption.

Now we lift the assumption that the norm of X is order continuous. Suppose that \mathcal{M} is bounded on $Z = \left[X(\ell^1)\right]^{\frac{1}{p}}$ under the assumptions of Theorem 2. The boundedness of M in L_p implies that \mathcal{M} is also bounded on $L_p(\ell^p) = \left[L_1(\ell^1)\right]^{\frac{1}{p}}$. By complex interpolation (see, e.g., [12, Chapter 4, Theorem 1.14]), \mathcal{M} is bounded on $Z^{\theta} [L_p(\ell^p)]^{1-\theta} = [X_{\theta}(\ell^1)]^{\frac{1}{p}}$ uniformly in $0 < \theta < 1$, where $X_{\theta} = X^{\theta} L_1^{1-\theta}$. The norm of X_{θ} is order continuous, and by the result already established we see that the lattices $X'_{\theta} = X'^{\theta}$ are A_p -regular uniformly in $0 < \theta < 1$. To deduce the A_p -regularity of X' from this, we use the following proposition, which will conclude the proof of the implication $4 \Rightarrow 2$ in Theorem 2.

Proposition 17. Let X be a quasi-normed lattice of measurable functions on $S \times \Omega$ such that the lattices X^{θ} are A_p -regular uniformly on $0 < \theta < 1$. Then X is also A_p -regular.

Indeed, suppose that $f \in X$, $f \ge 0$, and $||f||_X = 1$; we need to show that f admits a suitable A_p -majorant. By assumption, for every $0 < \theta < 1$ there exists a majorant $g \ge f^{\theta}$, $||g||_{X^{\theta}} \le m$, such that $g \in A_p$ with a constant C for some C and m independent of f. There exists $\rho > 1$ such that $g^{\rho} \in A_p$ with a constant C_1 independent of f and θ (see, e.g., [9, Chapter 5, §6.1]). Setting $\theta = \frac{1}{\rho}$, we see that the function $h = g^{\frac{1}{\theta}} \in X$, $||g||_X \le m^{\frac{1}{\theta}}$, is a suitable majorant for f.

Now we suppose that, under the assumptions of Theorem 2, the lattice X has the Fatou property. If condition 2 is satisfied, then we have the A₁-regularity of $X^{\frac{1}{p}}$ by $2 \Rightarrow 1$, and the A₁-regularity of

$$(X^{\frac{1}{p}})' = X'^{\frac{1}{p}} L_1^{1-\frac{1}{p}} = X'^{\frac{1}{p}} L_{p'}$$

follows from Proposition 13 because the A_p -regularity of X' is equivalent to its F_{p-1}^1 -regularity and the $F_{\beta}^{1-\beta}$ -regularity of $X'^{\frac{1}{p}}$ with $\beta = \frac{1}{p'}$. Thus, the implication $2 \Rightarrow 3$ is verified.

Finally, we establish the implication $3 \Rightarrow 4$. The A₁-regularity of $X^{\frac{1}{p}}$ and $(X^{\frac{1}{p}})'$ implies at once the A₁-regularity of the lattices $X^{\frac{1}{p}}(\ell^{\infty})$ and $(X^{\frac{1}{p}})'(\ell^{\infty})$, and thus the boundedness of \mathcal{M} on these lattices. Since \mathcal{M} is a positive integral operator, its boundedness on an arbitrary lattice Z is equivalent to its boundedness on Z' if Z' is a norming lattice for Z; this follows at once from the Fubini theorem and the fact that it suffices to verify the boundedness on positive functions. Therefore, \mathcal{M} is also bounded on $[(X^{\frac{1}{p}})'(\ell^{\infty})]' = X^{\frac{1}{p}}(\ell^1)$. The Calderón–Lozanovsky products are exact interpolation spaces for positive operators (see, e.g., [13]), so \mathcal{M} is also bounded on

$$X^{\frac{1}{p}}(\ell^{p}) = \left[X^{\frac{1}{p}}(\ell^{1})\right]^{\frac{1}{p}} \left[X^{\frac{1}{p}}(\ell^{\infty})\right]^{1-\frac{1}{p}},$$

which means that condition 4 is satisfied as claimed. The proof of Theorem 2 is complete.

