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BOUNDEDNESS OF A VARIATION OF THE POSITIVE HARMONIC

FUNCTION ALONG THE NORMALS TO THE BOUNDARY

P. MOZOLYAKO AND V. P. HAVIN

Abstract. Let u be a positive harmonic function on the unit disk. Bourgain showed
that the radial variation

var(u|[0,reiθ ]) =
∫ 1

0
|u′(reiθ)| dr

of u is finite for many points θ, and moreover, that the set

V(u) =
{
eiθ : var

(
u|[0,reiθ ]

)
< +∞

}
is dense in the unit circle T and its Hausdorff dimension equals one. In the paper,
this result is generalized to a class of smooth domains in Rd, d ≥ 3.

§1. Introduction

1.1. Let O be a domain in the d-dimensional real Euclidean space Ed, d ≥ 2, and let S
be its boundary, which we assume to be C2-smooth (see Subsection 9.1 below; we believe

that this condition can be relaxed considerably). Let �N(p) denote the inward normal to
S at p ∈ S. The interval {ta+(1− t)b : 0 ≤ t < 1}, where a, b ∈ Ed, is denoted by (a, b].

Let r be a positive function on S such that (p, p+ r(p) �N(p)] ⊂ O for p ∈ S, and let u be
a real-valued function on O. The normal variation of u at p ∈ S is

(1.1) (�Nvaru)(p) := var
(
u|(p,p+r(p) �N(p)]

)
.

We are only concerned with the question as to whether this quantity is finite, and u is
assumed to be smooth on O. Therefore, the explicit choice of r is of no importance.

Let E ⊂ S1 ⊂ S. We say that the set E is ultradense in S1 if for any p ∈ S1 and ρ > 0
we have

dim(E ∩ B
d(p, ρ)) = d− 1,

where B
d(p, ρ) is the unit ball Ed of radius ρ (we usually drop the superscript), and dim

is the Hausdorff dimension.
Put

(1.2) V(u) :=
{
p ∈ S : (�Nvaru)(p) < +∞

}
.

1.2.

Theorem 1. If u is harmonic and positive on O, then V(u) is ultradense in S.

It is well known (see [PK, HW1]) that any function u positive and harmonic on O
has finite boundary values along almost all (with respect to the (d − 1)-dimensional
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Hausdorff measure) normal vectors �N(p), p ∈ S. Theorem 1 states that for many p a

stronger version of this property is true: the variation (�Nvaru)(p) is finite.
In the case where d = 2 and O is the unit disk, Theorem 1 was proved by Bourgain,

see [B1, B2]. The case of d ≥ 3 and O being a half-space in Ed is due to O’Neill [ON].
All these special cases are contained in our Theorem 1. For d = 2 this theorem can easily
be deduced from [B1] via conformal mapping. However, when we study the boundary
behavior of harmonic functions on more or less arbitrary d-dimensional domains, the
transition from d = 2 to d ≥ 3 is usually quite complicated (see, e.g., [C, pp. 48–49]
and [HW1, HW2]). Moreover, the problem we are interested in complicates further by
the fact that the remarkable results of [B1, B2] relied heavily upon the use of Fourier
transform, which is well suited for the case where S is a group of some sort, but can
hardly be adapted to deal with domains in Theorem 1 (the paper [ON] employed the
spherical harmonics method). While we still follow the general approach of [B1, B2]
(introduction of B-points and B-measures νε, see Subsections 2.4 and §4 below), it was
necessary to modify the arguments used in the construction of these objects and to avoid
methods of harmonic analysis. Here we use the theory of linear differential equations
in Banach spaces (“multiplicative integral”, see [DK]). It is possible that this approach
can be used in more general situations (harmonic functions on Riemannian manifolds,
solutions of elliptic equations).

1.3. In the next subsection we formulate the main result of our paper (Theorem 2).
We deduce it in §9 from Theorem 3, the proof of which occupies the most part of the
paper (§§2–8). In Theorem 3 we consider a particular case of the domain O (an “almost
half-space”), and u is subject to some additional conditions. We reduce the general case
(Theorem 2) to this special one in §9. Thus, it can be said that Theorem 3 is only a step
on the way to prove Theorem 2. However, we believe that §§2–8 devoted to Theorem 3
actually form the most substantial part of our paper, and the method of constructing
the Bourgain measures νε (see Subsection 2.4) is interesting on its own right.

1.4. Now we return to Theorem 1. Under its assumptions, we see that

(1.3) var(u|(p, p+ r(p) �N(p)]) =

∫ r(p)

0

∣∣∣∣ ∂∂y
(
u
(
p+ y �N(p)

))∣∣∣∣ dy
and Theorem 1 follows from Theorem 2, where we replace the integral in (1.3) by an
integral that involves the derivatives of u along all directions (rather than along the

normal vector �N (p))). Put

(1.4) Vgrad(u) :=
{
p ∈ S :

∫ r(p)

0

∣∣∇u(p+ y �N(p))
∣∣dy < +∞

}
.

Theorem 2. Under the assumptions of Theorem 1, the set Vgrad(u) is ultradense in S.

1.5. Remarks.
1. The arguments employed in [B1] and [M] can be used to study the so-called strong

convergence of approximate identities (its special case for the Poisson integral for Rd is
directly related to the results in our paper). This topic was discussed in [B2, M].

2. In Theorems 1 and 2 (and also in Theorem 3, see below), we may assume u to
be bounded (it suffices to consider the function u + C, where C is a sufficiently large
constant). Moreover, even the special case where u is continuous up to the boundary S
of O is interesting. However, the fact that u is bounded from below (or from above) is
essential. We cannot drop this condition, because there exists a harmonic function u on
the unit disk with boundary values in BMO and such that V(u) (on the unit circle) is
empty (see [J]).



BOUNDEDNESS OF A HARMONIC FUNCTION 347

3. The set V(u) occurring in Theorem 1 and having maximal Hausdorff dimension
everywhere on S can still be of (d − 1)-dimensional measure zero, even if O is the unit
disk, and u is harmonic and continuous up to the boundary (see [R, M]).

4. In the special case where d = 2 and O is the unit disk, Theorem 2 was proved by
Bourgain [B2]: if f is analytic in the unit disk and has positive real part, then the set of
endpoints of the radii along which the variation of f is finite (so that the image of such
a radius is rectifiable) is ultradense in the unit circle. Indeed,

var[0,eit] f =

∫ 1

0

∣∣∇(Re f)(reit)
∣∣ dr, t ∈ (−π, π].

Now, putting u := Re f and applying Theorem 2, we obtain the result.

§2. A special case: O is a near half-space. Statement of Theorem 3

2.1. In this section we take Ed = R
d = R

d−1 × R, and the points in R
d are written

as (x, y) where x ∈ R
d−1, y ∈ R. The domain O = OΦ is the epigraph of a function

Φ ∈ C2(Rd−1):

(2.1) O =
{
(x, y) ∈ R

d : x ∈ R
d−1, y > Φ(x)

}
.

We assume that

Φ(0), ∇Φ(0) = 0;

there exists r = r(0) ∈ (0, 1) such that for any x ∈ R
d−1 \ Bd−1(0, r)

we have Φ(x) = 0, and also |∇Φ(x)| < 1
100 for any x ∈ R

d−1.

(2.2)

The boundary S of O is the graph of Φ, and the domain O itself can be viewed as a
small perturbation of the upper half-space R

d
+ = R

d−1 × (0,+∞).
Our positive harmonic function u is further assumed to satisfy the following conditions:

(2.3) lim
(x∗,y)→(x∗

0 ,0)
u(x∗, y) = lim

|x∗|+y→+∞
u(x∗, y) = 0,

for x∗
0 ∈ R

d−1, |x∗
0| > r.

Such a function u admits harmonic extension from O to the exterior of Bd(0, r), and
we have u|(S\Bd(0,r)) = 0.

2.2. Let �e1, . . . , �ed be the standard basis in R
d. For φ ∈ R

d and y ∈ R, we denote
by φy the point φ + y�ed. Given y ∈ R and a function v on E ⊂ R

d, we define vy on
E−y := E − y�ed by vy(φ) = v(φy).

The advantage of our special case (2.1) as compared to the general one is due to the
fact that there is a semigroup of shifts φ 	→ φy, y ≥ 0, acting on O. The space H(O) of
functions harmonic on O is preserved by this semigroup. For any v ∈ H(O) and y > 0,
we see that vy is harmonic on O−y ⊃ sO = O ∪ S.

2.3. The Poisson kernel for O. The Poisson kernel for O is the function

(2.4) pO(z, ζ) :=
∂GO

∂ �N(ζ)
(z, ζ), z ∈ O, ζ ∈ S,

where GO is the Green function for O, and �N(ζ) is the inward normal to S at ζ ∈ S. If
ϕ is bounded and continuous on S, then PO(ϕ) defined by

(2.5) PO(ϕ)(z) =

∫
S

ϕ(ζ)pO(z, ζ) ds(ζ), z ∈ O,

is harmonic on O, and extends continuously to O∪S; moreover, this extension coincides
with ϕ on S. In (2.5), s is the (d− 1)-dimensional Hausdorff measure in R

d.
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Let sS = S ∪ {∞}, and let C(sS) denote the set of functions ϕ ∈ C(S) that are finite
at infinity and satisfy the relation +∞ > ϕ(∞) := lim|ζ|→∞ ϕ(ζ). If ϕ ∈ C(sS), then

limz∈O, z→∞ PO(ϕ)(z) = ϕ(∞), so that PO(φ) is continuous in O∪ sS and coincides with
ϕ on sS.

2.4. Vertical and mean vertical variation of a function defined on a near half-
space. Let v ∈ C1(OΦ), where OΦ(= O) is a “near half-space”, see Subsection 2.1. The
vertical variation of v at x ∈ S is defined by

(2.6) Vvar(v)(x) :=

∫ 1

0

|∇v|(xy) dy.

This quantity bounds from above the variation of v on the “vertical” line (x, x1] ⊂ O.
If v is harmonic on O, then the gradient |∇v| (along with |∇vy| for any positive y) is
subharmonic on O (see [SW, Chapter 6, §4]). Assume that lim|p|→+∞ |∇v(p)| = 0 ( this

condition is fulfilled for v = u, because u is harmonic outside B
d(0, r) and vanishes at

infinity). Put

(2.7) h[y]
v (q) := PO(|∇vy||S)(q), q ∈ O, y > 0.

We see that h
[y]
v is the smallest harmonic majorant of |∇vy| in O.

Let x ∈ S. The mean vertical variation of v at x ∈ S is

(2.8) V (x) (= V v(x)) :=

∫ 1

0

(h[2y]
v )y(x) dy.

Here (unlike (2.7), where the gradient |∇vy(x)| is treated) we have the additional av-
eraging of ζ 	→ |∇v2y(ζ)| with respect to the probability measure pO(xy, ζ) ds(ζ) on S.
Assume that v is harmonic on O and outside B

d(0, r), and that lim|p|→∞ v(p) = 0. We
claim that

(2.9) V v(x) ≥ 1

3
Vvar(v)(x), x ∈ S.

Indeed,

V (x) ≥
∫ 1

0

|∇v2y(xy)| dy =

∫ 1

0

|∇v(x3y)| dy ≥ 1

3

∫ 1

0

|∇vy(x)| dy.

In §9 it will be shown that V (x) ≥ A(�Nvaru)(x), x ∈ S, where A is some positive
absolute constant (this is trivial for Φ ≡ 0, i.e., for O = R

d
+, because then we have

�Nvar(u) ≤ Vvar(u)).
A point x ∈ S is called a Bourgain point (B-point) of u if V u(x) < +∞. The set of

such points is denoted by B(u). By what has been mentioned above, in our special case
(i.e., when O = OΦ) we have B(u) ⊂ Vgrad(u).

Theorem 3. If conditions (2.1) and (2.2) are satisfied, then B(u) is ultradense in S.

§3. Preparation for the proof of Theorem 3. The operators By

3.1. Our immediate goal is to produce a sort of “partial linearization” for the function
V = V u. We shall obtain the representation

(3.1) V u = Lu(u),

where Lu is a linear operator on a certain set of functions defined on O. In the next
subsection we do some preliminary work to obtain (3.1); the derivation itself is done in
Subsection 3.3.3.
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3.2. Kernels of some integral operators. In what follows by a “kernel” we mean a
function defined on S × S (in some disagreement with the term “Poisson kernel for O”,
because the latter is actually defined on O × S). The kernels are denoted by lowercase
Latin or Greek letters, and the corresponding integral operators by the respective capital
letters. For example, a kernel k gives rise to the operator K given by

(3.2) K(ϕ)(x) :=

∫
S

k(x, ξ)ϕ(ξ) ds(ξ), x ∈ S.

