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ASYMPTOTICS OF PARABOLIC

GREEN’S FUNCTIONS ON LATTICES

P. GUREVICH

Abstract. For parabolic spatially discrete equations, we considered the Green func-
tions also known as heat kernels on lattices. Their asymptotic expansions with re-
spect to powers of the time variable t are obrained up to an arbitrary order, the
remainders are estimated uniformly on the entire lattice. The spatially discrete (dif-
ference) operators under consideration are finite-difference approximations of contin-
uous strongly elliptic differential operators (with constant coefficients) of arbitrary
even order in Rd with arbitrary d ∈ N. This genericity, besides numerical and de-
terministic lattice-dynamics applications, makes it possible to obtain higher-order
asymptotics of transition probability functions for continuous-time random walks on

Zd and other lattices.

§1. Introduction

In this paper, we deal with Green’s functions, or heat kernels, of general parabolic
equations with constant coefficients that are continuous in time and discrete in space.
Applications that we have in mind include spatial discretization of continuous models,
lattice dynamical systems, and continuous-time random walks.

We consider parabolic problems on the grid space, or lattice,

R
d
ε := {x ∈ R

d : xk = skε, sk ∈ Z, k = 1, . . . , d}, d ∈ N, ε > 0,

of the form

(1.1)

{
u̇ε(x, t) +Aεu

ε(x, t) = 0, x ∈ R
d
ε , t > 0,

uε(x, 0) = δε(x), x ∈ Rd
ε .

Here ˙= ∂/∂t, δε(x) is the grid delta-function given by

(1.2) δε(0) = ε−d, δε(x) = 0 ∀x ∈ R
d
ε \ {0},

and Aε is an elliptic difference operator (with constant coefficients), which is assumed to
be an Mth order approximation of a strongly elliptic (continuous) differential operator
A(D) of even order � (see §2 for rigorous definitions). The order M ∈ N is defined by
the estimate

(1.3) sup
y∈Rd

|Aεu(y)−A(D)u(y)| ≤ C(u)εM , ε > 0,

which must be true for any smooth (continuous and bounded with all its derivatives)
function u(y) and an appropriate constant C(u) > 0 not depending on ε > 0.

We call a solution of problem (1.1) the first discrete Green function. Given arbitrary
initial data instead of δε(x), one can represent a solution as a (discrete) convolution
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of these initial data with the first Green function. Alternatively, the first Green func-
tion determines a semigroup generated by −Aε. Various properties of Aε (in terms
of its symbol) in function spaces of grid functions, corresponding semigroup properties,
and relationship to spatially continuous problems can be found in [1, 2, 6], see also the
references therein.

By using the discrete Fourier transform, one can give an integral representation of the
discrete Green function (see (2.22)). However, it is not possible to express it via elemen-
tary functions, hence its asymptotic expansions play an important role. Asymptotics
of the so-called lattice Green’s functions in the stationary case were studied beginning
from 1950s, see [5], the subsequent papers [3,9,12,15–17], and the monograph [14, Chap-
ter 8]. For parabolic operators, there is vast literature in the spatially continuous case.
For example, large-time behavior of Green’s functions was treated in [18] (for small per-
turbations of the heat operator) and in [19, 22] (for spatially periodic coefficients). A
survey on the large time behavior of heat kernels for second-order parabolic operators on
Riemannian manifolds can be found in [21]. In the spatially discrete case, the research
directions include continuous-time random walks on general graphs (see, e.g., [13, 20]
and references therein) and on lattices in a random environment (see, e.g., [4]). In both
cases, Gaussian bounds for the heat kernel is an important question. However, higher-
order asymptotics of Green’s functions is not available in general. We mention [7, 10],
where an asymptotic expansion of Green’s function for specific parabolic equations on
one-dimensional lattices was obtained in terms of the Bessel functions.

In our paper, using the integral Fourier representation of the first Green function
uε(x, t), we obtain a higher-order asymptotic formula of the form

∂Juε(x, t)

∂tJ
=

1

td/�+J
HJ

( x

t1/�

)
+

K∑
k=M

εk

t(k+d)/�+J
HJk

( x

t1/�

)
+ rεu(J,K;x, t),

x ∈ R
d
ε , t ≥ t0ε

�.

(1.4)

Here ε > 0, t0 > 0, K ≥ M , J ≥ 0, HJ (y) and HJk(y), y ∈ Rd, are explicitly given
smooth functions, and the remainder satisfies

(1.5) |rεu(J,K;x, t)| ≤ εK+1Ru(J,K, t0)

t(K+d+1)/�+J
, x ∈ R

d
ε , t ≥ t0ε

�,

with Ru(J,K, t0) ≥ 0 not depending on ε > 0, x ∈ R
d
ε , and t ≥ t0ε

�. We emphasize that
the estimate in (1.5) is uniform with respect to x ∈ Rd

ε .
Moreover, we show that, for J = 0, the leading order term 1

td/�
H0

(
x

t1/�

)
in (1.4)

coincides with the continuous parabolic Green function (see (2.6)). Hence, (1.4) implies
that the first discrete Green function approximates the continuous one, uniformly for
x ∈ Rd

ε , with an error of O
(

1
t(M+d)/�

)
as t → ∞ and with an error of O(εM ) as ε → 0,

where M is the order of approximation in (1.3) (see Corollaries 3.1 and 3.2). In the case
where −Aε is an approximation of the Laplacian, the first term in (1.4) with J = 0

equals 1
(2

√
πt)d

e−|x|2/4t. In particular, it is radially symmetric. The other terms, being

nonsymmetric, take into account the radial nonsymmetry of the lattice Rd
ε .

The asymptotic formula (1.4) is proved in §3 (Theorem 3.1), after rigorous definitions
of elliptic differential and difference operators in §2.

We note that the general form of the difference operatorAε (rather than the Laplacian
only) allows one to treat continuous-time random walks on d-dimensional lattices that
are not necessarily cubic, but still represented by a discrete additive subgroup of Rd.
This is possible whenever one can linearly transform the vertices of such a lattice to
Rd

ε (see [13, Section 1]) and obtain an elliptic generator Aε on Rd
ε . Then, linearly

transforming (1.4) back to the original noncubic lattice, one can deduce asymptotics of
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the transition probability function of the original random walk. Example 2.1.2 illustrates
an elliptic difference operator that is a generator obtained after transforming the random
walk on the triangular lattice to Z2.

Along with the first discrete Green function, we study the second discrete Green func-
tion in §4 and §5. It is defined as a solution of the problem

(1.6)

{
v̇ε(x, t) +Aεv(x, t) = δε(x), x ∈ Rd

ε , t > 0,

vε(x, 0) = 0, x ∈ Rd
ε .

Given an arbitrary time-independent right-hand side instead of δε(x), one can represent
a solution as a (discrete) convolution of this right-hand side with the second Green
function. An interesting application of the second Green function vε(x, t) occurs in
discrete reaction-diffusion equations with hysteretic nonlinearity in the right-hand side.
Higher-order asymptotic formulas for vε(x, t) play a central role in understanding pattern
formation mechanisms there (see [8]).

Asymptotics of the second Green function depends on the sign of � − d, where � is
the order of the continuous differential operator A(D) and d is the spatial dimension. If
�− d ≤ −1, then we prove that the second discrete Green function satisfies

(1.7)

vε(x, t) =
1

td/�−1
F0

( x

t1/�

)
+

1

εd−�
Ω
(x
ε

)
+

K∑
k=M

εk

t(k+d)/�−1
Fk

( x

t1/�

)
+ rεv(K;x, t), x ∈ R

d
ε , t ≥ t0ε

�,

where the remainder is estimated as

(1.8) |rεv(K;x, t)| ≤ εK+1Rv(K, t0)

t(K+d+1)/�−1
, x ∈ R

d
ε , t ≥ t0ε

�,

with Rv(K, t0) ≥ 0 not depending on ε > 0, x ∈ Rd
ε , and t ≥ t0ε

�. Again, the estimate
in (1.5) is uniform with respect to x ∈ Rd

ε . In §4 (Lemma 4.2), we prove (1.7) with
the functions Fk(y) that are given explicitly as solutions of certain first-order PDEs
with H0(y) and H0k(y) on the right-hand side, but a still unknown function Ω(y). In
Subsection 5.1 (Theorem 5.1), we find the function Ω(y) by simultaneously passing to
the limit, as t → ∞, in (1.7) and in the explicit integral representation of vε(x, t).

If �− d ≥ 0, the situation is subtler. In §4, we prove an analog of (1.7) in the form

(1.9)

vε(x, t) = t1−d/� F0

( x

t1/�

)
+

�−d∑
k=M

εkt1−(k+d)/� Fk

( x

t1/�

)
+ ε�−d Ω

(x
ε

)
+

K∑
k=max(M,�−d+1)

εk

t(k+d)/�−1
Fk

( x

t1/�

)
+ rεv(K;x, t),

x ∈ R
d
ε \ {0}, t ≥ t0ε

�,

(if M ≥ l − d + 1, the first sum is absent). As before, the remainder satisfies (1.8),
the functions Fk(y) are given explicitly as solutions of certain first-order PDEs with
H0(y) and H0k(y) on the right-hand side, and Ω(y) is still unknown. However, unlike
in the case where �− d ≤ −1, formula (1.9) may contain the function F�−d(y), which in
general turns out to be undefined at y = 0 and to have logarithmic growth as y → 0.
Furthermore, we cannot pass to the limit as t → ∞ immediately because both the terms
with k = 0,M, . . . , � − d in (1.9) and the explicit integral representation of vε(x, t)
tend to infinity. Hence, in Subsection 5.2 (Theorem 5.2), we use the explicit integral
representation of vε(x, t) to deduce another asymptotic representation. It involves a
linear combination of nonnegative powers t1−(k+d)/� (k = 0, . . . , � − d) and of ln t with
x-dependent coefficients and is applicable for each fixed x ∈ Rd

ε (but not uniformly in Rd
ε).
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Comparing it with (1.9) allows one to determine Ω(y) and obtain uniform asymptotics
in Rd

ε .
In §6, we apply our general results to the (2N)th order approximation of the one-

dimensional Laplacian:

(1.10) Aε = −Δε, Δεu(x) := ε−2
N∑

ν=1

aν
(
u(x− εν)− 2u(x) + u(x+ εν)

)
with appropriately chosen coefficients aν ∈ R. (In this case, � = 2 and d = 1, hence we
are in the situation where � − d ≥ 0.) First, we claim that Aε is elliptic for any N ∈ N

in the sense of Condition 2.3 (the proof is given in Appendix 6.5). Then we explicitly
find all the functions in the expansions (1.4) and (1.9) for the first and second Green
functions and in the corresponding expansions for the (spatial) gradients of the first and
second Green functions.

