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ELLIPTIC EQUATIONS

IN CONVEX DOMAINS

V. MAZ′YA

To Yury Burago, a friend of my youth,
with love and admiration

Abstract. A short survey of a series of results by the author, partly obtained in
collaboration with Yu. Burago.

Introduction

It is an elementary consequence of the theory of conformal mappings that harmonic
functions of two variables with zero either Dirichlet or Neumann data are differentiable
at the vertex of any angle less than π. In contrast, reentrant angles produce singularities
of the gradient. This is the simplest example of the beneficial influence of a domain’s
convexity on the regularity of solutions to classical boundary value problems.

In the present article I review several results illustrating the same fenomena obtained
with my participation.

I start with a half century old work, joint with Yu. Burago, on the double and single
layer harmonic potential theory.

§2 is devoted to Lp-properties of the gradient of solutions to the Neumann problem
for the Poisson equation in a convex domain (see [1]).

The next section addresses a class of quasilinear elliptic equations and systems in a
convex domain. Here some sharp results obtained in 2014 together with Cianchi are
described.

The last section concerns the Dirichlet problem for the biharmonic equation. It reflects
the joint paper [6].

§1. Neumann problem for harmonic functions

inside and outside a convex domain

I start with description of solvability results for classical boundary value problems for
the Laplace equation obtained by Yu. Burago and myself.

Our starting point was a remark made in the famous course of functional analysis by
F. Riesz and B. Sz.-Nagy, namely that “in the case of the spatial problem an analog of
curves with bounded rotation has not yet been found”. These curves form the largest
class of contours known by that time for which the classical harmonic potential theory was
developed. According to the note by Burago, Maz′ya, Sapozhnikova [2], it turned out that
a “proper” generalization of Radon’s result to higher dimensions can be achieved in terms
of a certain function ω(ξ, B) replacing in a sense the solid angle at which the set B is seen
from the point ξ. Within a few years Yu. Burago and myself developed a comprehensive
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theory of double and single layer potentials for a large class of n-dimensional domains.
An exposition of that theory was given in the book [3].

The basic results, i.e., theorems on the solvability of the integral equations of the fun-
damental boundary value problems, were obtained for domains subject to two conditions

sup
{
varω(ξ, S \ ξ) : ξ ∈ S

}
< ∞,(A)

lim sup
r→0

{
varω(ξ, S ∩Br(ξ)) : ξ ∈ S

}
< σn/2.(B)

Here S is the boundary of the domain Ω with compact closure, var denotes the variation
of the charge, Br(ξ) is the ball with center ξ and radius r, and σn is the area of the unit
sphere.

We wish to point out that condition (A) is a corner-stone of the entire theory, whereas
condition (B) is solely needed to prove the Fredholm alternative.

An arbitrary convex domain Ω satisfies condition (B). In fact, the closed ball Br(p)
lies in Ω. For every point q ∈ ∂Ω, we have

1) varω∂Ω = ω∂Ω (because the projection from p is bijective);

2) ω∂Ω ≤ 1
2ωn {the angle at which Br(p) is seen from the point q}.

It is trivial to obtain a positive minorant for the last angle depending on ρ and r,
which together with 2) guarantees (B).

Therefore, in what follows, I shall always assume Ω to be a convex domain.
I give a short exposition of our results.

Definition 1.1. The harmonic double layer potential with continuous density χ is the
function defined for x /∈ S by

(Wχ)(x) =
1

σn

∫
S

χ(ξ)ω(x, dξ).

Theorem 1.1. For any continuous function χ, the limit values W±χ of the potential
Wχ, which exist from inside and outside of Ω, satisfy

W+χ =
1

2
(χ+ Tχ),(1.1)

W−χ =
1

2
(−χ+ Tχ),(1.2)

and the doubled direct value of the potential,

(Tχ)(x) =
2

σπ

∫
S

χ(ξ)ω(x, dξ),

generates a continuous operator in the space of continuous functions C(S).

Owing to formulas (1.1) and (1.2), continuous solutions of the internal and external
Dirichlet problems with prescribed boundary functions ϕ+ and ϕ− in C(S) may be
determined by means of the integral equations

χ+ Tχ = 2ϕ+,(1.3)

−χ+ Tχ = 2ϕ−.(1.4)

To pose, in some sense, the Neumann problem for surfaces satisfying condition (A),
we need the notion of boundary flow.

