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FLAT DISTANCE

J. PORTEGIES AND C. SORMANI

Dedicated to Yu. D. Burago
on his 80th birthday

Abstract. In this paper written in honor of Yuri Burago, we explore a variety of
properties of intrinsic flat convergence. We introduce the sliced filling volume and
interval sliced filling volume and explore the relationship between these notions, the
tetrahedral property and the disappearance of points under intrinsic flat convergence.
We prove two new Gromov–Hausdorff and intrinsic flat compactness theorems includ-
ing the Tetrahedral Compactness Theorem. Much of the work in this paper builds
upon Ambrosio–Kirchheim’s Slicing Theorem combined with an adapted version of
Gromov’s Filling Volume. We are grateful to have been invited to submit a paper in
honor of Yuri Burago, in thanks not only for his beautiful book written jointly with
Dimitri Burago and Sergei Ivanov but also for his many thoughtful communications
with us and other young mathematicians over the years.

§1. Introduction

The intrinsic flat convergence of Riemannian manifolds has been applied to study the
stability of the Positive Mass Theorem, the rectifiability of Gromov–Hausdorff limits of
Riemannian manifolds, and smooth convergence away from singular sets. Applications of
the intrinsic flat convergence to Riemannian General Relativity appear in joint work of
the second author, Lan-Hsuan Huang, Jeffrey Jauregui, Dan Lee, and Philippe LeFloch
[19, 20, 13, 14]. Sajjad Lakzian applied intrinsic flat convergence to study smooth con-
vergence away from singular sets [17, 16] with applications to Ricci flow through singu-
larities in [15]. Raquel Perales applied it to study the limits of manifolds with boundary
in [26, 27]. Some of the properties of intrinsic flat convergence applied in those papers
are proved for the first time in this paper. In fact Matveev and the first author applied
techniques developed here to prove that the Gromov–Hausdorff and Intrinsic Flat limits
of noncollapsing sequences of manifolds with uniform lower bounds on Ricci curvature
agree [23]. Other potential applications of intrinsic flat convergence and the properties
proved within this article were suggested by Misha Gromov in [12] and the second author
in [32].

The initial notions of the intrinsic flat distance and integral current spaces appeared in
joint work of the second author with Wenger [34] building upon Ambrosio–Kirchheim’s
important work on currents in metric spaces [1]. Here we explore new properties and their
relationship with intrinsic flat convergence building upon Ambrosio–Kirchheim’s Slicing
Theorem [1] (see Theorem 2.23) combined with a slightly adapted version of Gromov’s
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Filling Volume [11] (see Definition 2.46). These ideas were intuitively applied in prior
work of the second author with Wenger to prove the continuity of the filling volumes of
spheres under intrinsic flat convergence and prevent the disappearance of points under
intrinsic flat convergence [33]. Recall that under intrinsic flat convergence, points may
disappear in the limit. In fact the limit space could simply be the 0 space and one must
try to avoid this in most applications.

In this paper, we use the full iterative strength of Ambrosio–Kirchheim’s Slicing The-
orem to introduce and study the Sliced Filling Volume (Definitions 3.20 and 3.21), the
Interval Filling Volume (Definition 3.43), and the Sliced Interval Filling Volume (Defini-
tion 3.45). We prove that the sliced filling volume is bounded below by constants in the
Tetrahedral Property and the Integral Tetrahedral Property (see Definitions 3.30 and 3.36
and Theorem 3.38). The three dimensional version of the tetrahedral property appears in
(1)–(2) and is depicted in Figure 1. Note that some of these notions were first announced
by the second author in [30].

We prove the continuity of the Sliced Filling Volumes with respect to intrinsic flat
convergence in Theorem 4.20. We prove the continuity of the Interval Filling Volumes and
Sliced Interval Filling Volumes in Theorems 4.23 and 4.24. The first author proved the
semicontinuity of eigenvalues under volume preserving intrinsic flat convergence in [28].
Here we do not make any assumptions on the preservation of volume in the limit.

We then use the notion of the sliced filling volume to explore when a point does not
disappear under intrinsic flat convergence (Theorems 4.27, 4.30 and 4.31). Note that
the disappearance of points was also studied in prior work of the second author [31].
However, in that paper, one could not determine if a sequence of points converged to a
limit point that was only in the metric completion of the limit space. Here we are able
to determine if the limit of the points lies in the intrinsic flat limit itself. Theorems 4.30
and 4.31 are Bolzano–Weierstrass type theorems, producing converging subsequences of
points.

This paper culminates with two compactness theorems: the Sliced Filling Compact-
ness Theorem (Theorem 5.1) and the Tetrahedral Compactness Theorem (Theorem 5.2).
We state the three dimensional version of the Tetrahedral Compactness Theorem here
(including the three dimensional Tetrahedral Property within the statement).

Theorem 1.1. Given r0 > 0, β ∈ (0, 1), C > 0, V0 > 0, suppose a sequence of Riemann-
ian manifolds, M3

i , satisfies the C, β tetrahedral property for all balls, Bp(r) ⊂ M3
i ,

of radius r ≤ r0 as in Figure 1. That is,

there exist p1, p2 ∈ ∂Bp(r) such that for all t1, t2 ∈ [(1− β)r, (1 + β)r] we have(1)

inf{d(x, y) : x �= y, x, y ∈ ∂Bp(r) ∩ ∂Bp1
(t1) ∩ ∂Bp2

(t2)} ∈ [Cr,∞).(2)

Assume in addition that each Mi has

Vol(M3
i ) ≤ V0 and Diam(M3

i ) ≤ D0.

Then a subsequence of the Mi converges in the Gromov–Hausdorff and the Intrinsic Flat
sense to the same space. In particular, the limit is countably H3 rectifiable.

One might view this compactness theorem as a higher dimensional analog of the
compactness of Alexandrov spaces. The Sliced Filling Compactness Theorem is applied
to prove this Tetrahedral Compactness Theorem. It assumes a uniform lower bound on
the sliced filling volumes of balls and draws the same conclusion. To prove this theorem,
we first prove the Gromov–Hausdorff convergence of a subsequence (Theorem 3.23). We
only obtain the fact that the intrinsic flat limit agrees with the Gromov–Hausdorff limit
in the final section of the paper by applying our theorems which avoid the disappearance
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Figure 1. Tetrahedral Property as depicted in [30].

of points. Once the two notions of convergence agree, then we can conclude that the
limits are noncollapsed countably Hm rectifiable metric spaces.

These theorems were announced by the second author in [30] but the rigorous proof
has required the development of the full theory of sliced filling volumes elaborated herein.
Prior results relating intrinsic flat limits to Gromov–Hausdorff limits appear in the joint
work of the second author with Wenger concerning sequences of spaces with contractibil-
ity functions and noncollapsing manifolds with nonnegative Ricci curvature [33], in the
work of Li-Perales concerning Alexandrov spaces [21], in the work of Munn concerning
noncollapsing manifolds with pinched Ricci curvature [25], and in the work of Perales
concerning noncollapsing Riemannian manifolds with boundary [26]. These prior results
apply powerful theorems from the Cheeger–Colding Theory and Alexandrov Geometry.
The results contained herein are built only upon the theorems in Ambrosio–Kirchheim’s
“Currents on Metric Spaces” [1] and the ideas in Gromov’s “Filling Riemannian Mani-
folds” [11].

Recommended reading. This paper attempts to be completely self-contained, pro-
viding all necessary background material within the paper. However, students reading
this paper are encouraged to read Burago–Burago–Ivanov’s award winning textbook [3]
which provides a thorough background in Gromov–Hausdorff convergence and also to
read the second author’s joint paper with Wenger [34] and the second author’s recent
paper [31]. Those who would like to understand the Geometric Measure Theory more
deeply should read Morgan’s textbook [24] or Fanghua Lin’s textbook [22] and then the
work of Ambrosio–Kirchheim [1].

§2. Background

In this section we review the Gromov–Hausdorff distance introduced by Gromov
in [10], then various topics from Ambrosio–Kirchheim’s work in [1], then intrinsic flat con-
vergence and integral current spaces from prior work of the second author with Wenger
in [34] and end with a review of filling volumes which are related to Gromov’s notion
from [11] but defined by using the work of Ambrosio–Kirchheim.

2.1. Review of the Gromov–Hausdorff distance. First recall that ϕ : X → Y is an
isometric embedding if and only if

dY (ϕ(x1), ϕ(x2)) = dX(x1, x2), x1, x2 ∈ X.

This is referred to as a metric isometric embedding in [19] and it should be distinguished
from a Riemannian isometric embedding.
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Definition 2.1 (Gromov). The Gromov–Hausdorff distance between two compact metric
spaces (X, dX) and (Y, dY ) is defined as

(3) dGH(X,Y ) := inf dZH
(
ϕ(X), ψ(Y )

)
where Z is a complete metric space, and ϕ : X → Z and ψ : Y → Z are isometric
embeddings and where the Hausdorff distance in Z is defined as

dZH(A,B) = inf
{
ε > 0 : A ⊂ Tε(B) and B ⊂ Tε(A)

}
.

Gromov proved that this is indeed a distance on compact metric spaces: dGH(X,Y )=0
if and only if there is an isometry between X and Y . When studying metric spaces
which are only precompact, one may take their metric completions before studying the
Gromov–Hausdorff distance between them.

Definition 2.2. A collection of metric spaces is said to be equibounded or uniformly
bounded if there is a uniform upper bound on the diameter of the spaces.

Remark 2.3. We will write N(X, r) to denote the maximal number of disjoint balls of
radius r in a space X. Note that X can always be covered by N(X, r) balls of radius 2r.

Note that Ilmanen’s Example of [34] of a sequence of spheres with increasingly many
splines is not equicompact, as the number of balls centered on the tips approaches infinity.

Definition 2.4. A collection of spaces is said to be equicompact or uniformly compact
if they have a common upper bound N(r) such that N(X, r) ≤ N(r) for all spaces X in
the collection.

Gromov’s Compactness Theorem states that sequences of equibounded and equicom-
pact metric spaces have a Gromov–Hausdorff converging subsequence [10]. In fact, Gro-
mov proved a stronger version of this statement in [9]:

Theorem 2.5 (Gromov’s Compactness Theorem). If a sequence of compact metric
spaces, Xj, is equibounded and equicompact, then a subsequence of the Xj converges
to a compact metric space X∞.

Gromov also proved the following useful theorem:

Theorem 2.6. If a sequence of compact metric spaces Xj converges to a compact metric
space X∞, then the Xj are equibounded and equicompact. Furthermore, there is a compact
metric space, Z, and isometric embeddings ϕj : Xj → Z such that

dZH
(
ϕj(Xj), ϕ∞(X∞)

)
≤ 2dGH(Xj , X∞) → 0.

This theorem allows one to define converging sequences of points:

Definition 2.7. We say that xj ∈ Xj converges to x∞ ∈ X∞ if there is a common
space Z as in Theorem 2.6 such that ϕj(xj) → ϕ∞(x) as points in Z. If one discusses
the limits of multiple sequences of points, then one uses a common Z to determine the
convergence to avoid difficulties arising from isometries in the limit space. Then one
immediately has

lim
j→∞

dXj
(xj , x

′
j) = dX∞(x∞, x′

∞)

whenever xj → x∞ and x′
j → x′

∞ via a common Z.

Theorem 2.6 also allows one to extend the Arzela–Ascoli Theorem.

Definition 2.8. A collection of functions, fj : Xj → X ′
j is said to be equicontinuous if

for all ε > 0 there exists δε > 0 independent of j such that

fj (Bx(δε)) ⊂ Bfj(x)(ε), x ∈ Xj .
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Theorem 2.9. Suppose Xj and X ′
j are compact metric spaces converging in the Gromov–

Hausdorff sense to compact metric spaces X∞ and X ′
∞, and suppose fj : Xj → X ′

j are
equicontinuous, then a subsequence fji converges to a continuous function f∞ : X∞ →
X ′

∞ such that for any sequence xj → x∞ via a common Z we have fji(xji) → f∞(x∞).

In particular, one can define limits of curves Ci : [0, 1] → Xi (parametrized propor-
tional to arclength with a uniform upper bound on length) to obtain curves C∞ : [0, 1] →
X∞. So that when Xi are compact length spaces whose distances are achieved by mini-
mizing geodesics, so are the limit spaces X∞.

One only needs uniform lower bounds on Ricci curvature and upper bounds on di-
ameter to prove equicompactness on a sequence of Riemannian manifolds. This is a
consequence of the Bishop–Gromov Volume Comparison Theorem [10]. Colding and
Cheeger–Colding studied the limits of such sequences of spaces proving volume conver-
gence and eigenvalue convergence and many other interesting properties [6, 4, 5]. One
property of particular interest here, is that when the sequence of manifolds is noncol-
lapsing (i.e., is assumed to have a uniform lower bound on volume), Cheeger–Colding
proved that the limit space is countably Hm rectifiable with the same dimension as the
sequence [4].

Greene–Petersen showed that conditions on contractibility and uniform upper bounds
on diameter also suffice to achieve compactness without any assumption on Ricci cur-
vature or volume [8]. Sormani–Wenger shown that if one assumes a uniform linear con-
tractibility function on the sequence of manifolds then the limit spaces achieved in their
setting are also countably Hm rectifiable with the same dimension as the sequence. With-
out the assumption of linearity, Schul–Wenger provided an example where the Gromov–
Hausdorff limit is not countably Hm rectifiable [33]. The proofs here involve the Intrinsic
Flat Convergence.

2.2. Review of Ambrosio–Kirchheim currents on metric spaces. In [1], Ambro-
sio–Kirchheim extended Federer–Fleming’s notion of integral currents using De Giorgi’s
notion of k-tuples of functions. Here we review their ideas. Here Z denotes a complete
metric space.

Federer–Fleming currents were defined as linear functionals on differential forms [7].
This approach extends naturally to smooth manifolds but not to complete metric spaces
which do not have differential forms. In place of differential forms, Ambrosio–Kirchheim
use De Giorgi’s (m+ 1)-tuples, ω ∈ Dm(Z),

ω = (f, π1 . . . πm) ∈ Dm(Z)

where f : X → R is a bounded Lipschitz function and the πi : X → R are Lipschitz.
In [1, Definitions 2.1, 2.2, 2.6 and 3.1], an m dimensional current T ∈ Mm(Z) was

defined. Here we combine them into a single definition.

Definition 2.10. On a complete metric space, Z, an m dimensional current, denoted
T ∈ Mm(Z), is a real valued multilinear functional on Dm(Z), with the following three
required properties.

i) Locality.
T (f, π1, . . . , πm) = 0 if there exists i ∈ {1, . . . ,m} such that πi is constant on a

neighborhood of {f �= 0}.
ii) Continuity.
The continuity of T with respect to the pointwise convergence of πi with Lip(πi) ≤ 1.
iii) Finite mass.
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There exists a finite Borel μ such that

|T (f, π1, . . . , πm)| ≤
m∏
i=1

Lip(πi)

∫
Z

|f | dμ for all (f, π1, . . . , πm) ∈ Dm(Z).

In [1, Definition 2.6] Ambrosio–Kirchheim introduced their mass measure which is
distinct from the masses used in work of Gromov [11] and Burago–Ivanov [2]. This
definition was later employed to define the notion of filling volume used in this paper.

Definition 2.11. The mass measure, ‖T‖, of a current, T ∈ Mm(Z), is the smallest
Borel measure μ such that

(4)
∣∣T (f, π)∣∣ ≤ ∫

X

|f | dμ for all (f, π) where Lip(πi) ≤ 1.

The mass of T is defined by the formula

(5) M(T ) = ‖T‖(Z) =

∫
Z

d‖T‖.

In particular

(6)
∣∣T (f, π1, . . . , πm)

∣∣ ≤ M(T ) |f |∞ Lip(π1) . . .Lip(πm).

Stronger versions of locality and continuity, as well as product and chain rules were
proved in [1, Theorem 3.5]. In particular, T (f, π1, . . . , πm) was defined there for f that
are only Borel functions as limits of T (fj , π1, . . . , πm), where the fj are bounded Lipschitz
functions converging to f in L1(E, ‖T‖). Also, it was proved in [1] that

T (f, πσ(1), . . . , πσ(m)) = sgn(σ)T (f, π1, . . . , πm)

for any permutation, σ, of {1, 2, . . . ,m}.
Ambrosio–Kirchheim then defined restriction [1, Definition 2.5].

Definition 2.12. The restriction T ω ∈ Mm(Z) of a current T ∈ Mm+k(Z) by a k+1
tuple ω = (g, τ1, . . . , τk) ∈ Dk(Z) is given by

(T ω)(f, π1, . . . , πm) := T (f · g, τ1, . . . , τk, π1, . . . , πm).

Given a Borel set, A,

T A := T ω

where ω = 1A ∈ D0(Z) is the indicator function of the set. In this case,

M(T ω) = ‖T‖(A).

Ambrosio–Kirchheim then defined the push forward map:

Definition 2.13. Given a Lipschitz map ϕ : Z → Z ′, the push forward of a current
T ∈ Mm(Z) to a current ϕ#T ∈ Mm(Z ′) is given in [1, Definition 2.4] by

(7) ϕ#T (f, π1, . . . , πm) := T (f ◦ ϕ, π1 ◦ ϕ, . . . , πm ◦ ϕ)

exactly as in the smooth setting.

Remark 2.14. One immediately sees that

(ϕ#T ) (f, π1, . . . , πk) = ϕ#

(
T (f ◦ ϕ, π1 ◦ ϕ, . . . , πk ◦ ϕ)

)
and

(ϕ#T ) A = (ϕ#T ) (1A) = ϕ#

(
T (1A ◦ ϕ)

)
= ϕ#

(
T ϕ−1(A)

)
.
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In [1, (2.4)], Ambrosio–Kirchheim showed that

(8) ‖ϕ#T‖ ≤ [Lip(ϕ)]mϕ#‖T‖,
so that when ϕ is an isometric embedding, we have

(9) ‖ϕ#T‖ = ϕ#‖T‖ and M(T ) = M(ϕ#T ).

The simplest example of a current is as follows.

Example 2.15. If one has a bi-Lipschitz map, ϕ : Rm → Z, and a Lebesgue function
h ∈ L1(A,Z) where A ∈ R

m is Borel, then ϕ#�h� ∈ Mm(Z) is an m dimensional current
in Z. Note that

ϕ#�h�(f, π1, . . . , πm) =

∫
A⊂Rm

(h ◦ ϕ)(f ◦ ϕ) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm ◦ ϕ)

where d(πi ◦ ϕ) is well defined almost everywhere by Rademacher’s Theorem. Here the
mass measure is

‖�h�‖ = h dLm

and the mass is

M(�h�) =

∫
A

h dLm.

In [1, Theorem 4.6] Ambrosio–Kirchheim defined a canonical set associated with any
integer rectifiable current.

Definition 2.16. The (canonical) set of a current, T , is the collection of points in Z
with positive lower density:

(10) set(T ) =
{
p ∈ Z : Θ∗m(‖T‖, p) > 0

}
,

where the definition of the lower density is

(11) Θ∗m(μ, p) = lim inf
r→0

μ(Bp(r))

ωmrm
.

In [1, Definition 4.2 and Theorems 4.5–4.6], an integer rectifiable current was defined
using the Hausdorff measure, Hm.