In each individual case we pay close attention to the conditions under which for any
x ∈ S the function ξ 	→ k(x, ξ)ϕ(ξ) in (3.2) is integrable on S with respect to s.

The composition k1 ◦ k2 of two kernels k1 and k2 is defined as follows:

(3.3) (k1 ◦ k2)(x, ξ) :=
∫
S

k1(x, η)k2(η, ξ) ds(η), x, ξ ∈ S.

Here we assume that the integrand in (3.3) is integrable with respect to s for any x, ξ ∈ S.
We take special care for ensuring the identity K1(K2(ϕ)) = K(ϕ), whereK is the integral
operator with the kernel k := k1 ◦ k2. We shall also need the compositions k1 ◦ · · · ◦ kn
defined in the same way for any natural n.

By k∗ we denote the kernel adjoint to k,

(3.4) k∗(x, ξ) := k(ξ, x), x, ξ ∈ S,

and K∗ is the respective integral operator. For the situations under study the following
formula holds true: ∫

S

K∗(ϕ) · ψ ds =

∫
S

ϕ ·K(ψ) ds.

3.3. The kernels py, cy, by. The first of these kernels depends only on y and S, while
the other two also depend on u.

Put

(3.5) py(x, ξ) := pO(xy, ξ), x, ξ ∈ S, y > 0.

Given x ∈ S, y > 0, the measure py(x, · ) ds on S is the harmonic measure in O with the
pole at xy ∈ O. In particular,

∫
S
py(x, ξ) ds(ξ) = 1.

The properties of the mapping ϕ 	→ PO(ϕ) (see (2.5)) imply the semigroup property
of the family (py)y>0:

(3.6) py1+y2
= py1

◦ py2
, y1, y2 > 0.

3.3.1. We also need the following property of py: everywhere on S × S, we have

(3.7)
py2

py1

≤ c(S)

(
y2
y1

)

whenever 0 < y1 ≤ y2 ≤ 1.

Proof. We recall that S is the graph of a compactly supported function Φ ∈ C2(Rd−1)
(see Subsection 2.1). Hence, there exists R = R(S) > 0 such that for any x ∈ S the ball

B (= B(x + R �N(x), R)) is tangent to S at x and lies in O = OΦ. Let x, ξ ∈ S, and let
zj := x+yj ·�ed, j = 1, 2. Now we apply Corollary 1 to Lemma 10.1 (see Subsection 10.1)
to the ball B, the vector ν := �ed, the points z1, z2, and the function

v : z 	→ pO(z, ξ), z ∈ B.
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It is possible for y2 ≤ R
4 , because ν and the (inward) normal to S at x are “almost

parallel” (see (2.2)), and z1, z2 ∈ B. We arrive at

v(z2)

v(z1)
≤ C(S)

(
y2
y1

)
.

If y1 > R
4 , then, in accordance with Subsection 10.3.2, we have

v(z2)

v(z1)
≤ C1(S)

(
y2
y1

)C1(S)

≤ C1(S)y
−C1(S)
1

≤ C1(S)

(
4

R

)C1(S)

=: C2(S) ≤ C2(S)
y2
y1

.

Finally, if y1 ≤ R
4 < y2, then the desired inequality follows from the identity

v(z2)

v(z1)
=

v(z2)

v(sz)
· v(sz)

v(z1)
,

where sz := xR
4
. �

Remark. We also need a slightly more general version of (3.7), where we assume that
0 < y1 ≤ y2 ≤ Y . Then, clearly,

(3.8)
py2

py1

≤ c(S)(1 + Y )c(S) y2
y1

.

3.3.2. Now we proceed to the definition of the kernels cy. Given �a ∈ R
d, we put

sgn�a :=

{
�a/|�a| if �a �= 0,

0 if �a = 0.

The scalar product of �a and �b is denoted by 〈�a,�b〉. Let �σ(q) := sgn(∇u)(q), q ∈ O. The
vector field �σ vanishes on the closed (in O) set Z = Z(u) := {∇u = 0}. This field is
C∞-smooth on O \ Z, and |�σ||O\Z ≡ 1. In Subsection 10.4 it will be shown that (unless
u ≡ const) s(Z ∩ Sy) = 0 for any y > 0 (in the case of d = 2 the set Z is discrete).
Moreover, �σ is discontinuous at any point of Z.

Put

(3.9) cy(x, ξ) := 〈(∇1pO)(xy, ξ), �σ(x2y)〉 =
∂1pO

∂�σ
(x2y)(xy, ξ), x, ξ ∈ S, y > 0,

(the superscript 1 means that we differentiate with respect to the first variable; we also

assume that ∂ϕ
∂�u = 0 if �u = 0). Both �σ and cy depend on u, but, for simplicity, we do not

reflect this in the notation.
From the properties of σ it follows that, for any y > 0, the kernel cy vanishes on the

set (Z−2y ∩S)×S, and its trace on (S \Z2y)×S is continuous. Using (10.8) and (10.10),
we obtain

(3.10) |cy(x, ξ)| ≤
∣∣(∇1pO)(xy, ξ)

∣∣ ≤ c(S)pO(xy, ξ)

y
, x, ξ ∈ S, y > 0.

If we differentiate
∫
S
pO(z, ξ)ds(ξ) ≡ 1, z ∈ O, along �σ(x2y), we get

(3.11) Cy(1) = 0 in S, y > 0.
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3.3.3. Now we define the kernel as follows: by := py ◦ cy, y > 0. The properties of the
kernels py and cy combined with (3.10) imply that this definition is consistent on S × S,
and the resulting kernel depends on u (more precisely, on �σ). To start the “linearization”
of u 	→ V u (see Subsection 3.1), we observe that, for x ∈ S, y > 0,

|(∇u)(x2y)| =
〈
(∇u)(x2y), �σ(x2y)

〉
=

〈
(∇uy)(xy), �σ(x2y)

〉
=

〈∫
S

∇1pO(xy, ξ)uy(ξ) ds(ξ), �σ(x2y)
〉
= Cy(uy)(x).

(3.12)

By (3.12)), the least harmonic majorant h[2y] for |∇u2y| in O satisfies

(3.13) h[2y](q) = PO(|∇u2y||S)(q) = PO(Cy(uy|S))(q), q ∈ O.

Putting q = xy, we obtain

(3.14) h[2y](xy) = (h[2y])y(x) = ((PyCy)(uy|S))(x) = (By(uy|S))(x), x ∈ S,

and, finally,

(3.15) V (x) =

∫ 1

0

(By(uy|S))(x) dy, x ∈ S.

Note that By(uy|S) > 0.
Now, the operator Lu that “linearizes” the mapping u 	→ V u (see (3.1)) is defined as

follows:

Lu =

∫ 1

0

By dy,

and the Bourgain points of u are the points x ∈ S where the integral
∫ 1

0
(By(uy))(x) dy

is finite (from now on we write By(uy) instead of By(uy|S)).
We shall need the following properties of by:
for any y ∈ (0, 1),

|by| ≤
c(S)

y
py,(3.16a)

By(1) ≡ 0 on S.(3.16b)

Indeed,

|by| ≤ py ◦ |cy| ≤ c(S)
(py ◦ py)

y
= c(S)

p2y
y

≤ c′(S)
py
y
,

(we have used (3.10) and the results of Subsection 10.3.2). We see that (3.16b) follows
from (3.11).

In Subsection 10.5 we shall show that the function (x, ξ, y) 	→ by(x, ξ) is continuous
on S × S × (0,+∞).

3.4. Outline of the proof of Theorem 3. The measures νε,u and properties
(a), (b), (c). Assume that there exists a Borel measure ν supported on S such that∫
S
V dν < +∞ and ν(B) > 0 for any ball B with center on S. Then the set B(u) of

Bourgain points of u is dense in S. However, we cannot yet say that B(u) is ultradense
in S – such a measure ν can still be supported on some countable subset of S.

To prove the ultradensity of B(u) in S, we construct the family (νε)ε∈(0,ε(S)) of mea-
sures supported on S such that

(a)
∫
S
V dνε < +∞ for any ε ∈ (0, ε(S));

(b) there exist positive constants c1(S), c2(S) such that for any ρ > 0 we have

(3.17) νε(B) ≤ c1(S)ρ
d−1−c2(S)ε

for any number ε ∈ (0, ε(S)) and any ball B with radius ρ and center on S;
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(c) for any ball B with center on S there exists ε(B) > 0 such that νε(B) > 0 whenever
0 < ε < ε(B).

Now we verify that the existence of such a family of measures (νε) guarantees the
ultradensity of B(u) in S.

Let B be a ball with center on S. Put α := B(u) ∩ B, so that νε(α) = νε(B), due
to (a). For any covering (bj)

∞
j=1 of the set α with balls of radii rj with centers on S, we

have
0 < νε(B) = νε(α) ≤

∑
j

νε(bj) ≤ c1
∑
j

rd−1−c2ε
j

if 0 < ε < min(ε(S), ε(B), d−1
c2

). For such ε we see that Hd−1−c2ε(α) > 0, hence dimα =
d− 1.

The plan of the construction of νε is presented in §4. The construction itself (and the
proof of (a)–(c)) is done in §§5–8. We note that the νε are probability measures (i.e.,
νε(S) = 1).

We call the measures νε (= νε, u) the Bourgain measures (B-measures) of the function
u. The idea to use these measures to prove the ultradensity of B-points is borrowed from
[B1, B2]. The main difference here lies in the construction of B-measures. Our argument
works not only for the case when O is the ball or the upper half-space, but also where O
is the “almost upper half-space” (see §§4–8, where we construct the measures (νε) that
satisfy (a), (b), (c)).

§4. Construction of the measures νε: an outline

4.1. It remains to construct a family of B-measures that satisfy conditions (a), (b), and
(c) (see Subsection 3.4). It is done in §§5–8 in accordance with the plan we introduce
below.

By M+(S) we denote the set of finite Borel measures on R
d supported on S. In

Subsection 4.2 we construct a family of mappings (Wε,u)0<ε<ε(S) of the set M+(S) into
itself such that νε := Wε,u(κ) satisfies (a), (b), (c) for any nonzero κ ∈ M+(S). This
proves Theorem 3.

Remark. The mappings Wε,u are actually restrictions to M+(S) of the linear operators
that map the set M(S) of finite Borel charges on R

d supported on S into itself, and
moreover, Wε,u(κ)(S) = κ(S) for any κ ∈ M(S).

4.2. The kernels ωy,u,ε. Let ε ∈ (0, ε(S)) be sufficiently small. The measure Wε,u(κ)
is obtained from the measure κ ∈ M+(S) via a continuous transformation depending
on the parameter y. With y ∈ (0, 1), in Subsection 4.5 we associate a positive kernel
ωy (= ωy,ε,u) ∈ C(sS × sS) (and consequently, an integral operator Ωy) such that

(4.1)

∫
S

ωy(x, ξ) ds(ξ) = Ωy(1)(x) = 1

for any x ∈ S, y ∈ (0, 1). Given a probability measure κ ∈ M+(S), put

(4.2) γy(x) :=

∫
S

ωy(ξ, x) dκ(ξ) =

∫
S

ω∗(x, ξ) dκ(ξ) =: Ω∗
y(κ)(x), x ∈ S, y ∈ (0, 1).

Clearly, γy ds is a probability measure supported on S. The measure νε := W(κ) (=
Wε,u(κ)) is defined as the weak limit limy↓0 γy ds (its existence is proved in Subsection
5.4). The operators Ωy tend to the identity as y ↑ 1 (see Subsection 5.3). More precisely,
limy↑1 Ωy(ϕ) = ϕ uniformly on S for any ϕ ∈ C(sS). From now on, Ω1 is the identity
operator on C(sS), and Ω∗

1 is the identity mapping of M(sS) into itself.
Thus, for y = 1 we start with a unit mass κ on S, and then we gradually redistribute

it as y tends to zero. Every y ∈ (0, 1) corresponds to the distribution Ω∗
y(κ) = γy ds.
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Passing to the limit, we obtain the desired distribution νε = W(κ) “adjusted” to u in
the sense that

∫
S
V dνε is finite. Hence, the existence of Bourgain points of u is ensured.