Interestingly, if N = 1, i.e., Δεu(x) := ε−2
(
u(x− ε)− 2u(x) + u(x+ ε)

)
, it turns out

that Ω(x/ε) in (1.9) vanishes for all x ∈ Rd
ε , which is proved in Appendix 6.5. In general,

Ω(x/ε) �≡ 0 for N ≥ 2.
To conclude, we collect some general notation that we use throughout the paper.

We use variables x ∈ Rd
ε or x ∈ Zd (for ε = 1) and y ∈ Rd for the grid and continuous

coordinates, respectively, and η ∈ Rπε−1 , θ ∈ Rπ, and ξ ∈ Rd for the Fourier coordinates,
where

(1.11) Rλ := {ξ ∈ R
d : |ξk| ≤ λ, k = 1, . . . , d}, λ > 0.

By Bλ, we denote the ball of radius λ > 0 in Rd. We denote by (r, ϕ1, . . . ϕd−1) the
spherical coordinates of y ∈ Rd or θ ∈ Rπ and introduce the function
(1.12)

rπ(ϕ) := the distance from the origin to the boundary of Rπ in the direction ϕ.

We use the upper-case bold letters for difference operators: Aε, Δε and lower-case bold
letters for grid functions (i.e., functions defined on R

d
ε): u

ε(x, t), vε(x, t), etc., indicating
by superscript ε that x ∈ Rd

ε . We may omit the superscript if ε = 1 and x ∈ Zd. We
denote polynomials by calligraphic letters: A(ξ), P(ξ), etc. and other (nonpolynomial)
functions by usual letters: A(θ), H(y), Ω(y), u(y, t), etc.

§2. Continuous and discrete parabolic Green’s functions

In this section, we introduce parabolic equations with general elliptic operators of even
order � in Rd, d ∈ N, and the corresponding finite-difference approximation and define
their Green functions.

2.1. Continuous Green function. Consider a differential operator with constant co-
efficients in Rd, d ∈ N:

(2.1) A(D) =
∑
|α|=�

bαDα,

where � ∈ N is even, α = (α1, . . . , αd) is a multi-index, |α| = α1 + · · · + αd, bα ∈ C,
Dα = Dα1

1 . . .Dαd

d , and Dj = −i∂/∂yj , j = 1, . . . , d.

Definition 2.1. The polynomial

(2.2) A(ξ) :=
∑
|α|=�

bαξ
α, ξ ∈ R

d,

where ξα = ξα1
1 · · · · · ξαd

d (obtained from A(D) by formally replacing Dj by ξj), is called
the symbol of the differential operator A(D).
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Obviously, there is C > 0 such that

(2.3) |A(ξ)| ≤ C|ξ|� ∀ξ ∈ R
d.

We assume throughout that the operator A(D) is strongly elliptic, i.e., the following
condition is fulfilled.

Condition 2.1. There is c > 0 such that

(2.4) ReA(ξ) ≥ c|ξ|� ∀ξ ∈ R
d.

We briefly recall the notion of a continuous Green function for parabolic equations.
We define it as a solution of the problem

(2.5)

⎧⎨⎩
∂u(y, t)

∂t
+A(D)u(y, t) = 0, y ∈ R

d, t > 0,

u(y, 0) = δ(y), y ∈ Rd,

with the δ-function in the initial condition. To give an explicit formula for the Green
function, we formally use the Fourier transform and deduce from (2.5)

u(y, t) =
1

(2π)d

∫
Rd

e−tA(ξ)eiyξ dξ, y ∈ R
d, t > 0,

where the integral converges for each fixed t > 0 due to (2.4). Making the change of
variables ξ 
→ ξt−1/� and using the homogeneity of A(ξ), we obtain

(2.6) u(y, t) =
1

td/�
H

( y

t1/�

)
, y ∈ R

d, t > 0,

where

(2.7) H(y) :=
1

(2π)d

∫
Rd

e−A(ξ)eiyξ dξ.

Due to (2.4), H(y) and all its derivatives decay at infinity faster than any negative power
of |y|.

Definition 2.2. We call the function given by (2.6) the continuous Green function.

Remark 2.1. If A(D) = −Δ, where Δ is the Laplace operator, then A(ξ) = |ξ|2, H(y) =
1

2dπd/2 e
−|y|2/4, and (2.6) assumes the well-known form u(y, t) = 1

(2
√
πt)d

e−|y|2/4t.

2.2. Discrete Green function. For ε > 0, we define the grid space

R
d
ε :=

{
x ∈ R

d : xk = skε, sk ∈ Z, k = 1, . . . , d
}
.

A function defined on Rd
ε is called a grid function. We say that a grid function (continuous

function) is rapidly decreasing if it decays at infinity faster than any negative power of
|x|, x ∈ Rd

ε (of |y|, y ∈ Rd). For a continuous function u(y), y ∈ Rd, we use the notation

(2.8) δε,k±u(y) = u(y ± ekε)− u(y),

where ek is the unit vector of the axis yk. The same notation is used for grid functions
uε(x), x ∈ Rd

ε .

We fix a natural �̂ ≥ � and consider the following difference operator with constant
coefficients:

(2.9) Aε := ε−�
∑

�≤|ν|≤̂�

aνδ
ν1
ε,1−δ

ν2
ε,1+ . . . δ

ν2d−1

ε,d− δν2d

ε,d+,

where ν = (ν1, . . . , ν2d) is a multi-index, |ν| = ν1 + · · ·+ ν2d, and aν ∈ C.
We say that a function u(y), y ∈ Rd, is smooth if it is continuous and bounded together

with all its derivatives.



574 P. GUREVICH

Definition 2.3. For M ∈ N, the difference operator Aε is said to be an M th order
approximation of the differential operator A(D) if, for any smooth function u(y), there
is a constant C(u) > 0 such that

(2.10) sup
y∈Rd

|Aεu(y)−A(D)u(y)| ≤ C(u)εM ∀ε > 0.

We assume throughout that the following is fulfilled.

Condition 2.2. There is M ∈ N such that Aε is an M th order approximation of the
differential operator A(D).

Next, we introduce a symbol of Aε and relate it to the symbol of A(D). To motivate
the notion of a symbol, we define the Fourier transform of a rapidly decreasing grid
function uε(x) by the formula

(2.11) (Fεu
ε)(η) := (2π)−d

∑
x∈Rd

ε

e−ixηu(x)εd, η ∈ Rπε−1 ,

where Rπε−1 is given by (1.11). The Fourier transformation Fε establishes an isomor-
phism between rapidly decreasing grid functions and smooth functions that are 2πε−1-pe-
riodic with respect to each of the variables η1, . . . , ηd. The inverse transform is given by

(2.12) (F−1
ε v)(x) =

∫
Rπε−1

eixηv(η) dη.

If uε(x) is a rapidly decreasing grid function, then Aεu
ε(x) is also rapidly decreasing

and

(2.13) (FεAεu
ε)(η) = ε−�A(ηε) · (Fεu

ε)(η),

where the function ε−�A(ηε) is obtained by replacing the operator δε,k± on the right-hand
side of formula (2.9) by the expression e±iηkε − 1.

Definition 2.4. The function

A(θ) :=
∑

�≤|ν|≤̂�

aν
(
e−iθ1 − 1

)ν1
(
eiθ1 − 1

)ν2
. . .

(
e−iθd − 1

)ν2d−1
(
eiθd − 1

)ν2d ,

θ ∈ Rπ,
(2.14)

is called the symbol of the difference operator Aε.

The following lemma establishes a relationship between the symbols of A(D) and Aε.

Lemma 2.1. If Condition 2.2 is fulfilled, then, for any K ≥ M ,

(2.15) A(θ) =
K∑

k=0

Ak+�(θ) +O(|θ|K+�+1),

where

(2.16) Ak+�(θ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A(θ) if k = 0,

0 if k = 1, . . . ,M − 1,

a homogeneous polynomial

of degree k + � if k = M, . . . ,K,

and O( · ) is understood as |θ| → 0.
If the symbol of Aε satisfies (2.15) and (2.16) with some K ≥ M , then Condition 2.2

is fulfilled.
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Proof. We observe that, for any smooth u(y) and any J ≥ 1,

δε,k±u(y) =
J∑

j=1

(±1)jεj

j!

∂ju(y)

∂yjk
+ εJ+1Rk,J+1(y),

e±iθk − 1 =

J∑
j=1

(±1)j

j!
(iθk)

j +O(|θ|J+1),

where supy∈Rd |Rk,J+1(y)| ≤ C1(u) with some C1(u) ≥ 0. Therefore, taking into account
definitions (2.9) and (2.14), we have for any K ≥ M :

Aεu(y) =

K∑
k=0

εkAk+�(D)u(y) + εK+1RK+�+1(y),

A(θ) =

K∑
k=0

Ak+�(θ) +O(|θ|K+�+1),

where Ak+�( · ) are the same homogeneous polynomials of degree k + � in both formu-
las and supy∈Rd |RK+�+1(y)| ≤ C2(u) with some C2(u) ≥ 0. Comparing the last two
identities and taking (2.10) into account, we conclude the proof. �

Along with Condition 2.2, we assume throughout the following ellipticity condition.

Condition 2.3. ReA(θ) > 0 for all θ ∈ Rπ \ {0}, where Rπ is defined in (1.11).

Remark 2.2. Condition 2.3 does not automatically follow from the fact that Aε is an
approximation of a strongly elliptic operator A(D) (only the inequality ReA(θ) > 0
for small |θ| �= 0 follows). However, Lemma 6.2 below implies that Condition 2.3 is
fulfilled, for example, for any order approximation of the second derivative in R (see (6.8)
and (6.9)) and, hence, for the corresponding approximation of the Laplace operator in
Rd, d ∈ N.

Example 2.1. 1. Consider the difference operator

Aε := ε−2
d∑

j=1

δε,j+δε,j−.

For ε = 1, the operator −(2d)−1A1 is a generator of the continuous-time random walk on
Zd (see [13, Section 1]). The operator Aε is the 2nd order approximation of the strongly
elliptic operator A(D) = −Δ, where Δ is the Laplacian. The symbol of Aε is given by

A(θ) := 2

d∑
j=1

(1− cos θj).