Definition 2.17. Let m ≥ 1. A current, T ∈ Dm(Z), is rectifiable if set(T ) is countably
Hm rectifiable and if ‖T‖(A) = 0 for any set A such that Hm(A) = 0. We write
T ∈ Rm(Z).

We say that T ∈ Rm(Z) is integer rectifiable, denoted T ∈ Im(Z), if for any ϕ ∈
Lip(Z,Rm) and any open set A ∈ Z, we have

there exists θ ∈ L1(Rm, Z) such that ϕ#(T A) = �θ�.

In fact, T ∈ Im(Z) if and only if it has a parametrization. A parametrization ({ϕi}, {θi})
of an integer rectifiable current T ∈ Im(Z) is a collection of bi-Lipschitz maps ϕi : Ai → Z
with Ai ⊂ R

m precompact Borel measurable and with pairwise disjoint images and weight
functions θi ∈ L1(Ai,N) such that

(12) T =
∞∑
i=1

ϕi#�θi� and M(T ) =
∞∑
i=1

M
(
ϕi#�θi�

)
.

A 0 dimensional rectifiable current is defined by the existence of countably many distinct
points {xi} ∈ Z, weights θi ∈ R

+, and orientation, σi ∈ {−1,+1} such that

(13) T (f) =
∑
i

σiθif(xi), f ∈ B∞(Z),
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where B∞(Z) is the class of bounded Borel functions on Z and where

M(T ) =
∑
i

θi < ∞.

If T is integer rectifiable, then θi ∈ Z
+, so the sum must be finite.

In particular, the mass measure of T ∈ Im(Z) satisfies

‖T‖ =

∞∑
i=1

∥∥ϕi#�θi�
∥∥.

Theorems 4.3 and 8.8 of [1] provide necessary and sufficient criteria for determining when
a current is integer rectifiable.

Note that the current in Example 2.15 is an integer rectifiable current.

Example 2.18. For a Riemannian manifold, Mm, and a bi-Lipschitz map ϕ : Mm → Z,
the formula T = ϕ#�1M � defines an integer rectifiable current of dimension m in Z. If
ϕ is an isometric embedding, and Z = M , then M(T ) = Vol(Mm). Note further that
set(T ) = ϕ(M).

If M has a conical singularity, then set(T ) = ϕ(M). However, if M has a cusp
singularity at a point p ∈ M , then set(T ) = ϕ(M \ {p}).

Definition 2.19 (see [1, Definition 2.3]). The boundary of T ∈ Mm(Z) is defined by

(14) ∂T (f, π1, . . . , πm−1) := T (1, f, π1, . . . , πm−1) ∈ Mm−1(Z)

When m = 0, we set ∂T = 0.

Note that

ϕ#(∂T ) = ∂(ϕ#T ).

Definition 2.20 (see [1, Definition 3.4 and 4.2]). An integer rectifiable current T ∈
Im(Z) is called an integral current, denoted T ∈ Im(Z), if ∂T defined as in (14) has
finite mass. The total mass of an integral current is

N(T ) = M(T ) +M(∂T ).

Observe that ∂∂T = 0. In [1, Theorem 8.6], Ambrosio–Kirchheim proved that

∂ : Im(Z) → Im−1(Z)

whenever m ≥ 1. By (8) one can see that if ϕ : Z1 → Z2 is Lipschitz, then

ϕ# : Im(Z1) → Im(Z2).

However, the restriction of an integral current need not be an integral current except in
special circumstances. For example, T might be integration over [0, 1]2 with the Euclidean
metric and A ⊂ [0, 1]2 could have an infinitely long boundary, so that T A /∈ I2([0, 1]

2)
because ∂(T A) has infinite mass.

Remark 2.21. If T is an H1 integral current, then ∂T is an H0 integer rectifiable current
so H = set ∂T must be finite and θph

= ‖∂T‖(ph) ∈ Z
+ for all p ∈ H and

(15) ∂T (f) =
∑
h∈H

σhθhf(ph), f ∈ B∞(Z),

as described above. In addition, we have

0 = T (1, 1) = ∂T (1) =
∑
h∈H

σhθh.
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Example 2.22. If T is an H1 rectifiable current, then

T =
∞∑
i=1

σiθiϕi#�χAi
�

where θi ∈ Z
+, σi ∈ {+1,−1} and Ai is an interval with Āi = [ai, bi] because all Borel

sets are unions of intervals and all integer valued Borel functions can be written up to
Lebesgue measure 0 as a countable sum of characteristic functions of intervals. One
might like to write:

∂T (f) =
∑
i

σiθi (f(ϕi(bi))− f(ϕi(ai))) , f ∈ B∞(Z).

This works when the sum happens to be a finite sum. Yet if T is a infinite collection of
circles based at a common point, (0, 0) ∈ R

2, defined with σi = 1, θi = 1, Ai = [0, π] and

ϕi(s) = (ri cos(s) + ri, ri sin(s)) for i odd and

ϕi(s) = (ri cos(s+ π) + ri, ri sin(s+ π)) for i even

where r2i = r2i−1 = 1/i2, then

ϕi(ai) = (2ri, 0) and ϕi(bi) = (0, 0) for i odd and

ϕi(ai) = (0, 0) and ϕi(bi) = (2ri, 0) for i even.

So when f(0, 0) = 1, we end up with an infinite sum whose terms are all +1 and −1.

2.3. Review of Ambrosio–Kirchheim slicing theorems. As in Federer–Fleming,
Ambrosio–Kirchheim considered the slices of currents.

Theorem 2.23 (see [1, Theorems 5.6–5.7]). Let Z be a complete metric space, T ∈ ImZ,
and f : Z → R a Lipschitz function. Let

〈T, f, s〉 := (∂T ) f−1(s,∞)− ∂
(
T f−1(s,∞)

)
.

Observe that

set
(
〈T, f, s〉

)
⊂
(
set(T ) ∪ set(∂T )

)
∩ f−1(s),

and

(16) ∂〈T, f, s〉 = 〈−∂T, f, s〉.
Furthermore, 〈T1+T2, f, s〉 = 〈T1, f, s〉+〈T2, f, s〉. For almost every slice s ∈ R, 〈T, f, s〉
is an integral current and we can integrate the masses to obtain:∫

s∈R

M
(
〈T, f, s〉

)
ds = M(T df) ≤ Lip(f)M(T )

where

(T df)(h, π1, . . . , πm−1) = T (h, f, π1, . . . , πm−1).

In particular, for almost every s > 0 one has

T f−1(−∞, s] ∈ Im−1(Z).

Furthermore, for all Borel sets A we have

〈T A, f, s〉 = 〈T, f, S〉 A

and ∫
s∈R

‖〈T, f, s〉‖(A) ds = ‖T df‖(A).
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Remark 2.24. Observe that for any T ∈ Im(Z ′), and any Lipschitz functions, ϕ : Z → Z ′

and f : Z ′ → R and any s > 0, we have

〈ϕ#T, f, s〉 = ∂
(
(ϕ#T ) f−1(−∞, s]

)
− (∂ϕ#T ) f−1(−∞, s]

)
= ∂
(
ϕ#(T ϕ−1(f−1(−∞, s]))

)
− (ϕ#∂T ) f−1(−∞, s])

= ∂
(
ϕ#(T (f ◦ ϕ)−1(−∞, s]

)
− ϕ#

(
∂T ϕ−1(f−1(−∞, s])

)
=
(
ϕ#∂(T (f ◦ ϕ)−1(−∞, s])

)
− ϕ#

(
∂T (f ◦ ϕ)−1(−∞, s]

)
= ϕ#〈T, (f ◦ ϕ), s〉.

Remark 2.25. Ambrosio–Kirchheim then iterated this definition, fi : Z → R, si ∈ R, to
define iterated slices:

(17) 〈T, f1, . . . , fk, s1, . . . , sk〉 =
〈
〈T, f1, . . . , fk−1, s1, . . . , sk−1〉, fk, sk

〉
,

so that

〈T1 + T2, f1, . . . , fk, s1, . . . , sk〉
= 〈T1, f1, . . . , fk, s1, . . . , sk〉+ 〈T2, f1, . . . , fk, s1, . . . , sk〉.

(18)

In [1, Lemma 5.9] they proved the formula

〈T, f1, . . . , fk, s1, . . . , sk〉
=
〈
〈T, f1, . . . , fi, s1, . . . , si〉, fi+1, . . . , fk, si+1, . . . , sk

〉
.

(19)

In [1, (5.9)] they proved that

(20)

∫
Rk

‖〈T, f1, . . . , fk, s1, . . . , sk〉‖ ds1 . . . dsk = ‖T (1, f1, . . . , fk)‖,

where

(T df)(h, π1, . . . , πm−k) = T (h, f1, . . . , fk, π1, . . . , πm−k),

so

(21)

∫
Rk

M
(
〈T, f1, . . . , fk, s1, . . . , sk〉

)
dLk = M(T df) ≤

k∏
j=1

Lip(fj)M(T ).

In [1, (5.15)] they proved that

(22) 〈T A, f1, . . . , fk, s1, . . . , sk〉 = 〈T, f1, . . . , fk, s1, . . . , sk〉 A

for any Borel set A ⊂ Z and Lm almost every (s1, . . . , sk) ∈ R
k and∫

s∈Rk

‖〈T, f1, . . . , fk, s1, . . . , sk〉‖(A) ds = ‖T df‖(A)

for any Borel set A ⊂ Z and Lm almost every (s1, . . . , sk) ∈ R
k.

By (23) one can easily prove by induction that

(23) ∂〈T, f1, . . . , fk, s1, . . . , sk〉 = (−1)k〈∂T, f1, . . . , fk, s1, . . . , sk〉.

In [1, Theorem 5.7] they proved that

〈T, f1, . . . , fk, s1, . . . , sk〉 ∈ Im−k(Z)

for Lk almost every (s1, . . . , sk) ∈ R
k. By Remark 2.24 one can prove inductively that

(24) 〈ϕ#T, f1, . . . , fk, s1, . . . , sk〉 = ϕ#〈T, f1 ◦ ϕ, . . . , fk ◦ ϕ, s1, . . . , sk〉.
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2.4. Review of convergence of currents. Ambrosio–Kirchheim’s Compactness The-
orem, which extends Federer–Fleming’s Flat Norm Compactness Theorem, is stated in
terms of weak convergence of currents. See Definition 3.6 in [1], which extends Federer–
Fleming’s notion of weak convergence except that they do not require compact support.

Definition 2.26. A sequence of integral currents Tj ∈ Im(Z) is said to converge weakly
to a current T if and only if the pointwise limits satisfy

lim
j→∞

Tj (f, π1, . . . , πm) = T (f, π1, . . . , πm)

for all bounded Lipschitz f : Z → R and Lipschitz πi : Z → R. We write

Tj → T.

One sees immediately that Tj → T implies

∂Tj → ∂T,

ϕ#Tj → ϕ#T

and

Tj (f, π1, . . . , πk) → T (f, π1, . . . , πk).

However Tj A need not converge weakly to Tj A as seen in the following example.

Example 2.27. Let Z = R
2 with the Euclidean metric. Let ϕj : [0, 1] → Z be ϕj(t) =

(1/j, t) and ϕ∞(t) = (0, t). Let S ∈ I1([0, 1]) be

S(f, π1) =

∫ 1

0

f dπ1.

Let Tj ∈ I1(Z) be defined by Tj = ϕj#(S). Then Tj → T∞. Taking A = [0, 1] × (0, 1),
we see that Tj A = Tj but T∞ A = 0.

Immediately below the definition of weak convergence [1, Definition 3.6], Ambrosio–
Kirchheim proved the lower semicontinuity of mass.

Remark 2.28. If Tj converges weakly to T , then lim infj→∞ M(Tj) ≥ M(T ).

Theorem 2.29 (Ambrosio–Kirchheim Compactness). Consider any complete metric
space Z, a compact set K ⊂ Z, and A0, V0 > 0. Given any sequence of integral cur-
rents Tj ∈ Im(Z) satisfying

M(Tj) ≤ V0, M(∂Tj) ≤ A0, and set(Tj) ⊂ K,

there exists a subsequence, Tji , and a limit current T ∈ Im(Z) such that Tji converges
weakly to T .

2.5. Review of integral current spaces. The notion of an integral current space was
introduced by the second author and Stefan Wenger in [34].

Definition 2.30. An m dimensional metric space (X, d, T ) is called an integral current
space if it has an integral current structure T ∈ Im(X̄), where X̄ is the metric completion
of X and set(T ) = X. Given an integral current space M = (X, d, T ), we will use set(M)
or XM to denote X, dM = d and �M� = T .

Note that set(∂T ) ⊂ X̄. The boundary of (X, d, T ) is then the integral current space:

∂(X, dX , T ) :=
(
set(∂T ), dX̄ , ∂T

)
.

If ∂T = 0, then we say (X, d, T ) is an integral current without boundary.
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Remark 2.31. Note that any m dimensional integral current space is countably Hm

rectifiable with orientated charts, ϕi and weights θi provided as in (12). A 0 dimensional
integral current space is a finite collection of points with orientations σi and weights θi
provided as in (13). If this space is the boundary of a 1 dimensional integral current
space, then as in Remark 2.21, the sum of the signed weights is 0.

Example 2.32. A compact oriented Riemannian manifold with boundary, Mm, is an
integral current space, where X = Mm, d is the standard metric on M and T is integra-
tion over M . In this case M(M) = Vol(M) and ∂M is the boundary manifold. When
M has no boundary, ∂M = 0.

Definition 2.33. The space of m ≥ 0 dimensional integral current spaces, Mm, consists
of all metric spaces that are integral current spaces with currents of dimension m as in
Definition 2.30 as well as the 0 spaces. Then ∂ : Mm+1 → Mm.

Remark 2.34. A 0 dimensional integral current space, M = (X, d, T ), is a finite collection
of points, {p1, . . . , pN}, with a metric di,j = d(pi, pj) and a current structure defined by
assigning a weight, θi ∈ Z

+, and an orientation, σi ∈ {+1,−1} to each pi ∈ X and

M(M) =
N∑
i=1

θi.

If M is the boundary of a 1 dimensional integral current space then, as in Remark 2.21,
we have

N∑
i=1

σiθi = 0.

In particular N ≥ 2 if M �= 0.

Any compact Riemannian manifold with boundary is an integral current space. Ad-
ditional examples appear in the work of Wenger and the second author [34].

We end this subsection with an example of an integral current space that is applied
in this paper to justify the hypothesis of many of our results.

Example 2.35. Consider the one dimensional integral current space (X, d, T ), where

X = {0} ∪
∞⋃
j=1

∂B(0, Rj) ⊂ E
2

where (E2, dE2) is the Euclidean plane, with the restricted metric, d = dE2 , where

T (ω) =

∞∑
j=1

�∂B(0, Rj)�

is the integral current in X̄ and in E
2 and where Rj = 1/2j . Observe that for

Nr = inf{j : 1/2j < r} ⊂ [log2(1/r), log2(r) + 1]

we have

‖T‖(B(0, r)) =

∞∑
j≥Nr

H1(∂B(0, Rj)) =

∞∑
j≥Nr

2π

2j
=

4π

2Nr
∈
[
8π

r
,
4π

r

]
.

In this way the total mass is finite and {0} ∈ X. Observe that ∂T = 0.
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2.6. Review of the Intrinsic Flat distance. The Intrinsic Flat distance was defined
in the work of the second author and Stefan Wenger, see [34], as a new distance between
Riemannian manifolds based upon the work of Ambrosio–Kirchheim reviewed above.

Recall that the flat distance between m dimensional integral currents S, T ∈ Im(Z) is
given by

(25) dZF (S, T ) := inf
{
M(U) +M(V ) : S − T = U + ∂V

}
where U ∈ Im(Z) and V ∈ Im+1(Z). This notion of a flat distance was first introduced
by Whitney in [37] and later adapted to rectifiable currents by Federer–Fleming [7]. The
flat distance between Ambrosio–Kirchheim’s integral currents was studied by Wenger in
[35]. In particular, Wenger proved that if Tj ∈ Im(Z) has M(Tj) ≤ V0 and M(∂Tj) ≤ A0,
then

Tj → T if and only if dZF (Tj , T ) → 0

exactly as in Federer–Fleming.
The intrinsic flat distance between integral current spaces was first defined in [34,

Definition 1.1].

Definition 2.36. For M1 = (X1, d1, T1) and M2 = (X2, d2, T2) ∈ Mm, let the intrinsic
flat distance be defined as follows:

(26) dF (M1,M2) := inf dZF
(
ϕ1#T1, ϕ2#T2

)
,

where the infimum is taken over all complete metric spaces (Z, d) and isometric embed-
dings ϕ1 : (X̄1, d1) → (Z, d) and ϕ2 : (X̄2, d2) → (Z, d) and the flat norm dZF is taken
in Z. Here X̄i denotes the metric completion of Xi and di is the extension of di to X̄i,
while φ#T denotes the push forward of T .

In [34], it was observed that

dF (M1,M2) ≤ dF (M1, 0) + dF (0,M2) ≤ M(M1) +M(M2).

There it was also proved that dF satisfies the triangle inequality [34, Theorem 3.2] and
is a distance.

Theorem 2.37 (see [34, Theorem 3.27]). Let M,N be precompact integral current spaces
and suppose that dF (M,N) = 0. Then there is a current preserving isometry from M to
N where an isometry f : XM → XN is called a current preserving isometry between M
and N if its extension f̄ : X̄M → X̄N pushes forward the current structure on M to the
current structure on N : f̄#TM = TN .

In [34, Theorem 3.23], the following fact was also proved.

Theorem 2.38 (see [34, Theorem 4.23]). Given a pair of precompact integral current
spaces, Mm

1 = (X1, d1, T1) and Mm
2 = (X2, d2, T2), there exists a compact metric space,

(Z, dZ), integral currents U ∈ Im(Z) and V ∈ Im+1(Z), and isometric embeddings
ϕ1 : X̄1 → Z and ϕ2 : X̄2 → Z with

(27) ϕ#T1 − ϕ′
#T2 = U + ∂V

such that

(28) dF (M1,M2) = M(U) +M(V ).

Remark 2.39. The metric space Z in Theorem 2.38 has

Diam(Z) ≤ 3Diam(X1) + 3Diam(X2).

This is seen by consulting the proof of Theorem 3.23 in [34], where Z is constructed as
the injective envelope of the Gromov–Hausdorff limit of a sequence of spaces Zn with
this same diameter bound.
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The following theorem in [34] is an immediate consequence of Gromov’s and Ambrosio–
Kirchheim’s Compactness Theorems.

Theorem 2.40. Given a sequence of m dimensional integral current spaces Mj =
(Xj , dj , Tj) such that Xj are equibounded and equicompact and with uniform upper bounds
on mass and boundary mass, some subsequence of it converges in the Gromov–Hausdorff

sense (Xji , dji)
GH−−→ (Y, dY ) and in the intrinsic flat sense (Xji , dji , Tji)

F−→ (X, d, T )
where either (X, d, T ) is an m dimensional integral current space with X ⊂ Y or it is the
0 current space.