Their ultradensity is implied by the fact that the family (νε)0<ε<ε(S) satisfies (b) and
(c). These conditions are proved in §7. Condition (a) will be deduced at once from some
properties of the kernels ωy.

We finally observe that the functions γy are continuous on S, and that limx→∞ γy(x) =
0. Letting γy(∞) = 0, we may assume that γy ∈ C(sS). This follows from (4.2) and from
the inequality ωy ≤ c1p1−y + c2py (see Subsection 5.1)

4.3. Two key facts about ωy. These facts will be proved in §§5–6.
Let ϕ be a positive harmonic function on O that has a finite limit limz→∞ ϕ(z) (i.e.,

ϕ ∈ H+( sO) = H+(O ∪ {∞})). Put ϕy(x) := ϕ(x + y�ed), x ∈ S, y > 0, so that
ϕy ∈ C(S) = C(S ∪ {∞}). Let 0 < η < y ≤ 1 (whence Ωη(ϕy)(x) < +∞ for any x ∈ S).
Then

(i) Ωη(ϕy) ≤ c(S)Ωy(ϕy);
(ii) if lim∞ ϕ = 0, then for any x ∈ S the function fx : y 	→ Ωy(ϕy)(x) is continuously

differentiable on (0, 1], and

(4.3)

(
∂

∂y
fx

)
(y) = εΩy(By(ϕy))(x), x ∈ S, y ∈ (0, 1]

(statement (i) is proved in Subsection 5.3.2, statement (ii) and the fact that By(ϕy) ∈
C(sS) for y ∈ (0, 1] is deduced in §6).

4.4. Now we show that (i) and (ii) imply that
∫
S
V dνε is finite, which coincides, essen-

tially, with property (a) of the measure νε.
Given y ∈ (0, 1], we put

(4.4) gy := (h[2y])y = By(uy) = Py(|∇u2y|)

(see (3.12)–(3.14)). We note that for any y ∈ (0, 1] the function gy coincides on S
with some positive harmonic function on O−y that vanishes at infinity (because |∇u2y|
vanishes at infinity, see Subsection 2.4). To prove (a), it suffices to show that Jδ :=∫
S

∫ 1

δ
gy dy dνε is uniformly bounded for δ ∈ (0, 1), because Levy’s theorem implies that

limδ↓0 Jδ =
∫
S
V dνε. For such δ, the function x 	→

∫ 1

δ
gy(x)dy, x ∈ S, coincides on S with

some function in H+( sO−δ) that vanishes at infinity (see Subsection 10.5). Therefore, due
to (i) we have

Jδ = lim
η→0

∫
S

(∫ 1

δ

gy dy

)
γη ds = lim

η→0

∫
S

(
Ωη

(∫ 1

δ

gy dy

))
dκ

= lim
η→0

∫
S

(∫ 1

δ

Ωη(gy) dy

)
dκ ≤ c

∫
S

(∫ 1

δ

Ωy(gy) dy

)
dκ.

But from (ii), (4.3), and (4.4) it follows that the last integral c
∫
S

( ∫ 1

δ
Ωy(By(uy)) dy

)
dκ

is equal to

c

ε

∫
S

(∫ 1

δ

∂

∂y
Ωy(uy) dy

)
dκ =

c

ε

∫
S

(Ω1(u1)− Ωδ(uδ)) dκ

≤ c

ε

∫
S

Ω1(u1) dκ ≤ c

ε
sup
S

u1

(it is precisely in the penultimate inequality where we have used the positivity of u).
Recall that u vanishes at infinity, and therefore, u1 is bounded on S. We are done.
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4.5. We need to solve the differential equations (4.3) (where y 	→ Ωy, y ∈ (0, 1], is
the unknown operator-valued function). For this, we use (a version of) the well-known
method of solving linear differential equations in a vector space (see [DK]). We construct
an operator-valued function Δ 	→ ΩΔ that maps a compact interval to an integral oper-
ator ΩΔ with positive kernel ωΔ ∈ C(S × S). This function (“multiplicative integral”)
satisfies the following condition:

(4.5) 0 < a < b < c ⇒ ω[a,c] = ω[b,c] ◦ ω[a,b]

(the actual construction is done in §8). The kernels ωy (see Subsection 4.2) are defined
as follows: ωy := ω[y,1], 0 < y < 1. In §§5–8 we shall make sure that this choice of kernels
provides all the necessary properties of νε.

§5. The kernels ωΔ. Weak convergence of γy ds as y ↓ 0 and condition (i)

5.1. The kernels bΔ, rωΔ, ωΔ. By segm+ we denote the set of all nondegenerate com-
pact intervals (segments) in (0,+∞). Given Δ ∈ segm+ let

m(Δ) := minΔ, M(Δ) := maxΔ, |Δ| := M(Δ)−m(Δ),

bΔ(x, ξ) :=

∫
Δ

bθ(x, ξ) dθ, x, ξ ∈ S
(5.1)

(these kernels were defined in Subsection 3.3).
From (3.16a) and (3.7) it follows that

(5.2) |bΔ| ≤ c(S)
Pm(Δ)

m(Δ)
|Δ|

for M(Δ) ≤ 1. We say that a segment Δ ∈ segm+ is short if |Δ| ≤ m(Δ). Given a short
segment Δ ⊂ (0, 1], we have

(5.3) |bΔ| ≤ c′(S)p|Δ|

by (3.7). Note that for any Δ ∈ segm+ we have

(5.4) BΔ(1) =

∫
Δ

Bθ(1) dθ = 0.

Let

(5.5) rωΔ := p|Δ| − εbΔ, ε > 0, Δ ∈ segm+ .

Clearly, rΩΔ(1) = 1. The kernel rωΔ is positive if ε ∈ (0, ε(S)) and Δ is short (see (5.3)).
Moreover, under these conditions we have

(5.6) c1(S)p|Δ| ≤ rωΔ ≤ c2(S)p|Δ|;

here c1(S) > (1− ε(S))c′(S).

5.1.1. We proceed with describing the kernels ωΔ that play a crucial role in what follows
(we already mentioned them in Subsection 4.5, see (4.5)). They are constructed in §8.
Identity (4.5) will also be proved there, as well as the properties to be listed below.

For sufficiently small |Δ|, the kernel ωΔ can be viewed as a small “correction” of rωΔ.
Namely, if we put rΔ := ωΔ − rωΔ, we obtain

(5.7) |rΔ| ≤ c(S)ε2
|Δ|2

m(Δ)2
pm(Δ).

From (5.7) and (3.7) it follows that

(5.8) |rΔ| ≤ c′(S)ε2
|Δ|

m(Δ)
p|Δ|
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provided Δ ⊂ (0, 1] is short. The kernel ωΔ is positive if ε ∈ (0, ε(S)) (here ε(S) is a
small positive constant that depends only on S; in what follows it can change from line
to line). Indeed, (5.8) implies that

ωΔ = rωΔ + rΔ ≥ (c1(S)− c′′(S)ε) p|Δ|

for short Δ. Generally, Δ =
⊔N

s=1Δs, where the Δs are pairwise disjoint short segments,
m(Δs) < m(Δs+1), so that ωΔ = ωΔN

◦ · · · ◦ ωΔ1
> 0 (see (4.4)).

We also note that RΔ(1) = 0, whence

(5.9) ΩΔ(1) = 1.

5.2. Here we estimate the kernels ω[ρ,1] for small positive ρ. First, we observe that [y, 2y]
is short for y > 0, so that for any ε ∈ (0, ε(S)) we have

ω[y,2y] ≤ rω[y,2y] + cεpy ≤ py + c′ε

∫ 2y

y

pθ
θ

dθ + cεpy,

where c and c′ are positive constants depending only on S (see (3.16), (5.3)). Next,∫ 2y

y

pθ
θ

dθ ≤
∫ 2y

y

c′
py
y

· θ
y
dθ = c′py, c′ = c′(S) > 0

(we have used (3.7)). This means that

(5.10) ω[y,2y] ≤ C(S)py, C(S) = 1 + εc′(S) > 0, 0 < y ≤ 1,

assuming that ε < 1. An estimate for ω[ρ,1] follows from (5.10): if 0 < ρ < 1
2 , ε ∈

(0, ε(S)), then

(5.11) ω[ρ,1] ≤ c · 1

ρcε
· p1−ρ, c = c(S) > 0.

Proof. Let K = K(ρ) be a natural number such that 2Kρ ≤ 1 ≤ 2K+1ρ. Letting

Δj := [2jρ, 2j+1ρ], we obtain [ρ, 1] =
⋃K−1

j=0 Δj ∪ [2Kρ, 1]. Now (4.5) implies

ω[ρ,1] = ω[2kρ,1] ◦ ωΔK−1
· · · ◦ ωΔ0

,

and combining this with (5.10), we arrive at

ω[ρ,1] ≤ (1 + cε)K+1p1−2kρ ◦ p2K−1 ◦ · · · ◦ pρ = (1 + cε)K+1p(1−2kρ)+(2K−1+···+1)ρ

= (1 + cε)K+1p1−ρ ≤ 2(1 + cε)Kp1−ρ ≤ 2ea log 1
ρ log(1+cε) ≤ 2eacε log

1
ρ p1−ρ

= 2c · 1

ρacε
p1−ρ

for ε ∈ (0, ε(S)); here c = c(S) > 0, a = 1
log 2 . �

Similarly, under the same conditions, from (5.10) we deduce the following estimate:

(5.12) ω[ρ,1] ≥ c−ρ
c−ε · p1−ρ, c− = c−(S) > 0.

5.3. Φ-property of the operator ΩΔ. For a given short segment Δ, the operator
ΩΔ behaves like the Poisson operator P|Δ|: for many functions ψ defined on S the
function ΩΔ(ψ) converges to ψ itself as |Δ| → 0, and the function ξ 	→ ωΔ(x, ξ), ξ ∈ S
“is focusing to x ∈ S”, becoming similar to δx. In what follows we use this “focusing
property” repeatedly. Now we proceed to more rigorous formulation.
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Lemma 5.1. Let ε, y ∈ (0, 1), and let a function ψ defined on S coincide with some
positive harmonic function v on O−y such that v|O = PO(ψ). Then for any Δ ∈ segm+,
Δ ⊂ (0, y], we have

(5.13) |ΩΔ,ε(ψ)− ψ| ≤ c
|Δ|
y

ψ

everywhere on S (from now on c, c1, c2, . . . denote positive constants that depend only
on S).

The condition v|O = PO(v|S) = PO(ψ) is satisfied for ψ = Py(ϕ), where y > 0 ϕ is a
nonnegative function defined on S.

Proof. Let J ∈ segm+, J ⊂ Δ. Then

(5.14) |ΩJ(ψ)− ψ| ≤ |P|J|(ψ)− ψ|+ |BJ (ψ)|+ |RJ (ψ)| =: I + II + III.

For any x ∈ S we have

(5.15) I(x) = |v(x|J|)− v(x)| ≤ |∇v(xη)| · |J |,

where η = η(x) ∈ (0, |J |), so that xη := x+η�ed ∈ O, and d(xη, S−y) ≥ c1y (see Subsection
10.3.1). Therefore (see (10.10) and (3.7)),

(5.16) |∇v(xη)| ≤ c2
v(xη)

y
≤ c2

v(x)

y
= c3

ψ(x)

y
.

First, we deal with II. For this, we note that for θ ∈ J and x ∈ S we have

|Cθ(ψ)(x)| ≤ |∇PO(ψ)(xθ)| = |∇v(xθ)| ≤ c3
vθ(x)

y
= c3

Pθ(ψ)(x)

y
.

This means that

(5.17) II ≤
∫
J

Pθ(|Cθ(ψ)|) dθ ≤ c3
y

∫
J

P2θ(ψ) dθ =
c3
y

∫
J

v2θ dθ ≤ c4
y
v|J |.

Finally, (5.7) implies that for x ∈ S we have

III(x) ≤ c5

∫
S

|J |2
m(J)2

pm(J)(x, ξ)ψ(ξ) ds(ξ)

≤ c5
|Δ| |J |
(m(Δ))2

v(xm(J)) ≤ c6ψ(x)
|Δ| |J |2

y(m(Δ))2

(5.18)

(we recall that y ∈ (0, 1)). Relations (5.14)–(5.18) imply that

(5.19) (1− ρJ )ψ ≤ ΩJ (ψ) ≤ (1 + ρj)ψ,

where 0 < ρj ≤ c7
|J|
y

(
1 + |Δ| |J|

(m(Δ))2

)
.