In §6, we will also consider (2N)th order approximations of the Laplacian for d = 1.
2. Let d = 2. Consider the operator

(2.17) Aε :=
2

3ε2
(
2δε,1+δε,1− + 2δε,2+δε,2− − δε,1+δε,2− − δε,2+δε,1−

)
.

The operator Aε is the 2nd order approximation of the strongly elliptic operator

A(D)u := −4

3
(uy1y1

+ uy2y2
− uy1y2

).

The symbol of Aε is given by

A(θ) = 4− 4

3

(
cos θ1 + cos θ2 + cos(θ1 − θ2)

)
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and the symbol of A(D) is given by

A(θ) =
2

3
(θ21 + θ22 + (θ1 − θ2)

2).

On the other hand, −Aε corresponds to the discretization on the triangular lattice of
the continuous Laplacian. Indeed, the matrix

M :=

(
1 −1/

√
3

0 2/
√
3

)
takes the triangular lattice to Z2 and, at the same time, A((MT )−1ξ) = ξ21 + ξ22 . The
latter is the symbol of the differential operator −Δ.

Lemma 2.1, together with Conditions 2.1, 2.2, and 2.3, implies the following.

Lemma 2.2. We have

|A(θ)| ≤ C|θ|� ∀θ ∈ Rπ,(2.18)

ReA(θ) ≥ c|θ|� ∀θ ∈ Rπ,(2.19)

where C and c are positive constants that do not depend on θ ∈ Rπ.

Without loss of generality, we assume that the constants C and c in (2.18) and (2.19)
are the same as in (2.3) and (2.4), respectively.

Now we introduce discrete Green functions. Let δε(x) be the grid delta-function,
see (1.2).

Definition 2.5. We call the function uε(x, t), x ∈ Rd
ε , t ≥ 0, the first discrete Green

function if uε( · , t) is a rapidly decreasing grid function for all t ≥ 0, uε(x, · ) ∈ C1[0,∞)
for all x ∈ Rd

ε , and

(2.20)

{
u̇ε(x, t) +Aεu

ε(x, t) = 0, x ∈ R
d
ε , t > 0,

uε(x, 0) = δε(x), x ∈ R
d
ε .

We call the function vε(x, t), x ∈ Rd
ε , t ≥ 0, the second discrete Green function if

vε( · , t) is a rapidly decreasing grid function for all t ≥ 0, vε(x, · ) ∈ C1[0,∞) for all
x ∈ Rd

ε , and

(2.21)

{
v̇ε(x, t) +Aεv

ε(x, t) = δε(x), x ∈ R
d
ε , t > 0,

vε(x, 0) = 0, x ∈ R
d
ε .

Here ˙= ∂/∂t.

In §3, we will establish a relationship between the discrete and continuous Green
functions in terms of asymptotic formulas.

Using the discrete Fourier transform (2.11), its inverse (2.12), and relation (2.13), we
obtain the explicit representations

uε(x, t) = v̇ε(x, t) =
1

(2π)d

∫
Rπε−1

e−tε−�A(ηε)eixη dη,(2.22)

vε(x, t) =
1

(2π)d

∫
Rπε−1

1− e−tε−�A(ηε)

ε−�A(ηε)
eixη dη.(2.23)

Changing the variables in the integrals in (2.22) and (2.23), we obtain for J =
0, 1, 2, . . . :

(2.24)
∂Juε(x, t)

∂tJ
≡ ε−J�−d ∂

Ju1(x′, τ )

∂τJ

∣∣∣∣x′=x/ε,

τ=t/ε�

, vε(x, t) ≡ ε�−dv1
(x
ε
,
t

ε�

)
.
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§3. Asymptotics of the first Green function uε(x, t)

3.1. Formulation of the result. In the theorems below, we will not explicitly indicate
the dependence of the remainders in asymptotic formulas on the number M fixed in
Condition 2.2.

In this section, we obtain the following asymptotics for uε(x, t).

Theorem 3.1. For any ε > 0, t0 > 0, an integer K ≥ M , an integer J ≥ 0, and all
x ∈ Rd

ε and t ≥ t0ε
�, we have

(3.1)
∂Juε(x, t)

∂tJ
=

K∑
k=0

εk

t(k+d)/�+J
HJk

( x

t1/�

)
+ rεu(J,K;x, t),

where

(3.2) HJk(y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−A(D))JH(y) if k = 0,

0 if k = 1, . . . ,M − 1,

finite linear combinations

of derivatives of H(y) if k = M, . . . ,K,

H(y) is given by (2.7),

(3.3) |rεu(J,K;x, t)| ≤ εK+1Ru(J,K, t0)

t(K+d+1)/�+J
,

and Ru(J,K, t0) ≥ 0 does not depend on ε > 0, x ∈ Rd
ε , and t ≥ t0ε

�.

Remark 3.1. It follows from the proof below that HJk(y) = RJ,k+�(D)H(y), where
RJ,k+�(ξ) are polynomials of degree at least k + � defined by (3.15).

Note that the main term in the asymptotic representation of uε(x, t) coincides with the
continuous Green function (2.6). Theorem 3.1 implies that the higher the approximation
order M (see Definition 2.3) is, the faster the first discrete Green function converges to
the continuous Green function, as t → ∞ or as ε → 0. More precisely, the following
corollaries hold.

Corollary 3.1. Under the assumptions of Theorem 3.1, for any ε0 > 0,

sup
ε∈(0,ε0]

sup
x∈Rd

ε

∣∣∣∣uε(x, t)− 1

td/�
H
( x

t1/�

)∣∣∣∣ = O
( 1

t(M+d)/�

)
as t → ∞.

Corollary 3.2. Under the assumptions of Theorem 3.1, for any t1 > 0,

sup
t≥t1

sup
x∈Rd

ε

∣∣∣∣uε(x, t)− 1

td/�
H
( x

t1/�

)∣∣∣∣ = O(εM ) as ε → 0.

3.2. Proof of Theorem 3.1.

Step 1. First, we assume that ε = 1 and denote u(x, t) := u1(x, t). Note that |u(x, t)|
is bounded for x ∈ Zd and t ≥ 0 due to (2.22) and (2.19). Therefore, if we show that
Theorem 6.1 is true with ε = 1 and some t0 > 0, it will follow that the theorem is also
true with ε = 1 and all t0 > 0. Let us fix t0 = 1 and consider t ≥ 1.

Differentiating (2.22) with ε = 1 and making the change of variables ξ = t1/�η, we
write

∂Ju(x, t)

∂tJ
=

1

(2π)d td/�

∫
R

πt1/�

(−1)J
(
A(t−1/�ξ)

)J
e−tA(t−1/�ξ) · eixt−1/�ξ dξ

= I1(x, t) + I2(x, t),

(3.4)
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where

I1(x, t) :=
1

(2π)d td/�

∫
R

πt1/L

(−1)J
(
A(t−1/�ξ)

)J
e−tA(t−1/�ξ) · eixt−1/�ξ dξ,(3.5)

I2(x, t) :=
1

(2π)d td/�

∫
R

πt1/�
\R

πt1/L

(−1)J
(
A(t−1/�ξ)

)J
e−tA(t−1/�ξ) · eixt−1/�ξ dξ,(3.6)

(3.7) L := (�+ 2)�.

Step 2. We estimate I1(x, t) in (3.5). First, we consider the term e−tA(t−1/�ξ). By
Lemma 2.1,

(3.8) tA(t−1/�ξ) = A(ξ) +

K∑
k=M

t−k/�Ak+�(ξ) + Â(t, ξ),

where

(3.9) |Â(t, ξ)| ≤ c1t
−(K+1)/�|ξ|K+1+�, ξ ∈ Rπt1/� , t ≥ 1.

Here and below c1, c2, . . . > 0 do not depend on ξ and t.
Further, (3.7) implies for ξ ∈ Rπt1/L and t ≥ 1 that

t−k/�|ξ|k+� ≤ c2t
−k/�t(k+�)/L = c2t

(�−(�+1)k)/L ≤ c2, k = 1, 2, . . . .

Therefore,

(3.10)

∣∣∣∣∣
K∑

k=M

t−k/�Ak+�(ξ) + Â(t, ξ)

∣∣∣∣∣ ≤ c3, ξ ∈ Rπt1/L , t ≥ 1.

Using the Taylor expansion of the exponential function, we obtain

exp

(
−

K∑
k=M

t−k/�Ak+�(ξ)− Â(t, ξ)

)

= 1 +

K∑
m=1

1

m!

( K∑
k=M

t−k/�Ak+�(ξ) + Â(ξ)

)m

+ Â1(ξ, t)

= 1 +
K∑

k=M

t−k/�Pk+�(ξ) + P̂ (ξ, t).

(3.11)

Here the Pk+�(ξ) are polynomials of degree at least k+� and the remainders are estimated
due to relations (3.9) and (3.10) as follows:

|Â1(ξ, t)| ≤ ec3

∣∣∣∣∣
K∑

k=M

t−k/�Ak+�(ξ) + Â(ξ, t)

∣∣∣∣∣
K+1

≤ c4e
c|ξ|�/2t−M(K+1)/�, ξ ∈ Rπt1/L , t ≥ 1,

(3.12) |P̂ (ξ, t)| ≤ c5e
c|ξ|�/2t−(K+1)/�, ξ ∈ Rπt1/L , t ≥ 1,

where c is the constant from (2.4).
Now we estimate the term (A(t−1/�ξ))J . Using (3.8), we have

(3.13)
(
A(t−1/�ξ)

)J
= t−J

(
(A(ξ))J +

K∑
k=M

t−k/�DJ,k+�(ξ) + D̂(t, ξ)

)
,
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where the DJ,k+�(ξ) are polynomials of degree at least k + � and

(3.14) |D̂(ξ, t)| ≤ c6e
c|ξ|�/2t−(K+1)/�, ξ ∈ Rπt1/� , t ≥ 1.

Combining (3.11)–(3.14) with (3.8) yields

(3.15)

(−1)J
(
A(t−1/�ξ)

)J
e−tA(t−1/�ξ)

= e−A(ξ)

(
t−J (−A(ξ))J +

K∑
k=M

t−k/�−JRJ,k+�(ξ) + R̂(t, ξ)

)
,

where the RJ,k+�(ξ) are polynomials of degree at least k + � and

(3.16) |R̂(ξ, t)| ≤ c7e
c|ξ|�/2t−(K+1)/�−J , ξ ∈ Rπt1/L , t ≥ 1.