Definition 1.2. A function u ∈ C1(intΩ) is said to possess an inner boundary flow if
(i) for each infinitely differentiable function ϕ on Rn with compact support and for each

sequence of sets Ωm ⊂ int Ω with smooth boundaries that converge to Ω, the following
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limit exists:

lu(ϕ) = lim
m→∞

∫
∂Ωm

ϕ(x)
∂u

∂νx
Hn−1 (dx);

(ii) the functional lu is bounded in the norm of C(S).

Definition 1.3. Let the requirements (i), (ii) of the previous definition be satisfied. The
finite charge Σ+ on S generating the extension of the functional lu to all of C(S),

lu(ϕ) =

∫
S

ϕ(x)Σ+ (dx),

is called the inner boundary flow of the function u.
The outer boundary flow Σ−of a function u ∈ C1(Rn \ Ω) is defined similarly.

In our understanding of the internal and external Neumann problems the charges Σ+

and Σ− play part of the normal derivatives.

Definition 1.4. Given a finite charge � on S ⊂ Rn (n ≥ 3), the single layer potential
with the charge � is defined by

(V �)(x) =
1

σn

∫
S

r2−n� (dξ), x /∈ S.

The function V ρ turns out to be harmonic in Rn \ S.

Theorem 1.2. Suppose measn(S) = 0, S = ∂(Rn \ Ω), and condition (A) is fulfilled.
Then the potential V ρ possesses inner and outer boundary flows, which equal

−1

2
�(B) +

1

σn

∫
S

ω(x,B)� (dx),

1

2
�(B) +

1

σn

∫
S

ω(x,B)� (dx),

where B is an arbitrary Borel subset of S.

The condition (A) is not only sufficient but also necessary for the boundary flows of
an arbitrary V � to exist.

Thus, looking for the solution of the Neumann problem in the form of a single layer
potential leads to the equations

−�+ T ∗� = 2Σ+,(1.5)

�+ T ∗� = 2Σ−.(1.6)

Here T ∗ is the operator adjoint of T , acting on the dual space C∗(S) of C(S).
The following theorem is our basic result on the solvability of the above integral

equations.

Theorem 1.3. 1) The integral equation (1.5) of the internal Dirichlet problem has a
unique solution in C(S) for every continuous right-hand side Σ+.

2) The integral equation (1.6) of the external Neumann problem is uniquely solvable
for every finite charge Σ−.

Definition 1.5. A finite charge � is said to belong to the class CV if the simple layer
potential V ρ generated by � possesses finite and equal limits on S from inside and outside
of S.

I conclude with our theorem on the solvability of the Neumann problem in the convex
domain Ω and its complement. In its formulation BV stands for the space of functions
whose distributional gradients are vector-valued charges.
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Theorem 1.4. 1) For every finite charge Σ+ ∈ CV with vanishing total mass, there
exists, up to an additive constant, exactly one solution of the internal Neumann problem
belonging to the class C(Ω) ∩BV (int Ω).

2) For every finite charge Σ− ∈ CV there exists precisely one solution of the external
Neumann problem belonging to the class C(Rn \ int Ω) ∩ BV loc(Rn \ Ω) and tending to
zero at infinity.

Note that ten years later several publications on the solvability of the boundary inte-
gral equations (1.3)–(1.6) in the spaces Lp, 1 < p < ∞, on Lipschitz surfaces appeared
(see [7, Section 3]).

§2. Neumann problem for the Poisson equation inside

and outside of a convex domain

We denote by F a linear functional on the space L1,p′
(Ω), p+p′ = pp′, p ∈ (1,∞). By

a distributional solution to the Neumann problem for the Poisson equation −Δu = F we
mean a function u ∈ L1,p(Ω) that is orthogonal to 1 in Ω and satisfies the equality

(2.1)

∫
Ω

∇u · ∇ψ dx = F (ψ) ∀ψ ∈ L1,p′
(Ω).