Obviously, if Y has Hausdorff dimension less than m, then (X, d, T )=0. In [34,
Example A.7], there is an example where Mj are compact three dimensional Riemannian
manifolds with positive scalar curvature that converge in the Gromov–Hausdorff sense to
a standard three sphere but in the Intrinsic Flat sense to 0. It was proved in [33] that if
the (Xj , dj , Tj) are compact Riemannian manifolds with nonnegative Ricci curvature or
a uniform linear contractibility function, then the intrinsic flat and Gromov–Hausdorff
limits agree.

There are many examples of sequences of Riemannian manifolds which have no Gro-
mov–Hausdorff limit but have an intrinsic flat limit. The first is Ilmanen’s Example
of an increasingly hairy three sphere with positive scalar curvature described in [34,
Example A.7]. Other examples appear in the work of the second author with Dan Lee
concerning the stability of the Positive Mass Theorem [19, 18] and in the work of the
second author with Sajjad Lakzian concerning smooth convergence away from singular
sets [17].

The following three theorems were proved in the work of the second author with
Wenger [34]. Combining these theorems with the work of Ambrosio–Kirchheim reviewed
earlier will lead to many of the properties of Intrinsic Flat Convergence described in this
paper.

Theorem 2.41 (see [34, Theorem 4.2]). If a sequence of integral current spaces Mj =
(Xj , dj , Tj) converges in the intrinsic flat sense to an integral current space, M0 =
(X0, d0, T0), then there is a separable complete metric space, Z, and isometric embed-
dings ϕj : Xj → Z such that ϕj#Tj flat converges to ϕ0#T0 in Z and thus converges
weakly as well.

Theorem 2.42 (see [34, Theorem 4.3]). If a sequence of integral current spaces Mj =
(Xj , dj , Tj) converges in the intrinsic flat sense to the zero integral current space, 0, then
we may choose points xj ∈ Xj and a separable complete metric space, Z, and isometric
embeddings ϕj : Xj → Z such that ϕj(xj) = z0 ∈ Z and ϕj#Tj flat converges to 0 in Z
and thus converges weakly as well.

Theorem 2.43. If a sequence of integral current spaces Mj converges in the intrinsic
flat sense to an integral current space, M∞, then

lim inf
i→∞

M(Mi) ≥ M(M∞).

Proof. This follows from Theorems 2.41 and 2.42 combined with Ambrosio–Kirchheim’s
lower semicontinuity of mass [cf. Remark 2.28]. �

Finally there is Wenger’s Compactness Theorem [36].

Theorem 2.44 (Wenger). Given A0, V0, D0 > 0, if Mj = (Xj , dj , Tj) are integral current
spaces such that

Diam(Mj) ≤ D0, M(Mj) ≤ V0, M(∂(Mj)) ≤ A0,
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then a subsequence converges in the Intrinsic Flat Sense to an integral current space of
the same dimension, possibly the 0 space.

Recall that this theorem applies to oriented Riemannian manifolds of the same dimen-
sion with a uniform upper bound on volume and a uniform upper bound on the volumes
of the boundaries. One immediately sees that the conditions required to apply Wenger’s
Compactness Theorem are far weaker than the conditions required for Gromov’s Com-
pactness Theorem. The only difficulty lies in determining whether the limit space is 0 or
not. Wenger’s proof involves a thick thin decomposition, a study of filling volumes and
involves the notion of an ultralimit.

It should be noted that Theorems 2.41–2.43 and all other theorems reviewed and
proved within this paper are proved without applying Wenger’s Compactness Theorem.
Thus one may wish to attempt alternate proofs of Wenger’s Compactness Theorem using
the results in this paper.

We end this subsection with an example of a converging sequence of integral current
spaces that is applied in this paper to justify many of our hypotheses. Many other
examples appear in work of Wenger and the second author [34].

Example 2.45. We will construct a particular sequence of one-dimensional integral
current spaces M� that converges in the intrinsic flat sense to the integral current space
M induced by the standard one-dimensional torus of length 1 denoted by T.

We define a sequence Tk ∈ I1(T) as follows. Let Ai,n (i = 0, . . . , 2n − 1) denote the
dyadic interval

Ai,n =

[
i

2n
,
i+ 1

2n

]
⊂ T,

and let Ti,j,n ∈ I1(T) for 0 ≤ i < j ≤ 2n − 1 be defined by

Ti,j,n = �χAi,n
� + �χAj,n

�,

where χA denotes the characteristic function of a set A ⊂ T. Reindex Tk = Ti,j,n

according to k = k(i, j, n) such that k is one-to-one, onto N and k(i1, j1, n1) ≤ k(i2, j2, n2)
if and only if n1 ≤ n2.

Let T = �1� ∈ I1(T), let for every k ∈ N, M2k and M2k+1 be the one-dimensional
integral current spaces associated with the currents T −Tk and T +Tk respectively. Note
moreover that M is the integral current space associated with T .

Then
dF (M2k,M) ≤ dZF (T − Tk, T ) ≤ M(Tk) → 0.

Similarly, M2k+1
F−→ M , so that M� → M as � → ∞.

2.7. Filling volumes. The notion of a filling volume was first introduced by Gromov
in [11]. Wenger studied the filling volumes of integral currents in metric spaces in [35].
This was applied in the joint work of the second author with Wenger in [33].

First we discuss the Plateau Problem on complete metric spaces. Given an integral
current T ∈ ImZ, one may define the filling volume of ∂T within Z as

FillVolZ(∂T ) = inf
{
M(S) : S ∈ Im(Z) such that ∂S = ∂T

}
.

This immediately provides an upper bound on the flat distance:

dZF (∂T,0) ≤ FillVolZ(∂T ) ≤ M(T ).

Ambrosio–Kirchheim proved that this infimum is attained on Banach spaces Z, see [1,
Theorem 10.2].

Wenger defined the absolute filling volume of T ∈ ImY to be

FillVol∞(∂T ) = inf
{
M(S) : S ∈ Im(Z) s.t. ∂S = ϕ#∂T

}
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where the infimum is taken over all isometric embeddings ϕ : Y → Z, all complete metric
spaces, Z, and all S ∈ Im(Z) such that ∂S = ϕ#T . Clearly

FillVol∞(∂T ) ≤ FillVolY (∂T ).

Here we will use the following notion of a filling of an integral current space.

Definition 2.46. Given an integral current space M = (X, d, T ) ∈ Mm with m ≥ 1, we
define

(29) FillVol(∂M) := inf
{
M(N) : N ∈ Mm and ∂N = ∂M

}
.

That is, we require that there exist a current preserving isometry from ∂N onto ∂M ,
where as usual, we have taken the metrics on the boundary spaces to be the restrictions
of the metrics on the metric completions of N and M respectively.

We note that for M = (X, d, T ) ∈ Mm, we have

FillVol(∂M) = FillVol∞(∂T ).

It is also easy to see that

(30) FillVol(∂M) ≤ M(M),

and

dF (∂M, 0) ≤ FillVol(∂M) ≤ M(M)

for any integral current space M .

Remark 2.47. The infimum in the definition of the filling volume is attained when the
space is precompact. This may be seen by imitating the proof that the infimum in the
definition of the intrinsic flat norm is attained in [34]. Since the N achieving the infimum
has ∂N �= 0, the filling volume is positive.

Any integral current space, M = (X, d, T ), is separable and so one can map the
space into a Banach space, Z, via the Kuratowski Embedding theorem, ι : X → Z. By
Ambrosio–Kirchheim’s solution to the Plateau problem on Banach spaces [1, Proposi-
tion 10.2],

(31) FillVol(∂M) ≤ FillVolZ(ϕ#(∂T )) ≤ Diam(X)M(∂T ) = Diam(M)M(∂M).

Wenger showed that the filling volume is continuous with respect to weak convergence
(and thus also intrinsic flat convergence when applying Theorem 2.41). Here we provide
a precise estimate which will be needed later in the paper.

Theorem 2.48. For any pair of integral current spaces, Mi, we have

(32) FillVol(∂M1) ≤ FillVol(∂M2) + dF (M1,M2),

and if Mi have finite diameter, then

FillVol(∂M1) ≤ FillVol(∂M2) +
(
1 + 3Diam(M1) + 3Diam(M2)

)
dF (∂M1, ∂M2).

Proof. Let Mk = (XMk
, dMk

, TMk
) for k = 1, 2.

By the definition of intrinsic flat distance there exist integral currents Ai, Bi in Zi and
isometric embeddings, ϕi,k : XMk

→ Zi, such that

ϕi,1#TM1
− ϕi,2#TM2

= ∂Bi +Ai

where

dF (M1,M2) = lim
i→∞

M(Ai) +M(Bi).

In particular
ϕi,1#∂TM1

− ϕi,2#∂TM2
= ∂Ai.
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Now by (29), there exists Ni = (XNi
, dNi

, TNi
) ∈ Mm+1 such that ∂Ni = ∂M2 and

FillVol(∂M2) = lim
i→∞

M(Ni).

Applying the gluing techniques that are developed clearly in the Appendix, we may
glue the integral current space (set(Ai) ⊂ Zi, dZi

, Ai) to Ni = (XNi
, dNi

, TNi
) along

∂Ni = ∂M2 to create an integral current space M such that ∂M = ∂M1 and M(M) ≤
M(Ai) +M(Ni).

Then
FillVol(∂M1) = FillVol(∂M) ≤ M(M) ≤ M(Ai) +M(Ni)

and taking i → ∞ we have (32).
For the second half of the theorem, we observe that there exists a new pair of integral

currents Bj , Aj and isometric embeddings, ϕj,k : spt(∂Tk) → Z ′
j , such that

ϕj,1#∂TM1
− ϕj,2#∂TM2

= ∂Bj +Aj

where
dF (∂M1, ∂M2) = lim

j→∞
M(Bj) +M(Aj).

Let
MBj

= (set(Bj), dZ′
j
, Bj) and MAj

= (set(Aj), dZ′
j
, Aj).

As in the proof of Theorem 3.23 in [34] (see also Remark 2.39), we may assume that

Diam(MBj
),Diam(MAj

) ≤ 3Diam(M1) + 3Diam(M2).

Observe that

∂Aj = ∂(ϕj,1#∂TM1
− ϕj,2#∂TM2

) = 0.

So we can study the filling volume of Aj . By [1, Proposition 10.2], we see that

FillVol(MAj
) ≤ Diam(MAj

)M(Aj).

Let Nj be integral current spaces such that ∂Nj = ∂M2 and

FillVol(∂M2) ≥ M(Nj)− 1/j.

Let N ′
j be integral current spaces such that ∂N ′

j = Aj and

FillVol(Aj) ≥ M(N ′
j)− 1/j.

We glue Nj to MBj
along ∂Nj = ∂M2 and we also glue N ′

j to MBj
along ∂N ′

j = MAj
.

The glued space M ′
j will have ∂M ′

j = ∂M1 and

M(M ′
j) ≤ M(Nj) +M(MBj

) +M(N ′
j).

Thus
FillVol(∂M1) = FillVol(∂M ′

j) ≤ M(M ′
j).

Combining these equations we have

FillVol(∂M1)− 2
j ≤ FillVol(∂M2) +M(MBj

) + FillVol(MAj
)

≤ FillVol(∂M2) +M(MBj
) + Diam(MAj

)M(MAj
)

≤ FillVol(∂M2) +
(
Diam(MAj

) + 1
)(
M(MBj

) +M(MAj
)
)

and letting j → ∞ we have our second claim. �

Remark 2.49. Gromov’s Filling Volume in [11] is defined as in (29) where the infimum
is taken over Nn+1 that are Riemannian manifolds. Thus it is conceivable that the
filling volume in Definition 2.46 might have a smaller value both because integral current
spaces have integer weight and because we have a wider class of metrics to choose from,
including metrics that are not length metrics.
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Remark 2.50. Note also that the mass used in Definition 2.46 is Ambrosio–Kirchheim’s
mass ([1, Definition 2.6]) stated as Definition 2.11 here. Even when the weight is 1 and
one has a Finsler manifold, the Ambrosio–Kirchheim mass has a different value than any
of Gromov’s mass [11] and the masses used by Burago–Ivanov [2]. We need Ambrosio–
Kirchheim’s mass to have continuity of the filling volumes under intrinsic flat convergence
(Theorem 2.48) which is an essential tool in this paper.

§3. Metric properties of integral current spaces

In this section we prove a number of properties of integral current spaces as well as a
new Gromov–Hausdorff Compactness Theorem. After describing the natural notions of
balls, isometric products, slices, spheres and filling volumes in the first three subsections,
we move on to key new notions.

We introduce the Sliced Filling Volume (see Definition 3.20) and SFk(p, r) (see De-
finition 3.21). Then we prove a new Gromov–Hausdorff Compactness Theorem (Theo-
rem 3.23).

We explore the filling volumes of 0 dimensional spaces, apply them to bound the
volumes of balls, and then introduce the Tetrahedral Property (Definition 3.30) and the
Integral Tetrahedral Property (Definition 3.36).

We close this section with the notion of interval filling volumes in Definition 3.43 and
Sliced Interval Filling Volumes in Definition 3.45.

Those studying the proof of the Tetrahedral Compactness Theorem need to read all
Sections except 3.2 and 3.12 before continuing to Section 4. Those studying the Bolzano–
Weierstrass and Arzela–Ascoli Theorems need only read Sections 3.1 and 3.3–3.6 before
continuing to Section 4.

3.1. Balls. Many theorems in Riemannian geometry involve balls,

B(p, r) =
{
x ∈ X : dX(x, p) < r

}
, B̄(p, r) =

{
x ∈ X : dX(x, p) ≤ r

}
.

In this subsection we quickly review key lemmas about balls proved in the background
of the second author’s recent paper [31].

Lemma 3.1. A ball in an integral current space, M = (X, d, T ), with the current re-
stricted from the current structure of the Riemannian manifold is an integral current
space itself,

S(p, r) =
(
set(T B(p, r)), d, T B(p, r)

)
for almost every r > 0. Furthermore,

(33) B(p, r) ⊂ set
(
S(p, r)

)
⊂ B̄(p, r) ⊂ X.

One may imagine that it is possible that a ball is cusp shaped when we are not in a
length space and that some points in the closure of the ball that lie in X do not lie in
the set of S(p, r). In a manifold, the set of S(p, r) is a closed ball.

Lemma 3.2. When M is a Riemannian manifold with boundary,

S(p, r) =
(
B̄(p, r), d, T B(p, r)

)
is an integral current space for all r > 0.

Example 3.3. See [31] for an example of an integral current space with a ball that is
not an integral current space because its boundary has infinite mass.

Remark 3.4. Note that the outside of the ball, (M \ B(p, r), d, T − S(p, r)), is also an
integral current space for almost every r > 0.
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3.2. Isometric products. One of the most useful notions in Riemannian geometry is
that of an isometric product M × I of a Riemannian manifold M with an interval I,
endowed with the metric

(34) dM×I((p1, t1), (p2, t2)) =
√

dM (p1, p2)2 + |t1 − t2|2.
We need to define the isometric product of an integral current space with an interval.

Definition 3.5. The product of an integral current space, Mm = (X, dX , T ), with an
interval Iε = [0, ε], denoted

M × Iε = (X × Iε, dX×Iε , T × Iε)

where dX×Iε is defined by as in (34) and

(T × Iε)(f, π1, . . . , πm+1)

=

m+1∑
i=1

(−1)i+1

∫ ε

0

T
(
ft
∂πi

∂t
, π1t, . . . , π̂it, . . . , π(m+1)t

)
dt,

(35)

where ht : X̄ → R is defined by ht(x) = h(x, t) for any h : X̄ × Iε → R and where(
π1t, . . . , π̂it, . . . , π(m+1)t

)
=
(
π1t, π2t, . . . , π(i−1)t, π(i+1)t, . . . , π(m+1)t

)
.

We prove that this defines an integral current space in Proposition 3.7 below.

Remark 3.6. This is closely related to the cone construction in Definition 10.1 of [1],
however our ambient metric space changes after taking the product and we do not con-
tract to a point. Ambrosio–Kirchheim observe that (35) is well defined because for L1

almost every t ∈ Iε the partial derivatives are defined for ‖T‖ almost every x ∈ X. This
is also true in our setting. The proof that their cone construction defines a current [1,
Theorem 10.2], however, does not extend to our setting because our construction does
not close up at a point as theirs does and our construction depends on ε but not on the
size of a bounding ball.

Proposition 3.7. Given an integral current space M = (X, d, T ), the isometric product
M × Iε is an integral current space such that

(36) M(M × Iε) = εM(M)

and such that

(37) ∂(T × Iε) = −(∂T )× Iε + T × ∂Iε,

where
T × ∂Iε := ψε#T − ψ0#T

where ψt : X̄ → X̄ × Iε is the isometric embedding ψt(x) = (x, t).

Proof. First we must show that T × Iε satisfies the three conditions of a current.
Multilinearity follows from the multilinearity of T and the use of the alternating sum

in the definition of T × I.
To see locality we suppose there is a πi that is constant on a neighborhood of {f �= 0}.

Then ∂πi/∂t = 0 on a neighborhood of {f �= 0} so the ith term in the sum is 0. Since
for all t ∈ Iε, πit is constant on a neighborhood of {ft �= 0}, the rest of the terms are 0
as well by the locality of T .

To prove continuity and finite mass, we will use the fact that T is integer rectifiable.
In particular there exists a parametrization as ϕi : Ai ⊂ R

m → X̄ and weight functions
θi ∈ L1(Ai,N) such that

T =
∞∑
k=1

ϕk#�θk�.
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So

(T × Iε)(f, π1, . . . , πm+1)

=

m+1∑
i=1

(−1)i+1

∫ ε

0

∞∑
k=1

ϕk#�θk�

(
ft
∂πit

∂t
, π1t, . . . , π̂it, . . . , π(m+1)t

)
dt

=

m+1∑
i=1

(−1)i+1
∞∑
k=1

∫ ε

t=0

∫
Ak

θk ft ◦ ϕk
∂πit

∂t
◦ ϕk d(π1t ◦ ϕk) ∧ . . .

∧ dπ̂it ∧ . . . ∧ d(π(m+1)t ◦ ϕk) dt

=

∞∑
k=1

∫
Ak

∫ ε

t=0

θk(x)f(ϕk(x), t)

×
(m+1∑

i=1

(−1)i+1 ∂πit

∂t
◦ ϕk d(π1t ◦ ϕk) ∧ · · · ∧ dπ̂it ∧ · · · ∧ d(π(m+1)t ◦ ϕk)

)
dt

=

∞∑
k=1

∫
Ak×Iε

θk(x)f(ϕk(x), t) d(π1 ◦ ϕ) ∧ · · · ∧ d(πm+1 ◦ ϕ).

Thus
T × Iε =

∞∑
k=1

ϕ′
k#�θ′k�,

where
ϕ′
k : Ak × Iε → X̄ × Iε satisfies ϕ′

k(x, t) = (ϕk(x), t)

and θ′k ∈ L1(Ak×Iε,N) satisfies θ
′
k(x, t) = θk(x). Observe that the images of these charts

are disjoint and that

M(T × Iε) =

∞∑
k=1

M(ϕ′
k#�θ′k�)

=

∞∑
k=1

∫
Ak×Iε

|θ′k|Lm+1 =

∞∑
k=1

ε

∫
Ak

|θk|Lm

=

∞∑
k=1

εM(ϕk#�θk�) = εM(T ).

The continuity of T × Iε now follows because all integer rectifiable currents defined by
parametrizations are currents.