Now we prove Theorem 7. Suppose that a Banach lattice Y satisfies its assumptions: Y is p-convex with some p > 1, Y satisfies the Fatou property, and both Y and Y' are A₁-regular. Then $Y = X^{\frac{1}{p}}$ with a Banach lattice $X = Y^p$. Since X satisfies condition 3 of Theorem 2, it also satisfies condition 1 of the same theorem, i.e., $X^{\frac{1}{p}}(\ell^p) = Y(\ell^p)$ is A₁-regular for all values of p > 1 sufficiently close to 1. Since $Y(\ell^{\infty})$ is also A₁-regular, the logarithmic convexity of the respective sets of A₁-majorants (or a direct application of the Hölder inequality; see, e.g., [14, §3, Proposition 16]) yields the A₁-regularity of $[Y(\ell^p)]^{\delta}[Y(\ell^{\infty})]^{1-\delta} = Y(\ell^{\frac{p}{\delta}})$ for all values of p sufficiently close to 1 and any $0 < \delta < 1$, which implies that the lattices $Y(\ell^s)$ are A₁-regular for all $1 < s < \infty$, as claimed.

Now it remains to prove Theorem 14. By symmetry, it suffices to verify the direct statement. First, we establish the following simple generalization of Proposition 13.

Proposition 18. Suppose that Z is a quasinormed lattice of measurable functions on $S \times \Omega$, $1 , <math>\beta = \frac{1}{p}$, and Z is $F_{\beta}^{1-\beta}$ -regular with constants (C, m). Then $(ZL_p)(\ell^s)$ is A_1 -regular for all $1 < s < \infty$.

Compared to the proof of Proposition 13, it suffices to observe that, by Corollary 8, the lattices $L_p(w^{-\frac{1}{p}})(\ell^s)$ are A₁-regular for all $w \in A_p$ and $1 , <math>1 < s < \infty$. However, we give a complete proof for clarity.

Let $f \in (ZL_p)(\ell^s) = Z(\ell^{\infty})L_p(\ell^s)$ with norm 1. Then there exist $g = \{g_j\}_{j \in \mathbb{Z}} \in Z(\ell^{\infty})$ and $h = \{h_j\}_{j \in \mathbb{Z}} \in L_p(\ell^s)$ such that f = gh and $\|\bigvee_j g_j\|_Z = \|g\|_{Z(\ell^{\infty})} \leq 2$, $\|h\|_{L_p(\ell^s)} \leq 1$. For simplicity we may assume that g > 0 almost everywhere. By replacing g with $\bigvee_j g_j$ and h with $\frac{g}{\bigvee_j g_j}h$ we may assume that g does not depend on the last variable while retaining all estimates on its norm. By the $F_{\beta}^{1-\beta}$ -regularity of Z, there exists a majorant $u \ge |g|$ such that $||u||_Z \le 2m$ and $u \in F_{\beta}^{1-\beta}$ with constant C, and thus

$$u^{-p} \in \mathcal{F}_{p(1-\beta)}^{p\beta} = \mathcal{F}_{p-1}^1 = \mathcal{A}_p$$

with some constants independent of f. Therefore,

$$\begin{split} \|Mf\|_{(ZL_{p})(\ell^{s})} &= \|u \cdot u^{-1}(Mf)\|_{Z(\ell^{\infty})L_{p}(\ell^{s})} \\ &\leq \|\{u\}_{j \in \mathbb{Z}}\|_{Z(\ell^{\infty})} \|u^{-1}(Mf)\|_{L_{p}(\ell^{s})} = \|u\|_{Z} \|Mf\|_{L_{p}([u^{-p}]^{-\frac{1}{p}})(\ell^{s})} \\ &\leq c \|f\|_{L_{p}([u^{-p}]^{-\frac{1}{p}})(\ell^{s})} = c \|h \cdot gu^{-1}\|_{L_{p}(\ell^{s})} \leq c \|h\|_{L_{p}(\ell^{s})} \leq c \end{split}$$

with a constant c independent of f. Thus, the maximal operator M is bounded on $(ZL_p)(\ell^s)$, and, hence, this lattice is A₁-regular, as claimed.