As is known (cf., for example, [8, Theorem 1.1.15/1]), any linear functional F on

L1,p′
(Ω) can be represented as

(2.2) F (ψ) =

∫
Ω

f · ∇ψ dx,

where f ∈ Lp(Ω); moreover,

‖F‖ = inf ‖f‖Lp(Ω),

where the infimum is taken over all vector-valued functions f satisfying (2.2) for any

ψ ∈ L1,p′
(Ω). The space of functionals F is denoted by (L1,p′

(Ω))∗.
Suppose that ψ ∈ L1,p(Ω) and trψ denotes the trace of ψ on ∂Ω. As is known, the

set {trψ} is the space B1/p,p′
(∂Ω). We introduce the space of distributions B−1/p,p′

(∂Ω)

dual to B1/p,p′
(∂Ω). It is clear that the mapping

L1,p′
(Ω) � ψ −→

∫
∂Ω

h(x) trψ(x) dsx,

where h ∈ B−1/p,p(∂Ω) and h ⊥ 1 on ∂Ω, is a linear functional. If h ∈ B−1/p,p(∂Ω),
then a particular case of the problem (2.1) is the problem

Δu = 0 in Ω,
∂u

∂ν

∣∣∣
∂Ω

= h, u ∈ L1,p(Ω),

where ν is the unit vector of the outward normal to the boundary ∂Ω.
By the Sobolev embedding theorems (cf., for example, [8, Theorem 1.4.5]), the map-

ping

L1,p′
(Ω) � ψ −→

∫
Ω

f0(x)ψ(x) dx+

∫
∂Ω

h(x) trψ(x) dsx

is a linear functional if f0 ∈ Lnp/(n+p)(Ω), h ∈ Lp(n−1)/n(∂Ω) for p′ < n, f0 ∈ Lq(Ω) for
any q > 1 with p′ = n and if∫

Ω

f0(x) dx+

∫
∂Ω

h(x) dsx = 0.

Using this functional, we can define a weak L1,p(Ω)-solution to the problem

(2.3) −Δu = f0 in Ω,
∂u

∂ν

∣∣∣
∂Ω

= h.
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For p′ > n the same is true if h = 0 and the right-hand side f0 of equation (2.3) belongs
to the dual (C(Ω))∗ of the space of functions that are continuous in the closure of Ω,
have compact support in Ω and are orthogonal to 1 in Ω.

This fact is used in the following definition of the Green function G of the Neumann
problem in the domain Ω. Suppose that y ∈ Ω and p ∈ (1, n/(n − 1)). The function
Ω � x → G(x, y), orthogonal to 1 in Ω, is an L1,p(Ω)-solution to the Neumann problem

(2.4) −ΔxG(x, y) = δ(x− y)− |Ω|−1 in Ω,
∂G(x, y)

∂νx

∣∣∣
∂Ω

= 0,

where |Ω| is the n-dimensional measure of the domain Ω. It is known that this function
admits a uniform estimate (cf., for example, [7, Theorem 3])

(2.5) ‖∇xG(x, y)‖Lp(Ω) ≤ c(n, p,Ω),

where p ∈ (1, n′(n− 1).
The proof of this result is based on the following estimates for the Green function

G(x, y) of the Neumann problem for the Laplace operator in a domain Ω:

(2.6) |∇yG(x, y)| ≤ c(n,Ω)|x− y|1−n ∀x, y ∈ Ω, x �= y,

and

(2.7) |∇x∇yG(xy)| ≤ c(n,Ω)|x− y|−n ∀x, y ∈ Ω, x �= y.

Note that they are of independent interest.
From (2.6) it follows that a pointwise estimate for the gradient of the solution u to

the Neumann problem for the Poisson equation

−Δu = f ∈ L1(Ω), f ⊥ 1 in Ω,

has the form

(2.8) |∇u(x)| ≤ c(n,Ω)

∫
Ω

|x− y|1−n|f(y)| dy ∀x ∈ Ω.

We state main result of [1].

1.1 Theorem. The Neumann problem (2.1) is uniquely solvable in the space L1,p(Ω) for
any exponent p ∈ (1,∞), and the solution u satisfies the inequality

(2.9) ‖∇u‖Lp(Ω) ≤ C‖F‖(L1,p′ (Ω))∗ ,

where the constant C is independent of u and F .

A simple counterexample shows that this result is not valid for an arbitrary p if the
boundary of Ω ⊂ R2 has a reentrant angle.