Observe also that if A ⊂ X̄ and (a1, a2) ⊂ I, then

‖T × Iε‖(A× (a1, a2)) = M
(
(T × Iε) (A× (a1, a2))

)
=

∞∑
k=1

M
(
(ϕ′

k#�θ′k�) (A× (a1, a2))
)

=

∞∑
k=1

∫
(A∩Ak)×(a1,a2)

|θ′k|Lm+1

=

∞∑
k=1

(a2 − a1)

∫
A∩Ak

|θk|Lm

=

∞∑
k=1

(a2 − a1)M(ϕk#�θk� A)

= (a2 − a1)M(T A) = (a2 − a1)‖T‖(A).

Thus ‖T × Iε‖ = ‖T‖ × L1.
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To prove that T × Iε is an integral current, we need only verify that the current
∂(T × Iε) has finite mass.

Let τ1, . . . , τm ∈ Lip(X × Iε) be such that ∂τi/∂t is Lipschitz as well for i = 1, . . . ,m.
Applying the Chain Rule [1, Theorem 3.5] and Lemma 3.8 (proved below), we have

∂(T × Iε)(f, τ1, . . . , τm) + ((∂T )× Iε)(f, τ1, . . . , τm)

= (T × Iε)(1, f, τ1, . . . , τm) +

m∑
i=1

(−1)i+1

∫ ε

0

∂T
(
ft
∂τi
∂t

, τ1t, . . . , τ̂it, . . . , τmt

)
dt

=

∫ ε

0

T
(∂f
∂t

, τ1t, . . . , τmt

)
dt −

m∑
i=1

(−1)i+1

∫ ε

0

T
(∂τi
∂t

, ft, τ1t, . . . , τ̂it, . . . , τmt

)
dt

+
m∑
i=1

(−1)i+1

∫ ε

0

T
(
1, ft

∂τi
∂t

, τ1t, . . . , τ̂it, . . . , τmt

)
dt

=

∫ ε

0

T
(∂f
∂t

, τ1t, . . . , τmt

)
dt+

m∑
i=1

(−1)i+1

∫ ε

0

T
(
ft,

∂τi
∂t

, τ1t, . . . , τ̂it, . . . , τmt

)
dt

=

∫ ε

0

T
(∂f
∂t

, τ1t, . . . , τmt

)
dt+

m∑
i=1

∫ ε

0

T
(
ft, τ1t, . . . , τ(i−1)t,

∂τi
∂t

, τ(i+1)t, . . . , τmt

)
dt

=

∫ ε

0

∂

∂t
T (ft, τ1t, . . . , τmt) dt

= T (fε, τ1ε, . . . , τmε)− T (f0, τ10, . . . , τm0)

= ψε#T (f, τ1, . . . , τm)− ψ0#T (f, τ1, . . . , τm)

= T × ∂Iε(f, τ1, . . . , τm).

By mollification in the t-variable and by using the continuity properties of currents, we
conclude that for arbitrary

τ1, . . . , τm ∈ Lip(X × Iε),

it is still true that

∂(T × Iε)(f, τ1, . . . , τm) + ((∂T )× Iε)(f, τ1, . . . , τm) = T × ∂Iε(f, τ1, . . . , τm).

Thus we have (37).
Observe that T × ∂Iε is an integral current because it is the sum of push forward of

integral currents and that

(38) M(T × ∂Iε) = 2M(T ).

Since we know products are rectifiable, (∂T )× Iε is rectifiable and has finite mass of at
most εM(∂T ). Thus applying (37) we see that

M(∂(T × Iε)) ≤ M((∂T )× Iε) +M(T × ∂Iε) ≤ εM(∂T ) + 2M(T ).

Thus the current structure of M × Iε is an integral current.
Lastly we verify that

set(T × Iε) = set(T )× Iε.



496 J. PORTEGIES AND C. SORMANI

Given (p, t) ∈ X̄ × Iε, the following statements are equivalent:

(p, t) ∈ set(T × Iε),

0 < lim inf
r→0

‖T × Iε‖(B(p,t)(r))

rm+1
,

0 < lim inf
r→0

‖T × Iε‖(Bp(r)× (t− r, t+ r))

rm+1
,

0 < lim inf
r→0

2r‖T‖(Bp(r))

rm+1
,

0 < lim inf
r→0

‖T‖(Bp(r))

rm
,

p ∈ set(T ).

The proposition follows. �

Lemma 3.8. If πit and ∂tπit are Lipschitz in Z × Iε, and T ∈ Im(Z), then for almost
every t ∈ Iε,

∂

∂t
T (π0t, . . . , πmt) =

m∑
i=0

T

(
π0t, . . . , π(i−1)t,

∂πi

∂t
, π(i+1)t, . . . , πmt

)

Proof. This follows from the multilinearity of T , the usual expansion of the difference
quotient as a sum of difference quotients in which one term changes at a time, the fact that
T is continuous with respect to pointwise convergence and that the difference quotients
have pointwise limits for almost every t ∈ Iε because the πi are Lipschitz in t. �

The following proposition will be applied later when studying limits under intrinsic
flat and Gromov–Hausdorff convergence.

Proposition 3.9. Suppose Mm
i = (Xi, di, Ti) are integral current spaces and ε > 0, then

dF (M
m
1 × Iε,M

m
2 × Iε) ≤ (2 + ε)dF (M

m
1 ,Mm

2 )

and, when the Mi are precompact,

dGH(Xm
1 × Iε, X

m
2 × Iε) ≤ dGH(Xm

1 , Xm
2 ).

Proof. Let δ > 0. There exists a metric space Z and isometric embeddings ϕi : Xi → Z,
and integral currents A,B on Z such that

ϕ1#T1 − ϕ2#T2 = A+ ∂B

and

dF (M
m
1 ,Mm

2 ) ≤ M(A) +M(B) + δ.

Setting Z ′ = Z × Iε endowed with the product metric, we have isometric embeddings
ϕ′
i : Xi × Iε → Z ′ and we have integral currents A′ = A× Iε and B′ = B × Iε such that

ϕ′
1#(T1 × Iε)− ϕ′

2#(T2 × Iε) = (ϕ′
1#T1)× Iε − (ϕ2#T2)× Iε

= (ϕ′
1#T1 − ϕ2#T2)× Iε

= (A+ ∂B)× Iε

= A× Iε − ∂(B × Iε)−B × (∂Iε).
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Thus by Proposition 3.7 and (38) we have

dF (M
m
1 × Iε,M

m
2 × Iε) ≤ M(A× Iε) +M(B × Iε) +M(B × (∂Iε))

≤ εM(A) + εM(B) + 2M(B)

≤ (2 + ε)M(A) + (2 + ε)M(B)

= (2 + ε)(dF (M
m
1 ,Mm

2 ) + δ).

Finally, we let δ ↓ 0.
To see the Gromov–Hausdorff estimate, one needs only observe that whenever Y1 ⊂

Tr(Y2) ⊂ Z, we have

Y1 × Iε ⊂ Tr(Y2 × Iε) ⊂ Z × Iε. �

3.3. Slices and spheres. While balls are a very natural object in metric spaces, a more
important notion in integral current spaces is that of a slice. The following proposition
follows immediately from the Ambrosio–Kirchheim Slicing Theorem (cf. Theorem 2.23
and Remark 2.25).

Proposition 3.10. Given an m dimensional integral current space M = (X, d, T ) and
Lipschitz functions F : X → R

k where k < m, for almost every t ∈ R
k we can define an

m− k dimensional integral current space called the slice of (X, d, T ):

(39) Slice(M,F, t) = Slice(F, t) =
(
set〈T, F, t〉, d, 〈T, F, t〉

)
where 〈T, F, t〉 = 〈T, F1, . . . , Fk, t1, . . . , tk〉 is an integral current on X̄ defined using the
Ambrosio–Kirchheim Slicing Theorem and set〈T, F, t〉 ⊂ F−1(t). We can integrate the
masses of slices to obtain lower bounds of the mass of the original space:∫

t∈Rk

M(Slice(M,F, t))Lk ≤
k∏

j=1

Lip(Fj)M(T )

and ∂ Slice(M,F, t) = (−1)k Slice(∂M,F, t).

Proof. This proposition follows immediately from the Ambrosio–Kirchheim Slicing The-
orem 5.6 in [1] by using the fact that F has a unique extension to X̄ and Definition 2.5.
The last part follows from Lemma 5.8. �

Remark 3.11. Observe that in Example 2.35 where M is a 1 dimensional current space
formed by concentric circles and a center point p0 = 0, if F (x) = d(x, p0) then almost
every slice is the 0 integral current space.

Lemma 3.12. Given an m dimensional integral current space (X, d, T ) and a point p,
for almost every r ∈ R we can define an m− 1 dimensional integral current space called
the sphere about p of radius r:

Sphere(p, r) = Slice(ρp, r)

where ρp(x) = d(p, x). On a Riemannian manifold with boundary,

Sphere(p, r)(f, π1, . . . , πm−1) =

∫
ρ−1
p (r)

f dπ1 ∧ · · · ∧ dπm−1

is an integral current space for all r ∈ R.

Proof. This follows from Proposition 3.10 and the Ambrosio–Kirchheim Slicing Theorem
(cf. Theorem 2.23) and the fact that Lip(ρp) = 1. The Riemannian part follows from
Stokes’ Theorem and the fact that spheres of all radii in Riemannian manifolds have
finite volume as can be seen either by applying the Ricatti equation or Jacobi fields. �
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Observe the distinction between the sphere and the boundary of a ball in Lemma 3.12
when M has boundary.

Next we examine the setting when we do not hit the boundary.

Lemma 3.13. If set(∂T ) ∩ B̄(p,R) ⊂ X̄ is empty, then for almost every r ≤ R

Sphere(p, r) = ∂ S(p, r).

Furthermore,

(40)

∫ R

0

M
(
∂S(p, r)

)
dL(r) ≤ M

(
S(p,R)

)
.

In particular, on an open Riemannian manifold, for any p ∈ M , there is a sufficiently
small R > 0 such that this lemma holds true. On a Riemannian manifold without
boundary, these hold true for all R > 0.

Proof. This follows from Proposition 3.10 and Theorem 2.23. �

Lemma 3.14. Given an m dimensional integral current space (X, d, T ) and ρ : X → R

a Lipschitz function with Lip(ρ) ≤ 1, for almost every r ∈ R we can define an m − 1
dimensional integral current space Slice(ρ, r), where∫ ∞

−∞
M
(
Slice(ρ, r)

)
dL(r) ≤ M(T ).

On a Riemannian manifold with boundary,

Slice(ρ, r)(f, π1, . . . , πm−1) =

∫
ρ−1(r)

f dπ1 ∧ · · · ∧ dπm−1

is defined for all r ∈ R.

Proof. This follows from Proposition 3.10 and Theorem 2.23. �

Lemma 3.15. Given an m dimensional integral current space (X, d, T ) and a ρ : X → R
k

with Lip(ρi) ≤ 1, for almost every r ∈ R
k we can define an m − k dimensional integral

current space Slice(ρ, r), where∫
Rk

M
(
Slice(ρ, r)

)
dL(r) ≤ M(T ).

Proof. This follows from Proposition 3.10 and Theorem 2.23. �

Remark 3.16. On a Riemannian manifold with boundary

Slice(ρ, r)(f, π1, . . . , πm−1) =

∫
ρ−1(r)

f dπ1 ∧ · · · ∧ dπm−1

is defined for all r ∈ R such that ρ−1
p (r) is m− 1 dimensional. By the above lemma this

will be true for almost every r. Note, however, that if ρi are distance functions from
poorly chosen points, the slice may be the 0 space for almost every r because ρ−1

p (r) = ∅.
This occurs for example on the standard three dimensional sphere if we take ρ1, ρ2 to be
distance functions from opposite poles.
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3.4. Filling volumes of spheres and slices. The following lemmas were applied
without proof in [33]. We may now easily prove them. First recall Definition 2.46 for the
notion of filling volume used in this paper.

Lemma 3.17. Given an integral current space, Mm = (X, d, T ), for all p ∈ X̄ and
almost every r > 0 we have

M(S(p, r)) ≥ FillVol(∂S(p, r)).

Thus p ∈ X̄ lies in X = set(T ) if

(41) ess lim inf
r→0

FillVol(∂S(p, r))/rm > 0.

Here we have the essential lim inf which is a lim inf as r → 0 where the r are selected
from a set of full measure.

Proof. This follows immediately from the definition of filling volume in Definition 2.46
and (30), the definition of S(p, r) which is only defined for almost every r > 0, and the
definition of set(T ). �

Note that the converse of Lemma 3.17 is not true as can be seen by observing that
in Example 2.35 we have the point 0 ∈ X = set(T ), but ∂S(0, r) = 0 for almost every
r > 0. So (41) fails for p = 0 in this example. The same is true for (42) in the next
lemma.

Lemma 3.18. Given an integral current space M = (X, d, T ), if Bp(R)∩∂M = ∅, then
for almost every r ∈ (0, R) we have

M(S(p, r)) ≥ FillVol(Sphere(p,R)).

Thus if ∂M = ∅, we know that p ∈ X̄ lies in X = set(T ) if

(42) ess lim inf
r→0

FillVol(Sphere(p, r))/rm > 0.

Proof. This follows immediately from Lemma 3.13 and Lemma 3.17. �
Theorem 4.1 of [33] can be stated as follows:

Theorem 3.19 (Sormani–Wenger). Suppose Mm = (X, d, T ) is a compact Riemannian
manifold such that there exist r0 > 0, k > 0 such that B̄(p, kr0) ∩ ∂M = ∅ and every
B(x, r) ⊂ B̄(p, r0) is contractible within B(x, kr) ⊂ B̄(p, r0); then there exists Ck such
that

Vol(B̄(x, r)) = ‖T‖(B̄(x, r)‖ ≥ FillVol(∂S(p, r)) ≥ Ckr
m.

This theorem essentially follows from a result of Greene–Petersen [8] combined with
Lemma 3.18. The statement in [34] applies to a more general class of spaces and requires
a much subtler proof involving Lipschitz extensions.

3.5. Sliced filling volumes of balls. Spheres are not the only slices whose filling
volumes may be used to estimate the volumes of balls. We define the following new
notions.

Definition 3.20. Suppose we are given an integral current space, Mm = (X, d, T ), and
let F1, F2, . . . , Fk : X → R with k ≤ m−1 be Lipschitz functions with Lipschitz constants
Lip(Fj) = λj ; then we define the sliced filling volume of ∂S(p, r) ∈ Im−1(X̄) to be

SF(p, r, F1, . . . , Fk) =

∫
t∈Ar

FillVol(∂ Slice(S(p, r), F, t))Lk

where
Ar = [minF1,maxF1]× [minF2,maxF2]× · · · × [minFk,maxFk]
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where minFj = min{Fj(x) : x ∈ B̄p(r)} and maxFj = max{Fj(x) : x ∈ B̄p(r)}. Given
q1, . . . , qk ∈ X, we set

SF(p, r, q1, . . . , qk) = SF(p, r, ρ1, . . . , ρk) where ρi(x) = dX(qi, x).

Definition 3.21. Given an integral current space Mm and p ∈ Mm, for almost every r
we can define the kth sliced filling,

SFk(p, r) = sup
{
SF(p, r, q1, . . . , qk) : qi ∈ ∂Bp(r)

}
where ∂Bp(r) is the boundary of the metric ball about p. In particular,

SF0(p, r) = SF(p, r) = FillVol(∂S(p, r)).

Lemma 3.22. Suppose we are given an integral current space, Mm = (X, d, T ), and
Lipschitz functions F1, F2, . . . , Fk : X → R, k ≤ m−1, with Lipschitz constants Lip(Fj) =
λj > 0; then

(43) M(S(p, r)) ≥
k∏

j=1

λ−1
j SF(p, r, F1, . . . , Fk).

Thus p ∈ X̄ lies in X = set(T ) if there exist Fi : M → R as above such that

lim inf
r→0

1

rm
SF(p, r, F1, . . . , Fk) > 0.

Applying (43) to Fj = ρqj,r where the qi,r provide the supremum in Definition 3.21, we
see that

(44) M(S(p, r)) ≥ SF(p, r, q1,r, . . . , qk,r) = SFk(p, r).

Thus p ∈ X̄ lies in X = set(T ) if

lim inf
r→0

1

rm
SFk(p, r) > 0.

Conversely, if ∂S(p, r) �= 0, then for k = 0 we have

SFk(p, r) �= 0.

Proof. By Proposition 3.10 we know that

M(S(p, r)) ≥
k∏

j=1

λ−1
j M(S(p, r) dF )

≥
k∏

j=1

λ−1
j

∫
t∈Rk

M(Slice(S(p, r), F, t))Lk

=

k∏
j=1

λ−1
j

∫
t∈A

M(Slice(S(p, r), F, t))Lk.

Then (43) follows because k ≤ m−1 implies each slice is at least 1 dimensional, combined
with (30) and the fact that ∂〈S, F, t〉 = −〈∂S, F, t〉.

The converse follows because SF0(p, r) = FillVol(∂S(p, r)) > 0 when S(p, r) �= 0. �
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3.6. Uniform SFk and Gromov–Hausdorff compactness. Now we prove a new
Gromov–Hausdorff compactness theorem.

Theorem 3.23. If Mm
i = (Xi, di, Ti) are integral current spaces with a uniform up-

per bound on Vol(Mi) ≤ V0 and diameter Diam(Mi) ≤ D0, and a uniform r0 > 0,
C : (0, r0] → R

+, such that we have a uniform lower bound on the kth sliced filling

SFk(p, r) ≥ C(r) > 0 for almost every r ∈ (0, r0]

for all p ∈ Mi, for all i, then a subsequence (Xi, di) converges in the Gromov–Hausdorff
sense to a limit space (Y, dY ).

Later we will prove that the subsequence converges in the intrinsic flat sense to the
same limit space when C(r) ≥ CSF r

m > 0 (Theorem 5.1).

Proof. For any p in any Mi, there exist q1, . . . , qk such that

SF(p, r, q1, . . . , qk) ≥ C(r)/2 > 0.

So by Lemma 3.22, M(S(p, r)) ≥ C(r)/2. Thus the number of disjoint balls of radius r
in Mi is at most 2V0/C(r). So we may apply Gromov’s Compactness Theorem. �

3.7. Filling volumes of 0 dimensional spaces. Before proceeding we need the fol-
lowing lemma.

Lemma 3.24. Let M be an integral current space. Suppose S ∈ I1(M) is such that
∂S �= 0. Then set(∂S) = {p1, . . . , pN} with N ≥ 2 and

(45) ∂S(f) =

N∑
i=1

σiθif(pi)

where θi ∈ Z
+ and |σi| = 1 and

(46) FillVol(∂S) ≥ max
j=1,...,N

(
|θj |min

i 
=j
dX(pi, pj)

)
> 0.

In particular,

FillVol(∂S) ≥ inf
{
dX(pi, pj) : i, j ∈ {1, 2, . . . , N}

}
≥ inf

{
d(x, y) : x �= y, x, y ∈ set(∂S)

}
> 0.

(47)

Proof. Recall that by Remark 2.34, ∂S satisfies (45) where
∑N

i=1 σiθi = 0. So N ≥ 2
when ∂S �= 0.

