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SIGNAL RECOVERY VIA TV-TYPE ENERGIES
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Dedicated to the memory of Stefan Hildebrandt

Abstract. One-dimensional variants are considered of the classical first order total
variation denoising model introduced by Rudin, Osher, and Fatemi. This study is
based on previous work of the authors on various denoising and inpainting problems

in image analysis, where variational methods in arbitrary dimensions were applied.
More than being just a special case, the one-dimensional setting makes it possible
to study regularity properties of minimizers by more subtle methods that do not
have correspondences in higher dimensions. In particular, quite strong regularity
results are obtained for a class of data functions that contains many of the standard
examples from signal processing such as rectangle or triangle signals as a special
case. The analysis of the related Euler–Lagrange equation, which turns out to be a
second order two-point boundary value problem with Neumann conditions, by ODE
methods completes the picture of this investigation.

§1. Introduction

Since the publication of the seminal paper [1] of Rudin, Osher, and Fatemi in 1992,
total variation based denoising and inpainting methods have proved to be very effective
when dealing with two- or higher-dimensional noisy data such as digital images, which
nowadays has become their main field of application. However, their one-dimensional
counterparts in signal processing seem to find usage as well, mainly in connection with
the recovery of piecewise constant data as it is frequently encountered in many practical
sciences such as geophysics or biophysics (cf. [2] and the Introduction in [3]), whereas
in, e.g., [4], TV-models were applied to the filtering of gravitational wave signals. Apart
from the variety of possible applications, our interest in the one-dimensional case primar-
ily stems from our previous work on TV-based variational problems in image analysis.
In [5–11], variants of the classical TV-functional have been studied in any dimension
replacing the regularization term by a convex functional of linear growth, which approx-
imates the TV-seminorm and in addition has suitable ellipticity properties that make
the considered models more reachable to analytical techniques. When trying to improve
our results in the one-dimensional setting, we found ourselves surprised that, first, this
is not a consequence of completely elementary arguments, and second, there are certain
features of the corresponding solutions that do not seem to have analogs in arbitrary
dimensions. In this context, we would also like to mention the papers [12, 13] and [14]
where similar considerations were applied to study the classical TV-model as well as its
generalizations towards functionals that involve higher derivatives in one dimension.

We proceed with a precise formulation of our setting and results. Let f ∈ L∞(0, 1) be
a given function, which represents an observed signal (possibly corrupted by an additive
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Gaussian noise). We shall always assume that 0 ≤ f ≤ 1 a.e. on (0, 1). For a given
density function F : R → [0,∞) of linear growth, we consider the following minimization
problem:

(1.1) J [u] :=

∫ 1

0

F (u̇) dt+
λ

2

∫ 1

0

(u− f)2 dt → min .

Here,
∫
dt is Lebesgue’s integral in one dimension, u̇ := d

dtu denotes the (weak) derivative
of a function u : (0, 1) → R, and λ > 0 is a regularization parameter, which controls the
balance between the smoothing and the data-fitting effect resulting from the minimization
of the first and the second integral, respectively. We impose the following mild conditions
on our energy density F :

F ∈ C2(R), F (−p) = F (p), F (0) = 0,(F1)

|F ′(p)| ≤ ν1,(F2)

F (p) ≥ ν2|p| − ν3, and(F3)

F ′′(p) > 0(F4)

for all p ∈ R and for some constants ν1, ν2 > 0, ν3 ∈ R. Note that from (F1) and (F2)
it follows F (p) ≤ ν1|p| for all p ∈ R. Moreover it should be obvious that the condition
F (0) = 0 is imposed only for notational simplicity. Examples of a reasonable choice

of F are given by the regularized TV-density, Fε(p) :=
√
ε2 + p2 − ε for some ε > 0

or F (p) := Φμ(|p|), where Φμ denotes the standard example of the so-called μ-elliptic
density, i.e., for a given ellipticity parameter μ > 1 we consider

Φμ(r) :=

∫ r

0

∫ s

0

(1 + t)−μ dt ds, r ≥ 0,

and observe the formulas

(1.2)

{
Φμ(r) =

1
μ−1r +

1
μ−1

1
μ−2 (r + 1)−μ+2 − 1

μ−1
1

μ−2 , μ �= 2,

Φ2(r) = r − ln(1 + r), r ≥ 0.