The above theorem is a consequence of estimates (2.6), (2.7) and the following asser-
tion.

The integral operator acting in Rn
+ = {y : yn > 0, y = (y′, yn)}, with kernel J(x, y) =

(|x′ − y′|+ xn + yn)
−n is bounded in Lp(Rn

+) for any exponent p ∈ (1,∞).
A result similar to the main theorem can be obtained also for the Dirichlet problem

in an arbitrary convex domain

−Δu = div f, f ∈ [Lp(Ω)]n, u ∈ L̊1,p(Ω),

where L̊1,p(Ω) is the completion of C∞
0 (Ω) in L1,p(Ω). In other words, the Laplace

operator performs an isomorphism L̊1,p(Ω) → (L̊1,p(Ω))∗ for any p ∈ (1,∞).
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§3. Sharp estimates for the gradient of solutions

for a class of nonlinear elliptic systems and equations

In [4], gradient boundedness up to the boundary for solutions to the Dirichlet and
Neumann problems for elliptic systems with Uhlenbeck type structure was established.
Nonlinearities of possibly nonpolynomial type are allowed, and minimal regularity of the
data and of the boundary of the domain is assumed. The case of arbitrary bounded
convex domains, considered in this section, is also included.

We are concerned with second-order nonlinear elliptic systems of the form

(3.1) − div(a(|∇u|)∇u) = f(x) in Ω.

Our assumptions on the system (3.1) amount to what follows. The function a : (0,∞) →
(0,∞) is required to be monotone (either nondecreasing or nonincreasing), of class
C1(0,∞), and to satisfy

(3.2) −1 < ia ≤ sa < ∞,

where

(3.3) ia = inf
t>0

ta′(t)

a(t)
and sa = sup

t>0

ta′(t)

a(t)
.

In particular, the standard p-Laplace operator for vector-valued functions, corresponding
to the choice a(t) = tp−2, with p > 1, falls within this framework, because ia = sa = p−2
in this case. Thanks to the first inequality in (3.3), the function b : [0,∞) → [0,∞) defined
by

(3.4) b(t) = a(t)t if t > 0 and b(0) = 0,

turns out to be strictly monotone increasing, and hence the function B : [0,∞) → [0,∞),
given by

(3.5) B(t) =

∫ t

0

b(τ ) dτ for t ≥ 0,

is strictly convex. The Orlicz–Sobolev space W 1,B(Ω,RN ) associated with the function

B, or its subspace W 1,B
0 (Ω,RN ) of the functions vanishing in a suitable sense on ∂Ω,

are appropriate functional settings for defining weak solutions to the boundary value
problems associated with the system (3.1).

The right-hand side f is assumed to belong to the Lorentz space Ln,1(Ω,RN ). This
space is borderline, in a sense, for the family of Lebesgue space Lq(Ω,RN ) with q > n,
because Lq(Ω,RN ) � Ln,1(Ω,RN ) � Ln(Ω,RN ) for every q > n.

Our result for the Dirichlet problem

(3.6)

{
− div(a(|∇u|)∇u) = f(x) in Ω,

u = 0 on ∂Ω,

reads as follows.

Theorem 3.1. Let Ω be a convex domain with compact closure in Rn, n ≥ 3. Assume
that f ∈ Ln,1(Ω,RN ). Let u be the (unique) weak solution to the Dirichlet problem (3.6).
Then there exists a constant C, C = C(ia, sa,Ω) such that

(3.7) ‖∇u‖L∞(Ω,RNn ≤ Cb−1(‖f‖Ln,1(Ω,RN )).

In particular, u is Lipschitz continuous in Ω.
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Problem (3.6) is the Euler equation of the strictly convex functional

(3.8) J(u) =

∫
Ω

(B(|∇u|)− f · u) dx,

which is well defined for u ∈ W 1,B
0 (Ω,RN ) under our assumption of f . The solvability of

the minimization problem for (3.8) is the content of the following corollary.

Corollary 3.2. Let Ω be any convex domain in Rn, n ≥ 3, and let B be defined as in
(3.5). Assume that f ∈ Ln,1(Ω,RN ). Then the functional J admits a (unique) minimizer
in the space Lip0(Ω,R

N ).