Suppose M ′ = (Y, dY , T ) is any one dimensional integral current space with a current
preserving isometry ϕ : set(∂M ′) → set(∂S) ⊂ X̄ so that

ϕ#∂T = ∂S ∈ I0(M)

and dX(ϕ(y1), ϕ(y2)) = dY (y1, y2) for all y1, y2 ∈ set(T ) ⊂ Y . In particular there exist
distinct points

p′j = ϕ−1(pj) ∈ Ȳ

such that for any Lipschitz f : Ȳ → R we have

T (1, f) = ∂(T )(f) =
N∑
i=1

σiθif(p
′
i).

By (6) we have

|T (1, f)| ≤ Lip(f)M(T ).
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Let fj(y) = mini 
=j dY (y, p
′
i). Then Lip(fj) = 1, so

M(T ) ≥
∣∣∣∣

N∑
i=1

σiθifj(p
′
i)

∣∣∣∣
≥ θjfj(p

′
j) = θj min

i 
=j
dY (p

′
i, p

′
j)

= θj min
i 
=j

dX(pi, pj).

Taking an infimum over all T , we have

FillVol(∂S) ≥ θj min
i 
=j

dX(pi, pj).

As this is true for all j = 1, . . . , N , we have (46). Since θj ∈ Z
+, we have the simpler

lower bound given in (47). �
3.8. Masses of balls from distances. Here we provide a lower bound on the mass of
a ball using a sliced filling volume and estimates on the filling volumes of 0 dimensional
currents. First we introduce the notation:

(48) P (p, r, t1, . . . , tm−1) = ρ−1
p (r) ∩ ρ−1

p1
(t1) ∩ · · · ∩ ρ−1

pm−1
(tm−1).

Theorem 3.25. Suppose we are given an integral current space, Mm = (X, d, T ), and
points p1, . . . , pm−1 ∈ X; then, if B̄p(R) ∩ set(∂T ) = ∅, we have

M(S(p, r)) ≥ SF(p, r, p1, . . . , pm−1)

≥
∫ s1+r

s1−r

· · ·
∫ sm−1+r

sm−1−r

h(p, r, t1, . . . , tm−1) dt1dt2 . . . dtm−1

for almost every r ∈ (0, R), where ti = d(pi, p0) and

h(p, r, t1, . . . , tm−1) = inf
{
d(x, y) : x �= y, x, y ∈ P (p, r, t1, . . . , tm−1)

}
when

P (p, r, t1, . . . , tm−1) of (48) is a nonempty discrete

set of points and

h(p, r, t1, . . . , tm−1) = 0 otherwise.

Thus p ∈ X̄ \ Cl(set(∂T )) lies in X = set(T ) if

lim inf
r→0

(1/rm)

∫ s1+r

t1=s1−r

· · ·
∫ sm−1+r

tm−1=sm−1−r

h(p, r, t1, . . . , tm−1) dt1 dt2 . . . dtm−1 > 0.

Theorem 3.25 is in fact a special case of the following theorem.

Theorem 3.26. Consider an integral current space Mm = (X, d, T ) and Lipschitz func-
tions F1, F2, . . . , Fm−1 : X → R with Lipschitz constants Lip(Fj) = λj. Then for almost
every r > 0 we have

M(S(p, r)) ≥ SF(p, r, F1, . . . , Fk) ≥
k∏

j=1

λ−1
j

∫
t∈Ar

h(p, r, F, t) dLk

where

h(p, r, F, t) = inf
{
d(x, y) : x �= y, x, y ∈ set(∂ Slice(S(p, r), F, t))

}
> 0

when ∂ Slice(S(p, r), F, t) ∈ I0(X̄) \ {0} and

h(p, r, F, t) = 0 otherwise,

and where

Ar = [minF1,maxF1]× [minF2,maxF2]× · · · × [minFk,maxFk]
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with minFj = min{Fj(x) : x ∈ B̄p(r)} and maxFj = max{Fj(x) : x ∈ B̄p(r)}.

Before presenting the proof, we give two important examples.

Example 3.27. On Euclidean space E
m, taking Fi : E

m → R to be a collection of
perpendicular coordinate functions for i = 1, . . . ,m, Fi(x1, . . . , xm) = xi, we have λi = 1
and

h(p, r, F1, . . . , Fm−1, t1, . . . , tm−1) = 2
√
r2 − (t21 + · · ·+ t2m−1).

So

ωmrm = M(S(p, r)) ≥ SF(p, r, F1, . . . , Fk) = ωmrm.

Example 3.28. On the standard sphere S2, taking p1 ∈ ∂Bp(π/2), r = π/2, and
F1(x) = d(p1, x), we have

h(p, π/2, F1, t) = min{2t, 2(π − t)}
because the distances are shortest if one travels within the great circle, ∂Bp(π/2). So

2π = Vol(S2
+) = M(S(p, π/2)) ≥ SF(p, π/2, F1)

with

SF(p, π/2, F1) =

∫ π

0

h(p, π/2, F1, t) dt

= 2

∫ π/2

0

2t dt = 2(π/2)2 = π2/2.

Proof. Theorem 3.25 follows from Theorem 3.26 by taking F (x) = (F1(x), . . . , Fm−1(x)),
where Fi(x) = ρpi

(x). If B̄(p, r) ∩ set ∂T = ∅, then for almost every r ∈ R and
t1 ∈ R, . . . , tm−1 ∈ R we have ∂ Slice(S(p, r), F, t)) ∈ I0(X̄) and

set
(
∂ Slice(S(p, r), F, t)

)
= ρ−1

p (r) ∩ F−1
1 (t1) ∩ · · · ∩ F−1

m−1(tm−1),

so this set either has 0 points or at least two points. �

Proof. Theorem 3.26 is proved by applying Lemma 3.22 to F and then computing the
filling volume of the 0 dimensional current, ∂(Slice(S(p, r), F, t)), using Lemma 3.24. Note
that ti < si−r or ti > si+r implies h(p, r, t1, . . . , tm−1) = 0 because ρ−1

p (r) ∩ ρ−1
pi

(ti) = ∅.
�

Remark 3.29. Naturally we could combine Theorem 3.26 with any other lower bound on
the filling volumes of 0 dimensional sets, like, for example, (46).

3.9. Tetrahedral property. Theorem 3.25 allows us to estimate the masses of balls
using a tetrahedral property (see Figure 1).

Definition 3.30. Given C > 0 and β ∈ (0, 1), a metric space X is said to have the
m dimensional C, β tetrahedral property at a point p for radius r if one can find points
p1, . . . , pm−1 ⊂ ∂Bp(r) ⊂ X̄ such that

h(p, r, t1, . . . , tm−1) ≥ Cr, (t1, . . . , tm−1) ∈ [(1− β)r, (1 + β)r]m

where

h(p, r, t1, . . . , tm−1) = inf
{
d(x, y) : x �= y, x, y ∈ P (p, r, t1, . . . , tm−1)

}
when

P (p, r, t1, . . . , tm−1) = ρ−1
p (r) ∩ ρ−1

p1
(t1) ∩ · · · ∩ ρ−1

pm−1
(tm−1)

is nonempty and 0 otherwise. Observe that P (p, r, t1, . . . , tm−1) is the set of a 0 current
for almost every (t1, . . . , tm−1) and is thus a discrete set of points.
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Example 3.31. On Euclidean space E3, taking p1, p2 ∈ ∂B(p, r) such that d(p1, p2) = r,
there exists exactly two points x, y ∈ P (p, r, r, r) each forming a tetrahedron with p, p1, p2.
See Figure 1. As we vary t1, t2 ∈ (r/2, 3r/2), we still have exactly two points in
P (p, r, t1, t2). By scaling we see that

h(p, r, t1, t2) = rh(p, 1, t1/r, t2/r) ≥ CE3r,

where

CE3 = inf{h(p, 1, s1, s2) : si ∈ (1/2, 3/2)} > 0

could be computed explicitly. So E
3 satisfies the CE3 , (1/2) tetrahedral property at p for

all r.

Example 3.32. On a torus, M3
ε = S1 × S1 × S1

ε where S1
ε has been scaled to have

diameter ε instead of π, we see that M3 satisfies the CE3 , (1/2) tetrahedral property at
p for all r < ε/4. By taking r < ε/4, we guarantee that the shortest paths between x
and y stay within the ball B(p, r) allowing us to use the Euclidean estimates. If r is too
large, P (p, r, t1, t2) = ∅.

Remark 3.33. On a Riemannian manifold or an integral current space, we know that
P (p, r, t1, . . . , tm−1) is the set of a 0 current which is a boundary. So if it is not empty,
it has at least two points, one with positive weight and one with negative weight.

Remark 3.34. It is not merely a simple application of the triangle inequality to proceed
from knowing the relation h(p, r, r, . . . , r) ≥ Cr to having h(p, r, t1, . . . , tm−1) ≥ C2r.
There is the possibility that P (p, r, t1, . . . , tm−1) is empty or has a closest pair of points
both near a single point of C(p, r, r, . . . , r) even in a Riemannian manifold. However one
expects the same type of curvature conditions that would lead to control of h(p, r, . . . , r)
could be used to study h(p, t1, . . . , tm−1).

Remark 3.35. On a manifold with sectional curvature bounded below, one should have
the C, 1/2 tetrahedral property at any point p as long as r < injrad(p)/4 where C depends
on the lower sectional curvature bound. This should be provable using the Toponogov
Comparison Theorem. One would like to replace the condition on injectivity radius
with radius depending upon a lower bound on volume. Work in this direction is under
preparation by the second author’s doctoral students. Note that there is no uniform
tetrahedral property on manifolds with positive scalar curvature even when the volumes
of the balls are uniformly bounded below by that of Euclidean balls [Remark 5.3]. With
lower bounds on Ricci curvature one might expect to have the C, 1/2 tetrahedral property
or an integral version of this property. Again a uniform lower bound on volume will be
necessary as seen in the torus example above.

3.10. Integral tetrahedral property. For our applications we need only the following
property which clearly holds at any point with the tetrahedral property.

Definition 3.36. Given C > 0 and β ∈ (0, 1), a metric space X is said to have the m
dimensional integral C, β tetrahedral property at a point p for radius r if one can find
points p1, . . . , pm−1 ⊂ ∂Bp(r) ⊂ X̄ such that∫ (1+β)r

t1=(1−β)r

· · ·
∫ (1+β)r

tm−1=(1−β)r

h(p, r, t1, . . . , tm−1) dt1 dt2 . . . dtm−1 ≥ C(2β)m−1rm.

Proposition 3.37. If X is a metric space that satisfies the C, β tetrahedral property at
p for radius r, then it has the C, β integral tetrahedral property.
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Proof. ∫ (1+β)r

t1=(1−β)r

· · ·
∫ (1+β)r

tm−1=(1−β)r

h(p, r, t1, . . . , tm−1) dt1 dt2 . . . dtm−1

≥
∫ (1+β)r

t1=(1−β)r

· · ·
∫ (1+β)r

tm−1=(1−β)r

CRdt1 dt2 . . . dtm−1

≥ Cr
(
(1 + β)r − (1− β)r

)m−1
. �

3.11. Tetrahedral property and masses of balls.

Theorem 3.38. Suppose (X, d, T ) is an integral current space and suppose that for p ∈ X
we have B̄p(R) ∩ set(∂T ) = ∅. Then for almost every r ∈ (0, R), if the m dimensional
(integral) C, β tetrahedral property at a point p for radius r holds on X̄, then

M(S(p, r)) ≥ SFm−1(p, r) ≥ C(2β)m−1rm.

Proof. By Theorem 3.25 with si = r we have

M(S(p, r)) ≥ SF(p, r, p1, . . . , pm−1)

≥
∫ s1+r

t1=s1−r

· · ·
∫ sm−1+r

tm−1=sm−1−r

h(P(r,t1,...,tm−1)) dt1 dt2 . . . dtm−1

≥ SF(p, r, p1, . . . , pm−1)

≥
∫ 2r

t1=0

· · ·
∫ 2r

tm−1=0

h(P(r,t1,...,tm−1)) dt1 dt2 . . . dtm−1

>

∫ (1+β)r

t1=(1−β)r

· · ·
∫ (1+β)r

tm−1=(1−β)r

h(p, r, t1, . . . , tm−1) dt1 dt2 . . . dtm−1

> C(2β)m−1rm. �

Theorem 3.39. Suppose p0 lies in a Riemannian manifold M with boundary, and
Bp0

(R) ∩ ∂M = ∅. For almost every r ∈ (0, R), if the m dimensional (integral) C, β
tetrahedral property holds at a point p for radius r, then

Vol(B(p, r)) ≥ C(2β)m−1rm.

Proof. This is an immediate consequence of Theorem 3.38. �

Remark 3.40. In Example 3.32, as ε → 0, we have Vol(B(p, r)) ≤ Vol(M3
ε ) → 0, so we

could not have a uniform tetrahedral property on these spaces.

Theorem 3.41. Given r0 > 0, β ∈ (0, 1), C > 0, V0 > 0, if for a sequence of compact
Riemannian manifolds Mm we have Vol(Mm) ≤ V0, Diam(Mm) ≤ D0, and the C, β
(integral) tetrahedral property for all balls of radius ≤ r0, then a subsequence converges
in the Gromov–Hausdorff sense. In particular, they have a uniform upper bound on
diameter depending only on these constants.

The proof of this theorem strongly requires that the manifold have no boundary.

Proof. This follows immediately from Theorem 3.39 and Gromov’s Compactness Theo-
rem, by using the fact that we can bound the number of disjoint balls of radius ε > 0
in Mm. In a manifold, this provides an upper bound on the diameter of Mm. �

Later we will apply the following theorem to prove that the Gromov–Hausdorff limit
is in fact an Intrinsic Flat limit and thus is countably Hm rectifiable (Theorem 5.2).
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Theorem 3.42. Suppose we are given an integral current space (X, d, T ) and a point
p0 ∈ X̄ \ Cl(set(∂T )), then p0 ∈ X = set(T ) if there exists a pair of constants β ∈ (0, 1)
and C > 0 such that X̄ has the tetrahedral property at p0 for all sufficiently small r > 0.

Proof. By Theorem 3.38 we have

(49) ‖T‖(Bp(r)) ≥ C(2β)m−1rm

for almost every r sufficiently small. For any R sufficiently small, there exists r = rj < R
satisfying (49) with rj → R, so

‖T‖(B(p,R)) ≥ lim sup
j→∞

‖T‖(B(p, rj)) ≥ lim sup
j→∞

C(2β)m−1rmj = C(2β)m−1Rm.

Thus p0 ∈ X = set(T ) by the definition of set(T ). �

3.12. Fillings, slices and intervals. In the above sections, a key step consisted of
estimating M(M) ≥ FillVol(∂M). This is only a worthwhile estimate when ∂M is not
zero or has a filling volume close to the mass.

A better estimate can be obtained by using the following trick. Given a Riemannian
manifold M ,

Vol(M) = Vol(M × I) ≥ FillVol(∂(M × I))

where the metric on M × I is defined in (34). This has the advantage that M × I is
always a manifold with boundary. It may also be worthwhile to use an interval, Iε, of
length ε, then

Vol(M) =
Vol(M × Iε)

ε
≥ FillVol(∂(M × Iε))

ε
.

Intuitively it would seem reasonable to conjecture that

Vol(M) = lim
ε→0

Vol(M × Iε)

ε
= lim

ε→0

FillVol(∂(M × Iε))

ε
.

We introduce the following notion made rigorous on arbitrary integral current spaces
M = (X, dX , T ) by applying Definition 3.5 and Proposition 3.7.

Definition 3.43. Given any ε > 0, we define the ε interval filling volume,

IFVε(M) = FillVol(∂(M × Iε)).

Lemma 3.44. Given an integral current space M = (X, d, T ),

M(M) = ε−1M(M × Iε) ≥ ε−1IFVε(M).

Proof. This follows immediately from Proposition 3.7. �

Definition 3.45. For an integral current space Mm = (X, d, T ) and Lipschitz functions
F1, F2, . . . , Fk : X → R, k ≤ m, with Lipschitz constant Lip(Fj) = λj , whenever ε > 0,
for almost every r > 0 we can define the ε sliced interval filling volume of ∂S(p, r) ∈
Im−1(X̄) to be

SIFε(p, r, F1, . . . , Fk) =

∫
t∈Ar

FillVol(∂(Slice(S(p, r), F, t)× Iε))Lk

where

Ar = [minF1,maxF1]× [minF2,maxF2]× · · · × [minFk,maxFk]

where minFj = min{Fj(x) : x ∈ B̄p(r)} and maxFj = max{Fj(x) : x ∈ B̄p(r)}. When
the Fj are distance functions ρpj

we write,

SIFε(p, r, p1, . . . , pk) := SIFε(p, r, ρp1
, . . . , ρpk

).
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Proposition 3.46. Given an integral current space Mm = (X, d, T ) and Lipschitz func-
tions F1, F2, . . . , Fk : X → R, k ≤ m, with Lipschitz constant Lip(Fj) = λj, for all ε > 0
and almost every r > 0 we can bound the mass of a ball in M as follows:

(50) M(S(p, r)) ≥
k∏

j=1

λ−1
j ε−1SIFε(p, r, F1, . . . , Fk).

Thus for any p1, . . . , pk ∈ X, and almost every r > 0 we have

(51) M(S(p, r)) ≥ ε−1SIFε(p, r, p1 . . . , pk).

Proof. By Proposition 3.10 and Lemma 3.44 we have

M(S(p, r)) ≥
k∏

j=1

λ−1
j M(S(p, r) dF )

≥
k∏

j=1

λ−1
j

∫
t∈Rk

M(Slice(S(p, r), F, t))Lk

=
k∏

j=1

λ−1
j

∫
t∈A

M(Slice(S(p, r), F, t))Lk

≥
k∏

j=1

λ−1
j ε−1

∫
t∈A

FillVol(∂(Slice(S(p, r), F, t)× Iε))Lk. �

Corollary 3.47. A point p ∈ X̄ lies in X = set(T ) if there exists ε > 0 and points
p1, . . . , pk such that

ess lim inf
r→0

1

εrm
SIFε(p, r, p1, . . . , pk) > 0.

Corollary 3.48. A point p ∈ X̄ lies in X = set(T ) if there exists C > 0, and points
p1, . . . , pk such that

ess lim inf
r→0

1

Crm+1
SIFCr(p, r, p1, . . . , pk) > 0.

Corollary 3.49. Given an integral current space M , we have

M(M) ≥
k∏

j=1

λ−1
j ε−1

∫
t∈Rk

FillVol(∂(Slice(M,F, t)× Iε))Lk

§4. Convergence and continuity

In this section we examine the limits of points in sequences of integral current spaces
that converge in the intrinsic flat sense and prove various continuity theorems and close
with a pair of Bolzano–Weierstrass Theorems.

Recall that Theorem 2.41 (which was proved by the second author jointly with Wenger
in [34]) states that a sequence of integral current spaces that converges in the intrinsic

flat sense, Mi
F−→ M∞, can be embedded into a common complete metric space, Z, via

distance preserving maps, ϕi : Mi → Z, such that ϕi#Ti
F−→ ϕ∞#T∞. This allowed the

second author to define converging, Cauchy, and disappearing sequences of points in [31]:

Definition 4.1. If Mi = (Xi, di, Ti)
F−→ M∞ = (X∞, d∞, T∞), then we say xi ∈ Xi

constitute a converging sequence that converges to x∞ ∈ X∞ if there exists a complete

metric space Z and isometric embeddings ϕi : Mi → Z such that ϕi#Ti
F−→ ϕ∞#T∞
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and ϕi(xi) → ϕ∞(x∞). We say a collection of points, {p1,i, p2,i, . . . , pk,i}, converges to
a corresponding collection of points, {p1,∞, p2,∞, . . . , pk,∞}, if ϕi(pj,i) → ϕ∞(pj,∞) for
j = 1, 2 . . . k.