Now we decompose Δ into K nonoverlapping segments J1, J2, . . . , Jk in such a way

that Δ =
⋃K

k=1 Jk, |Jk| =
|Δ|
K , m(Jk) < m(Jk+1), k = 1, . . . ,K − 1. Let K = K(Δ, y) be

so large that

ρJk
(:= ρk) ≤ 2c7

|Δ|
Ky

=: σK <
1

2
, k = 1, . . . ,K.

Then, by (5.19) and (4.4),

ΩΔ ≤ ΩJK
ΩJK−1

. . .ΩJ2
((1 + σK)ψ) ≤ · · · ≤ (1 + σK)Kψ

=
(
1 + 2c7

|Δ|
yK

)K

ψ < e2c7
|Δ|
y ψ <

(
1 + c8

|Δ|
y

)
ψ

(5.20)
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(we recall that |Δ|
y ≤ 1, and the kernel of ΩJk

is positive). Next, we have

(5.21) ΩΔ(ψ) ≥ (1− σK)Kψ ≥ e−c9
|Δ|
y ψ ≥

(
1− c10

|Δ|
y

)
ψ.

Now (5.20) and (5.21) imply (5.13). �

5.3.1. Here we mention another version of the Φ-property of the operators ΩΔ, which
can be applied to ψ ∈ C(sS) (not necessarily positive).

Let 0 < ε < ε(S), and let Δ ∈ segm+ be a short segment. Then

(5.22) ‖ψ − ΩΔ(ψ)‖∞ ≤ ‖ψ − P|Δ|(ψ)‖∞ + c(S)
|Δ|

m(Δ)
‖ψ‖∞.

The proof is deduced from (5.19) (with Δ in place of J). We only need to estimate II in
a different way:

|II| ≤
∫
Δ

|Bθ|(ψ) dθ ≤ c(S)

∫
Δ

Pθ(|ψ|)
θ

dθ ≤ c(S)
|Δ|

m(Δ)
‖ψ‖∞.

In (5.18) we only use the first inequality, replacing ψ by |ψ| and taking into account that

‖Pm(J)(|ψ|)‖∞ ≤ ‖ψ‖∞, |J|
m(J) ≤ 1.

5.3.2. As an immediate corollary to Lemma 5.1 we get statement (i) from Subsection 4.3.
To prove this, first we put Δ := [η, y].

Due to Lemma 5.1, letting ψ = ϕy, we obtain

ΩΔ(ϕy) ≤ (1 + c(S))ϕy.

By assumption, we have [η, 1] = Δ ∪ [y, 1], so that

Ωη(ϕy) = Ωy(ΩΔ(ϕy)) ≤ (1 + c(S))Ωy(ϕy).

5.4. Weak convergence of the measures γy ds. Here we show that as y ↓ 0 the
measures γys converge weakly on sS to some measure ν (= νε = νε,u) supported on S and
such that ν(S) = 1 (we recall that γy(∞) = 0). The functions γy are defined by (4.2) in
Subsection 4.5 (ωy := ω[y,1], 0 < y < 1, Ωy is the integral operator with the kernel ωy,
and Ω1 is the identity operator).

Proof. First we find a monotone decreasing sequence (yk)k∈N in (0, 1) such that

lim
k→∞

yk = 0

and γyk
ds converges weakly on sS to some measure:

(5.23) lim
k→∞

∫
S

αγyK
ds =

∫
sS

αdν,

for any α ∈ C(sS) (we recall that γy ∈ C(sS), γy(∞) = 0). Let us verify that ν({∞}) = 0,
so that ν(S) = 1, and we can replace sS by S in the last integral. Consider a ball
BL = B

d(0, L) (with L large) such that S is flat outside BL: S \ BL ⊂ R
d−1 (see

Subsection 4.1). By βL and δL we denote the harmonic measures of BL ∩ S and S \ BL

in O, so that βL + δL = 1 in O. The function βL is harmonic on O and vanishes on
S \sBL, therefore it admits a harmonic extension to the larger domain O∪(Rd \sBL). This
function is also bounded, so it vanishes at infinity. We choose a sufficiently large ρ > 0
so that {xd = ρ} ⊂ O, and let L′ > L be such that (δL)ρ(x) (= δL(x + ρ�ed)) > 1

2 for
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any x ∈ S \ sBL′ = R
d−1 \ sBL′ . Putting δL(∞) = 1, we may assume that (δL)ρ| sS ∈ C(sS).

Next, we have

ν({∞}) ≤ ν(sS \ BL′) ≤ 2

∫
sS

(δL)ρ dν = lim
k→∞

2

∫
S

(δL)ργyk
ds

= lim
k→∞

∫
S

Ωyk
((δL)ρ) dκ ≤ c(S)

ρ

∫
S

δL(x+ ρ�ed) dκ(x)

(we have used the Φ-property of Ωyk
and the fact that (δL)ρ is harmonic on O−ρ for

large k). Harmonic measures of S \ BL tend to zero in O as L → +∞ (in particular,
on Sρ). At the same time, 0 ≤ δl ≤ 1 in O and κ(S) = 1, so that the last integral
vanishes as L → +∞. We have proved that ν({∞}) = 0.

It remains to show that

lim
y↓0

∫
S

αγy ds =

∫
S

α dν

for any α ∈ C(sS). First, assume that α coincides on S with Pσ(β), for some β ∈ C(sS),
β ≥ 0 and σ > 0. Let y ∈ (yk+1, yk). Using Lemma 5.1, the multiplicative property of
ωΔ, and the fact that Ωy(1) = 1, κ(S) = 1, we obtain∣∣∣∣

∫
S

αγy ds−
∫
S

αγyk
ds

∣∣∣∣ =
∣∣∣∣
∫
S

Ωyk

(
Ω[y,yk](α)− α

)
dκ

∣∣∣∣
≤ ‖Ω[yk,y](α)− α‖∞,S ≤ c(S)

yk
σ
‖α‖∞,S ,

arriving at the desired conclusion because yk → 0 as y → 0. It remains to note that for
any α ∈ C(sS) we have ‖Pσ(α)− α‖∞,S → 0 as σ ↓ 0. �

§6. Deduction of the differential equation (ii) for the operator-valued

functions y 	→ Ωy

In this section, still taking for granted the existence of ωΔ and the properties outlined
in Subsection 5.1, we deduce equations (ii), which have already been used in Subsec-
tion 4.4.

6.1. Let ϕ ∈ H+( sO) (see Subsection 4.3) be such that lim∞ ϕ = 0. We observe that ϕ
is bounded in Oy, y > 0. Let

fx(y) := Ωy(ϕy)(x), y ∈ (0, 1], x ∈ S,

where, as before, Ωy := Ω[y,1] for y ∈ (0, 1), and Ω1 is the identity operator. To compute
the derivative of fx, we start (in Subsection 6.2) with proving that it is Lipschitz on any
segment [y0, 1], 0 < y0 < 1. After that (Subsection 6.3) we compute the left derivative
(fx)′−. We shall see that it exists everywhere on (0, 1] and is continuous (the right
derivative (fx)′+ is much harder to deal with, because the kernels (4.3) may fail to
commute). The Lipschitz property of f |[y0,1], y0 ∈ (0, 1], implies that

fx(y) = fx(1)−
∫ 1

y

(fx)′−(η) dη, y ∈ (0, 1].

Therefore, we have (fx)′−(y) = (fx)′+, y ∈ (0, 1], and consequently, fx ∈ C1((0, 1]).
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6.2. Now we show that fx|[y0,1] is Lipschitz for x ∈ S, y0 ∈ (0, 1]. Suppose y ∈ (0, 1],
h > 0,y − h ≥ y0, Δ := [y − h, 1]. Using (4.4), we get

(6.1) fx(y)− fx(y − h) = (Ωy (I + II)) (x) + III(x),

where I := ϕy −ΩΔ(ϕy), II := ϕy − ϕy−h, and III := (Ωy−h −Ωy)(II). Setting ‖ϕy‖ :=
supS ϕy, K := supy0≤y≤1 ‖ϕy‖, we see that the Φ-property of ωΔ (Lemma 5.1) implies

‖I‖ ≤ c1(S)K
h

y0

(we recall that the norm of the operator Ωy from C([y, 1]) to C([y, 1]) does not exceed
one). For any x ∈ S there exists θ = θ(x) ∈ (y − h, y) such that

|II|(x) ≤ |∇ϕ(xθ)|h ≤ c2(S)K
h

y0

(see (10.10)). Hence,

‖Ωy(I + II)‖ ≤ ‖I‖+ ‖II‖ ≤ c3(S)K
h

y0
.

Finally,

‖III‖ ≤ 2‖II‖ ≤ 2c3(S)K
h

y0
,

and (see (6.1))

|fx(y)− fx(y − h)| ≤ c4(S)K
h

y0
, x ∈ S, O < y0 ≤ y − h < y ≤ 1,

which proves that the functions in question are Lipschitz.

6.3. Computing the derivative (fx)′. From (6.1) it follows that

(6.2)
fx(y − h)− fx(y)

−h
= Ωy(A1)(x) +A2(x),

where x ∈ S, y ∈ (0, 1), h ∈ (0, y2 ), A1 := I+II
h , A2 := III

h (I, II, III are the same as
in (6.1)). We verify that limh↓0 A2 = 0 on S. Put αh := Ωy−h−Ωy = Ωy −ΩyΩΔ, where

ϕ(d) := ∂ϕ
∂�ed

. We have

III

h
= αh(IV + V ),

where IV := (ϕ(d))y, and V :=
ϕy−ϕy−h

h −IV . Next, αh(IV ) = Ωy(IV −ΩΔ(IV )). Clearly,

IV ∈ C(sS) (see (10.8) and (10.10), so that |ϕ(d)(Sy)| ≤
c(ϕ|Sy )

y , lim∞ ϕ(d)|Sy
= 0), and,

by Subsection 5.3, IV − ΩΔ(IV ) → 0 as h ↓ 0 uniformly on S, whence αh(IV ) → 0 as
h ↓ 0 on S (recall that the kernels ωy, ωy−h are positive, while Ωy(1) = Ωy−h(1) = 1);
the norm of ‖αh‖ as an operator from C(sS) to L∞(S) does not exceed 2. Now we claim
that V → 0 uniformly on S as h ↓ 0. Indeed, since ϕ ∈ H+( sO), ϕ is bounded on O y

2
;

therefore, its second derivatives are bounded on any ball of radius y
4 with the center on

S + y�ed by some constant depending only on y, so that |V | ≤ C(y)h everywhere on S,
and |αh(V )| ≤ 2C(y)h. It follows that limh↓0 A2(x) = 0 for any x ∈ S. It remains to
prove that on S we have

(6.3) lim
h↓0

I + II

h
= εBy(ϕy).

Indeed, formula (6.2) implies that limh↓0 Ωy(A1) = εΩy(By(ϕy)) pointwise on S (due to

the Lebesgue dominated convergence theorem: we have ωy > 0, Ωy(1) = 1, and I+II
h is

uniformly bounded on S for h ∈ ( y2 , y), which stems from the estimates of Subsection 6.2).
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Now we check (6.3). We start with the relation Phϕy = ϕy+h, which is immediate

because ϕ ∈ H+(O)). It follows that limh↓0
Ph(ϕy)−ϕy

h = limh↓0
ϕy−ϕy−h

h , whence

(6.4) lim
h↓0

I + II

h
= lim

h→0

(
ε

h

∫ y

y−h

Bθ(ϕy) dθ +
1

h
RΔ(ϕy)

)
= εBy(ϕy) + lim

h↓0

1

h
RΔ(ϕy)

(we have used the fact that θ 	→ Bθ(ϕy)(x) is continuous on Δ for any x ∈ S, see
Subsection 10.4.3). To obtain (6.3) it suffices to prove that the last limit in (6.4) is zero.
This follows directly from (5.7), because

|RΔ(ϕy)| ≤ c(S)
ε2h2

y2
sup
S

|ϕy|

everywhere on S.

§7. Properties (b) and (c) of the measures νε

In Subsection 4.5 we checked statement (a) from Subsection 3.4, proving, thereby, the
existence of B-points of u. Here we prove properties (b) and (c) of the measures νε (see
Subsection 3.4). The results of the present section will imply the ultradensity of the set
of B-points, and to finish the proof of Theorem 3 it will remain to construct the kernels
ωΔ described in Subsection 5.1.1. This is done in §8.