Substituting (3.15) in (3.5), we have

(3.17)

I1(x, t) =
1

(2π)d td/�+J

∫
R

πt1/L

(−A(ξ))
J
e−A(ξ) · eixt−1/�ξ dξ

+

K∑
k=M

1

(2π)d t(k+d)/�+J

∫
R

πt1/L

RJ,k+�(ξ) e
−A(ξ) · eixt−1/�ξ dξ

+
1

(2π)d td/�

∫
R

πt1/L

e−A(ξ)R̂(ξ, t) · eixt−1/�ξ dξ.

Note that, due to (2.4), the polynomials B(ξ) = (−A(ξ))J and B(ξ) = RJ,k+l(ξ)
satisfy

(3.18)

∣∣∣∣ ∫
Rd\R

πt1/L

B(ξ)e−A(ξ) · eixt−1/�ξ dξ

∣∣∣∣ ≤ ∫
Rd\R

πt1/L

|B(ξ)| · e−c|ξ|� dξ = O
( 1

t(K+1)/�

)
,

where O( · ) is taken as t → ∞ (uniformly with respect to x). Similarly, due to (3.16),

R̂(ξ, t) satisfies

(3.19)

∣∣∣∣ ∫
R

πt1/L

e−A(ξ)R̂(ξ, t) · eixt−1/�ξ dξ

∣∣∣∣ ≤ c7
t(K+1)/�+J

∫
R

πt1/L

e−ReA(ξ) · ec|ξ|�/2 dξ

≤ c7
t(K+1)/�+J

∫
Rd

e−c|ξ|�/2 dξ.

Combining (3.17)–(3.19), we obtain

(3.20)

I1(x, t) =
1

(2π)d td/�+J

∫
Rd

(−A(ξ))Je−A(ξ) · eixt−1/�ξ dξ

+

K∑
k=M

1

(2π)dt(k+d)/�+J

∫
Rd

RJ,k+�(ξ) e
−A(ξ) ·eixt−1/�ξ dξ +O

( 1

t(K+d+1)/�+J

)
.

Relations (2.7) and (3.20) and the fact that RJ,k+�(ξ) are polynomials imply

(3.21) I1(x, t) =
1

td/�+J
HJ0

( x

t1/�

)
+

K∑
k=M

1

t(k+d)/�+J
HJk

( x

t1/�

)
+O

( 1

t(K+d+1)/�+J

)
,

where HJ0(y) = (−A(D))JH(y) and HJk(y) = RJ,k+�(D)H(y).
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Step 3. We estimate I2(x, t) in (3.6). Using (2.18) and (2.19), we have for ξ ∈ Rπt1/� \
Rπt1/L : ∣∣(A(t−1/�ξ)

)J
e−tA(t−1/�ξ)

∣∣ ≤ c8e
−c|ξ|�/2 ≤ c8e

−cπ� t�/L/2.

Therefore,

(3.22) |I2(x, t)| ≤ c9e
−cπ� t�/L/2, t ≥ 1.

Relations (3.4)–(3.6), (3.21), and (3.22) yield the assertion of Theorem 3.1 with ε = 1.
Using the first relation in (2.24), we obtain the assertion with any ε > 0.

§4. Preliminary asymptotics of the second Green function vε(x, t)

Throughout this section, we assume that ε = 1 and denote v(x, t) := v1(x, t). First,
we obtain an asymptotic formula for v(x, t) up to some unknown function Ω(x). In the
next section, we will provide an explicit formula for it.

We introduce the spherical coordinates (r, ϕ) with r > 0 and ϕ ∈ Φ, where

(4.1) Φ := {ϕ ∈ R
d−1 : ϕ1, . . . , ϕd−2 ∈ [0, π], ϕd−1 ∈ [0, 2π)}.

They are related to the Cartesian coordinates y ∈ Rd via

(4.2)
y1 = r cosϕ1, y2 = r sinϕ1 cosϕ2, y3 = r sinϕ1 sinϕ2 cosϕ3, . . . ,

yd−1 = r sinϕ1 . . . sinϕd−2 cosϕd−1, yd = r sinϕ1 . . . sinϕd−2 sinϕd−1,

and the Jacobian is given by

(4.3) dy = rd−1J(ϕ) dr dϕ, J(ϕ) := sind−2 ϕ1 sin
d−3 ϕ2 . . . sinϕd−2.

We will denote functions written in Cartesian and spherical coordinates by the same
letter. For example H(r, ϕ) stands for H(y), etc.

We set

Hk(y) := H0k(y), y ∈ R
d,

where H0k(y) are the functions from Theorem 3.1 with J = 0. For y ∈ R
d \ {0}, we

introduce the functions

Fk(y) := �r�−d−k

∫ ∞

r

Hk(ρ, ϕ)

ρ�−d−k+1
dρ if k = 0, . . . , �− d,(4.4)

Fk(y) := − �

rd+k−�

∫ r

0

ρd+k−�−1Hk(ρ, ϕ) dρ if k ≥ �− d+ 1.(4.5)

Definition (4.4) will be used only in the case where � − d ≥ 0 and definition (4.5) only
for k ≥ 0.

Remark 4.1. Due to (3.2), Fk(y) ≡ 0 for k = 1, . . . ,M − 1.

Lemma 4.1. Let a function Fk(y) be defined by (4.4) or (4.5). Then

(1) it satisfies the partial differential equation

(4.6) (�− d− k)Fk −
d∑

j=1

yj
∂Fk

∂yj
= �Hk, y ∈ R

d \ {0};

(2) it tends to 0 as |y| → ∞;
(3) if k �= �− d, it is bounded in Rd and, for each fixed ϕ, continuous with respect to

r at the origin;
(4) if k ≥ �− d+ 1, it is continuous with respect to y at the origin and

(4.7) Fk(0) := lim
y→0

Fk(y) = − �

k + d− �
Hk(0).
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Proof. Item 1 follows by observing that the equation in (4.6) is equivalent to the following:

(�− d− k)Fk − r
∂Fk

∂r
= �Hk, r > 0.

The latter can be solved as an ordinary differential equation for each fixed ϕ ∈ Φ. It is
easy to check that a unique solution that is bounded at infinity is Fk(y) defined by (4.4)
or (4.5), respectively.

Items 2, 3, and 4 follow from the fact that the Hk(y) are infinitely differentiable at
the origin and are rapidly decreasing functions. �

Now we find a preliminary asymptotic formula for v(x, t) in terms of the above func-
tions Fk(y). It involves an unknown grid function Ω(x) and, if �− d ≥ 0, it is not valid
at x = 0. The reason for the latter is essentially the fact that the functions Fk(y) are
not continuous at y = 0 for k = 0, . . . , �− d.

Lemma 4.2. There exists a grid function Ω(x) such that, for any t0 > 0, integer K ≥
max(M, �− d), x ∈ Zd \ {0}, and t ≥ t0, we have

(4.8) v(x, t) = Ω(x) +
K∑

k=0

1

t(k+d)/�−1
Fk

( x

t1/�

)
+ rv(K;x, t).

Here the Fk(y) are given by (4.4) and (4.5),

(4.9) |rv(K;x, t)| ≤ Rv(K, t0)

t(K+d+1)/�−1
,

and Rv(K, t0) ≥ 0 does not depend on x ∈ Zd and t ≥ t0.
Furthermore, if � − d ≤ −1, then the identity in (4.8) and the estimate in (4.9) are

also valid for x = 0 with Fk(0) defined by (4.7).

Proof. We integrate (3.1) with J = 0 and ε = 1 from t0 to t and use the identity
u(x, t) ≡ v̇(x, t):

(4.10)

v(x, t)− v(x, t0) =

K∑
k=0

∫ t

t0

1

τ (k+d)/�
Hk

( x

τ1/�

)
dτ

+

∫ ∞

t0

r1u(0,K;x, τ ) dτ −
∫ ∞

t

r1u(0,K;x, τ ) dτ, x ∈ Z
d.

From the chain rule and (4.6), it follows that

(4.11)
1

τ (k+d)/�
Hk

( x

τ1/�

)
=

∂

∂τ

(
1

τ (k+d)/�−1
Fk

( x

τ1/�

))
, x ∈ Z

d \ {0}.

Combining (4.10) and (4.11) and taking (3.3) and the inequalityK ≥ �−d into account
yield

(4.12) v(x, t) = Ω(x) +

K∑
k=0

1

t(k+d)/�−1
Fk

( x

t1/�

)
+ rv(K;x, t), x ∈ Z

d \ {0},

with some grid function Ω(x) and the remainder rv(K;x, t) satisfying (4.9). This proves
(4.8) in the case where x �= 0. If �− d ≤ −1, the same formula for x = 0 follows directly
from (4.10) by substituting x = 0 therein and using (4.7).

To see that Ω(x) and rv(K;x, t) do not depend on t0, denote by Ω∗(x) and r∗v(K;x, t)
the functions corresponding to t0 replaced by some t∗0 > t0. Then (4.12) implies that

0 = Ω(x)− Ω∗(x) + rv(K;x, t)− r∗v(K;x, t), t ≥ t∗0.

Passing to the limit as t → ∞ yields Ω(x) = Ω∗(x). In its turn, this and (4.12) imply
that rv(K;x, t) = r∗v(K;x, t) for t ≥ t∗0. �
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In the case where � − d ≥ 0, we will need modified versions of the functions in (4.4).
To introduce them, we denote by nϕ the unit vector originated at 0 and pointing in

the direction ϕ and by f (j)(0, ϕ) the jth directional derivative of a function f(y) in the
direction nϕ at the origin. Now, for each fixed ϕ ∈ Φ, we expand Hk(ρ, ϕ) in the Taylor
series around ρ = 0:

(4.13) Hk(ρ, ϕ) =

�−d−k∑
j=0

H
(j)
k (0, ϕ)

j!
ρj + Ĥk(ρ, ϕ), k = 0, . . . , �− d,

where

(4.14) |Ĥk(ρ, ϕ)| ≤ c1ρ
�−d−k+1, ρ ∈ [0, 1],

and c1 > 0 does not depend on ρ ∈ [0, 1] and ϕ ∈ Φ.
For �− d ≥ 0 and y > 0, we set

F̂k(y) := �r�−d−k

∫ 1

r

Ĥk(ρ, ϕ)

ρ�−d−k+1
dρ, k = 0, . . . , �− d,(4.15)

F̂ (y) := �

�−d∑
k=0

r�−d−k

∫ 1

0

Ĥk(ρ, ϕ)

ρ�−d−k+1
dρ,(4.16)

Gk(y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�

�− k − d

k∑
m=0

H
(k−m)
m (0, ϕ) rk−m

(k −m)!
if k = 0, . . . , �− d− 1,

�−d∑
m=0

H
(�−d−m)
m (0, ϕ) r�−d−m

(�− d−m)!
if k = �− d,

(4.17)

Ωk(y) := �r�−d−k

×
(∫ ∞

1

Hk(ρ, ϕ)

ρ�−d−k+1
dρ−

�−d−k−1∑
j=0

H
(j)
k (0, ϕ)

j!(�− j − d− k)
− H

(�−d−k)
k (0, ϕ)

(�− d− k)!
ln r

)
,

k = 0, . . . , �− d.