It is easily confirmed that F (p) := Φμ(|p|), p ∈ R, satisfies the condition of μ-ellipticity

(F5) F ′′(p) ≥ c1
(1 + |p|)μ

for a constant c1 > 0 as well as (F1)-(F4). We remark that we have

lim
μ→∞

(μ− 1)Φμ(|p|) = |p|,

which underlines that Φμ(|p|) is a good candidate for approximating the TV-density (see,
e.g., [5–7] or [11]). Next, we introduce the positive number

(1.3) λ∞ = λ∞(F ) := lim
p→∞

F ′(p).

This value will turn out to be a sort of a natural threshold in the investigation of the
regularity properties for minimizers of problem (1.1).

Example 1.1. For Fε it is immediate that λ∞(Fε) = 1 independently of ε, whereas for
F = Φμ we have

λ∞(Φμ) =
1

μ− 1
.

Before giving a résumé of our results concerning problem (1.1), we have to add some
comments on functions and related spaces. For a general overview on one-dimensional
variational problems and a synopsis of the related function spaces, we refer to [15]. For
1 ≤ p ≤ ∞ and m ∈ N, we denote by Wm,p

(loc)(0, 1) the standard Sobolev space on the
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interval (0, 1) of (locally) m-times weakly in Lp(0, 1) differentiable functions equipped
with the norm ‖ · ‖m,p. For a more detailed analysis of these spaces we refer to classical
textbooks on this subject such as, e.g., [16]. We shall frequently make use of the identi-
fication Wm,∞(0, 1) = Cm−1,1

(
[0, 1]

)
, where for 0 < α ≤ 1, Cm,α(0, 1) as usual denotes

the space of m-times differentiable functions with locally Hölder continuous derivatives
on (0, 1), and Cm,α

(
[0, 1]

)
has an obvious meaning. In the case where α = 1 and m = 0,

C0,1
(
[0, 1]

)
= W 1,∞(0, 1) =: Lip(0, 1) is the space of Lipschitz-continuous functions,

where our notion makes implicit use of the fact that these functions possess a Lipschitz
continuous extension to the boundary. We further would like to remark that some au-
thors prefer to write AC(0, 1) in place of W 1,1(0, 1), referring to the more classical notion
of “absolutely continuous” functions forming a proper subspace of C0

(
[0, 1]

)
, see, e.g.,

[15, Chapter 2]. Finally, BV (0, 1) denotes the space of functions of bounded variation on
(0, 1), i.e., the set of all functions u ∈ L1(0, 1) whose distributional derivative Du can be

represented by a signed Radon measure of finite total mass
∫ 1

0
|Du|. For more information

concerning these spaces the reader is referred to the monographs [17] and [18].
Due to [18, Theorem 3.28, p. 136] (see also [15, Section 2.3, p. 90]), there is always

a “good” representative of a BV -function u that is continuous up to a countable set of
jump points {xk} ⊂ (0, 1), k ∈ N, i.e., in particular, the left and the right limit exist at
all points. In what follows, we shall tacitly identify any BV -function with this particular
representative. We note that the classical derivative of this good representative, which
we denote by u̇, exists at almost all points (see [18, Theorem 3.28, p. 136] once again).
The measure Du can then be decomposed into the following sum

(1.4) Du =

=:Dau︷︸︸︷
u̇L1 +

=:Dsu︷ ︸︸ ︷∑
k∈N

h(xk)δxk
+Dcu,

and we have (compare [18, Corollary 3.33])

|Du|(0, 1) =
∫ 1

0

|u̇| dt+
∑
k∈N

|h(xk)|+ |Dcu|(0, 1).