From now on we assume that ε ∈ (0, ε(S)), so that the kernel ωΔ is positive (see 5.1).
So far, we have not paid close attention to the parameter ε involved in the definition

of ωΔ = ωΔ,ε,u. It is now when it comes to the fore.

7.1. Positivity of νε(B(ξ, r)). Let B = B(ξ, r) be a ball of radius r < 1 with center
ξ ∈ S.

Lemma 7.1. There exists a positive number ε(B) such that for any ε ∈ (0, ε(B)) we have
νε(B) > c, where c = c(S,B, κ) > 0, κ is a probability measure on S (see Subsection 4.1).

Proof. Let ϕ (= ϕB) be a function on S that coincides on S with a function ψ (= ψB)
such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on 1

2B, and |∇ψ| ≤ 2
r . As usual, we let

ϕθ(x) := PO(ϕ)(xθ) = PO(ϕ)(x+ θ�ed), 0 < θ, x ∈ S.

It suffices to show that for some ε(S,B) > 0 we have

(7.1)

∫
S

ϕy dνε ≥ c(S,B) > 0

whenever 0 < ε < ε(S,B). Recalling the definition of νε (see Subsection 3.4), we notice
that (7.1) follows from

(7.2)

∫
S

ϕyΩ
∗
δ(κ) ds ≥ c(S,B, κ) > 0, where 0 < δ < y < r

(here κ is some probability measure on S; note that ϕy ∈ C(sS), because lim∞ PO(ϕ) = 0
and, therefore, limx→∞ ϕy(x) = 0). Estimate (7.2) is equivalent to∫

S

Ω[δ,y](ϕy)Ω
∗
y(κ) ds ≥ c(S,B) > 0,

which, by the Φ-property of ΩΔ (see Lemma 5.1), follows from

(7.3)

∫
S

ϕyΩ
∗
y(κ) ds

(
=

∫
S

Ωy(ϕy) dκ

)
≥ c1(S,B) > 0
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(observe that on S, ϕy coincides with the function vy, where v := PO(ψ) lies in H+( sO);
this allows us to use Lemma 5.1). If y ∈ (0, r), then

(7.4) Ωy(ϕy) = Ωr(ϕr)−
∫ r

y

d

dθ
(Ωθ(ϕθ)) dθ = Ωr(ϕr)− ε

∫ r

y

ΩθBθ(ϕθ) dθ = I − II

(we have used the differential equation (ii), see §6).
Now we estimate I from below. By (5.12), we have

(7.5) I ≥ c2(S)r
εP1−r(ϕr) = c2(S)r

εϕ1,

so that ∫
S

I dκ ≥ c3r
ε,

where c3 = (c3(S,B, κ)) := c2(S)
∫
S
ϕ1 dκ > 0.

Estimating II from above, we have

(7.6) |II| ≤ ε

∫ r

y

Ωθ(|Bθ(ϕθ)|) dθ ≤ ε sup
S,θ∈(0,r)

|Bθ(ϕθ)|r.

On the other hand,

(7.7) |Bθ(ϕθ)| ≤ c4(S)|Pθ(|∇vθ|)| ≤ c4(S) sup
O

|∇v| =:
1

r
c5(S,B)ε

(see the definition of by in Subsection 3.3.3 and the first inequality in (3.10)). Now
(7.4)–(7.7) imply (7.3): ∫

S

Ωy(ϕy) dκ ≥ c3r
ε − c5ε ≥

c3
2

for 0 < ε < ε(S,B, κ). �

7.2. Here we prove property (b) of the measure νε, see Subsection 3.4. For this, we need
the set B (= B(S, r)) of all open balls of radius r with center on S and the family (ψ)B∈B

of functions continuous on R
d, harmonic on O, and such that 0 ≤ ψB ≤ 1, ψB ≡ 0 on

S \ 2B (here by λB we denote the open ball of radius λr with the same center as B), and
ψB > q on 1

2B, where B ∈ B, r < r(S), and q ∈ (0, 1) depends only on S but not on B.
The existence of such functions will be proved in Subsection 7.3.

Note that p r
8
(:= p+ 1

2
r
4�ed) ∈

1
2B, p ∈ 1

8B. Hence,

νε

(1
4
B

)
≤ q−1

∫
1
4B∩S

ψ r
8
dνε ≤ q−1

∫
S

ψ r
8
dνε

(here ψ := ψB; we recall that ψy(p) := ψ(py), y > 0). The last integral is equal to
limy↓0 jy, where

jy :=

∫
S

ψ r
8
Ω∗

y(κ) ds =

∫
S

Ω[y, r8 ]
(ψ r

8
)Ω∗

[ r8 ,1]
(κ) ds ≤

∫
S

c1(S)ψ r
8
Ω∗

[ r8 ,1]
(κ) ds

(we assume that r < r(S) ≤ 1, and 0 < y < r
8 ; in the last estimate we have used the

identity ω∗
[y,1] = ω∗

[y, r8 ]
◦ ω[ r8 ,1]

and Lemma 5.1). Applying (5.11) to ω[ r8 ,1]
, we obtain

jy ≤ c2(S)

∫
S

PO
1− r

8
(ψ r

8
) ·

(8
r

)crε

dκ = cs(S, ε)r
−c4ε

∫
S

PO
1 (ψ) dκ

= c3r
−c4ε

∫
S

ψ(ξ)

(∫
S

pO1 (x, ξ) dκ(x)

)
ds(ξ) ≤ c3r

−c4ε sup
S×S

p1 ·
∫
S∩2B

ψ(ξ) ds(ξ)

≤ c5r
d−1−c4ε
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(we recall that κ is a probability measure, 0 ≤ ψ ≤ 1, and supS×S pO1 < +∞, see
Subsection 10.5.1). It follows that

νε(B) ≤ c5 (4r)
d−1−c4ε ≤ c6r

d−1−c4ε,

where cj depends only on S, and c4ε < d− 1, r < r(S) < 1. Finally, if r ≥ r(S), then

νε(B)

rd−1−c4ε
≤ 1

(r(S))d−1−c4ε
.

7.3. The functions ψB. We start with some additional notation.
Let B be an open ball with center c and radius r > 0, and g a function on R

d. Let

(g)B(p) := g

(
p− c

r

)
, p ∈ R

d.

By λB (where λ > 0) we denote the open ball with center c and radius λr.
Given a set A ⊂ R

d, by A+ := A ∩O we denote its “upper part”.
Let U be a domain in R

d, bU its boundary, sU := U ∪ bU its closure, and f a function
continuous on bU . By PU (f) we denote a function in C(sU) that is harmonic on U and
coincides with f on bU .

By B1 we denote the unit ball in R
d.

Now we define the functions ψB mentioned in Subsection 7.2. For this, we choose a
function ϕ ∈ C∞(Rd) such that 0 ≤ ϕ ≤ 1, ϕ(Rd \ 2B1) = 0, ϕ|( 3

2B1) = 1, and |∇ϕ| ≤ 3,

and let

(7.8) ψB =

{
PO((ϕ)B) on O

ϕB on R
d \O.

Clearly, ψB ∈ C(Rd), 0 ≤ ψ ≤ 1, ψ is harmonic on O, ψB|(S∩ 3
2B)

= 1, and ψB|(S\2B) = 0.

It remains to show that

(7.9) ψB ≥ q in
1

2
B+

for any ball B in B(S, r), and q ∈ (0, 1) may depend on S but not on B.

7.3.1. Let B (= B(x, r)) ∈ B(S, r), x ∈ S, r > 0. Put (bB)− = bB\O. From the maximum
principle it follows that

ψB(x
′) ≥ δ

B+

x′ (B ∩ S) ≥ δBx′((bB)−),

where x′ ∈
(
1
2B

)
+
, whereas δ

B+

x′ and δBx′ are harmonic measures in B+ and B with the

pole at x′. The inequality |∇Φ| < 1
100 implies (see Subsection 2.1, we recall that S is the

graph of Φ) that there exists a positive constant c1 = c1(S) such that

bB ∩ (c1B− r�ed) ⊂ (bB)−,

and therefore, the surface area of the part (bB)− of the sphere is bounded from below by
c2(S)r

d−1. It remains to note that

pB(x′, ζ) ≥ c3(d), x′ ∈ 1

2
B, ζ ∈ bB

(see Subsection 10.1), whence we see that δBx′((bB)−) ≥ q > 0 with q depending only
on S.
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§8. The kernels ωΔ: existence, properties

8.1. Let μ ⊂ segm+ be a finite set of nonoverlapping intervals such that Δ =
⋃

j∈μ j.
We call such a set a partition of Δ ∈ segm+. Sometimes we understand μ as a family

(jk)
K
k=1 of segments with positive (and nondecreasing) left endpoints: 0 < m(Δ) =

m(j1) < m(j2) < · · · < m(jK) < M(jK) = M(Δ). The number λ(μ) := maxj∈μ |j| is
called the mesh of the partition μ; we write μ2 � μ1 if any element of μ2 lies in some
element of μ1. Given a partition μ of Δ, we define the kernel Πμ by

Πμ := rωjK ◦ rωjK−1
◦ . . . rωj1

(see the related definitions in Subsection 5.1). The kernel ωΔ is defined (in Subsection 8.5)
as the limit of the sequence of kernels (Πμn)∞n=1, where the μn form some sequence of
partitions of Δ, with λ(μn) → 0. Subsections 8.2–8.4 are devoted to some preparatory
work.

8.2. By Nq we denote the set of subsets of {1, 2, . . . ,K} of cardinality q. We start with
the following identity:

(8.1) Πμ = (p|j1| − εbj1) ◦ (p|j2| − εbj2) ◦ · · · ◦ (p|jK | − εbjK ) = p|Δ| +
K∑
q=1

∑
l∈Nq

πl,

where πl := rlK ◦ rlK−1 ◦ · · · ◦ rl1,

rlq =

{
−εbjq if q ∈ l,

p|jq| if q /∈ l.

Consider the sum in (8.1) that corresponds to q = 1, taking into account that bΔ =∑K
q=1 bjq , while ∑

l∈N1

πl = −ε

K∑
q=1

p|j+q | ◦ bjq ◦ p|j−q |,

where the j±q are the segments [M(jq),M(Δ)] or [m(Δ),m(jq)], respectively (if one
of them degenerates to a point, then p|j±q | is understood as the composition identity).

Formula (8.1) shows that

(8.2) Πμ = rωΔ + ε

K∑
k=1

wk + ρμ,

where wk := bjk − p|j+k | ◦ bjk ◦ p|j−k |, ρμ :=
∑K

q=2

∑
l∈Nq

πl.

8.3. Estimating Πμ − rωΔ. First we estimate the kernel wk (Subsection 8.3.1) and ρμ
(Subsection 8.3.2).

8.3.1. The kernels wj. Note that for any θ, λ > 0 we have

|bθ|+ |cθ| ≤ c(S)
pθ
θ

(8.3a)

|pθ+λ − pθ| ≤ c(S,Λ)
λ

θ
pθ,(8.3b)

whenever θ + λ < Λ; the function x 	→ c(S, x) is monotone increasing on (0,+∞). Now
(8.3a) follows from (3.10) and (3.16). Next we prove (8.3b):

|pθ+λ − pθ| ≤
∫ λ

0

∣∣∣∣ ddt (pθ+t)

∣∣∣∣ dt ≤ c(S)

∫ λ

0

pθ+t

θ + t
dt ≤ c1

∫ λ

0

( pθ
θ + t

)(
1 +

t

θ

)
dt = c1

λ

θ
pθ,
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c1 = c1(S, λ), and the function x 	→ c1(S, x) is monotone increasing on (0,+∞) (we have
used (3.8)).

Suppose j ∈ segm+, j ⊂ Δ(∈ segm+). By L(j) we denote |j|
m(j) (note that L(j) is a

monotone nondecreasing function of the segment j). Put wj := bj − p|j+| ◦ bj ◦ p|j−|. We
have

(8.4) |wj | ≤ I + II, I := |bj − p|j+| ◦ bj |, II := |p|j+| ◦ bj − p|j+| ◦ bj ◦ p|j−||.