Unlike in Gromov–Hausdorff convergence, we have the possibility of disappearing se-
quences of points.

Definition 4.2. If Mi = (Xi, di, Ti)
F−→ M∞ = (X∞, d∞, T∞), then we say xi ∈ Xi are

Cauchy if there exists a complete metric space Z and isometric embeddings ϕi : Mi → Z

such that ϕi#Ti
F−→ ϕ∞#T∞ and ϕi(xi) → z∞ ∈ Z.

We say the sequence is disappearing if z∞ /∈ ϕ∞(X∞).

Examples with disappearing splines from [34] demonstrate that there exist Cauchy
sequences of points which disappear. In [31] the second author proved theorems demon-
strating when z∞ lies in the metric completion of the limit space, ϕ∞(X̄∞). This material
is reviewed in the first two subsections of this paper: including Theorems 4.3 and 4.6
and some related open questions.

Here we study when z∞ lies in the limit space itself:

z∞ ∈ X∞ = set(ϕ∞#(T∞)),

which happens if and only if

lim inf
r→0

M (ϕ∞#(T∞) B(z∞, r)) /rm > 0.

In [33] the second author and Wenger intuitively applied the idea that the filling
volumes are continuous to prove sequences of points in certain sequences of spaces do
not disappear. Here we will use sliced filling volumes and also provide the complete
details not provided in [33] to justify the convergence of filling volumes. We first prove
that slices of converging spaces converge in Proposition 4.13. We apply this proposition
to prove that the sliced filling volumes are continuous (Theorem 4.20). These results are
technically difficult and require a sequence of propositions and lemmas. Using similar
methods, we prove the continuity of the sliced interval filling volumes (Theorem 4.24)
and the interval filling volumes (Theorem 4.23).

In the penultimate subsection, we apply these continuity theorems to prove Theo-
rem 4.27 which describes when a Cauchy sequence of points converges. This theorem is
a crucial step in the proof of the Tetrahedral Compactness Theorem.

We close the section with two Bolzano–Weiestrass Theorems. Theorem 4.30 concerns
sequences of points pi ∈ Mi with lower bounds on the filling volumes of spheres around
them and produces a subsequence which converges to a point in the intrinsic flat limit of
the Mi. Theorem 4.31 assumes that the points have a lower bound on the sliced filling
volumes of balls about them and obtains a converging subsequence as well.

4.1. Review of limit points and diameter lower semicontinuity. Recall Defini-
tion 4.1. Recall the following theorems proved by the second author in [31]:

Theorem 4.3. If a sequence of integral current spaces, Mi = (Xi, di, Ti) ∈ Mm, con-
verges to an integral current space, M = (X, d, T ) ∈ Mm, in the intrinsic flat sense,
then every point z in the limit space M is the limit of points xi ∈ Mi. In fact there exists
a sequence of maps Fi : X → Xi such that xi = Fi(x) converges to x and

lim
i→∞

di(Fi(x), Fi(y)) = d(x, y).

This sequence of maps Fi is not uniquely determined and is not even unique up to
isometry.
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Definition 4.4. Like in any metric space, one can define the diameter of an integral
current space, M = (X, d, T ), to be

Diam(M) = sup
{
dX(x, y) : x, y ∈ X

}
∈ [0,∞].

However, we explicitly define the diameter of the 0 integral current space to be 0. A
space is bounded if the diameter is finite.

Theorem 4.5. Suppose Mi
F−→ M are integral current spaces, then

Diam(M) ≤ lim inf
i→∞

Diam(Mi) ∈ [0,∞].

4.2. Review of flat convergence to Gromov–Hausdorff convergence. Recall the
following theorem proved by the second author in [31].

Theorem 4.6. If a sequence of precompact integral current spaces, Mi = (Xi, di, Ti) ∈
Mm

0 , converges to a precompact integral current space, M = (X, d, T ) ∈ Mm
0 , in the in-

trinsic flat sense, then there exists Si ∈ Im(X̄i) such that the sequence Ni =
(
set(Si), di

)
converges to (X̄, d) in the Gromov–Hausdorff sense and

(52) lim inf
i→∞

M(Si) ≥ M(M).

When the Mi are Riemannian manifolds, the Ni can be taken to be settled completions
of open submanifolds of Mi.

Remark 4.7. If in addition it is assumed that limi→∞ M(Mi) = M(M), then by (52) we
haveM(set(Ti−Si), di, Ti−Si) = 0. In the Riemannian setting, we have Vol(Mi\Ni) → 0.

Remark 4.8. In Ilmanen’s example [34] of a sphere with increasingly many spikes, the
set(Si) are spheres with the spikes removed.

Remark 4.9. The precompactness of the limit integral current spaces is necessary in this
theorem because a noncompact limit space can never be the Gromov-Hausdorff limit of
precompact spaces.

Remark 4.10. Gromov’s Compactness Theorem combined with Theorem 4.6 implies that
any sequence of xi ∈ Ni ⊂ Mi has a subsequence converging to a point x in the metric
completion of M . Other sequences of points may not have converging subsequences, as
can be seen when the tips of thin spikes disappear. Below we will use filling volumes
to determine which sequences have converging subsequences using filling volumes (The-
orem 4.30). Another such Bolzano–Weierstrass Theorem with different hypothesis was
proved in [31].

Remark 4.11. It is not immediately clear whether the integral current spaces, Ni, con-
structed in the proof of Theorem 4.6 actually converge in the intrinsic flat sense to M .
One expects an extra assumption on total mass would be needed to interchange between
flat and weak convergence, but even so it is not completely clear. One would need to uni-
formly control the masses of ∂Ni using a common upper bound on M(N) which can be
done using theorems in Section 5 of [1], but is highly technical. It is worth investigating.

4.3. Limits of slices, spheres, and balls. In this section we prove the following two
theorems via a sequence of lemmas and propositions, which will be applied elsewhere in
this paper.

Recall that for any point p, for almost every radius r, the ball about p of radius r may
be viewed as an integral current space, S(p, r), as in Lemma 3.1. In prior work of the

second author [31] it was shown that if Mi
F−→ M∞ and pi → p∞, then for almost every

r ∈ R there is a subsequence such that

dF
(
S(pi, r), S(p∞, r)

)
→ 0 for almost every r ∈ R.
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Here we prove the following more precise estimate.

Theorem 4.12. Suppose we have a sequence of m dimensional integral current spaces,
Mi = (Xi, di, Ti) and M∞ = (X∞, d∞, T∞) and isometric embeddings ϕi : Xi → Z such
that

dZF
(
φi#Ti, φ∞#T∞

)
< dF (Mi,M∞) + εi

and points pi ∈ Mi such that

dZ
(
ϕi(pi), ϕ∞(p∞)

)
≤ δi.

Then, for almost every r ∈ R, the integral current spaces S(pi, r) satisfy

(53) dF
(
S(pi, r), S(p∞, r)

)
≤ εi(r) + dF (Mi,M∞) + εi + ‖T∞‖

(
ρ−1
x∞(r − δi, r + δi)

)
and ∫ ∞

−∞
εi(r) dr ≤ dF (Mi,M∞) + εi.

If dF (Mi,M∞) → 0 and pi → p∞, then there is a subsequence (that we do not relabel)
such that for almost every r ∈ R we have

lim
i→∞

dF
(
S(pi, r), S(p∞, r)

)
= 0.

In fact we will prove a more general statement in Proposition 4.16. Note that a
subsequence is required to obtain the final limit as can be seen in Example 2.45.

Recall that in Proposition 3.10 we defined the slices of an integral current space. In
this section we will also prove the following theorem concerning limits of slices.

Theorem 4.13. Suppose we have a sequence of m dimensional integral current spaces,
Mi = (Xi, di, Ti) and M∞ = (X∞, d∞, T∞) and isometric embeddings ϕi : Xi → Z such
that

dZF
(
φi#Ti, φ∞#T∞

)
< dF (Mi,M∞) + εi

and points pj,i ∈ Mi such that

dZ
(
ϕi(pj,i), ϕ∞(pj,∞)

)
≤ δi for j = 1, . . . , k ≤ m.

Then ∫
Rk

dF
(
Slice(Mi, ρpi,1

, . . . , ρpi,k
, r1, . . . , rk),

Slice(M∞, ρp∞,1
, . . . , ρp∞,k

, r1, . . . , rk)
)
dr1, . . . , drk

≤ dF (Mi,M∞) + εi + 2δi
(
M(T∞) +M(∂T∞)

)
.

(54)

If in addition Mi
F−→ M∞ and pi,j → p∞,j , then there is a subsequence (which we do not

relabel) such that for almost every r ∈ R
k we have

lim
i→∞

dF
(
Slice(Mi, ρpi,1

, . . . , ρpi,k
, r1, . . . , rk),

Slice(M∞, ρp∞,1
, . . . , ρp∞,k

, r1, . . . , rk)
)
= 0.

Before proving either of the key propositions leading to these theorems, we will prove
a proposition (Proposition 4.14) which captures the main idea leading to these results,
followed by a technical lemma (Lemma 4.15). Later we will prove Proposition 4.17 by
iterating the idea in this proposition.

Proposition 4.14. If an integral current space M = (X, d, T ) and Lipschitz functions
ρ : X → R and f : X → R are such that

(55) |f(x)− ρ(x)| < δ for all x ∈ X,
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then for almost every r ∈ R we have

dF (Slice(M,ρ, r), Slice(M, f, r))

≤ ‖T‖(ρ−1(r − δ, r + δ)) + ‖∂T‖(ρ−1(r − δ, r + δ)).
(56)

Proof. First observe that by the definition of intrinsic flat distance,

dF (Slice(M,p, r), Slice(M, f, r)) ≤ dX̄F
(
〈T, ρ, r〉, 〈T, f, r〉

)
≤ M(B) +M(A)

where

B = T ρ−1(−∞, r]− T f−1(−∞, r],

A = (∂T ) f−1(−∞, r]− (∂T ) ρ−1(−∞, r].

Next note that for any pair of sets U, V ⊂ X,

M(T U − T V ) = M(T (χU − χV )) = M(T (U \ V )) +M(T (V \ U))

and the same is true for ∂T . Since

ρ−1(−∞, r] \ f−1(−∞, r] ⊂ ρ−1(r − δ, r + δ)

and

f−1(−∞, r] \ ρ−1(−∞, r] ⊂ ρ−1(r − δ, r + δ),

we have

M(B) ≤ M(T (ρ−1(r − δ, r + δ))),

M(A) ≤ M(∂T (ρ−1(r − δ, r + δ))). �

The following technical lemma is used in the proof of Proposition 4.16 and again in
the proof of Proposition 4.17 below.

Lemma 4.15. Let μ be a finite Borel measure on R. Then for every δ > 0,

1

2δ

∫ ∞

−∞
μ(t− δ, t+ δ)dt = μ(R).

Moreover, the set of a ∈ R such that μ({a}) > 0 is at most countable.
In particular, given an integral current space, (X, d, T ), and any Borel function,

f : X → R, we have for all r ∈ R outside an at most countable set,

lim
δ→0

‖T‖
(
f−1(r − δ, r + δ)

)
= 0

and ∫
r∈R

‖T‖
(
f−1(r − δ, r + δ)

)
dr = 2δM(T ).

Proof. Identity (4.15) follows by changing the order of integration (or rather Tonelli’s
Theorem, which is an analog of Fubini’s Theorem for nonnegative functions, cf. [29,
Chapter 12, Theorem 20]) as follows∫ ∞

−∞
μ(t− δ, t+ δ)dt =

∫ ∞

−∞

(∫
R

χ(t−δ,t+δ) dμ

)
dt

=

∫
R2

χ{(x,y)∈R2 | −δ<y−x<δ} dL1 dμ

=

∫
R

2δ dμ = 2δμ(R).

That the set Aμ := {a ∈ R |μ({a}) > 0} for any finite Borel measure μ is at most
countable is a well-known fact. It follows because the number of b ∈ R such that μ({b}) >
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1/n is bounded by nμ(R), and therefore the set Aμ is at most countable, as it is a
countable union of at most finite sets.

To conclude the second half of the lemma, we simply apply the first part to μ = f#‖T‖.
Indeed, by the σ-additivity of the measure,

lim
δ→0

‖T‖(f−1(r − δ, r + δ)) = lim
δ→0

f#‖T‖(r − δ, r + δ) = f#‖T‖({r}),

which is strictly positive for at most countably many r ∈ R. �

Observe that Theorem 4.12 is an immediate consequence of the next proposition by
taking zi = ϕi(pi):

Proposition 4.16. Let a sequence of integral current spaces Mi = (Xi, di, Ti) and iso-
metric embeddings ϕi : Xi → Z satisfy

lim
i→∞

dZF
(
ϕi#Ti, ϕ∞#T∞

)
= 0,

and let zi ∈ Z be such that δi = dZ(zi, z∞). Then, for almost every r ∈ R, the balls
Si(r) = ϕi#Ti B(zi, r) satisfy

(57) dZF
(
Si(r), S∞(r)

)
≤ εi(r) + dZF

(
ϕi#Ti, ϕ∞#T∞

)
+ ‖ϕ∞#T∞‖

(
f−1(r − δi, r + δi)

)
where f(x) = ρz∞(ϕ∞(x)) and∫ ∞

−∞
εi(r) dr ≤ dZF

(
ϕi#Ti, ϕ∞#T∞

)
.

If δi → 0, then there is a subsequence (that we do not relabel) such that for almost every
r ∈ R we have

lim
i→∞

dZF
(
Si(r), S∞(r)

)
= 0.

Proof. There exist integral currents Ai, Bi in Z such that

ϕi#Ti − ϕ∞#T∞ = Ai + ∂Bi

and

dZF
(
ϕi#Ti, ϕ∞#T∞

)
= M(Ai) +M(Bi).

For almost every r, the restrictions of these spaces to balls, B(zi, r), are integral current
spaces such that

Si(r)− S∞(r) =
(
ϕi#Ti − ϕ∞#T∞

)
B̄(zi, r) + S′

i(r)

where

S′
i(r) = (ϕ∞#T∞) B̄(zi, r)− (ϕ∞#T∞) B̄(z∞, r).

Thus

Si(r)− S∞(r) = Ai B̄(zi, r) + (∂Bi) B̄(zi, r) + S′
i(r)

= Ai B̄(zi, r) + 〈Bi, ρi, r〉+ ∂(Bi B̄(zi, r)) + S′
i(r).

Since these are integral currents for almost every r, we have

dZF (Si(r), S∞(r)) ≤ M(Ai B̄(zi, r) + 〈Bi, ρi, r〉) +M(Bi B̄(zi, r)) +M(S′
i(r)).

By the Ambrosio–Kirchheim Slicing Theorem and Lip(ρi) ≤ 1 we have a Lebesgue mea-
surable function εi : R → [0,∞) such that

M(Ai B̄(zi, r) + 〈Bi, ρi, r〉) ≤ M(Ai) + εi(r),

where ∫ ∞

−∞
εi(r) dr ≤ M(Bi).
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Naturally

M(Bi B̄(zi, r)) ≤ M(Bi)

and

M(S′
i(r)) = M

(
(ϕ∞#T∞) B̄(zi, r)− (ϕ∞#T∞) B̄(z∞, r)

)
≤ ‖ϕ∞#T∞‖ρ−1

z∞(r − δi, r + δi).

Thus we have (57). The rest follows from Lemma 4.15 and the fact that for a subsequence
and almost every r we have limi→∞ εi(r) = 0. �

In the next proposition, we will iterate the proof of Proposition 4.14 to bound the
flat distance between lower-dimensional slices of two different currents with two different
Lipschitz functions.

Proposition 4.17. Let T1 and T2 be two m dimensional integral currents on a complete
metric space Z. Let k ∈ {1, . . . ,m} and let π : Z → R

k and π̃ : Z → R
k be two Lipschitz

functions such that

|πj(z)− π̃j(z)| < δ, z ∈ Z, j ∈ {1, . . . , k},
and such that

Lip(π) ≤ L and Lip(π̃) ≤ L.

Then ∫
Rk

dZF
(
〈T1, π, t〉, 〈T2, π̃, t〉

)
dt ≤ LkdZF (T1, T2) + 2kδLk−1

(
M(T2) +M(∂T2)

)
.

Note that this proposition implies Theorem 4.13 by taking T1 = ϕi#Ti and T2 =
ϕ∞#T∞, π = (ρz1,i , . . . , ρzk,i

) where zj,i = ϕi(pj,i) and π̃ = (ρz1,∞ , . . . , ρzk,∞) where
zj,∞ = ϕ∞(pj,∞). Then δ = δi and L = 1. It may also be applied to study Cauchy
sequences of points in a similar way. This proposition is applied later in the paper to
study sliced filling volumes.

Proof. First, we write

〈T1, π, t〉 − 〈T2, π̃, t〉 = 〈T1 − T2, π, t〉+ 〈T2, π, t〉 − 〈T2, π̃, t〉.
Let ε > 0 be arbitrary. There exist integral currents A ∈ Im(Z) and B ∈ Im+1(Z) such
that

T1 − T2 = A+ ∂B

and

M(A) +M(B) ≤ dZF (T1, T2) + ε.

Then

〈T1 − T2, π, t〉 = 〈A, π, t〉+ 〈∂B, π, t〉 = 〈A, π, t〉+ (−1)k∂〈B, π, t〉.
Note that by the Ambrosio–Kirchheim Slicing Theorem∫

Rk

M(〈A, π, t〉) dt ≤ LkM(A),∫
Rk

M(〈B, π, t〉) dt ≤ LkM(B).

We define the projections Pj : R
k → R

j and Qj : R
k → R

k−j by

Pj(x1, . . . , xj , xj+1, . . . , xk) := (x1, . . . , xj),

Qj(x1, . . . , xj , xj+1, . . . , xk) := (xj+1, . . . , xk)
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so that Pk and Q0 are identity maps. Using the following slight abuse of notation:

T = 〈T, P0 ◦ π̃, P0(t)〉,
T = 〈T,Qk ◦ π,Qk(t)〉

we have for Lk-a.e. t ∈ R
k,

〈T2, π, t〉 − 〈T2, π̃, t〉
=
〈
〈T2, P0 ◦ π̃, P0(t)〉, Q0 ◦ π,Q0(t)

〉
−
〈
〈T2, Pk ◦ π̃, Pk(t)〉, Qk ◦ π,Qk(t)

〉
=

k−1∑
j=0

[〈
〈T2, Pj◦π̃, Pj(t)〉, Qj◦π,Qj(t)

〉
−
〈
〈T2, Pj+1◦π̃, Pj+1(t)〉, Qj+1◦π,Qj+1(t)

〉]
.