Here, h(xk) := limx↓xk
u(x)− limx↑xk

u(x) denotes the “jump-height” and δxk
is Dirac’s

measure at xk. The sum
∑

k∈N
h(xk)δxk

is named the jump part Dju of Du, which,
together with the so-called Cantor part Dcu forms the singular part Dsu. Furthermore,
u̇L1 is the absolutely continuous part Dau with respect to the measure L1, andDau+Dsu
is the Lebesgue decomposition of Du.

Coming back to the subject of our investigation, we put problem (1.1) in a more
precise form, i.e., we consider the minimization problem

(1.5) J [w] :=

∫ 1

0

F (ẇ) dt+
λ

2

∫ 1

0

(w − f)2 dt → min in W 1,1(0, 1)

for a density F satisfying (F1)–(F4), in particular F is of linear growth. Hence, the
Sobolev space W 1,1(0, 1) is the natural domain of J . However, due to the nonreflexivity
of this space, in general we cannot expect to find a solution. Following ideas in [5],
we therefore pass to a relaxed version K of the above functional, which is defined for
w ∈ BV (0, 1) and takes a particularly simple form in our one-dimensional setting; this
means that we replace (1.5) by the problem

(1.6) K[w] :=

∫ 1

0

F (ẇ) dt+ λ∞|Dsw|(0, 1) + λ

2

∫ 1

0

(w − f)2 dt → min in BV (0, 1).
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We would like to note that the above formula coincides with the usual notion of relaxation
in BV (cf. [18, Theorem 5.47, p. 304]), because under the assumptions imposed on F the
recession function F∞(p) := limt→∞ F (tp)/t simplifies to F∞(p) = λ∞|p|.

From the point of view of regularity, BV -minimizers (i.e., solutions of problem (1.6))
are not very popular. However, it turns out that if we (strongly) restrict the size of the
free parameter λ, it is possible to establish the existence of a unique J-minimizer u in the
space W 1,1(0, 1). Part a) of the following theorem is concerned with this issue, whereas
in part b) we show that the minimizer of the relaxed version (1.6) in the space BV (0, 1)
is exactly the solution u from part a). Part c) is devoted to the regularity behavior of
the J-minimizer u. Here we can prove optimal regularity, which in this context means
that u is of class C1,1 on the interval [0, 1]. Furthermore, it turns out that u solves
a Neumann-type two-point boundary value problem. Precisely, we have the following
statements.

Theorem 1.1 (full regularity for small values of λ). Suppose that 0 ≤ f ≤ 1 a.e. on [0, 1]
and that the density F satisfies (F1)–(F4). Next, assume that the parameter λ satisfies

(1.7) λ < λ∞(F )

with λ∞(F ) defined as in (1.3). Then:

a) Problem (1.5) admits a unique solution u ∈ W 1,1(0, 1) = AC(0, 1) and this
solution satisfies 0 ≤ u(x) ≤ 1 for all x ∈ [0, 1].

b) The relaxation “K → min in BV (0, 1)” has only one solution, which coincides
with u from part a).

c) The minimizer u belongs to the class W 2,∞(0, 1) = C1,1
(
[0, 1]

)
and solves the

following Neumann-type boundary value problem:

(BVP)

⎧⎨⎩ü = λ
u− f

F ′′(u̇)
a.e. on (0, 1),

u̇(0) = u̇(1) = 0.

Remark 1.1. The bound (1.7) on the parameter λ occurs for technical reasons, because it
allows us to prove a general statement on the solvability of problem (1.5). In practice, this
threshold strongly depends on the data function f as well and, as numerical experiments
suggest, often exceeds λ∞. In Theorems 1.3 and 1.6 we shall determine better estimates
for λ under which we can expect the solvability of (1.5), whereas Theorem 1.4 proves
that the statement of Theorem 1.1 is indeed only true for a restricted range of λ.