Using (8.3b) and (3.10), we obtain

I ≤
∫
j

|pθcθ − p|j+|+θ ◦ cθ| dθ ≤ c(S,Δ)|j+|
∫
j

pθ
θ

◦ pθ
θ

dθ

= c(S,Δ)|j+|
∫
j

p2θ
θ2

dθ ≤ c′(S,Δ)|j+|
∫
j

pm(Δ)

θ2
· 2θ

m(Δ)
dθ

≤ L(Δ)
|j|

m(Δ)
pm(Δ).

(8.5)

We pass to estimating the kernel II. Observe that (see Subsection 3.3)

cθ =
∂1pθ
∂�σ2θ

=
∂1p θ

2

∂σ2θ
◦ p θ

2
, θ > 0.

Hence,

II ≤
∫
j

|p|j+|+θ ◦ (cθ − cθ ◦ p|j−|)| dθ =

∫
j

∣∣∣∣p|j+|+θ ◦
∂1p θ

2

∂�σ2θ
◦ (p θ

2
− p θ

2+|j−|)

∣∣∣∣ dθ
≤ c(S)

∫
j

1

θ

|j−|
θ

p|j+|+ 3
2 θ

◦ p θ
2
dθ ≤ c′′(S)

∫
j

|j−|
θ2

|j+|+ 2θ

m(Δ)
pm(Δ) dθ

≤ c′′(S,Δ)L(Δ)(3L(Δ) + 2)
|j|

m(Δ)
pm(Δ) ≤ 3c′′(S,Δ)

M(Δ)

m(Δ)
L(Δ)

|j|
m(Δ)

pm(Δ)

(8.6)

(we recall that L(Δ) = M(Δ)
m(Δ) − 1). From (8.5), (8.6), and (8.4) it follows that

(8.7) |wj | ≤ c(S,Δ)
M(Δ)

m(Δ)
L(Δ)

|j|
m(Δ)

pm(Δ),

and c(S,Δ) increases with Δ. Returning to the partition μ of the segment Δ (see (8.2)),
we get

(8.8)
K∑

k=1

|wk| ≤ c(S,Δ)
M(Δ)

m(Δ)
L(Δ)

K∑
k=1

|j|k
m(Δ)

pm(Δ) = c(S,Δ)
M(Δ)

m(Δ)
(L(Δ))2pm(Δ).

8.3.2. Estimating the kernel ρμ. By (8.1), we see that ρμ =
∑K

q=2

∑
l∈Nq

πl, where πl =

rlK ◦ rlK−1 ◦ · · · ◦ rl1. If k ∈ l, then |rlk| = ε|bjk | ≤ c(S)εL(jk)pm(jk) (see (5.2)). Assume

that μ is a regular partition, i.e., λ(μ) ≤ 2|Δ|
K . Then, putting ν := 2c(S)εL(Δ), we obtain

|rlk| ≤
ν

K
pm(jk), k ∈ l.

On the other hand, if k /∈ l, then rlk = p|jk|. This means that for l ∈ Nq we have

|πl| ≤ νqK−qpa(l),
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where a(l) :=
∑

k∈l m(jk) +
∑

k∈l |jk| ≤ sM(Δ) + |Δ|. Since �Nq = Cq
K ≤ Kq

q! , we arrive
at

|ρμ| ≤
K∑
q=2

Kq

q!
νqK−qc(S)

qM(Δ) + |Δ|
m(Δ)

pm(Δ)

≤ ν2
∞∑
q=2

νq−2

(q − 1)!
c(S)

M(Δ) + |Δ|
m(Δ)

pm(Δ)

≤ (2L(Δ) + 1)ν2c(S)eνpm(Δ).

(8.9)

Now we are ready to estimate Πμ − rωΔ. From (8.2), (8.8), and (8.9) we deduce the
inequality

(8.10) |Πμ − rωΔ| ≤ c(S,L(Δ))(L(Δ))2pm(Δ),

where the function x 	→ c(S, x) is monotone increasing on [0,+∞) (we recall that L(Δ)
increases with Δ ∈ segm+). In (8.10) it is assumed that the partition μ of Δ is regular
and that ε ∈ (0, 1).

An estimate for the kernel Πμ also follows from (8.10):

|Πμ| ≤ |rω(Δ)|+ c(S,L(Δ))(L(Δ))2pm(Δ)

≤ p|Δ| +
(
c(S)εL(Δ) + c(S,L(Δ))(L(Δ))2pm(Δ)

)
= p|Δ| +A · (L(Δ))2pm(Δ),

(8.11)

where A = A(L(Δ), S), and the function x 	→ A(x, S) is monotone increasing on [0,+∞).

8.4. Estimating the kernel Πτ −Πσ, σ � τ . This is the main estimate of this section,
after which we shall complete the construction of the kernel ωΔ easily.

Lemma 8.1. Let τ be a partition of Δ ∈ segm+, and let σ � τ . Then

(8.12) |Πτ −Πσ| ≤ C(S,Δ)λ(τ )pm(Δ)

(λ(τ ) is the mesh of a partition, see Subsection 8.1).

Proof. Suppose τ = {Δ1,Δ2, . . . ,ΔK}, m(Δ1) < m(Δ2) · · · < m(ΔK). Put σk :=

{j ∈ σ : j ⊂ Δk}; then σk is a partition of Δk, σ =
⋃K

k=1 σk. For i = 2, 3, . . . ,K, we

denote by σ−
i the part of σ that lies in Δ−

i : σ
−
i =

⋃
1≤q<i σq; σ

−
1 := ∅. For i = 1, . . . ,K,

we denote by τ+i the part of τ that lies in Δ+
i : τ+i =

⋃
i<q≤K Δq; τ+K+1 := ∅. Finally,

let τ (i) := σ−
i ∪ {Δi} ∪ τ+i , 1 ≤ i ≤ K; τ (K + 1) := σ. Here the kernel Πτ(i) is written

as Πi, i = 1, . . . ,K + 1. In particular, Π1 = Πτ , ΠK+1 = Πσ, and

(8.13) Πτ −Πσ =

K∑
i=1

(Πi −Πi+1).

If i �= 1, K, then

(8.14) Πi −Πi+1 = Πτ+
i ◦ (rωi −Πσi) ◦Πσ−

i

(here we write rωi instead of rωΔi
). This is also true for i = 1,K if Π∅ is understood

as the convolution identity operator. Relations (8.14), (8.10), (8.11) and the inequality
|Δi|2 ≤ λ(τ )|Δi| imply that

(8.15) |Πi −Πi+1| ≤ (p|Δ+
i | + Cpm+

i
) ◦ λ(τ )|Δi|pm(Δ) ◦ (p|Δ−

i | + Cpm−
i
)

(here C = C(Δ, S); m±
i = m(Δ±

i )). The right-hand side in (8.15) does not exceed

A(M(Δ) + |Δ|)
m(Δ)

λ(τ )|Δi|pm(Δ) = A(1 + 2L(Δ))λ(τ )|Δi|pm(Δ),
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where a = A(Δ, S). Therefore,

|Πτ −Πσ| ≤
K∑
i=1

|Πi −Πi+1| ≤ A(1 + 2L(Δ))|Δ|λ(τ )pm(τ). �

8.5. Dyadic partitions of ωΔ. Let n ∈ Z+, Δ ∈ segm+. We denote by τn(Δ) the

partition of Δ that consists of all intersections of the form Δ ∩
[

s
2n ,

s+1
2n

]
, s ∈ Z+.

We say that such a partition is dyadic of rank n. Clearly this is a regular partition,

τn+1(Δ) � τn(Δ), and λ(τn(Δ)) ≤ |Δ|
2n . Put Πn := Πτn(Δ). Lemma 8.1 implies that

|Πn −Πn+1| ≤ C(Δ, S) Δ
2n pm(Δ), n = 1, . . . . Therefore, the series

(8.16) lim
n→∞

Πn (=: ωΔ) = Π1 + (Π2 −Π1) + (Π3 −Π2) + . . .

converges uniformly on S × S and gives rise to a kernel ωΔ that satisfies

(1) ωΔ ∈ C(S × S);

(2) ωΔ > 0 if ε ∈ (0, ε(S));

(3)
∫
S
ωΔ(x, ξ) ds(ξ) = 1 for every x ∈ S;

(4) if 0 < a < b < c, then ω[a,c] = ω[b,c] ◦ ω[a,b];

(5) |ωΔ − rωΔ| ≤ C(S)ε2(L(Δ))2pm(Δ) if Δ is short (i.e., if L(Δ) ≤ 1).

Proof. (1) follows from the continuity of bΔ (see Subsection 10.5) and from the fact
that the series in (8.16) converges uniformly on S × S. Statement (2) follows from the
positivity of rωΔ for ε ∈ (0, ε(S)) (see (5.3)). To obtain (3), we observe that rωΔ(x, ξ) ds(ξ)
is a probability measure on S (see Subsection 5.1), so that we have

∫
S
Πn(x, ξ) ds(ξ) = 1,

x ∈ S, n = 1, 2, . . . ; the possibility of passing to the limit in the integral is due to the
estimate

|Πn − ωΔ| ≤ C|Δ|2−npm(Δ),

which, in its turn, is implied by (8.12). Now we show (4). Put Δ := [a, c], Δ− := [a, b],
Δ+ := [b, c], τ ′n(Δ) := τn(Δ

−) ∪ τn(Δ
+). Since, clearly, τ ′n(Δ) � τn(Δ), we see that

|Πτ ′
n −Πτn | ≤ c(S,Δ)

|Δ|
2n

pm(Δ)

by Lemma 8.1. Therefore, limn→∞ Πτ ′
n(Δ) = ωΔ everywhere on S × S. On the other

hand, we see that limn→∞ Πτn(Δ
+) ◦Πτn(Δ

−) = ωΔ+ ◦ωΔ− . The limit passage is justified

by the estimates |Πτn(Δ
±)| ≤ rωΔ± + cpm(Δ), which follow from (8.10) and provide the

existence of s-integrable majorants for the functions ξ 	→ Πτn(Δ
+)(x, ξ) · Πτn(Δ

−)(ξ, x′)

for x, x′ ∈ S, n = 1, 2, . . . . It remains to note that Πτ ′
n(Δ) ≡ Πτn(Δ

+) ◦ Πτn(Δ
−). It

remains to prove (5). Estimate (8.10) shows that for μ := τn(Δ) we have

|Πτn(Δ) − rω(Δ)| ≤ c(S,L(Δ))ε2(L(Δ))2pm(Δ), n = 1, 2, . . . ,

where the function x 	→ c(S, x) is monotone increasing on [0,+∞). If Δ is a short
segment (i.e., L(Δ) ≤ 1), then, letting n go to infinity, we obtain

|ωΔ − rωΔ| ≤ c(S, 1)ε2
(

|Δ|
m(Δ)

)2

pm(Δ). �

Theorem 3 is proved (up to some minor details collected in §10). In the next section
we use it to deduce Theorem 2.
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§9. Proof of Theorem 2

9.1. First, we specify the smoothness conditions for S (= bO) in Theorems 1 and 2 (here
bE denotes the boundary of E ⊂ Ed). We introduce a system of Cartesian coordinates
in Ed by putting the origin at p ∈ Ed and aligning the axes along the elements of
some orthonormal basis �e1, �e3, . . . , �ed in Ed. We thus transform Ed into the space R

d ∼=
R

d−1 × R, writing its points as (x, y) with x = (x1, . . . , xd−1) ∈ R
d−1 and y ∈ R. By

a cylinder in Ed we call a set C ⊂ Ed that is defined in the above coordinate system as
follows: C = {(x, y) ∈ R

d : |x| < r, |y| < h}, where r, h are some positive numbers.

9.2. In Theorems 1 and 2 we assume that the following condition is satisfied: for any
p ∈ S there exists a cylinder C = C(p, r(p), h(p)) with center p and a function ϕ ∈
C2({x ∈ R

d−1 : |x| < 2r(p)}) such that

(1) O ∩ C (=: C+) = {(x, y) ∈ R
d : |x| < r(p), ϕ(x) < y < h(p)}, where |ϕ| ≤ h(p)

2

in {x : |x| < r(p)}, ϕ(0) = 0, ∇ϕ(0) = 0, and �ed coincides with �N(p);

(2) C− := {(x, y) ∈ R
d : |x| < r(p), −h(p) < y < ϕ(x)} ⊂ Ed \ sO

In this case S∩C(p) is the graph of the function ϕ|Bd−1(0,r(p)), and the hyperplane {y = 0}
is tangent to S at the point p. We call such a domain O a C2-domain (see Subsection 1.1).