(4.18)

Remark 4.2.

1. The integral in (4.16) converges due to (4.14).
2. The first formula in (4.17) is used only if �− d ≥ 1.
3. In (4.18) and below, we use the convention that the sum vanishes if the upper

summation limit is less than the lower limit.

The following assertion follows from (4.14) and the definition of F̂k(y), F̂ (y), and
Gk(y).

Lemma 4.3. Let �− d ≥ 0.

1. The functions F̂k(y), F̂ (y), and Gk(y) are bounded near the origin. For each
fixed ϕ ∈ Φ, they are continuous with respect to r ≥ 0.

2. We have

lim
t→∞

�−d∑
k=0

t1−(d+k)/�F̂k

( x

t1/�

)
= F̂ (x), x ∈ Z

d \ {0}.

Now, based on Lemma 4.2 in the case where � − d ≥ 0, we find another preliminary

asymptotic formula for v(x, t) in terms of the above functions Fk(y), F̂k(y), F̂ (y), Gk(y),
and Ωk(y). Now the asymptotic formula is extended to x = 0, but still involves an
unknown grid function Ω(x), which will be determined in the next section.
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Lemma 4.4. Let �− d ≥ 0. Then, for any t0 > 0, any integer K ≥ max(M, �− d), and
t ≥ t0, the following holds.

1. If x ∈ Zd \ {0}, then, along with the asymptotics (4.8), we have

(4.19)
v(x, t) =

�−d−1∑
k=0

t1−(d+k)/�
(
F̂k

( x

t1/�

)
+Gk(x)

)
+G�−d(x) ln t

+ F̂�−d

( x

t1/�

)
+ Ω̂(x) +

K∑
k=�−d+1

1

t(d+k)/�−1
Fk

( x

t1/�

)
+ rv(K;x, t),

where

(4.20) Ω̂(y) = Ω(y) +
�−d∑
k=0

Ωk(y).

2. If x = 0, then we have

(4.21)

v(0, t) =
�−d−1∑
k=0

t1−(d+k)/� �Hk(0)

�− d− k
+H�−d(0) ln t

+ ω +

K∑
k=�−d+1

1

t(d+k)/�−1

�Hk(0)

�− d− k
+ rv(K; 0, t),

where ω ∈ C does not depend on t0 and t and the Fk(0) are defined in (4.7).

In both cases, rv(K;x, t) satisfies estimate (4.9).

Proof. First, we fix x ∈ Zd \ {0}. Consider the terms in (4.8) corresponding to k =
0, . . . , �− d. As we will see below, they (in general) tend to infinity as t → ∞. For each
m ∈ {0, . . . , �− d}, we have

(4.22) t1−(m+d)/�Fm

( x

t1/�

)
= �r�−d−m

∫ 1

rt−1/�

Hm(ρ, ϕ)

ρ�−d−m+1
dρ+ �r�−d−m

∫ ∞

1

Hm(ρ, ϕ)

ρ�−d−m+1
dρ.

Consider the first integral in (4.22). Using (4.13), we represent it as follows:∫ 1

rt−1/�

Hm(ρ, ϕ)

ρ�−d−m+1
dρ =

�−d−m∑
j=0

H
(j)
m (0, ϕ)

j!

∫ 1

rt−1/�

ρj+d+m−�−1 dρ+

∫ 1

rt−1/�

Ĥm(ρ, ϕ)

ρ�−d−m+1
dρ,

which yields∫ 1

rt−1/�

Hm(ρ, ϕ)

ρ�−d−m+1
dρ =

�−d−m−1∑
j=0

H
(j)
m (0, ϕ)rj+d+m−�

j!(�− j − d−m)
t1−(j+d+m)/�

+
H

(�−d−m)
m (0, ϕ)

(�− d−m)!
· ln t

�
−

�−d−m−1∑
j=0

H
(j)
m (0, ϕ)

j!(�− j − d−m)

− H
(�−d−m)
m (0, ϕ)

(�− d−m)!
ln r +

∫ 1

rt−1/�

Ĥm(ρ, ϕ)

ρ�−d−m+1
dρ.

Combining this with (4.22), we obtain

(4.23)

t1−(m+d)/�Fm

( x

t1/�

)
= �

�−d−m−1∑
j=0

H
(j)
m (0, ϕ) rj

j!(�− j − d−m)
t1−(d+m+j)/�

+
H

(�−d−m)
m (0, ϕ) r�−d−m

(�− d−m)!
ln t+Ωm(x) + t1−(m+d)/�F̂m

( x

t1/�

)
,

where the F̂m(y) are given by (4.15) and the Ωm(y) by (4.18).
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Equalities (4.8) and (4.23) imply (4.19) with Gk(y) given by (4.17) and Ω̂(y) by (4.20).
For x = 0, formula (4.21) directly follows from integrating (4.10) with x = 0. �
The advantage of the representation (4.19) is that it allows one to distinguish time-

independent coefficients at positive powers of t in the asymptotic formula for v(x, t).
Namely, the following assertion holds.

Corollary 4.1. Let the assumptions of Lemma 4.4 be fulfilled. Then, for each x ∈
Zd \ {0}, we have

(4.24) v(x, t) =

�−d−1∑
k=0

t1−(d+k)/�Gk(x)+Gl−d(x) ln t+ F̂ (x)+ Ω̂(x)+ o(1) as t → ∞,

where Gk(x), F̂ (x), and Ω̂(x) are given by (4.17), (4.16), and (4.20), respectively, and
o(1) depends on x.

Proof. The assertion follows from (4.19) and Lemma 4.3 (part 4.3). �
Remark 4.3. The asymptotic formulas (4.8) and (4.19) are uniform with respect to x ∈
Z
d \ {0}, in the sense that the constant Rv(K, t0) in estimate (4.9) does not depend

on x ∈ Zd \ {0}. Unlike those formulas, the function o(1) tends to 0 as t → ∞ in
relation (4.24) uniformly with respect to x �= 0 from any compact set, but not uniformly
in Zd \ {0}.

However, in the next subsection, we will find an asymptotics analogous to (4.24) di-
rectly from the integral representation (2.23) of the Green function. In this new asymp-
totics, the time-independent term will be explicitly present and thus will coincide with

F̂ (x) + Ω̂(x) from (4.24). Hence, we will find Ω̂(x) and thus Ω(x) and “finalize” the
(uniform) asymptotic formulas (4.8) and (4.19).

§5. Asymptotics of the second Green function vε(x, t)

5.1. Case �−d ≤ −1. First, we complete Lemma 4.2 by finding Ω(x) in the case where
�− d ≤ −1.

Theorem 5.1. Let � − d ≤ −1. Then, for any ε > 0, t0 > 0, any integer K ≥ M , and
all x ∈ R

d
ε and t ≥ t0ε

�, we have

(5.1) vε(x, t) =
1

εd−�
Ω
(x
ε

)
+

1

td/�−1
F0

( x

t1/�

)
+

K∑
k=M

εk

t(k+d)/�−1
Fk

( x

t1/�

)
+rεv(K;x, t),

where

(5.2) Ω(y) :=
1

(2π)d

∫
Rπ

eiyθ

A(θ)
dθ,

the Fk(y) are given by (4.5),

|rεv(K;x, t)| ≤ εK+1Rv(K, t0)

t(K+d+1)/�−1
,

and Rv(K, t0) ≥ 0 does not depend on ε > 0, x ∈ Rd
ε, and t ≥ t0ε

�.

Proof. Due to (2.24), it suffices to prove the theorem for ε = 1 and v(x, t) = v1(x, t).
Since �− d ≤ 0, from (4.7) it follows that∣∣∣ 1

t(k+d)/�−1
Fk

( x

t1/�

)∣∣∣ → 0 as t → ∞, k = 0, 1, 2, . . . .

Therefore, by Lemma 4.2,

Ω(x) = lim
t→∞

v(x, t), x ∈ Z
d.
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On the other hand, the representation (2.23) with ε = 1, estimate (2.19), and Lebes-
gue’s dominated convergence theorem imply that

lim
t→∞

v(x, t) =
1

(2π)d

∫
Rπ

eiyθ

A(θ)
dθ, x ∈ Z

d,

where the integral is absolutely convergent for � − d ≤ −1 due to (2.19). The last two
identities, combined with Lemma 4.2 and Remark 4.1, complete the proof. �

As in Corollaries 3.1 and 3.2, Theorem 5.1 and Lemma 4.1, item 3, imply that the
higher approximation order M (see Definition 2.3) we choose, the faster the second Green
function converges to the main term in its asymptotic representation, as t → ∞ or as
ε → 0.

5.2. Case � − d ≥ 0. First, we take ε = 1 and fix an arbitrary x ∈ Zd. Using the
representation (2.23) with ε = 1, we write

v(x, t) =
1

(2π)d
(
v1(x, t) + v2(x, t)− v3(x, t)

)
,(5.3)

v1(x, t) :=

∫
B

t−1/�

1− e−tA(θ)

A(θ)
eixθ dθ, v2(x, t) :=

∫
Rπ\Bt−1/�

eixθ

A(θ)
dθ,

v3(x, t) :=

∫
Rπ\Bt−1/�

e−tA(θ)

A(θ)
eixθ dθ,

(5.4)

where Bλ := {θ ∈ Rd : |θ| < λ} and Rπ is the cube defined by (1.11).

1. Estimate of v1(x, t). Making the change of variables θ = t−1/�ξ, we obtain

(5.5) v1(t) = t−d/�

∫
B1

1− e−tA(t−1/�ξ)

A(t−1/�ξ)
eixt

−1/�ξ dξ.