Now suppose that X is F_{β}^{α} -regular with some $\alpha > 1$ and $\beta > 0$ under the assumptions of Theorem 14. We want to invoke Proposition 18 to establish the A₁-regularity of $Z = Y^{\frac{1}{p}}(\ell^p)$ with $Y = X^{\delta}L_1^{1-\delta}$ for some suitable $0 < \delta < 1$ and 1 . Since $<math>Y^{\frac{1}{p}} = X^{\frac{\delta}{p}}L_1^{\frac{1-\delta}{p}}$, we need to check that $X^{\frac{\delta}{p}}$ is $F_{\beta}^{1-\beta}$ -regular with $\beta = \frac{1-\delta}{p}$, which is equivalent to the $F_{\frac{1-\delta}{\delta}}^{\frac{p}{\delta}-\frac{1-\delta}{\delta}}$ -regularity of X. Comparing this with the assumptions of the theorem yields the conditions $\alpha = \frac{p}{\delta} - \frac{1-\delta}{\delta}$ and $\beta = \frac{1-\delta}{\delta}$, which are satisfied with $\delta = \frac{1}{1+\beta}$ and $p = \delta(\alpha + \frac{1-\delta}{\delta}) = \frac{\alpha+\beta}{1+\beta}$. Proposition 18 gives the A₁-regularity of Z, which by implication $1 \Rightarrow 2$ of Theorem 2 implies the A_p-regularity of $Y' = X'^{\delta}$. Thus, Y'is F_{p-1}^1 -regular, and so it is $F_{\frac{\alpha-1}{1+\beta}}^1$ -regular, and $X' = Y'^{\frac{1}{\delta}} = Y'^{1+\beta}$ is $F_{\alpha-1}^{\beta+1}$ -regular, as claimed.

References

- N. J. Kalton, Complex interpolation of Hardy-type subspaces, Math. Nachr. 171 (1995), 227–258. MR1316360
- S. V. Kisliakov, Interpolation of H_p-spaces: some recent developments, Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat Gan, 1999, pp. 102–140. MR1707360
- [3] G. Knese, J. E. McCarthy, and K. Moen, Unions of Lebesgue spaces and A₁ majorants, Pacific J. Math. 280 (2016), no. 2, 411–432. MR3453978
- [4] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I and II, Springer, Berlin, 1996. MR0540367, MR0500056
- [5] J. L. Rubio de Francia, Operators in Banach lattices and L²-inequalities, Math. Nachr. 133 (1987), 197–209. MR912429
- [6] D. V. Rutsky, Complex interpolation of A₁-regular lattices, preprint, 2013, http://arxiv.org/ abs/1303.6347.
- [7] _____, A₁-regularity and boundedness of Calderón-Zygmund operators, Studia Math. 221 (2014), no. 3, 231–247. MR3208299
- [8] _____, A₁-regularity and boundedness of Calderón-Zygmund operators. II, preprint, 2015, http://arxiv.org/abs/1505.00518.
- [9] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton, NJ, 1993. MR1232192
- [10] S. V. Kislyakov, On BMO-regular lattices of measurable functions, Algebra i Analiz 14 (2002), no. 2, 117–135; English transl., St. Petersburg Math. J. 14 (2003), no. 2, 273–286. MR1925883
- [11] L. V. Kantorovich and G. P. Akilov, Functional analysis, BHV-Peterburg, St. Petersburg, 2004; English transl., Second ed., Pergamon Press, Oxford-Elmsford, NY, 1982. MR664597
- [12] S. G. Krein, Yu. I. Petunin, and E. M. Semenov, *Interpolation of linear operators*, Nauka, Moscow, 1978; English transl., Transl. Math. Monogr., vol. 54, Amer. Math. Soc., Providence, RI, 1982. MR0649411 (84j:46103)

- [13] G. Ya. Lozanovskii, A remark on a certain interpolation theorem of Calderón, Functional. Anal. i Prilozen. 6 (1972), no. 4, 89–90; English transl., Funkcional. Anal. Appl. 6 (19720, no. 4, 333–334. MR0312246
- [14] D. V. Rutsky, BMO regularity in lattices of measurable functions on spaces of homogeneous type, Algebra i Analiz 23 (2011), no. 2, 248–295; English transl., St. Petersburg Math. J. 23 (2012), no. 2, 381–412. MR2841677
- [15] _____, Weighted Calderón-Zygmund decomposition with some applications to interpolation, Zap. Nauch. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) **424** (2014), 186–200; English transl., J. Math. Sci. (N.Y.) **209** (2015), no. 5, 783–791.

St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia

E-mail address: rutsky@pdmi.ras.ru

Received 10/FEB/2015

Translated by THE AUTHOR