9.3. In Subsections 9.5, 9.6 we shall show that for any p ∈ S and some cylinder C(p) we
have

(9.1) dim (Vgrad(u) ∩ C(p, ρ, h(p))) = d− 1

whenever ρ ∈ (0, r(p)). This proves Theorem 2.
In what follows, we fix a point p ∈ S, some coordinate system with origin at p, and a

cylinder C(p) as in Subsection 9.2.

9.4. Construction of a “near half-space” W . We extend the function ϕ|Bd−1(0,r(p))

up to a function Φ ∈ C2(Rd−1). Taking r(p) to be sufficiently small, we may assume that
|∇ϕ| < κ on B

d−1(0, r(p)), and |∇Φ| < κ on R
d, where κ is some small positive number

to be chosen later. We also assume that Φ ≡ 0 outside B
d−1(0, 2r(p)). Let

W := {(x, y) : x ∈ R
d−1, y > Φ(x)}

be the open epigraph of the “almost constant” Φ. Clearly, C+ ⊂ W .

9.5. With the function u (see Theorems 1 and 2) we shall associate a function w that is
positive and harmonic on W and is such that for sufficiently small r = r(p), we have

(9.2) Vgrad(w) ∩ S ∩ C = Vgrad(u) ∩ S ∩ C .

This function w will be defined in Subsection 9.5.2.

9.5.1. Consider a subdomain U of W ∩O,

(9.3) U := {(x, y) ∈ C : |x| < r, h > y > ϕ(x) + β(x)},
where β ∈ C∞(Rd−1), 0 ≤ β ≤ h

4 , β ≡ 0 in B
d−1(0, r

2 ), β(x) > 0 for |x| > r
2 . Since the

“bottom” of U (i.e., bU ∩ S =: Σ) coincides with S ∩ B
d−1(0, r

2 ), we have

(9.4) U + y�ed ⊂ O for y ∈ (0, yO],

where yO > 0 is sufficiently small. For such y, put uy(x, η) = u(x, y+η), where (x, y) ∈ sU ,
0 ≤ η < yO. The function uy admits an extension harmonic near sU ; hence, for p ∈ U ,
0 < y < yO we have

(9.5) uy(p) =

∫
bU

uy(q)g
U (p, q) ds(q),
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where ds is the (d− 1)-dimensional surface measure on bU ,

gU (p, q) =
∂

∂ �N(q)
GU (p, q), p ∈ U, q ∈ bU,

GU is the Green function of U , and �N(q) is the (inward) normal to bU at q. Fixing a
point p0 ∈ U , we use the fact that gU (p0, q) ≥ c(r, U) > 0 for q ∈ Σ (this follows from
the C2-smoothness of ϕ and β, see [Br1, Chapter I, §8]). Therefore,

sup
0≤y≤yO

∫
Σ

uy(q) dsq < +∞.

The functions uy, 0 ≤ y ≤ yO, are uniformly bounded on the compact set bU \Σ ⊂ O.
We see that

sup
0≤y≤yO

∫
bU

uy ds < +∞,

and from any sequence (yk) in (0, yO] that tends to zero we can extract a subsequence
such that the uyk

ds converge weakly on U to some measure dμ as l → ∞. Next, (9.5)
implies that

(9.6) u(p) =

∫
bU

gU (p, q) dμ(q), p ∈ U.

If u is given, then the measure μ that satisfies (9.6) is determined uniquely ([HW1], [Br2,
Chapter XIV]), so that it does not depend on the choice of (yk). Consequently μ is the
weak limit of the family uy ds on bU as y ↓ 0 (it coincides with u ds outside Σ). In
particular,

(9.7) lim
y↓0

∫
Σ

ψuy ds =

∫
Σ

ψ dμ

for any ψ ∈ C(bU) supported on Σ.

9.5.2. Here we define the function w (see (9.2)):

(9.8) w(p) :=

∫
Σ

gW (p, q) dμ(q), p ∈ W,

where μ is the measure occurring in (9.6) (we recall that Σ ⊂ bW ). Like in Subsection
9.5.1, we show that

lim
y↓0

∫
Σ

ψwy ds =

∫
Σ

ψ dμ,

where wy(x, η) := w(x, η+y), (x, η) ∈ W , y > 0, and ψ is the same as in (9.7) (w admits
in W the integral representation

∫
bW

gW (p, q) dξ(q) with a uniquely determined measure
ξ, which is the weak limit on bW of wy ds as y ↓ 0; hence, ξ = μ on Σ and ξ = 0 on
bW \ Σ). Finally, using the same arguments as in Subsection 9.5.1, we obtain

w(p) =

∫
bU

gU (p, q) dλ(q), p ∈ U,

where λ is some measure on bU . As before, we see that, for the same ψ we have
∫
Σ
ψ dλ =

limy↓0
∫
Σ
ψwy ds =

∫
Σ
ψ dμ, and λ = μ on Σ. Therefore, for p ∈ U obtain

u(p)− w(p) =

∫
bU

gU (p, q) dμ(q)−
∫
bU

gU (p, q) dλ(q)

=

∫
bU\Σ

gU (p, q) dμ(q)−
∫
bU\Σ

gU (p, q)dλ(q).
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Put Σ̊ := bU \ bU \ Σ. The last two integrals tend to zero as p → p∗, where p∗ is an

arbitrary point in Σ, and moreover, convergence is uniform on any compact subset of Σ̊.
The smoothness condition ϕ, β ∈ C2 implies that ∇(u − w) extends continuously from

U to U ∪ Σ̊ (see [Br1, Chapter I, §8]), and we get (9.2). Now we can apply Theorem
3 to the function w and the “near half-space” W . It follows immediately that the set
{q ∈ bW : V w(q) < +∞} is ultradense in bW . In Subsection 9.6 it will be shown that
in this case

(9.9) Vgrad(w) is ultradense in bW.

Returning to the point p ∈ bO chosen at the end of Subsection 9.3, and to the number ρ ∈
(0, r(p)), from (9.2) we deduce that C(p, ρ, h(p))∩Vgrad(u) is ultradense in C(p, ρ, h(p))∩
bO.

9.6. Proof of (9.9). We start with some preliminary arguments.

9.6.1. Let E ⊂ R
d, y ∈ R. As before, by Ey we denote the set E + y�ed.

Let y, l > 0, q = (x, η) ∈ ĎWy+l, q
′ = (x′, η′) ∈ R

d \Wy. Then |q − q′| ≥ (1− κ)l.
Indeed, we may assume that |x− x′| < l, because |q − q′| ≥ |x− x′|. On the other hand,
we see that η ≥ Φ(x) + y + l, η′ ≤ Φ(x) + y, |q − q′| ≥ η − η′ ≥ l − |Φ(x) − Φ(x′)| ≥
l − sup |�∇Φ| · l ≥ l − κl. �

9.6.2. Let �k be a unit vector, �k = (k1, . . . , kd), kd > 0. Let h be a function positive and
harmonic on W . Given q ∈ bW , we put

(var�k h)(q) :=

∫ tq

0

|∇h(q + t�k)| dt,

where tq > 0, (q, q + tp�k) ⊂ W . In Theorem 2 we are interested in the case where
�k := �N(p), where

kj = − ∂Φ

∂�ej
(p)

1√
1 + |�∇Φ(p)|2

;

kd =
1√

1 + |�∇Φ(p)|2
.

Let q = (x,Φ(x)) ∈ bW . Then, for y > 0, Subsection 9.6.1 implies that

(9.10) B
d

(
qy,

(1− κ)y

2

)
⊂ W y

2
.

Put qy,�k := (x+ y�k′,Φ(x) + ykd), �k
′ = (k1, . . . , kd−1). We have

|qy − qy,�k|
2 ≤

(
(1− κ)

4

)2

y2

whenever

(9.11) |�k′|2 (= (1− k2d)) < κ2 ≤ 1

100
.

If (9.11) holds true, then an arbitrary function h that is positive and harmonic on W y
2

(and, consequently, in B
d(qy,

(1−κ)y
2 ), see (9.10)) satisfies

(9.12) Ad ≤ h(qy)

h(qy,�k)
≤ Bd, y > 0
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(due to the Harnack inequality), where Ad, Bd are some positive constants that depend
only on d.

9.6.3. The function |∇w| is subharmonic on W , lim∞ |∇w| = 0, and it is continuous
in ĎWy for any y > 0. Let hW

y denote the least harmonic majorant for |∇w||Wy
(i.e.,

the solution of the Dirichlet problem in Wy with the boundary data |∇w|; we drop the
superscript in hW

y ).
Let q = (x,Φ(x)) ∈ bW . Put

(9.13) V�k(w)(q) :=

∫ 1

0

h y
2
(qy,�k) dy.

We assume (9.11), so that qy,�k ∈ B
d(qy,

99
200y) ⊂ W y

2
. Therefore, (9.13) makes sense, and

h y
2
(qy,�k) ≥ |∇w(qy,�k)|, whence

(9.14) V�k(w)(q) ≥ (var�k w)(q)

if (9.11) is satisfied, which is true for �k = �N(q), because then we have

|�k′|2 =
|�∇Φ(x)|2

1 + |�∇Φ(x)|2
≤ κ2 < 10−4.

Now we compare V �N(q)(w) with V�ed(w) = V w. From (9.12) it follows that these two

quantities are finite or infinite simultaneously, and we obtain the main result of this
section, concluding the proof of Theorem 2.

§10. Some auxiliary results

To avoid being distracted by minor details, we omitted some of the proofs of the
auxiliary results we used before. They are collected in this section.

10.1. Estimates of the ratios of Poisson kernels. We recall that by B (= B
d) and S

we denote the d-dimensional unit ball {z ∈ R
d : |z| < 1} and its boundary, respectively.

Let R > 0. Let pRB denote the Poisson kernel for RB (see (2.4)):

(10.1) pRB(z, ζ) = cd
R2 − |z|2
|z − ζ|d , z ∈ RB, ζ ∈ RS.

Given z1, z2 ∈ RB and ζ ∈ S, we put

(10.2) ρ (= ρR(z1, z2, ζ)) :=
pRB(z2, ζ)

pRB(z1, ζ)
.

Now we estimate ρ from above for z1, z2 that lie on a “near radius” l.

Lemma 10.1. Let ζ0, ν ∈ S, and let

(10.3) |ν + ζ0| <
1

2
.

Put zj := ζ0 +Ryjν, j = 1, 2, where 0 < y1 < y2 < 1
4 . Then for any ζ ∈ RS we have

(10.4) ρ ≤ Ad y2
y1

,

where A is an absolute constant.
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Proof. From (10.1) and (10.2) it follows that ρ = ρ1
(
z1
R , z2

R , ζ
R

)
. This allows us to assume

that R = 1. Condition (10.3) means essentially that 〈ν, ζ0〉 < 0, |〈ν, ζ0〉| > 7
8 , because

|ν + ζ0|2 = 2(1 + 〈ζ0, ν〉). Next, ρ = ρ∗ · (ρ∗∗) d
2 , where ρ∗ := 1−|z2|2

1−|z1|2 , ρ
∗∗ := |ζ−z1|2

|ζ−z2|2 . We

estimate ρ∗ and ρ∗∗ separately:

(10.5) ρ∗ =
1− |y2ν + ζ0|2
1− |y1ν + ζ0|2

=
2y2〈ζ0, ν〉+ y22
2y1〈ζ0, ν〉+ y21

=
y2
y1

1− y2

2|〈ζ0,ν〉|
1− y1

2|〈ζ0,ν〉|
< 2

y2
y1

,

because y1

2|〈ζ0,ν〉| < 1
7 . We estimate ρ∗∗. Let ζ ∈ S, |ζ − ζ0| := r, so that ζ = ζ0 + rθ,

θ ∈ S. The identity 1 = |ζ0 + rθ|2 = 1 + 2〈ζ0, θ〉+ r2 implies that 〈ζ0, θ〉 = − r
2 . Next,

(10.6) ρ∗∗ =
|rθ − y1ν|2
|rθ − y2ν|2

=
r2 + y21
r2 + y22

·
1− 2y1r〈θ,ν〉

r2+y2
1

1− 2y2r〈θ,ν〉
r2+y2

2

≤ 1 + |〈θ, ν〉|
1− |〈θ, ν〉| ≤

2

1− |〈θ, ν〉|

(we have used the fact that 2|ab| ≤ a2 + b2, y21 < y22). Assume that r < 1
2 . Then (see

(10.3))

|〈θ, ν〉| = |〈θ,−ζ0〉+ 〈θ, ν + ζ0〉| ≤
r

2
+

1

2
≤ 3

4
,

and (10.6) implies that ρ∗∗ ≤ 8. On the other hand, if r ≥ 1
2 , then |ζ−z2| ≥ r−|z0−z2| =

r − y2|ν| ≥ r − 1
4 ≥ 1

4 , and the definition of ρ∗∗ shows that ρ∗∗ ≤ 8. �

10.1.1.