Using the Taylor expansion for eixθ and formula (2.15), we represent

(5.6)
eixθ

A(θ)
=

�−d∑
k=0

Qk−�(θ, x) + Q̂(θ, x),

where Q−�(θ, x) = 1
A(θ) , Qk−�(θ, x) are homogeneous functions of degree k − � with

respect to θ representable as ratios of homogeneous polynomials, and there is c1 =
c1(x) > 0 such that

(5.7) |Q̂(θ, x)| ≤ c1|θ|−d+1, θ ∈ Rπ.

Relations (5.6) and (5.7) yield

(5.8)
eixt

−1/�ξ

A(t−1/�ξ)
=

�−d∑
k=0

t−(k−�)/�Qk−�(ξ, x) + Q̂(t−1/�ξ, x),

where

(5.9) |Q̂(t−1/�ξ, x)| ≤ c1t
(d−1)/�|ξ|−d+1, ξ ∈ Rπt1/� , t ≥ t0.

On the other hand, due to (3.8) and (3.11),

(5.10) 1− e−tA(t−1/�ξ) = 1− e−A(ξ) − e−A(ξ)

( K∑
m=M

t−m/�Pm+�(ξ) + P̂ (ξ, t)

)
,

where

(5.11) |P̂ (ξ, t)| ≤ c2t
−(K+1)/�|ξ|K+1+�, ξ ∈ B1, t ≥ t0.
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Combining (5.5) with (5.8)–(5.11) and recalling that K ≥ �− d, we obtain

v1(x, t) =
�−d∑
k=0

t1−(k+d)/�

∫
B1

(
1− e−A(ξ)

)
Qk−�(ξ, x) dξ

−
�−d−M∑
k=0

K∑
m=M

t1−(k+m+d)/�

∫
B1

e−A(ξ)Qk−�(ξ, x)Pm+�(ξ) dξ + o(1) as t → ∞.

Therefore, explicitly writing a coefficient of the zeroth power of t, we have

(5.12)

v1(x, t) = v∗
1(x, t) +

∫
B1

(
1− e−A(ξ)

)
Q−d(ξ, x) dξ

−
�−d−M∑
k=0

∫
B1

e−A(ξ)Qk−�(ξ, x)P2�−d−k(ξ) dξ + o(1) as t → ∞,

where v∗
1(x, t) is a linear combination of the positive powers t1−(k+d)/� for k = 0, . . . ,

�− d− 1 with x-dependent coefficients.

2. Estimate of v2(x, t). We write Qk−�(θ, x) (defined in (5.6)) in the spherical coordi-
nates (r, ϕ) with respect to θ:

(5.13) Qk−�(θ, x) = rk−�Q̃k−�(ϕ, x)

and note that the Q̃k−�(ϕ, x) are infinitely differentiable with respect to ϕ and x. Recall
the function rπ(ϕ) defined in (1.12). Then, using (5.4), (5.6), and (5.13), we obtain

v2(x, t) =

�−d∑
k=0

∫
Φ

Q̃k−�(ϕ, x)J(ϕ) dϕ

∫ rπ(ϕ)

t−1/�

rd+k−�−1 dr +

∫
Rπ\Bt−1/�

Q̂(θ, x) dθ.

Since Q̂(θ, x) is integrable at the origin due to (5.7), we calculate (as t → ∞)

v2(x, t) = v∗
2(x, t) +

ln t

�

∫
Φ

Q̃−d(ϕ, x)J(ϕ) dϕ

−
�−d−1∑
k=0

1

�− d− k

∫
Φ

(rπ(ϕ))
d+k−�Q̃k−�(ϕ, x)J(ϕ) dϕ

+

∫
Rπ

Q̂(θ, x) dθ +

∫
Φ

ln(rπ(ϕ))Q̃−d(ϕ, x)J(ϕ) dϕ+ o(1),

(5.14)

where v∗
2(x, t) is a linear combination of the positive powers t1−(k+d)/� for k = 0, . . . ,

�− d− 1 with x-dependent coefficients.

3. Estimate of v3(x, t). Making the change of variables θ = t−1/�ξ, from (5.4) we
obtain

v3(t) = t−d/�

∫
R

πt1/L
\B1

e−tA(t−1/�ξ)

A(t−1/�ξ)
eixt

−1/�ξdξ + t−d/�

∫
R

πt1/�
\R

πt1/L

e−tA(t−1/�ξ)

A(t−1/�ξ)
eixt

−1/�ξdξ,

where L is defined by (3.7). Therefore, using (2.19), as in (3.22) we obtain

(5.15) v3(t) = t−d/�

∫
R

πt1/L
\B1

e−tA(t−1/�ξ)

A(t−1/�ξ)
eixt

−1/�ξ dξ + o(1) as t → ∞.
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Using (5.15), (3.8), (3.11), and (5.8), we have

v3(x, t) = t−d/�

∫
R

πt1/L
\B1

e−A(ξ)

(
1 +

K∑
m=M

t−m/�Pm+�(ξ) + P̂ (ξ, t)

)

×
( �−d∑

k=0

t−(k−�)/�Qk−�(ξ, x) + Q̂(t−1/�ξ, x)

)
dξ + o(1).

Taking estimates (3.12) and (5.9) into account and recalling that K ≥ �−d, we arrive at

v3(x, t) =

∫
Rd\B1

e−A(ξ)

(
1 +

K∑
m=M

t−m/�Pm+�(ξ)

)( �−d∑
k=0

t1−(k+d)/�Qk−�(ξ, x)

)
dξ + o(1)

= v∗
3(x, t) +

∫
Rd\B1

e−A(ξ)Q−d(ξ, x) dξ

+

�−d−M∑
k=0

∫
Rd\B1

e−A(ξ)Qk−�(ξ, x)P2�−d−k(ξ) dξ + o(1),

(5.16)

where v∗
3(x, t) is a linear combination of the positive powers t1−(k+d)/� for k = 0, . . . ,

�− d− 1 with x-dependent coefficients.

4. Estimate of v(x, t). Combining (5.3) with (5.12), (5.14), and (5.16), for each x ∈ Zd

we have

(5.17) v(x, t) = v∗(x, t) +
ln t

(2π)d�

∫
Φ

Q̃−d(ϕ, x)J(ϕ) dϕ+ S(x) + o(1),

where v∗(x, t) is a linear combination of the positive powers t1−(k+d)/� for k = 0, . . . ,
�− d− 1 with x-dependent coefficients and

S(y) :=
1

(2π)d

(∫
B1

(
1− e−A(ξ)

)
Q−d(ξ, y) dξ −

∫
Rd\B1

e−A(ξ)Q−d(ξ, y) dξ

+

∫
Rπ

Q̂(θ, y) dθ −
�−d−M∑
k=0

∫
Rd

e−A(ξ)Qk−�(ξ, y)P2�−d−k(ξ) dξ

−
�−d−1∑
k=0

1

�− d− k

∫
Φ

(rπ(ϕ))
d+k−�Q̃k−�(ϕ, y)J(ϕ) dϕ

+

∫
Φ

ln(rπ(ϕ))Q̃−d(ϕ, y)J(ϕ) dϕ

)
.

(5.18)

Now we are in a position to formulate our main result in the case where �− d ≥ 0.

Theorem 5.2. Let � − d ≥ 0. Then, for any ε > 0, t0 > 0, any integer K ≥
max(M, �− d), and all t ≥ t0ε

�, the following holds.

1. If x ∈ Rd
ε \ {0}, then

vε(x, t) = t1−d/� F0

( x

t1/�

)
+

�−d∑
k=M

εkt1−(k+d)/� Fk

( x

t1/�

)
+ ε�−d Ω

(x
ε

)

+

K∑
k=max(M,�−d+1)

εk

t(k+d)/�−1
Fk

( x

t1/�

)
+ rεv(K;x, t),

(5.19)
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where the Fk(y) are given by (4.4) and (4.5), respectively,

Ω(y) = S(y)− F̂ (y)−
�−d∑
k=0

Ωk(y),

S(y) is given by (5.18), F̂ (y) by (4.16), and Ωk(y) by (4.18).
2. If x = 0, then

vε(0, t) =
�−d−1∑
k=0

εkt1−(d+k)/� �Hk(0)

�− d− k
+ ε�−d

(
H�−d(0) ln t− �H�−d(0) ln ε+ S(0)

)
+

K∑
k=�−d+1

εk

t(d+k)/�−1

�Hk(0)

�− d− k
+ rεv(K; 0, t),

(5.20)

where S(0) is given by (5.18) with y = 0.

In both cases,
|rεv(K;x, t)| ≤ εK+1Rv(K, t0)

t(K+d+1)/�−1

and Rv(K, t0) ≥ 0 does not depend on ε > 0, x ∈ Rd
ε, and t ≥ t0ε

�.

Proof. The result follows from Lemmas 4.2 and 4.4, Corollary 4.1, and formula (5.17). �

Remark 5.1. Using Theorems 3.1 and 5.2, one can easily obtain asymptotic formulas for
the first-order “spatial derivatives” ε−1δε,k±u

ε(x, t) and ε−1δε,k±v
ε(x, t), k = 1, . . . , d,

and for their higher-order analog. To do so, one should use Taylor’s expansions around
x/t1/� of the functions entering formulas (3.1) and (5.19). We will not provide this result
in full generality, but rather present it for a one-dimensional example in Section 6.5.

§6. Higher order approximations of the 1D Laplacian

In this section, we illustrate our general results by applying them to the one-dimensio-
nal discrete Laplace operator. Throughout this section, we fix N ∈ N. In what follows,
we will not explicitly indicate the dependence of constants, functions, etc. on N .

6.1. List of constants and functions. For asymptotic formulas below, we will explic-
itly find all the coefficients. In this subsection, we collect the constants and the functions
which are needed for that.

For an integer J ≥ 0, set

bn :=
2(−1)n+1

(2(n+ 1))!

N∑
ν=1

aνν
2(n+1), n ≥ N,(6.1)

cnm :=
∑

l1,...,lm≥N,
l1+···+lm=n

bl1 · · · · · blm , n ≥ N, m ≥ 1,(6.2)

Pn(ξ) :=
∑

1≤m≤n/N

cnmξ2(n+m)

m!
, n ≥ N,(6.3)

dJn :=
∑

1≤m≤min(n/N,J)

(−1)m
(
J

m

)
cnm, n ≥ N,(6.4)

QJn(ξ) := 0, n = N, . . . , 2N − 1,(6.5)

QJn(ξ) :=
∑

l1,l2≥N,
l1+l2=n

dJl1ξ
2l1Pl2(ξ), n ≥ 2N,(6.6)

RJn(ξ) := (−1)Jξ2J(dJnξ
2n + Pn(ξ) +QJn(ξ)), n ≥ N.(6.7)
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As before, we use the convention that the sum vanishes if the set over which the sum-
mation is taken is empty.