Next we drop the bound (1.7) and pass to the relaxed variational problem (1.6).

Theorem 1.2 (partial regularity for arbitrary values of λ). Suppose that 0 ≤ f ≤ 1 a.e.
on [0, 1], and let the density F satisfy (F1)–(F4) as well as the additional requirement

F ′′(p) ≤ c2
1

1 + |p|(F6)

for all p ∈ R, where c2 > 0 is a constant. Moreover, let λ > 0 denote any number. Then:

a) Problem (1.6) admits a unique solution u ∈ BV (0, 1) satisfying 0 ≤ u ≤ 1 a.e.

b) There is an open subset Reg(u) of (0, 1) such that u ∈ W 2,∞
loc (Reg(u)) and

L1
(
(0, 1)− Reg(u)

)
= 0.

We can choose

Reg(u) :=
{
s ∈ (0, 1) : s is a Lebesgue point of u̇

}
,

where u̇ is defined in (1.4). Moreover, there are numbers 0 < t1 ≤ t2 < 1 such
that u ∈ C1,1

(
[0, t1] ∪ [t2, 1]

)
.
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c) If there is a subinterval (a, b) ⊂ (0, 1) such that f ∈ W 1,2
loc (a, b), then u ∈

W 1,1(a, b) ∩ W 1,2
loc (a, b). In case (a, b) = (0, 1), the solution u ∈ W 1,1(0, 1) ∩

W 1,2
loc (0, 1) is J-minimizing in W 1,1(0, 1).

Remark 1.2.

(i) Note that we need (F6) only for proving part c). Parts a) and b) remain valid
without (F6).

(ii) The requirement (F6) is not as restrictive as it may appear at first sight. In
particular, it is easy to confirm that for given ε > 0 and μ > 1 our examples from
the Introduction, F (p) := Fε(p) and F (p) := Φμ(|p|), satisfy condition (F6).

Since signals in practice are usually modeled by more regular functions rather than
merely through measurable ones (we have, e.g., rectangular- or “sawtooth”-like signals in
mind, which are differentiable outside a small exceptional set), it is reasonable to ask to
what extend these properties are reproduced by the K-minimizer u. The next theorem
shows how the results of Theorem 1.2 can be improved if we assume better data.

Theorem 1.3 (regularity for special data). Suppose that the density F satisfies (F1)–
(F4), assume 0 ≤ f ≤ 1 a.e. on [0, 1], and let u be the K-minimizer from Theorem 1.2.

a) Let t0 ∈ (0, 1) be a point where some representative of the data function f is con-
tinuous. Then the good representative of u introduced before (1.4) is continuous
at t0.

b) Assume that there is an interval [a, b] ⊂ (0, 1) such that f ∈ Lip(a, b) = W 1,∞(a, b).
Then u ∈ C2(a, b).

c) Suppose f ∈ W 1,1(0, 1) and define

ω∞ := lim
p→∞

pF ′(p)− F (p) ∈ (0,∞].(1.8)

Then, if λ
(
1
2 + ‖ḟ‖1

)
< ω∞, it follows that u ∈ C1,1

(
[0, 1]

)
.

Corollary 1.1. If the data function f is globally Lipschitz-continuous on [0, 1], then
u ∈ C2

(
[0, 1]

)
.

Proof of Corollary 1.1. Applying Theorem 1.3 b) with a and b arbitrarily close to 0
and 1, respectively, yields u ∈ C2(0, 1). In particular, it is therefore immediate that u
satisfies the differential equation from Theorem 1.1 c)

ü = λ
u− f

F ′′(u̇)
(1.9)

everywhere on (0, 1). Due to Theorem 1.2 b) we have u ∈ C1
(
[0, t1]∪[t2, 1]

)
and therefore

u̇ is uniformly continuous on [0, 1], which means that the right-hand side of equation (1.9)
belongs to the space C0

(
[0, 1]

)
. Thus ü exists even at 0 and 1 and is a continuous function

on [0, 1]. �
Remark 1.3.