We calculate each term in the sum using the iterated definition of a slice:

〈T2, (π̃1, . . . , π̃j , πj+1, . . . , πk), (t1, . . . , tk)〉
− 〈T2, (π̃1, . . . , π̃j+1, πj+2, . . . , πk), (t1, . . . , tk)〉

=
〈〈
〈T2, Pj ◦ π̃, Pj(t)〉, πj+1, tj+1

〉
, Qj+1 ◦ π,Qj+1(t)

〉
−
〈〈
〈T2, Pj ◦ π̃, Pj(t)〉, π̃j+1, tj+1

〉
, Qj+1 ◦ π,Qj+1(t)

〉
=
〈
∂〈T2, Pj ◦ π̃, Pj(t)〉�π−1

j+1(tj+1,∞), Qj+1 ◦ π,Qj+1(t)
〉

−
〈
∂
(
〈T2, Pj ◦ π̃, Pj(t)〉�π−1

j+1(tj+1,∞)
)
, Qj+1 ◦ π,Qj+1(t)

〉
−
〈
∂〈T2, Pj ◦ π̃, Pj(t)〉�π̃−1

j+1(tj+1,∞), Qj+1 ◦ π,Qj+1(t)
〉

+
〈
∂
(
〈T2, Pj ◦ π̃, Pj(t)〉�π̃−1

j+1(tj+1,∞)
)
, Qj+1 ◦ π,Qj+1(t)

〉
=
〈
∂〈T2, Pj ◦ π̃, Pj(t)〉�π−1

j+1(tj+1,∞), Qj+1 ◦ π,Qj+1(t)
〉

− (−1)k−j∂
〈
〈T2, Pj ◦ π̃, Pj(t)〉�π−1

j+1(tj+1,∞), Qj+1 ◦ π,Qj+1(t)
〉

−
〈
∂〈T2, Pj ◦ π̃, Pj(t)〉�π̃−1

j+1(tj+1,∞), Qj+1 ◦ π,Qj+1(t)
〉

+ (−1)k−j∂
〈
〈T2, Pj ◦ π̃, Pj(t)〉�π̃−1

j+1(tj+1,∞), Qj+1 ◦ π,Qj+1(t)
〉

= Aj(t) + ∂Bj(t),

where

Aj(t) :=
〈
∂〈T2, Pj ◦ π̃, Pj(t)〉�κj, Qj+1 ◦ π,Qj+1(t)

〉
,

Bj(t) := (−1)k−j
〈
〈T2, Pj ◦ π̃, Pj(t)〉�κj, Qj+1 ◦ π,Qj+1(t)

〉
.

Here, κj = χUj
− χ

˜Uj
is the difference of characteristic functions of the following sets,

Uj = π−1
j+1(tj+1,∞) and Ũj = π̃−1

j+1(tj+1,∞).

It follows that

〈T2, π, t〉 − 〈T2, π̃, t〉 =
k−1∑
j=0

(Aj(t) + ∂Bj(t)).

Since κj is supported on

π−1
j+1

[
tj+1 − δ, tj+1 + δ

]
,
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Lemma 4.15 implies that∫
Rm

M(Aj(t)) dt ≤ Lk−j−1

∫
Rm

M(∂〈T1, Pj ◦ π̃, Pj(t)〉�κj) dt1 . . . dtj+1

≤ 2δLk−j−1

∫
Rm

M
(
∂〈T1, Pj ◦ π̃, Pj(t)〉

)
dt1 . . . dtj

≤ 2δLk−1M(∂T1).

In the same way,∫
Rm

M
(〈
〈T1, Pj ◦ π̃, Pj(t)〉�κj, Qj+1 ◦ π,Qj+1(t)

〉)
dt1 . . . dtk

≤ Lk−j−1

∫
Rm

M
(
〈T1, Pj ◦ π̃, Pj(t)〉�κj

)
dt1 . . . dtj+1

≤ 2δLk−j−1

∫
Rm

M
(
〈T1, Pj ◦ π̃, Pj(t)〉

)
dt1 . . . dtj

≤ 2δLk−1M(T1).

We conclude by applying the triangle inequality and by taking the limit as ε ↓ 0. �

Remark 4.18. One might be able to strengthen the results in this section if one assumes
that the sequence of integral current spaces is a sequence of Riemannian manifolds with
boundary. Or one may wish to try to produce an example of a sequence of manifolds
which have the same sorts of disturbing properties as Examples 2.35 and 2.45 at least in
a limiting sense.

4.4. Continuity of sliced filling volumes. In this section we prove continuity and
semicontinuity of the various Sliced Filling Volumes [Theorem 4.20]. Recall that Theo-
rem 2.48 implies the continuity of filling volume in the following sense:

Mi
F−→ M∞ =⇒ FillVol(∂Mi) → FillVol(∂M∞)

where the filling volume is defined as in Definition 2.46. In this section we combine
Theorem 2.48 with the convergence of slices proved in Proposition 4.13. An immediate
consequence of these results is that the filling volumes of slices converge. In particular
the filling volumes of spheres converge to the filling volumes of spheres, as stated in the
prior work of the second author with Wenger [34].

The situation is more complicated when one considers sliced filling volumes.

Example 4.19. Recall the integral current spaces M and M� defined in Example 2.45.
One may observe that there exists a sequence p� ∈ M� converging to p such that for
L-a.e. r ∈ (0, 1/4),

lim inf
�→∞

SF0(p�, r) = 0 < 2r = SF0(p, r) < 4r = lim sup
�→∞

SF0(p�, r).

In fact these inequalities are true for all sequences p� that converge to p at a sufficiently
high rate.

Nevertheless we are able to prove the following continuity theorem.

Theorem 4.20. Let Mi = (Xi, di, Ti) be a sequence of m dimensional integral cur-

rent spaces such that Mi
F−→ M∞ = (X∞, d∞, T∞) and let the collections of points

pi, pi,1, . . . , pi,k converge to p∞, p∞,1, . . . , p∞,k as i → ∞ for k ∈ {1, . . . ,m − 1}. Then
there exists a subsequence, which we do not relabel, such that for L1-a.e. r > 0,

(58) lim
i→∞

SF(pi, r, pi,1, . . . , pi,k) = SF(p∞, r, p∞,1, . . . , p∞,k).
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In the k = 0 case we have for every r > 0,

(59) lim
i→∞

1

r

∫ r

0

|SF0(pi, τ )− SF0(p∞, τ )| dτ = 0.

Consequently, there is a subsequence ij , such that for L1-a.e. r > 0,

lim
j→∞

SF0(pij , r) = SF0(p∞, r) ≤ M(S(p∞, r)).

For k ∈ {0, . . . ,m− 1}, we also obtain the following inequality for L1-a.e. r > 0,

lim inf
i→∞

SFk(pi, r) ≤ M(S(p∞, r)).

Finally, for every r > 0, we have

lim sup
i→∞

1

r

∫ r

0

SFk(pi, τ ) dτ ≤ 1

r

∫ r

0

M(S(p∞, τ )) dτ.

Before we prove Theorem 4.20, we state and prove two key ingredients toward the
proof (Proposition 4.21 and Lemma 4.22).

Proposition 4.21. Suppose we have a sequence of m dimensional integral current spaces
Mi = (Xi, di, Ti), isometric embeddings φi : Xi → Z, points zj,i ∈ Z, and δi > 0 such
that dZ(zj,i, zj,∞) < δi for j = 1, . . . , k for some k ∈ {0, . . . ,m − 1}, and pi ∈ Xi such
that dZ(ϕi(pi), ϕ(p)) < δi; then for almost every t ∈ R

k we have∣∣FillVol (∂ Slice(Mi, ρi, t)
)
− FillVol

(
∂ Slice(M∞, ρ∞, t)

)∣∣
≤ dF

(
∂ Slice(Mi, ρi, t), ∂ Slice(M∞, ρ∞, t)

)(60)

and thus ∫
Rk

∣∣FillVol (∂ Slice(Mi, ρi, t)
)
− FillVol

(
∂ Slice(M∞, ρ, t)

)∣∣ dt
≤
∫
Rk

dF
(
∂ Slice(Mi, f, t), ∂ Slice(M∞, ρ, t)

)
dt

≤ dZF (φi#Mi, φ∞#M∞) + 2δ(M(T∞) +M(∂T∞)).

(61)

If limi→∞ δi = 0 and

lim
i→∞

dZF (ϕi#Ti, ϕ∞#T∞) = 0,

then for almost every t ∈ R
k the masses satisfy

lim inf
i→∞

M(Slice(Mi, ρi, t)) ≥ M(Slice(M∞, ρ∞, t)).

Finally, there is a subsequence such that (without relabeling) for almost every t ∈ R
k,

(62) lim
i→∞

dF
(
∂ Slice(Mi, ρi, t), ∂ Slice(M∞, ρ∞, t)

)
= 0.

Proof. That one can estimate the difference in Filling Volume of the boundaries of two
currents in terms of the flat distance between them as in (60) was explained in Theo-
rem 2.48. Inequality (61) is then a direct consequence of inequality (54) in Lemma 4.13.
We select a subsequence of Mij of Mi such that

lim
j→∞

M(Slice(Mij , ρij , t)) = lim inf
i→∞

M(Slice(Mi, ρi, t)).

The integral bound (54) implies that for a subsequence of the Mij (that we do not

relabel), for almost every t ∈ R
k equation (62) holds true. Since flat convergence implies

weak convergence and the mass is lower-semicontinuous under weak convergence,

lim inf
i→∞

M(Slice(Mi, ρi, t)) = lim inf
j→∞

M(Slice(Mij , ρij , t)) ≥ M(Slice(M∞, ρ∞, t)). �
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Lemma 4.22. Let M = (X, d, T ) be an m dimensional integral current space, and let
π : X → R

k be a Lipschitz function with Lip(πj) ≤ 1. Then

(63)

∫
Rk

FillVol(∂ Slice(M,π, t)) dt ≤ FillVol(∂M).

In particular,

(64) SFk(p, r) ≤ SF0(p, r) ≤ M(S(p, r)).

Proof. Let ε > 0. There is a m dimensional integral current space A such that ∂A = ∂M
and

FillVol(∂M) + ε ≥ M(A).

By the Ambrosio–Kirchheim slicing theorem,

FillVol(∂M) + ε ≥ M(A) ≥
∫
Rk

M(Slice(A, π, t)) dt

≥
∫
Rk

FillVol(∂ Slice(A, π, t)) dt

=

∫
Rk

FillVol(Slice(∂A, π, t)) dt

=

∫
Rk

FillVol(Slice(∂M, π, t)) dt

=

∫
Rk

FillVol(∂ Slice(M,π, t)) dt.

Since ε > 0 is arbitrary, estimate (63) holds true.
Taking M = S(p, r), we have by Definition 3.20,

SF(p, r, F1, . . . , Fk) =

∫
t∈Ar

FillVol(∂ Slice(S(p, r), F, t))Lk

≤
∫
t∈Ar

FillVol(∂S(p, r))Lk = SF0(p, r).

Taking Fi = ρqi , we have

SF(p, r, q1, . . . , qk) ≤ SF0(p, r)

and taking the supremum over qi ∈ ∂Bp(r) we obtain (64). �

We may now prove Theorem 4.20.

Proof. By the definition of convergence of points, there exists a complete separable metric
space Z and isometric embeddings φi : Xi → Z such that

dZF (φi#Ti, φ∞#T∞) = 0,

and δi := dZ(φi(pi), φ∞(p∞)) → 0, δi,j := dZ(φi(pi,j , φ∞(p∞,j)) → 0 as i → ∞, j =
1, . . . , k.

By Proposition 4.16 there exists a subsequence such that for L1-a.e. r > 0,

dZF
(
φi#Ti�Br(φi(pi)), φ∞#T∞�Br(φ∞(p∞))

)
→ 0

as i → ∞.
Hence, for such a value of r > 0 we can apply Proposition (4.21) to the integral current

spaces associated with φi#Ti�Br(pi). In particular, inequality (61) yields the continuity
property expressed by (58).
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Similarly, if Mi
F−→ M and the points pi ∈ Mi converge to p∞, there is a complete

separable metric space Z and isometric embeddings φi : Xi → Z such that

lim
i→∞

dZF (φi#Ti, φ∞#T∞) = 0,

and δi := dZ(φi(pi), φ∞(p∞)) → 0 in Z as i → ∞.
By using respectively Theorem 2.48, Proposition 4.16, and Lemma 4.15, we find

1

r

∫ r

0

∣∣SF0(pi, τ )− SF0(p∞, τ )
∣∣ dτ ≤ 1

r

∫ r

0

dF (∂S(pi, r), ∂S(p∞, r)) dτ

≤
(
1

r
+ 1

)
dZF (φi#Ti, φ∞#T∞) +

1

r

∫ r

0

‖T∞‖
(
ρ−1
p∞(τ − δi, τ + δi)

)
dτ

≤
(
1

r
+ 1

)
dZF (φi#Ti, φ∞#T∞) +

2

r
δi M(T∞).

When we take the limit as i → ∞, we obtain (59).
By Lemma 4.22, for L1-a.e. r > 0, we have

lim inf
i→∞

SFk(pi, r) ≤ lim
j→∞

SF0(pij , r) = SF0(p∞, r) ≤ M(S(p∞, r)).

Thus for every r > 0, we have

lim sup
i→∞

1

r

∫ r

0

SFk(pi, τ ) dτ ≤ lim sup
i→∞

1

r

∫ r

0

SF0(pi, τ ) dτ

=
1

r

∫ r

0

SF0(p∞, τ ) dτ

≤ 1

r

∫ r

0

M
(
S(p∞, τ )

)
dτ. �

4.5. Continuity of interval filling volumes. Recall the definition of the interval
filling volume of a manifold or integral current space in Definition 3.43,

IFVε(M) = FillVol(∂(M × Iε)) ≤ εM(M).

This notion was particularly useful for M without boundary. In this section we prove
that the interval filling volume is continuous with respect to intrinsic flat convergence
(Theorem 4.23). Taking more precise estimates, we prove that the sliced interval filling
volumes are continuous as well (Theorem 4.24).

Theorem 4.23. Suppose we have m dimensional integral current spaces Mi = (Xi, di, Ti)

such that Mi
F−→ M∞, then for any fixed ε > 0 their interval filling volumes converge,

lim
i→∞

IFVε(Mi) = IFVε(M∞).

Proof. By Proposition 3.9, we see that Mi × Iε
F−→ M∞ × Iε. Thus we have continuity

applying Theorem 2.48. �
We now prove the continuity of the sliced interval filling volume defined in Defini-

tion 3.45.

Theorem 4.24. Suppose Mi
F−→ M . If pi ∈ Mi converge to p∞ ∈ M∞, and qj,i ∈ M∞

converge to qj,∞ ∈ M∞ for j = 1, . . . , k, then for any fixed ε > 0 there is a subsequence
such that for almost every r ∈ R we have

(65) lim
i→∞

SIFε(pi, r, q1,i, . . . , qk,i) = SIFε(p∞, r, q1,∞, . . . , qk,∞).

Proof. This theorem is a consequence of Proposition 4.25 stated and proved immediately
below, combined with Proposition 4.16 and Definition 3.45. �
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Proposition 4.25. Suppose we have a sequence of m dimensional integral current spaces
Mi = (Xi, di, Ti) and isometric embeddings ϕi : Xi → Z, constants δi > 0, and points
zj,i ∈ Z such that dZ(zj,i, zj,∞) < δi for j = 1, . . . , k for some k ∈ {0, . . . ,m − 1}, and
pi ∈ Xi such that dZ(ϕi(pi), ϕ(p)) < δ; then for any fixed ε > 0 and almost every t ∈ R

k

we have ∣∣IFVε(Slice(Mi, ρi, t))− IFVε(Slice(M∞, ρ∞, t))
∣∣

≤ (2 + ε) dF
(
Slice(Mi, ρi, t), Slice(M∞, ρ∞, t)

)
.

(66)

In particular, ∫ ∣∣IFVε(Slice(Mi, ρi, t))− IFVε(Slice(M∞, ρ∞, t))
∣∣ dt

≤ (2 + ε) dF (Mi,M∞) + 2δi(M(T∞) +M(∂T∞)).
(67)

If limi→∞ δi = 0 and

lim
i→∞

dZF (ϕi#Ti, ϕ∞#T∞) = 0,

there is a subsequence such that for almost every t ∈ R
k, the interval filling volumes of

slices converge,

(68) lim
i→∞

IFVε(Slice(Mi, ρi, t)) = IFVε(Slice(M∞, ρ∞, t)).

Proof. Since

IFVε(Slice(Mi, ρi, t)) = FillVol(∂(Slice(Mi, ρi, t)× Iε)),

Theorem 2.48 and Proposition 3.9 imply that inequality (66) holds true for almost every
t ∈ R

k. Estimate (67) on the integrated quantity then follows from Proposition 4.13. �

4.6. Limits of points. In this section we prove two statements about Cauchy and
converging sequences of points. Recall also Definition 4.1 and Definition 4.2. In [33], the
second author and Stefan Wenger proved that certain points in Gromov–Hausdorff limits
of sequences are also in the intrinsic flat limit by bounding Gromov’s filling volumes of
spheres about points converging to these points. In [31] the second author removed the
assumption of a Gromov–Hausdorff limit, and studied whether or not Cauchy sequences
of points converge to points in the metric completion of the intrinsic flat limit. The
technique there involved uniformly bounding the intrinsic flat distance of spheres away
from 0 and is not sufficiently precise to distinguish between points in the intrinsic flat
limit and its metric completion.

Here we use sliced filling volumes and filling volumes to determine when there is a
limit point in the intrinsic flat limit space and not merely in its metric completion. We
prove Theorem 4.27 which assumes one has a Cauchy sequence and determines when the
Cauchy sequence has a limit point in the limit space, not merely in the metric completion
of the limit space. Before we state and prove this theorem, we discuss the difficulties
arising in identifying points in the limit space.

Recall that, given an integral current space (X, d, T ), any isometric embedding ϕ : X →
Z with Z complete mapsX isometrically onto set(ϕ#T ) and extends to ϕ : X̄ → Z, which
maps X isometrically onto

set(ϕ#T ) =

{
z ∈ Z : lim inf

r→0

‖ϕ#T‖(B(z, r)))

rm
> 0

}
.

In Lemma 4.22 we proved that

SFk(p, r) ≤ SF0(p, r) = FillVol(∂S(p, r)) ≤ M(S(p, r)).

In the work of the second author with Wenger, continuity of the filling volume was applied
to prove that for certain sequences of spaces a point in the Gromov–Hausdorff limit lies
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in the intrinsic flat limit. In general it may be tricky to use the filling volume in this
way.

Remark 4.26. Let M = (X, d, T ) be the m dimensional integral current space of Ex-
ample 2.35. It has a point p ∈ X which is the center of the concentric spheres. This
p ∈ X = set(T ) because M(B(p, r)) ≤ Crm. However SF0(p, r) = 0 for L-a.e. small
r > 0. This shows that although SFk(p, r) for k = 0, . . . ,m− 1 provide lower bounds for
M(S(p, r)), in general these lower bounds could be far from sharp and thus not be able
to identify when a point lies in X.

The next theorem concerns Cauchy sequences of points in the sense of Definition 4.2.