6.2. Setting. Let uε(x), x ∈ R1
ε, be a grid function. We consider the difference operator

(6.8) Aε = −Δε, Δεu(x) := ε−2
N∑

ν=1

aν
(
u(x− εν)− 2u(x) + u(x+ εν)

)
,

with the coefficients aν satisfying the relations

(6.9)

N∑
ν=1

aνν
2 = 1,

N∑
ν=1

aνν
2m = 0, m = 2, . . . , N.

The matrix of system (6.9) is the Vandermonde matrix, which guarantees the existence
and uniqueness of the aν . Thus, throughout this section, � = 2 and d = 1.

The following lemma shows that Condition 2.2 is fulfilled with M = 2N .

Lemma 6.1. The operator Δε is the (2N)th order approximation of the second derivative
(the one-dimensional Laplacian) in the sense of Definition 2.3.

Proof. For any smooth function u(y) and ε > 0, relations (6.9) imply

ε−2
N∑

ν=1

aν
(
u(y − εν)− 2u(y) + u(y + εν)

)
= ε−2

N∑
ν=1

aν

( N∑
m=1

2(εν)2m

(2m)!
u(2m)(y)

+
(εν)2N+2

(2N + 2)!

(
u(2N+2)(y − ξ1νεν) + u(2N+2)(y + ξ2νεν)

))
= ε−2

( N∑
m=1

u(2m)(y)
2ε2m

(2m)!

N∑
ν=1

aνν
2m

)
+ ε2NRN (y) = u′′(y) + ε2NRN (y),

where

RN (y) =
N∑

ν=1

ν2N+2

(2N + 2)!

(
u(2N+2)(y − ξ1νεν) + u(2N+2)(y + ξ2νεν)

)
,

ξ1ν , ξ2ν ∈ [0, 1]. �

Due to Definition 2.4, the symbol of the operator Aε = −Δε is given by

(6.10) A(θ) = 2
N∑

ν=1

aν(1− cos νθ).

The following lemma shows that Condition 2.3 is fulfilled. The proof is given in
Appendix A.

Lemma 6.2. Let A(θ) be given by (6.10). Then

(1) A′(0) = A′(π) = 0 and A′(θ) > 0 for all θ ∈ (0, π);
(2) A(0) = 0 and A(θ) > 0 for all θ ∈ (0, π];

(3) A(θ) = θ2 −
∑K

n=N bnθ
2n+2 +O(θ2(K+2)), where the bn are given by (6.1).

From now on, we confine ourselves to the case of ε = 1. The case of ε > 0 can easily
be obtained by applying the scaling rule (2.24). Let δ(x) := δ1(x), x ∈ Z, be the grid
delta-function defined in (1.2) with ε = 1.
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Definition 6.1. Let ε = 1. We call the function u(x, t), x ∈ Z, t ≥ 0, the first
discrete Green function if u( · , t) is a rapidly decreasing grid function for all t ≥ 0,
u(x, · ) ∈ C1[0,∞) for all x ∈ Z, and{

u̇(x, t)−Δ1u(x, t) = 0, x ∈ Z, t > 0,

u(x, 0) = δ(x), x ∈ Z.

We call the function v(x, t), x ∈ Z, t ≥ 0, the second discrete Green function if v( · , t)
is a rapidly decreasing grid function for all t ≥ 0, v(x, · ) ∈ C1[0,∞) for all x ∈ Z, and{

v̇(x, t)−Δ1v(x, t) = δ(x), x ∈ Z, t > 0,

v(x, 0) = 0, x ∈ Z.

6.3. Asymptotics of the first Green function u(x, t). We begin with asymptotic
formulas for the first Green function u(x, t). Consider the function

(6.11) h(y) :=
1

2
√
π
e−y2/4,

which coincides with H(y) defined in (2.7). Note that 1√
t
h(y) is the Green function of

the operator ut(y, t)− uyy(y, t) (cf. (2.6)).

Theorem 6.1. For any t0 > 0, integers J ≥ 0 and K1 ≥ N , and all x ∈ Z and t ≥ t0,
we have

(6.12)
dJu(x, t)

dtJ
=

1

tJ
√
t
hJ0

( x√
t

)
+

K1∑
n=N

1

tn+J
√
t
hJn

( x√
t

)
+ ru(J,K1;x, t),

where

hJ0(x) :=
d2Jh(x)

dx2J
, hJn(x) := RJn

(
− i

d

dx

)
h(x),(6.13)

|ru(J,K1;x, t)| ≤
Ru(J,K1, t0)

tJ+K1+1
√
t
,

the RJn(ξ) are polynomials given by (6.7), and Ru(J,K1, t0) ≥ 0 does not depend on
t ≥ t0 and x ∈ Z.

Proof. Due to Lemma 6.2, part 3, the Taylor expansion of the symbol A(θ) contains only
even powers of θ. This fact and Theorem 3.1 with M = 2N , K = 2K1, and k = 2n imply
the result. �

6.4. Asymptotics of the second Green function v(x, t). For y ≥ 0, we introduce
the functions

f0(y) = 2y

∫ ∞

y

ρ−2h(ρ) dρ,(6.14)

fn(y) = − 2

y2n−1

∫ y

0

ρ2n−2h0n(ρ) dρ, n = 1, 2, . . . .(6.15)

Note that

(6.16) f ′′
0 (y) = h(y), y > 0,

where h(y) is given by (6.11). Furthermore, f0(y) is positive, real analytic for1 y ≥ 0
(use e.g., (6.16)), and vanishes at infinity, together with all its derivatives.

Using (6.11) and (6.13), we see that the fn(y) are real analytic for y ≥ 0 and vanish
at infinity, together with all their derivatives.

1Analyticity at y = 0 is understood in the sense that f(y) can be represented as the Taylor series
with respect to the powers of y which converges to f(y) in a right-hand neighborhood of y = 0.
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Theorem 6.2. For any t0 > 0, any integer K1 ≥ N , and all x ∈ Z and t ≥ t0, we have

v(x, t) =
√
t f0

( x√
t

)
+Ω(x) +

K1∑
n=N

1

tn−1
√
t
fn

( x√
t

)
+ rv(K1;x, t), x ≥ 0,

v(x, t) = v(−x, t), x ≤ −1,

(6.17)

where

(6.18) Ω(x) =
1

2π

( ∫ π

−π

(cos(xξ)
A(ξ)

− 1

ξ2

)
dξ − 2

π

)
+

x

2
,

f0(y), f1(y), . . . , fK1
(y) are given by (6.14), (6.15),

|rv(K1;x, t)| ≤
Rv(K1, t0)

tK1
√
t

,

and Rv(K1, t0) ≥ 0 does not depend on t ≥ t0 and x ≥ 0.
Moreover, if N = 1, then Ω(x) = 0 for all integers x ≥ 0.

Proof. Since v(x, t) ≡ v(−x, t), x ∈ Z, it remains to prove the first formula in (6.17).
Due to Lemma 6.2, part 3, the Taylor expansion of the symbol A(θ) contains only even
powers of θ. Therefore, Hk(y) ≡ H0k(y) ≡ 0 for odd k. Hence, Fk(y) ≡ 0 for odd k,
where the Fk(y) are given by (4.5). On the other hand, relations (6.14), (6.15) and (4.4),
(4.5), imply that

(6.19) f0(y) ≡ F0(y), fn(y) ≡ F2n(y), n ≥ 1.

Thus, applying Theorem 5.2 with ε = 1, M = 2N , K = 2K1, and k = 2n, we obtain
the first formula in (6.17) with Ω(x) given by

Ω(x) =
1

2π

( ∫ π

−π

(
cos(xξ)

A(ξ)
− 1

ξ2

)
dξ − 2

π

)
− 2x

∫ 1

0

h(ρ)− h(0)

ρ2
dρ− 2x

(∫ ∞

1

h(ρ)

ρ2
dρ− h(0)

)
.

(6.20)

Note that

−2

∫ 1

0

h(ρ)− h(0)

ρ2
dρ− 2

(∫ ∞

1

h(ρ)

ρ2
dρ− h(0)

)
= − 1√

π

∫ ∞

0

e−ρ2/4 − 1

ρ2
dρ =

1

2
,

where the last identity can be proved, e.g., by introducing a parameter a as follows:

e−aρ2/4 and differentiating with respect to it. Hence, (6.20) yields (6.18).
Finally, if N = 1, then Ω(x) = 0 for all x ∈ Z by Lemma B.1. �

6.5. Asymptotics of the gradient of the Green functions. Next, we derive asymp-
totic formulas for ∇v(x, t) := v(x+1, t)−v(x, t) and its time derivatives, see Remark 5.1.
We introduce the function

(6.21) g(x) := f ′
0(x), x ≥ 0,

where f0(x) is given by (6.14). Note that g(x) is negative, real analytic for x ≥ 0, and
vanishes at infinity, together with all its derivatives.

Furthermore, for n ≥ 2, we set

(6.22) gn(x) :=
1

(n+ 1)!
f
(n+1)
0 (x) +

∑
s≥N, j≥1,
2s+j−1=n

1

j!
f (j)
s (x), x ≥ 0,

where fs(x) are given by (6.15). Note that the fs(x) are real analytic for x ≥ 0 and
vanish at infinity, together with all their derivatives. Therefore, expanding the functions
fs around x/

√
t in (6.17), we arrive at the following theorem.



592 P. GUREVICH

Theorem 6.3. For any t0 > 0, any integer K1 ≥ 2, and all x ∈ Z and t ≥ t0, we have

∇v(x, t) = ∇Ω(x) + g
( x√

t

)
+

1

2
√
t
h
( x√

t

)
+

K1∑
n=2

1

tn/2
gn

( x√
t

)
+ r̂v(K1;x, t), x ≥ 0,

∇v(x, t) = −∇v(−(x+ 1), t), x ≤ −1,

(6.23)

where Ω(x) is given by (6.18), g2(x), . . . , gK1
(x) are given by (6.22),

|̂rv(K1;x, t)| ≤
R̂v(K1, t0)

t(K1+1)/2
,

and R̂v(K1, t0) ≥ 0 does not depend on t ≥ t0 and x ≥ 0.
Moreover, if N = 1, then ∇Ω(x) = 0 for all integers x ≥ 0.