(i) From part a) we infer that if f is continuous on an interval (a, b) ⊂ [0, 1], then
also u ∈ C0(a, b).

(ii) We would like to remark that part b) in particular applies to piecewise affine
data functions such as triangular or rectangular signals as shown in Figure 1.

We then obtain the differentiability of the corresponding K-minimizers outside
the set of jump points of the data. In particular, if the data are Lipschitz except
for a countable set of jump-type discontinuities, then K attains its minimum in
the space SBV (0, 1) of special functions of bounded variation (see [18, Chapter 4]
for a definition).
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Figure 1. Examples of typical data functions.

(iii) The main feature of part c) of Theorem 1.3 is that, even though full C1,1-
regularity may fail to occur in general if the parameter λ exceeds λ∞, it can
still occur up to 2λ∞ provided the oscillation of the data f is sufficiently small.
If we take for example the regularized graph-length integrand as our density F ,

i.e., F (p) := Fε(p) =
√
ε2 + p2 − ε, then it is easily verified that

ω∞(Fε) = ε.

Consequently, we get full C1,1-regularity for all parameters λ up to the bound

ε
1
2 + ‖ḟ‖1

,

which might be larger than λ∞(Fε) = 1 provided we choose ε sufficiently large.
If we take F (p) = Φμ(|p|), then λ∞ = 1

μ−1 , whereas

lim
p→∞

pΦ′
μ(p)− Φμ(p) =

{
1

μ−1
1

μ−2 , μ > 2,

∞, 1 < μ ≤ 2,

so that in particular ω∞ is unbounded if we let μ approach 2 from above.

Next we would like to demonstrate the sharpness of our previous regularity results,
in particular we want to indicate that singular (i.e., discontinuous) minimizers can occur
if we pass from Lipschitz signals f studied in Theorem 1.3 (cf. also Corollary 1.1) to
functions f having jumps at some interior points of the interval [0, 1]. To be precise, we
let for μ > 1

(1.10) F (p) = Φμ(|p|), p ∈ R,

with Φμ as defined in (1.2) and recall that for this density we have (compare Example 1.1)

(1.11) λ∞ =
1

μ− 1
.

Moreover, we define

(1.12) f : [0, 1] → [0, 1], f(t) =

{
0, 0 ≤ t ≤ 1

2 ,

1, 1
2 < t ≤ 1.

Theorem 1.4 (existence of discontinuous minimizers). Under the assumptions (1.10)
and (1.12) and with parameters λ > 0, μ > 1, let u ∈ BV (0, 1) denote the unique
solution of problem (1.6) (being of class C2

(
[0, 1]−{ 1

2}
)
by Theorem 1.3 and an obvious

modification of the proof of Corollary 1.1). Then, assuming that μ > 2 and that λ satisfies

(1.13) λ >
8

μ− 2
,

we have

sup
0≤t<1/2

u <
1

2
< inf

1/2<t≤1
u,

which means that u has a jump discontinuity at t = 1/2.
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Remark 1.4. From our previous works [5, 6] and [10] we see that for μ ∈ (1, 2) and any
λ > 0 this phenomenon cannot occur, i.e., the minimizer u is a regular function. Thus,
the value μ = 2 separates regular and irregular behavior of the solutions.

Remark 1.5. Assume that λ > 0 is fixed. Then from (1.13) it follows that we can force
the minimizer u to create a jump point at t = 1

2 by choosing μ sufficiently large.

Remark 1.6. By Theorem 1.1, the solution is regular provided that

λ < λ∞
(1.11)
=

1

μ− 1
.