Theorem 4.27. Suppose Mi are integral current spaces of dimension m with Mi con-
verging to M∞ in the intrinsic flat sense. Let k ∈ {0, 1, 2, . . . ,m − 1}. Suppose that
pi ∈ Mi are Cauchy. If there is a function c : R+ → R+ such that

(69)
1

r

∫ r

0

SFk(pi, r) dτ ≥ c(r),

then the pi converge to a point p∞ ∈ M̄∞. If in addition

(70) lim inf
r↓0

c(r)

rm
> 0,

then the pi converge to a point p∞ ∈ M∞.

Proof. By Lemma 4.22, it suffices to prove the case of k = 0. If Mi
F−→ M and the

points pi ∈ Mi are Cauchy, there is a complete separable metric space Z and isometric
embeddings φi : Xi → Z such that

lim
i→∞

dZF
(
φi#Ti, φ∞#T∞

)
= 0,

and there exists a z∞ ∈ Z such that δi := dZ(φi(pi), z∞) → 0 in Z as i → ∞.
Again, by using Theorem 2.48, Proposition 4.16, and Lemma 4.15, we find

M
(
φ∞#T∞�Br(z∞)

)
≥ 1

r

∫ r

0

M
(
φ∞#T∞�Bτ (z∞)

)
dτ

≥ 1

r

∫ r

0

FillVol∞
(
∂(φ∞#T∞�Bτ (z∞))

)
dτ

≥ c(r)−
(
1

r
+ 1

)
dZF (φi#Ti, φ∞#T∞)− 1

r

∫ r

0

‖T‖∞
(
ρ−1
p∞(τ − δi, τ + δi)

)
dτ

≥ c(r)−
(
1

r
+ 1

)
dZF (φi#Ti, φ∞#T∞)− 2δi

r
M(T∞).

We take the limit as i → ∞ and conclude that

M(φ∞#T∞�Br(z∞)) ≥ c(r).

Therefore, M∞ is not the 0 space, and z∞ ∈ set(φ∞#T∞). Moreover, if inequal-

ity (365) is satisfied, z∞ ∈ set(φ∞#T∞). �

Example 4.28. It is quite possible for a Cauchy sequence of points to have more than
one limit as can be seen simply by taking the constant sequence of integral current
spaces, S1, and noting that due to the isometries, any point may be set up as the limit
of a Cauchy sequence of points. One may also use isometries of S1 to relocate a Cauchy
sequence so that the images are no longer Cauchy in Z. This is also true of converging
sequences in the theory of Gromov–Hausdorff convergence.
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Remark 4.29. Note that in order to apply the first part of Theorem 4.27, it is sufficient
to find a function c(r) : R+ → R+ and a constant r0 > 0 such that (69) is satisfied for
0 < r < r0. In particular, (69) holds true if SFk(pi, r) > c̃(r) for L-a.e. 0 < r < r0.
Finally, (65) holds true if there exists a constant C such that SFk(pi, r) ≥ Crm for
0 < r < r0.

4.7. Bolzano–Weierstrass theorems. When one has a sequence of compact metric
spaces converging in the Gromov–Hausdorff sense to a compact metric space, and one has
a sequence of points in those metric spaces, then a subsequence converges to a point in the
Gromov–Hausdorff limit. This is the Gromov–Hausdorff Bolzano–Weierstrass Theorem
and is an immediate consequence of Gromov’s Embedding Theorem which provides a
common metric space which is compact. The immediate restatement of the Gromov–
Hausdorff Bolzano–Weierstrass Theorem is not true when the spaces converge in the
intrinsic flat sense instead of the Gromov–Hausdorff sense. This can be seen in Ilmanen’s
Example with disappearing tips. The key difficulty lies in the fact that, unlike Gromov’s
Embedding Theorem, Theorem 2.41 does not provide a compact common metric space.

Nevertheless we are able to prove the following two Bolzano–Weierstrass Theorems
by assuming the limit space is compact and preventing the points in the sequence from
disappearing. These theorems require bounding the Gromov Filling Volumes and Sliced
Filling Volumes of spheres. A simpler Bolzano–Weierstrass Theorem was proved by the
second author in [31]. It requires uniformly bounding the intrinsic flat distance of spheres
away from 0 but only produces a subsequence that converges in the metric completion
of the intrinsic flat limit space.

Theorem 4.30. Suppose Mm
i = (Xi, di, Ti) are m-dimensional integral current spaces

converging in the intrinsic flat sense to a limit integral current spaceMm
∞=(X∞, d∞, T∞).

Suppose there exists a sequence pi ∈ Mi and a function c : R+ → R+ such that

1

r

∫ r

0

FillVol(∂S(pi, τ )) dτ ≥ c(r) > 0.

Then there exists a subsequence pij that converges to p∞ ∈ M̄m
∞. In particular, Mm

∞ is
nonzero.

If in addition

(71) lim inf
r↓0

c(r)

rm
> 0,

then the subsequence converges to a point p∞ ∈ Mm
∞.

Proof. By Theorem 2.41 there is a complete metric space Z and isometric embeddings
φi : Xi → Z such that dZF (φi#Ti, φ∞#T∞) → 0. Set zi := φi(pi).

Note that by Proposition 4.16∫ r0

0

dZF
(
φi#Ti�Br(zi), φ∞#T∞�Br(zi)

)
dr ≤ 2dF (Mi,M∞).

Hence, by Theorem 2.48 and our hypothesis,

M
(
φ∞#T∞�Br(zi)

)
≥ lim inf

i→∞

1

r

∫ r

0

M
(
φ∞#T∞�Bτ (zi)

)
dτ

≥ lim inf
i→∞

1

r

∫ r

0

FillVol∞
(
∂(φ∞#T∞�Bτ (zi))

)
dτ

≥ c(r).

(72)

In particular, M∞ is not the 0 space.
We claim that the zi have a Cauchy subsequence.
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We argue by contradiction. If not, the metric space ({zi}, dZ) is complete, and there-
fore not totally bounded, so that there is a δ > 0 such that for a subsequence (without
relabeling) dZ(zi, zj) > 4δ for i �= j. As the balls Bδ(zi) are mutually disjoint, this would
mean that

lim
i→∞

M
(
φ∞#T∞�Bδ(zi)

)
= 0,

which contradicts (72).
Consequently, the zi have a Cauchy subsequence. We could conclude now by applying

Theorem 4.27, or by mimicking its proof. With the established notation, however, we
can easily finish the proof in an alternative fashion.

Since Z is complete, this subsequence, also denoted zi, converges to a limit z∞ ∈ Z.
Since for every τ < r, for i large we have Bτ (zi) ⊂ Br(z∞) by (72), it follows that

M
(
φ∞#T∞�Br(z∞)

)
≥ lim sup

i→∞
M
(
φ∞#T∞�Bτ (zi)

)
≥ c(τ )

for every τ < r. Consequently, z∞ ∈ set(φ∞#T∞), and if inequality (71) holds true, even
z∞ ∈ set(φ∞#T∞). �

This theorem is a special case of the following more general Bolzano–Weierstrass
Theorem. The generalization follows from the special case and Lemma 4.22.

Theorem 4.31. Suppose Mm
i = (Xi, di, Ti) are m dimensional integral current spaces

converging in the intrinsic flat sense to a limit integral current spaceMm
∞=(X∞, d∞, T∞).

Suppose there exists k ∈ {0, 1, . . . , (m− 1)}, r0 > 0, a sequence pi ∈ Mi, and a function
c : R+ → R+ such that

(73)
1

r

∫ r

0

SFk(pi, τ ) dτ ≥ c(r) > 0.

Then there exists a subsequence pij that converges to p∞ ∈ M̄m
∞. In particular, Mm

∞ is
nonzero.

If in addition

(74) lim inf
r↓0

c(r)

rm
> 0,

then in fact p∞ ∈ Mm
∞.

§5. Compactness theorems

In this section we complete the proofs of our main two compactness theorems: Theo-
rem 5.2 and Theorem 5.1. These theorems were announced by the second author in [30].
Both of these theorems prove that certain sequences of spaces have subsequences that
converge in both the intrinsic flat and the Gromov–Hausdorff sense to the same space.
Theorem 5.2 is the Tetrahedral Compactness Theorem concerning sequences of Riemann-
ian manifolds satisfying the tetrahedral property. It was partially stated in the introduc-
tion. It is a consequence of Theorem 5.1, which applies to integral current spaces that
have uniform lower bounds on the sliced filling volumes of the form SFk(p, r) ≥ CSF r

m.
In prior work of the second author with Wenger [33], another pair of compactness

theorems was proved providing subsequences of manifolds that converge both in the
intrinsic flat and Gromov Hausdorff sense to the same limit. One theorem concerned
noncollapsing sequences of Riemannian manifolds with nonnegative Ricci curvature (ex-
tending Gromov’s Ricci Compactness Theorem [10]). The other concerned sequences
of Riemannian manifolds with a uniform linear contractibility function and a uniform
upper bound on volume (extending Greene–Petersen’s Compactness Theorem [8]). The
techniques used in the proof of the Contractibility Function Compactness Theorem in
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[33] involve the continuity of the filling volumes of balls. Here we use the continuity of
sliced filling volumes in a similar way.

The proofs of the theorems in this section are very short because they build upon
the prior theorems proved in the previous sections of this paper. Those theorems have
applications in other situations and so it was important to prove them separately rather
than hiding those results within the proofs of these theorems.

5.1. Sliced filling compactness theorem.

Theorem 5.1. Suppose we have a sequence of m dimensional integral current spaces
Mi = (Xi, di, Ti) with M(Mi) ≤ V0, M(∂Mi) ≤ A0, Diam(Mi) ≤ D0 and a uniform
constant CSF > 0 such that

SFk(p, r) ≥ CSF r
m

for some k ∈ 0, . . . , (m − 1). Then a subsequence of the Mi converges in the Gromov–
Hausdorff sense and the Intrinsic Flat sense to a nonzero integral current space M∞.

Proof. By Theorem 3.23, we know a subsequence (Xi, di) has a Gromov–Hausdorff limit
(Y, dY ). Thus by Gromov, there exists a common compact metric space Z and isometric
embeddings ϕi : Xi → Z, ϕ : Y → Z such that dZH(ϕ(Xi), ϕ(Y )) → 0. By the Ambrosio–
Kirchheim Compactness Theorem, a subsequence of ϕ1#Ti converges to T∞ ∈ Im(Z).
Let M∞ = (set(T∞), dZ , T∞).

We need only show that ϕ(Y ) = set(T∞). Let z∞ ∈ Y , and let pi ∈ Xi be such that
zi = ϕi(pi) → z. By Theorem 4.27, we see that z∞ = ϕ(p∞). �

5.2. Tetrahedral compactness theorem.

Theorem 5.2. Given r0 > 0, β ∈ (0, 1), C > 0, V0 > 0, A0 > 0, if a sequence
of compact Riemannian manifolds, Mm, has Vol(Mm) ≤ V0, Diam(Mm) ≤ D0 and
the C, β (integral) tetrahedral property for all balls of radius ≤ r0, then a subsequence
converges in the Gromov–Hausdorff and Intrinsic Flat sense to a nonzero integral current
space.

Here our manifolds do not have boundary.

Proof. The C, β (integral) tetrahedral property implies that there exists CSF > 0 such
that

SFm−1(p, r) ≥ CSF r
m.

Theorem 3.41 implies there exists a uniform upper bound on diameter. So we apply
Theorem 5.1. �

Remark 5.3. As a consequence of this theorem, we see that there is no uniform tetrahedral
property on manifolds with positive scalar curvature even when the volumes of the balls
are uniformly bounded below by those of Euclidean balls. In fact there exists a sequence
of such manifolds M3

j whose intrinsic flat limit is 0, described in [33].

§6. Appendix.

Gluing integral current spaces

Here we define how to glue two integral current spaces along an isometric boundary
to produce a new integral current space. This is applied to prove Theorem 2.48. It
is straightforward but included because it has some technical difficulties that must be
handled.
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Theorem 6.1. Given two integral current spaces, Mi = (Xi, di, Ti), with Si, S
′
i ∈

Im−1(X̄i) such that

∂Ti = Si + S′
i with spt(Si) ⊂ spt(∂Ti)

and a current reversing distance preserving bijection

F : spt(S1) → spt(S2) such that F#S1 = −S2,

we define the glued integral current space

M = M1 �F M2 = (X, d, T )

such that there are distance preserving maps

(75) fi : X̄i → Y

where Y is the glued metric space:

Y = X̄1 � (X̄2 \ spt(S2))

such that
f2 ◦ F = f1 when restricted to spt(S1),

and such that

(76) T = f1#T1 + f2#T2 and X = setT ⊂ Y.

Since fi are distance preserving,

M(M) ≤ M(M1) +M(M2).

Note that it is possible that the glued integral current space, X, is a proper subset of
the glued metric space, Y . In fact the glued integral current space could be the 0 space
(see Example 6.3).

Before we prove this theorem, we apply it to prove the following useful corollary
which glues integral current spaces together in order to provide an estimate on the filling
volume. This corollary is applied to prove Theorem 2.48. See Definition 2.46 for the
definition of filling volume being applied here.

Corollary 6.2. Suppose we are given two integral current spaces Mi = (Xi, di, Ti) with
Si, S

′
i ∈ Im−1(X̄i) such that

∂Ti = Si + S′
i,

and a current reversing distance preserving map

F : spt(S1) → spt(S2) such that F#S1 = −S2.

If S′
2 = 0, then

FillVol(N) ≤ M(M1) +M(M2),

where N = (set(S′
1), d1, S

′
1).

Proof. By Theorem 6.1 we have

∂T = f1#∂T1 + f2#∂T2

= f1#S1 + f1#S
′
1 + f2#S2 + f2#S

′
2

= f2#F#S1 + f2#S2 + f1#S
′
1 + f2#S

′
2

= f1#S
′
1 + f2#S

′
2.

Thus if S′
2 = 0, then ∂T = f1#S

′
1 and so by (75) we have a current preserving isometry

f1 : N = (set(S′
1), d1, S

′
1) → ∂M = (set(∂T ), d, ∂T ).

Thus
FillVol(N) = FillVol(∂M) ≤ M(T ) ≤ M(M1) +M(M2). �
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We now prove Theorem 6.1:

Proof. First we prove the glued metric space, Y , is well defined. This is included for
completeness of exposition and because there are different methods used for gluing metric
spaces.

Let d : Y × Y → [0,∞) be symmetric and such that

d(x, y) =

⎧⎪⎨
⎪⎩
d1(x, y), x, y ∈ X̄1,

d2(x, y), x, y ∈ X̄2 \ spt(S2),

inf{d1(x,w) + d2(F (w), y) : w ∈ spt(S1)}, x∈X̄1, y∈X̄2 \ spt(S2).

Observe that d(x, y) ≥ 0.
Observe that d(x, y) = 0 implies that x = y if both x, y ∈ X̄1 or both x, y ∈ X̄2\spt(S2)

since d1 and d2 are metrics. The third case, where x ∈ X̄1 and y ∈ X̄2 \ spt(S2) cannot
produce d(x, y) = 0. If it did occur then we would have wj ∈ spt(S1) such that

0 = d(x, y) = lim
j→∞

d1(x,wj) + d2(F (wj), y)

so

lim
j→∞

d2(F (wj), y) = 0

and y is in the closure of the image of F , which means y ∈ spt(S2) which is a contradiction.
To see the triangle inequality observe that if xi ∈ X̄1 and yi ∈ X̄2 \ spt(S2), then

d(x1, x3) + d(x3, x2) = d1(x1, x3) + d1(x3, x2) ≥ d1(x1, x2) = d(x1, x2),

d(x1, y3) + d(y3, x2)

= inf{d1(x1, w) + d2(F (w), y3) + d1(x2, w
′) + d2(F (w′), y3) : w,w′ ∈ spt(S1)}

≥ inf{d1(x1, w) + d2(F (w), F (w′)) + d1(x2, w
′) : w,w′ ∈ spt(S1)}

= inf{d1(x1, w) + d1(w,w
′) + d1(x2, w

′) : w,w′ ∈ spt(S1)}
≥ d1(x1, x2) = d(x1, x2),

d(y1, y3) + d(y3, y2) = d2(y1, y3) + d2(y3, y2) ≥ d2(y1, y2) = d(y1, y2),

d(y1, x3) + d(x3, y2)

= inf{d1(x3, w) + d2(F (w), y1) + d1(x3, w
′) + d2(F (w′), y2) : w,w′ ∈ spt(S1)}

≥ inf{d1(w′, w) + d2(F (w), y1) + d2(F (w′), y2) : w,w′ ∈ spt(S1)}
= inf{d2(F (w′), F (w)) + d2(F (w), y1) + d2(F (w′), y2) : w,w′ ∈ spt(S1)}
≥ d2(y1, y2) = d(y1, y2),

d(x1, x3) + d(x3, y2) = inf{d1(x1, x3) + d1(x3, w) + d2(F (w), y2) : w ∈ spt(S1)}
≥ inf{d1(x1, w) + d2(F (w), y2) : w ∈ spt(S1)} = d(x1, y2),

d(x1, y3) + d(y3, y2) = inf{d1(x1, w) + d2(F (w), y3) + d2(y3, y2) : w ∈ spt(S1)}
≥ inf{d1(x1, w) + d2(F (w), y2) : w ∈ spt(S1)} = d(x1, y2).

Thus d is a metric on X̄.
By the definition of d, immediately we have natural identification maps

f1 : X̄1 → X̄ such that f1(x) = x,

f2 : X̄2 \ spt(S2) → X such that f2(x) = x,

which are immediately distance preserving. We define

f2 : spt(S2) → Y such that f2(y) = f1(F
−1(y)).
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Then for y1, y2 ∈ spt(S2) and y3 ∈ X̄2 \ spt(S2) we have

d(f2(y1), f2(y2)) = d
(
f1(F

−1(y1)), f1(F
−1(y2))

)
= d1

(
F−1(y1), F

−1(y2)
)
= d2(y1, y2),

d(f2(y1), f2(y3)) = d
(
f1(F

−1(y1)), f2(y3)
)

= inf
{
d1
(
F−1(y1), w) + d2(F (w), f2(y3)

)
: w ∈ spt(S1)

}
= inf {d2(y1, F (w)) + d2(F (w), f2(y3)) : w ∈ spt(S1)}
= d2(y1, y3).

Thus f2 : X̄2 → Y is also distance preserving.
Since the fi are distance preserving, they are Lipschitz, and so fi#Ti is well defined

and M(fi#Ti) = M(Ti). Defining M = (X, d, T ) as in (76), we have

M(M) = M(T ) ≤ M(f1#T1) +M(f2#T2) = M(T1) +M(T2). �

Example 6.3. Let M1 = (X1, d1, T1) where T1 is a two dimensional integral current
in X1 ⊂ [0, 1]2, endowed with the standard Euclidean metric d1(x, y) = |x − y|. Let
M2 = (X2, d2, T2) where T2 = −T1 and d2 = d1, so X1 = X2. Then one can glue M1 to
M2 along their boundary.

Suppose that ∂T1 is dense in X1 so that set(T ) ⊂ spt(∂T ). If we glue M1 to M2

along their boundary, they are completely glued together with opposite orientation and
we obtain the 0 space. More precisely, we have

Y = spt(T ) = spt(∂T ) = X̄1

and fi : [0, 1] → [0, 1] are identity maps. So

f1#T1 = f2#T1 = f2#(−T2) = −f2#T2.

Thus T = f1#T1 + f2#T2 = 0.
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