Corollary 1. Let v be a positive and harmonic function on RB, and z1, z2 are from
Lemma 10.1. Then

(10.7)
v(z2)

v(z1)
≤ Ad

(
y2
y1

)
,

where A is the constant from (10.4).

Proof. This follows immediately from (10.4):

v(z2) =

∫
RS

pRB(z2, ζ) dμ ≤ Ad y2
y1

∫
RS

pRB(z1, ζ) dμ(ζ) = Adv(z1)
y2
y1

,

where μ is some measure on RS. �

10.2. Harnack inequalities for positive harmonic functions. We formulate these
inequalities in a convenient form. Let v be a positive harmonic function on O ⊂ R

d, and
let A ∈ O. Then

(10.8) |∇v(A)| ≤ d
v(A)

dist(A, bO)
.

This inequality (see [HK, 1.5.6]) is a consequence of the following estimate of the ratio
v(A)
v(B) for A,B ∈ O such that |A−B| < dist(A, bO):

(10.9)
1−Q

(1 +Q)d−1
≤ v(A)

v(B)
≤ 1 +Q

(1−Q)d−1
,

where Q := |A−B|
dist(A,bO) .

10.3. Rough estimate of the ratios v(q2)
v(q1)

for positive harmonic v on OΦ. We

use this estimate (see Subsection 10.3.2 below) for the proof of (3.7). Let OΦ denote the
“near half-space” defined in Subsection 2.1, and let S denote its boundary (the graph of
Φ). The point q ∈ R

d is written as (q′, qd) with q′ ∈ R
d−1, qd ∈ R.
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10.3.1. We start with estimating the distance dist(q, S) from q ∈ OΦ to S,

(10.10) c(S)(qd − Φ(q′)) ≤ dist(q, S) ≤ qd − Φ(q′),

where c(S) > 0 depends only on S. Indeed, if τ ∈ R
d−1, then

qd − Φ(q′) ≤ |qd − Φ(q′)|+ |Φ(τ )− Φ(q′)| ≤ |qd − Φ(τ )|+K|τ − q′|

≤
√
1 +K2 ·

√
(qd − Φ(τ ))2 + |τ − q′|2,

where K := sup |∇Φ|. Therefore,

qd − Φ(q′) ≤
√
1 +K2 dist(q, S).

The right-hand side inequality in (10.10) is trivial.

10.3.2. Let v be a positive harmonic function on O−y, where O = OΦ, y > 0. Then for
q ∈ sO and t > 0 we have

|(v(qt))′t| ≤ |(∇v)(qt)| ≤ d
v(qt)

dist(qt, S−y)
≤ d

v(qt)

c(y + t)

by (10.8) and (10.10). Dividing by v(qt) and integrating over t ∈ [0, h], we obtain

v(qh)

v(q)
≤

(
y + h

y

) d
c

, q ∈ sO, h > 0.

In particular, putting p = pO to be the Poisson kernel for O = OΦ, we get

(10.11)
py1

py2

≤
(
y1
y2

) d
c

, 0 < y1 < y2.

10.4. Zeros of the gradient of a harmonic function. Let v be harmonic on O = OΦ

(see Subsection 2.1); suppose that y > 0, E ⊂ Sy (= S+y�ed), s(E) > 0, ∇v|E = 0. Then
v is a constant function.

10.4.1. In order to prove this, we need the following fact. Assume that the origin is a
density point for A ⊂ R

m. Then there exists a basis �e1, . . . , �em of Rm such that the set
of the density points of {t ∈ R : t�ek ∈ A} contains zero for any k = 1, . . . ,m.

Proof. Let S denote the unit sphere in R
m and ν the trace of the (m − 1)-dimensional

Hausdorff measure Hm−1 on S. Given ρ > 0 and E ⊂ R
m, we put Eρ := E ∩ ρBm,

where B
m is the unit ball in R

m, E(ρ) := 1
ρ(E ∩ ρS) = 1

ρE ∩ S, cE := R
m \ E. Since

Hm((cA)ρ = o(ρm)) as ρ ↓ 0, i.e.,∫ ρ

0

ν((cA)(r))rm−1 dr = o(ρm),

we have limρ↓0 ν((cA)(ρ)) = 0. Therefore, there exists a positive sequence (rj)
∞
j=1 → 0

such that
∞∑
j=1

ν((cA)(rj)) < ν(S),

and

ν

( ∞⋂
j=1

A(rj)

)
= ν(S)− ν

(
S \

∞⋂
j=1

A(rj)

)
= ν(S)−

( ∞⋃
j=1

(cA)(rj) ∩ S

)

≥ ν(S)−
∞∑
j=1

ν
(
(cA)(rj)

)
> 0.
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This means that
⋂∞

j=1 A(rj) does not lie in any hyperplane, and therefore, contains a
basis of Rm. �

10.4.2. Now we prove the statement formulated at the beginning of this section. First,
we verify that all second derivatives of v vanish s-a.e. on E. Namely, this happens
at the points p = (p′, pd) such that p′ is the density point for the projection PrE of
E to R

d−1 (this is true s-a.e. on E). If p ∈ E is such a point, then it is a density
point also for PrT (p)(E) =: E(p), where PrT (p)(E) is the projection of E to the tangent
hyperplane T (p) for S at p. By Subsection 10.4.1, there exist d − 1 rays l in T (p) that
start at p and such that p is the density point of l ∩ E(p). The first derivatives of ∇v
along these rays vanish at p; moreover, any derivative along a vector tangential to Sy

also vanishes at p. We also see that ∂2v

∂ �N(p)2
(p) = 0, where �N(p) is the normal vector to

Sy at the point p, which follows from the identity Δv(p) = 0 (it suffices to write the

Laplacian in some orthonormal coordinate system containing �N(p)). Therefore, all the
second derivatives of v vanish s-a.e. on E. By iterating this argument (and using the
harmonicity of the derivatives of v) we show that all the partial derivatives of v vanish
s-a.e. on E. Combining this with the the fact that v is real analytic, we see that v is
constant in O.

10.4.3. Here we deduce a corollary to the result of Subsection 10.4.2. Let ψ ∈ L∞(S),
x ∈ S (S is the boundary of OΦ, see Subsection 2.1). The function k : θ 	→ Bθ(ψ)(x),
θ ∈ (0,+∞), is continuous. Here Bθ is the integral operator with the kernel bθ, see
Subsection 3.3.3.

Proof. Let y be any positive number. We show that k is continuous at y. Put v :=
PO(ψ), gθ(ξ) := Cθ(ψ)(ξ) = 〈∇v(ξθ), �σ(ξ2θ)〉, ξ ∈ S, θ > 0, so that k(θ) = Pθ(gθ)(x).
The function �σ is continuous at any p ∈ O such that ∇u(p) �= 0. In accordance with
Subsection 10.4.2, this is true s-a.e. on Sy, whence limθ→y gθ = gy s-a.e. on Sy, and also

sup
θ∈( y

2 ,2y)

‖gθ‖S,∞ ≤ sup
O y

2

|∇v| < +∞.

Put wθ = PO(gθ) (so that k(θ) = wθ(xθ)). The above argument implies that

(10.12) lim
θ→y

wθ = wy

in O (by dominated convergence). The family (wθ)θ> y
2
of functions harmonic on O is

uniformly bounded on compact subsets of O. It follows that (10.12) is true uniformly in
some neighborhood of xy, and the family (wθ) y

2<θ<y is uniformly continuous there, so

that we have limθ→y wθ(xθ) = wy(xy), i.e., limθ→y k(θ) = k(y). �

The continuity of k follows immediately from the results in the next subsection.

10.5. The kernels by are continuous. Here we consider the kernels by defined in
Subsection 3.3.3. Put β(x, ξ, y) := by(x, ξ), γ(x, η, ξ, y) := py(x, η)cy(η, ξ), x, η, ξ ∈
S, y > 0. We recall that cy(η, ξ) = 〈∇1pO(ηy, ξ), �σ(η2y)〉 (see Subsection 3.3.2). Note
that

(10.13) β(x, ξ, y) =

∫
S

γ(x, η, ξ, y) ds(η), x, ξ ∈ S, y > 0.

To show that β is continuous at (a, b, y0) ∈ S × S × (0,+∞), we observe that

lim
x→a,

ξ→b, y→y0

γ(x, η, ξ, y) = γ(a, η, b, y0)
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if η ∈ S \ Z−2y0
, i.e., for s-a.e. η ∈ S (see Subsection 10.4.2; Z is the zero set of ∇u).

To justify the limit passage in (10.11), we show that the functions l : η 	→ |γ(x, η, ξ, y)|
have a common majorant integrable on S with respect to s for any ξ ∈ S and x, y close
to a, y0, respectively. Indeed,

(10.14) |γ(x, η, ξ, y)| ≤ c(S)
py(x, η)py(η, ξ)

y

(see (3.10)). Next, sup
{
py(η, ξ) : y ∈ ( y0

2 , 3y0

2 ), η, ξ ∈ S
}
< +∞ (see Subsection 10.5.1).

Now we estimate py(x, η) for any η ∈ S, with y close to y0, and x close to a. For this,
we choose η ∈ S and consider a function v harmonic and positive in O and such that

v(q) := pO(q, η), q ∈ O,

so that py(x, η) = v(xy) for x ∈ S, y > 0. By Subsection 10.3.1, we have B(xy0
, c1y0) ⊂ O,

where c1 is some positive constant depending only on S. Assume that y > 0, |y − y0| <
c1
4 y0, x ∈ S, |x− a| < c1

4 y0. Then

|xy − ay0
| ≤ |xy − x0|+ |xy0

− ay0
| = |y − y0|+ |x− a| < c1

2
y0,

and, by the Harnack inequality (we apply it to v and B(ay0
, c1y0), see Subsection 10.2),

we see that

v(xy) ≤ c2(d)v(ay0
).

Now (10.14) implies that η 	→ c3py0
(a, η), η ∈ S, is the desired majorant for l; here the

constant c3 > 0 depends only on d, S, and y0 (we recall that
∫
S
py0

(a, η) ds(η) = 1). Fi-
nally, from (10.11) and dominated convergence it follows that β is continuous at (a, b, y0).

10.5.1. Here we prove that the function m : (η, ξ, y) 	→ py(η, ξ) (= pO(ηy, ξ)), η, ξ ∈ S,
y ≥ y1, is bounded. We recall that

m(η, ξ, y) =
∂GO

∂ �N(ξ)
(ηy, ξ),

where GO is the Green function of O = OΦ (see Subsection 2.3), and �N(ξ) is the inward
normal to S at ξ; we differentiate over the second variable. The surface S is the graph
of a function Φ ∈ C2(Rd−1) that is constant outside of some ball with sufficiently large
radius. Therefore, we can choose R = R(S) > 0 such that for any ξ ∈ S there exists an

open ball B (= B(ξ − R �N(ξ), R)) of radius R that is tangent to S at ξ and lies outside
O ∪ S. Denote by B

− its complement, i.e., the set Rd \ (B ∪ bB).

Given q ∈ O, the function λ : x 	→
(
GB

−
(q, x)−GO(q, x)

)
is harmonic on O, positive

on S, and vanishes at infinity. By the maximum principle, this function is positive on O.
Next, λ(ξ) = 0, whence ∂λ

∂ �N(ξ)
(ξ) ≥ 0 (we can differentiate because S ∈ C2). Thus, we

have ∂GO

∂ �N(ξ)
(x, ξ) ≤ ∂GB

−

∂ �N(ξ)
(q, ξ), i.e.,

pO(q, ξ) ≤ pB
−
(q, ξ), q ∈ O, ξ ∈ S.

Putting q = ηy, where η ∈ S and y ≥ y1, we see that the right-hand side does not exceed
some constant that depends only on y1, S, and R. This follows immediately from the

explicit formula for pB
−
(see [ABR, p. 66]); we also observe that for y ≥ y1 the distance

between ηy and the center of B is at least cy1, where c = c(S) > 0 (see Subsection 10.3.2).
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