Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Numerically detectable hidden spectrum of certain integration operators
HTML articles powered by AMS MathViewer

by N. Nikolski
St. Petersburg Math. J. 28 (2017), 773-782
DOI: https://doi.org/10.1090/spmj/1472
Published electronically: October 2, 2017

Abstract:

It is shown that the critical constant for effective inversions in operator algebras $\mathrm {alg}(V)$ generated by the Volterra integration $Jf=\int _{0}^{x}f dt$ in the spaces $L^{1}(0,1)$ and $L^{2}(0,1)$ are different: respectively, $\delta _{1}=1/2$ (i.e., the effective inversion is possible only for polynomials $T=p(J)$ with a small condition number $r(T^{-1})\| T\| < 2$, $r( \cdot )$ being the spectral radius), and $\delta _{1}=1$ (no norm control of inverses). For more general integration operator $J_{\mu }f=\int _{[0,x\rangle }f d\mu$ on the space $L^{2}([0,1],\mu )$ with respect to an arbitrary finite measure $\mu$, the following $0-1$ law holds: either $\delta _{1}=0$ (and this happens if and only if $\mu$ is a purely discrete measure whose set of point masses $\mu (\{x\})$ is a finite union of geometrically decreasing sequences), or $\delta _{1}=1$.
References
  • Alexandru Aleman and Anders Dahlner, Uniform spectral radius and compact Gelfand transform, Studia Math. 172 (2006), no. 1, 25–46. MR 2203158, DOI 10.4064/sm172-1-2
  • Jan-Erik Björk, On the spectral radius formula in Banach algebras, Pacific J. Math. 40 (1972), 279–284. MR 308787
  • O. Èl′-Falla, N. K. Nikol′skiĭ, and M. Zarrabi, Estimates for resolvents in Beurling-Sobolev algebras, Algebra i Analiz 10 (1998), no. 6, 1–92 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 10 (1999), no. 6, 901–964. MR 1678988
  • John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • Pamela Gorkin, Raymond Mortini, and Nikolai Nikolski, Norm controlled inversions and a corona theorem for $H^\infty$-quotient algebras, J. Funct. Anal. 255 (2008), no. 4, 854–876. MR 2433955, DOI 10.1016/j.jfa.2008.05.011
  • Yuri Lyubich, The power boundedness and resolvent conditions for functions of the classical Volterra operator, Studia Math. 196 (2010), no. 1, 41–63. MR 2564481, DOI 10.4064/sm196-1-4
  • N. K. Nikol′skiĭ, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
  • Nikolai Nikolski, In search of the invisible spectrum, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1925–1998. MR 1738071
  • Nikolai Nikolski, The problem of efficient inversions and Bezout equations, Twentieth century harmonic analysis—a celebration (Il Ciocco, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 235–269. MR 1858788
  • Nikolai K. Nikolski, Operators, functions, and systems: an easy reading. Vol. 2, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002. Model operators and systems; Translated from the French by Andreas Hartmann and revised by the author. MR 1892647
  • N. K. Nikolski, The spectral localization property for diagonal operators and semigroups, Algebra i Analiz 21 (2009), no. 6, 202–226; English transl., St. Petersburg Math. J. 21 (2010), no. 6, 995–1013. MR 2604547, DOI 10.1090/S1061-0022-2010-01128-2
  • —, Éléments d’analyse avancé. T1. Espaces de Hardy, Belin, Paris, 2012.
  • Nikolai Nikolski and Vasily Vasyunin, Elements of spectral theory in terms of the free function model. I. Basic constructions, Holomorphic spaces (Berkeley, CA, 1995) Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998, pp. 211–302. MR 1630652
  • V. I. Vasyunin and N. K. Nikol′skiĭ, Invertibility threshold for the $H^\infty$-trace algebra and the efficient inversion of matrices, Algebra i Analiz 23 (2011), no. 1, 87–110 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 23 (2012), no. 1, 57–73. MR 2760148, DOI 10.1090/S1061-0022-2011-01186-0
  • Anders Olofsson, An extremal problem in Banach algebras, Studia Math. 145 (2001), no. 3, 255–264. MR 1829210, DOI 10.4064/sm145-3-5
  • N. Wiener and H. R. Pitt, On absolutely convergent Fourier-Stieltjes transforms, Duke Math. J. 4 (1938), no. 2, 420–436. MR 1546064, DOI 10.1215/S0012-7094-38-00435-1
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 47C05
  • Retrieve articles in all journals with MSC (2010): 47C05
Bibliographic Information
  • N. Nikolski
  • Affiliation: Chebyshev Laboratory, St. Petersburg State University, 199178 St. Petersburg, Russia; University of Bordeaux, France
  • Email: nikolski@math.u-bordeaux.fr
  • Received by editor(s): June 25, 2016
  • Published electronically: October 2, 2017
  • Additional Notes: This research is supported by the project “Spaces of analytic functions and singular integrals”, RSF grant 14-41-00010
  • © Copyright 2017 American Mathematical Society
  • Journal: St. Petersburg Math. J. 28 (2017), 773-782
  • MSC (2010): Primary 47C05
  • DOI: https://doi.org/10.1090/spmj/1472