Results parallel to Theorem 2.1 and Corollary 3.2 hold for the solutions to the Neu-
mann problem

(3.9)

{
− div(a(|∇u|)∇u) = f(x) in Ω,
∂u
∂ν = 0 on ∂Ω.

Clearly, here, f must fulfill the compatibility condition

(3.10)

∫
Ω

f(x) dx = 0.

Theorem 3.2. Let Ω and f be as in Theorem 3.1. Assume, in addition, that (3.10)
is true. Let u be the (unique up to additive constant vectors) weak solution to problem
(3.9). Then there exists a constant C = C(ia, sa,Ω) such that

(3.11) ‖∇u‖L∞(Ω,RNn) ≤ Cb−1(‖f‖Ln,1(Ω,RN )).

In particular, u is Lipschitz continuous in Ω.

The minimization problem for the functional J , whose Euler equation is (2.9), is

properly set in the subspace W 1,B
⊥ (Ω,RN ) of functions in W 1,B(Ω,RN ) with vanishing

mean-value. An analog of Corollary 3.2 can thus be formulated in terms of the space
Lip⊥(Ω,R

N ) of RN -valued Lipschitz continuous functions on Ω with vanishing mean-
value.

Corollary 3.3. Let Ω be any convex domain in Rn, n ≥ 3, and let B be defined as in
(3.5). Assume that f ∈ Ln,⊥(Ω,RN ). Then the functional J admits a (unique) minimizer
in the class Lip⊥(Ω,R

N ).

Now I turn to the article [5], where a sharp estimate for the distribution function of
the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary
value problems was established under weak regularity assumptions on the domain Ω. In
particular, Ω can be an arbitrary convex domain with compact closure.

As a consequence, the problem of gradient bounds in norms depending on global inte-
grability properties is reduced to one-dimensional Hardy-type inequalities. Applications
to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.

We consider the scalar equation

(3.12) − div
(
a(|∇u|)∇u

)
= f(x) in Ω

coupled with either the Dirichlet condition

(3.13) u = 0 on ∂Ω,

or the Neumann condition

(3.14)
∂u

∂ν
= 0 on ∂Ω.



162 V. MAZ′YA

We assume that a : [0,∞) → [0,∞) is of class C1(0,∞), and there exists p ∈ [2, n) and
C > 0 such that

(3.15)
ta′(t)

a(t)
≥ p− 2 for t > 0,

and

(3.16) ta(t) ≤ C(tp−1 + 1) for t > 0.

Equation (3.12) is patterned on the model

(3.17) div(|∇u|p−2∇u) = f(x) in Ω,

the so called p-Laplace equation, corresponding to the choice a(t) = tp−2 for t > 0.
The main result is the following theorem.

Theorem 3.3. Let Ω be a convex domain in with compact closure Rn, n ≥ 3. Assume
that f ∈ L1(Ω), and let u be a solution either to the Dirichlet problem (3.12), (3.13) or
to the Neumann problem (3.12), (3.14). Then there exists a constant C = C(p,Ω) such
that

(3.18) |∇u|∗(s)p−1 ≤ C

∫ |Ω|

s

f∗∗(r)r−
1
n′ dr for s ∈ (0, |Ω|).

Here, n′ = n
n−1 , the Hölder conjugate to n, f∗ is the decreasing rearrangement of f and

f∗∗(r) = 1
r

∫ r

0
f∗(p) dp for r ∈ (0, |Ω|).

§4. Boundedness of second derivatives

of a solution to Δ2u = f

Given a bounded domain Ω ⊂ Rn, denote by W̊ 2
2(Ω) the completion of C∞

0 (Ω) in
the norm of the Sobolev space of functions with second distributional derivatives in L2.
Consider the variational solution of the boundary value problem

(4.1) Δ2u = f in Ω, f ∈ C∞
0 (Ω), u ∈ W̊ 2

2(Ω),

that is, a function u ∈ W̊ 2
2(Ω) such that

(4.2)

∫
Ω

ΔuΔv dx =

∫
Ω

fv dx for every v ∈ W̊ 2
2(Ω).

The main result of this section is the following theorem proved in [6].