Finally, for n ≥ 2, we set

(6.24) gJn(x) :=
1

(n+ 1)!
h
(n+1)
J0 (x) +

∑
s≥N, j≥1,
2s+j−1=n

1

j!
h
(j)
Js (x), x ≥ 0,

where hJ0(y) and hJs(y) are given by (6.13). Note that hJ0(y) and hJs(y) are real
analytic for x ≥ 0 and vanish at infinity, together with all their derivatives. Therefore,
expanding the functions hJ0 and hJs around x/

√
t in (6.12), we arrive at the following

theorem.

Theorem 6.4. For any t0 > 0, any integers J ≥ 0 and K1 ≥ 2, and all x ∈ Z and
t ≥ t0, we have

(6.25)

dJ∇u(x, t)

dtJ
=

1

tJ+1
h(2J+1)(x) +

1

2tJ+1
√
t
h(2J+2)(x)

+

K1∑
n=2

1

tJ+1+n/2
gJn

( x√
t

)
+ r̂u(J,K1;x, t), x ≥ 0,

dJ∇u(x, t)

dtJ
= −dJ∇u(−(x+ 1), t)

dtJ
, x < 0,

where gJ2(x), . . . , gJK1
(x) are given by (6.24); furthermore,

|̂ru(J,K1;x, t)| ≤
R̂u(J,K1, t0)

tJ+1+(K1+1)/2
,

and R̂u(J,K1, t0) ≥ 0 does not depend on t ≥ t0 and x ≥ 0.

A. Proof of Lemma 6.2(Ellipticity)

Let us prove assertion 1.

Step 1. Let Tν(y) and Uν(y) be the Chebyshev polynomials of the first and the second
kind, respectively. Using the relations

cos νθ = Tν(cos θ),
sin νθ

sin θ
= Uν−1(cos θ), νUν−1(y) = Tν(y), ν = 1, 2, . . . ,

we obtain

A′(θ) = 2 sin θ
N∑

ν=1

aνT ′
ν (cos θ).
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Thus, it suffices to prove that

(A.1) B(y) :=
N∑

ν=1

aνT ′
ν (y) > 0, y ∈ [−1, 1].

Step 2. Suppose we have proved that

(A.2) (−1)j−1B(j−1)(1) > 0, j = 1, . . . , N.

Since Tν(y) is a polynomial of degree ν, from (A.2) it follows that

(A.3) (−1)N−1 d
N−1B(y)
dyN−1

= (−1)N−1 d
N−1B(1)
dyN−1

> 0, y ∈ [0, 1].

Therefore, (−1)N−2 dN−2B(y)
dyN−2 is monotone decreasing and, due to (A.2), is positive for

y ∈ [−1, 1]. Hence, (−1)N−3 dN−3B(y)
dyN−3 is monotone decreasing and, due to (A.2), is also

positive for y ∈ [−1, 1]. Continuing by induction, we conclude that B(y) is positive for
y ∈ [−1, 1].

Step 3. It remains to prove (A.2), i.e.,

(A.4) (−1)j−1
N∑

ν=1

aνT (j)
ν (1) > 0, j = 1, . . . , N.

Set
u(θ) := cos(θ), v(y) := arccos(y).

Then Tν(y) = u(νv(y)). In what follows, we will use the following representations for
α = 0, 1, 2, . . . :

(A.5) v(α)(y) = (−1)α(1− y)−α+1/2
∞∑

n=0

Aαn(1− y)n,

where Aαn > 0. This series and all the series below converge in a neighborhood of

y = 1. To prove (A.5), one can write arccos(y) =
∫ 1

y
(1− z)−1/2(1+ z)−1/2dz and expand

(1 + z)−1/2 into the Taylor series around z = 1.
We fix some j ∈ {1, . . . , N}. From now on, we will not explicitly indicate the depen-

dence of emerging coefficients on j. Since Tν(y) = u(νv(y)), we see that

(A.6) T (j)
ν (y) =

j∑
k=1

νku(k)(νv(y))
∑

1≤l1≤···≤lk,
l1+···+lk=j

Bl1...lkv
(l1)(y) · · · · · v(lk)(y),

where Bl1...lk > 0. Therefore, using (A.5), we have

(A.7) T (j)
ν (y) = (−1)j

j∑
k=1

∞∑
l=0

Cklν
ku(k)(νv(y))(1− y)l−j+k/2,

where Ckl > 0.
Expanding u(k)(νv(y)) and the powers of v(y) (using (A.5) with α = 0), we obtain

(A.8) u(k)(νv(y)) =
∞∑

m=0

Dkmνmvm(y), vm(y) = (1− y)m/2
∞∑

n=0

Emn(1− y)n,

where Dkm ∈ R, Dkm = 0 for k +m odd, and Emn > 0. Therefore,

(A.9) u(k)(νv(y)) =

2j−k∑
m=0

∞∑
n=0

DkmEmnν
m(1− y)n+m/2 + (1− y)j−k/2Ukν(y),
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where Ukν(y) is continuous at y = 1 and

(A.10) Ukν(1) = 0.

Now we substitute (A.9) in (A.7) and take (A.10) into account:

(A.11) T (j)
ν (y) = (−1)j

j∑
k=1

2j−k∑
m=0

∞∑
l,n=0

CklDkmEmnν
k+m(1− y)l+n−j+(k+m)/2 + Uν(y),

where Uν(y) is continuous at y = 1 and

(A.12) Uν(1) = 0.

Finally, we can calculate the sum on the left-hand side in (A.4). To do so, we note
the following:

(a) in (A.11), there are only terms with ν2, ν4, . . . , ν2j (since Dkm = 0 for k + m
odd);

(b) in (A.11), the terms with negative powers of (1− y) cancel because T (j)
ν (y) is a

polynomial (hence, contains only nonnegative powers of (1− y));
(c) after summation with respect to ν, the terms with ν4, . . . , ν2j will vanish, while∑N

ν=1 aνν
2 will yield 1, due to (6.9);

(d) the terms with positive powers of (1 − y) and Uν(y) will vanish at y = 1 due
to (A.12).

Thus, only the terms corresponding to (k,m) = (1, 1) and (k,m) = (2, 0) remain:

(A.13) (−1)j−1
N∑

ν=1

aνT (j)
ν (1) = (−1)j−1(−1)j

(
D11

∑
n,l≥0,

n+l=j−1

C1lE1n +D20

∑
n,l≥0,

n+l=j−1

C2lE0n

)
.

Since u(θ) = cos θ, it follows from the first equality in (A.8) that D11 and D20 are the
leading order coefficients in the Taylor expansions of − sin θ and − cos θ, respectively.
Hence, D11 = D20 = −1 and (A.13) yields

(−1)j−1
N∑

ν=1

aνT (j)
ν (1) =

∑
n,l≥0,

n+l=j−1

C1lE1n +
∑

n,l≥0,
n+l=j−1

C2lE0n > 0,

which completes the proof of2 (A.4) and assertion 1 in the lemma.
Assertion 2 follows from assertion 1.
The Taylor expansion in assertion 3 follows from the Taylor expansions of cos νθ and

relations (6.9).

2The left-hand side in (A.4) can also be found, by using the following observation. In the proof, we
have shown that, in (A.6), only the terms with u′ and u′′ are relevant. Furthermore, in the expansion
of u′(νg(y)) only the term −νg(y) is relevant, and in the expansion of u′′(νg(y)) only the term −1 is
relevant. Therefore, we would have obtained the same result if we replaced u(θ) by the function −θ2/2
and deleted all the terms with negative powers of (1 − y) after the respective expansions in the end.
Therefore,

(−1)j−1
N∑

ν=1

aνT (j)
ν (1) = (−1)j

N∑
ν=1

aν
dj

dyj

(ν2 arccos2 y

2

)∣∣∣
y=1

=
(−1)j

2

dj

dyj
(arccos2 y)

∣∣∣
y=1

because dj

dyj (arccos
2 y) = 2v(y)v′(y) already has no negative powers of (1−y) due to (A.5). Interestingly,

the left-hand side in (A.4) does not depend on N .
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B. An identity

In this section, we prove a result, which we need for Theorems 6.2 and 6.3 in the case
N = 1.

Lemma B.1 1. Let

Ω(x) :=
1

2π

( ∫ π

−π

(
cos(xξ)

2(1− cos ξ)
− 1

ξ2

)
dξ − 2

π

)
+

x

2
, x ∈ Z, x ≥ 0.

Then Ω(x) = 0 for all integers x ≥ 0.

Proof. Step 1. First, we show that

(B.1) Ω(x)− Ω(x+ 1) = 0 for all integers x ≥ 0.

We have

Ω(x)− Ω(x+ 1) = I(x)− 1
2 ,

where

I(x) :=
1

4π

∫ π

−π

cos(xξ)− cos((x+ 1)ξ)

1− cos ξ
dξ.

If x = 0, then, obviously, I(x) = 1/2.
Assume that x ≥ 1. Using the formula

cos(x+ 1)ξ = cosxξ cos ξ − sinxξ sin ξ,

we obtain

(B.2) I(x) =
1

4π

∫ π

−π

sin xξ sin ξ

1− cos ξ
dξ +

1

4π

∫ π

−π

cosxξ dξ =
1

4π

∫ π

−π

sinxξ sin ξ

1− cos ξ
dξ.

For x = 1, we have I(x) = 1/2. To prove (B.1), it remains to show that the right-hand
side of (B.2) does not depend on x ≥ 1. Using the formula sin(x + 1)ξ = sinxξ cos ξ +
cosxξ sin ξ, we obtain

(sin(x+ 1)ξ − sinxξ) sin ξ

1− cos ξ
= − sinxξ sin ξ +

cosxξ sin2 ξ

1− cos ξ

= − sinxξ sin ξ + cosxξ + cosxξ cos ξ.

For x = 1, the integral of the right-hand side vanishes by direct calculation, while for
x ≥ 2, it vanishes by the orthogonality of the systems {sin xξ}x∈Z and {cosxξ}x∈Z,
respectively, in L2(−π, π).

Step 2. It remains to show that Ω(0) = 0. We have

(B.3) Ω(0) =
1

π
lim
σ→0

(
I1(σ) + I2(σ)−

1

π

)
,

where

I1(σ) :=

∫ π

σ

dξ

2(1− cos ξ)
=

1

4

∫ π

σ

dξ

sin2(ξ/2)
=

1

2
cot(σ/2) =

1

σ
+O(σ),(B.4)

I2(σ) := −
∫ π

σ

dξ

ξ2
=

1

π
− 1

σ
.(B.5)

Combining (B.3), (B.4), and (B.5) yields Ω(0) = 0. �
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