Theorem 4.1. Let Ω be a convex domain in Rn, O ∈ ∂Ω, and fix some R ∈ (0, diam(Ω)\
10). Suppose u is a solution of the Dirichlet problem (4.1) with f ∈ C∞

0 (Ω\B10R). Then

(4.3) |∇2u(x)| ≤ C

R2

(
−
∫
CR/2,5R∩Ω

|u(x)|2 dx

)1/2

for every x ∈ BR/5 ∩ Ω,

where ∇2u is the Hessian matrix of u,

(4.4) CR/2,5R = {x ∈ Rn : R/2 ≤ |x| ≤ 5R}, BR/5 = {x ∈ Rn : |x| < R/5},

and the constant C depends on the dimension only.
In particular,

(4.5) |∇2u| ∈ L∞(Ω).
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The proof is based on some new global integral inequalities which will be formulated
in what follows.

Let Ω be an arbitrary domain in R2, n ≥ 2. We assume that the origin belongs to the
complement of Ω and r = |x|, ω = x/|x| are the spherical coordinates centered at the
origin. In fact, we will mostly use the coordinate system (t, ω), where t = log r−1, and
the mapping κ defined by

(4.6) Rn � x
κ−→ (t, ω) ∈ R× Sn−1.

Here Sn−1 denotes the unit sphere in Rn. I state the first of them.

Lemma 4.1. Let Ω be a bounded convex domain in Rn and let O ∈ Rn \ Ω. Suppose
that

(4.7) u ∈ C2(Ω), u
∣∣
∂Ω

= 0, ∇u
∣∣
∂Ω

= 0, v = e2t(u ◦ κ−1).

Then ∫
Rn

Δu(x)Δ

(
u(x)g(log(|ξ|/|x|))

|x|n

)
dx

≥ −
∫
R

∫
Sn−1

(
2∂2

t g(t− τ ) + 3n∂tg(t− τ )

+ (n2 − 2)g(t− τ )
)
(∂tv(t, ω))

2 dω dt+
1

2

∫
Sn−1

v2(τ, ω) dω,

(4.8)

for every ξ ∈ Ω, τ = log |ξ|−1. Here g is a bounded solution of the equation

(4.9)
d4g

dt4
+ 2n

d3g

dt3
+ (n2 − 2)

d2g

dt2
− 2n

dg

dt
= δ

subject to the restriction

(4.10) g(t) → 0 as t → +∞.

It is given explicity by

(4.11) g(t) = − 1

2n
√
n2 + 8

{
ne−1/2(n−

√
n2+8)t −

√
n2 + 8, t < 0,

ne−1/2(n+
√
n2+8)t −

√
n2 + 8 e−nt, t > 0.

The second auxiliary global estimate is contained in the following lemma.

Lemma 4.2. Suppose Ω is a bounded convex domain in Rn, let O ∈ ∂Ω,

(4.12) u ∈ C4(Ω), u
∣∣
∂Ω

= 0, ∇u
∣∣
∂Ω

= 0, u = e2t(u ◦ κ−1),

and g is defined by (4.11). Then

2

∫
Rn

Δu(x)Δ

(
u(x)g(log |ξ|/|x|

|x|n

)
dx−

∫
Rn

Δ2u(x)

(
(x · ∇u(x))g(log |ξ|/|x|)

|x|n

)
dx

≥ −1

2

∫
R

∫
Sn−1

(
∂3
t g(t− τ ) + 2n∂2

t g(t− τ )

+ (n2 − 2)∂tg(t− τ )− 4ng(t− τ )
)
(∂tv(t, ω))

2 dω dt,

(4.13)

for every ξ ∈ Ω, τ = log |ξ|−1.

The above global estimates imply the local ones.

Theorem 4.2. Let Ω be a bounded smooth convex domain in Rn, let Q ∈ ∂Ω, and let
R ∈ (0, diam(Ω)/5). Suppose

(4.14) Δ2u = f in Ω, f ∈ C∞
0 (Ω \B5R(Ω), u ∈ W̊ 2

2(Ω).
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Then

(4.15)
1

p4
−
∫
Sp(Q)∩Ω

|u(x)|2dσx ≤ C

Rr
−
∫
CR,4R(Q)∩Ω

|u(x)|2 dx for every p < R,

where the constant C depends on the dimension only.

Finally (4.15) leads to Theorem 4.1.
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