On the other hand, inequality (1.13) states that

λ >
8

μ− 2
= 8

(
1

μ− 1
+

1

(μ− 1)(μ− 2)

)
= 8(λ∞ + ω∞),

which suggests that our solution is irregular whenever λ and μ are chosen in such a way
that λ > 8(λ∞ + ω∞) (see Corollary 1.2 below).

With respect to Theorem 1.4 and Remark 1.4, it remains to discuss the situation for
the limit case of μ = 2, which can be done in a very general form: it turns out that
our arguments are valid for all μ-elliptic densities F with exponent μ ∈ (1, 2] and for
arbitrary measurable data f leading to C1,1-regularity of minimizers. It should be noted
that, in particular, this implies the smoothness of minimizers in case 1 < μ < 2 without
referring to the higher-dimensional results. Precisely, we have the next claim.

Theorem 1.5 (regularity for μ-elliptic densities for 1 < μ ≤ 2). Suppose 0 ≤ f ≤ 1
a.e. on [0, 1] and consider a density F with (F1)–(F5). Moreover, fix any number λ > 0.
Then, if

(1.14) μ ∈ (1, 2],

then a unique solution u ∈ BV (0, 1) of problem (1.6) is of class C1,1
(
[0, 1]

)
.

From the proofs of Theorem 1.4 and Theorem 1.5 we obtain the following slightly
more general result on regular or irregular behavior of minimizers avoiding the notion of
μ-ellipticity (F5).

Corollary 1.2. Let F satisfy (F1)–(F4) and define ω∞ as in (1.8).

a) In case ω∞ = ∞, any solution u ∈ BV (0, 1) is of class C1,1
(
[0, 1]

)
independently

of the value of λ and for arbitrary data f ∈ L∞(0, 1), 0 ≤ f ≤ 1 a.e.
b) If ω∞ < ∞ and if (F6) is true, then there is a critical value λcrit of the parameter

λ such that the solution u of (1.6) with f defined as in (1.12) is discontinuous
(exactly at t = 1

2 ) provided we choose λ > λcrit. Moreover,

(1.15) max{λ∞, 8ω∞} ≤ λcrit ≤ 8(λ∞ + ω∞).

Remark 1.7. Comparing part b) of the above corollary and parts a), c) of Theorem 1.3,
we would like to emphasize that the occurence of discontinuous minimizers requires
discontinuous data.

By part c) of Theorem 1.1, the minimization problem (1.1) leads to the second-order
Neumann problem (BVP). Conversely, we could take this equation as our starting point
and examine the existence and regularity of solutions purely by methods from the theory
of ordinary differential equations. In the papers [19] and [20], Thompson worked out
an extensive theory for a large class of two-point boundary value problems with both
continuous and measurable right-hand sides, which we could apply to our situation with
the following result.



664 M. FUCHS, J. MÜLLER, AND C. TIETZ

Table 1. Overview of the various regularity statements.

Data f Density F Bound on λ Regularity of u Reference

L∞(0, 1) (F1)–(F4) 0 < λ < λ∞ C1,1([0, 1]) Theorem 1.1 a)

L∞(0, 1) (F1)–(F4) λ > 0 W 2,∞
loc (Reg(u)) Theorem 1.2 b)

W 1,2
loc (a, b)

(F1)–(F4),
(F6)

λ > 0
W 1,1(a, b)∩
W 1,2

loc (a, b)
Theorem 1.2 c)

continuous at t0 (F1)–(F4) λ > 0 continuous at t0 Theorem 1.3 a)

W 1,1(0, 1) (F1)–(F4) λ( 12+‖ḟ‖1)<ω∞ C1,1
(
[0, 1]

)
Theorem 1.3 c)

L∞(0, 1)
(F1)–(F5)
μ ∈ (1, 2]

λ > 0 C1,1
(
[0, 1]

)
Theorem 1.5

L∞(0, 1)
(F1)–(F4)
ω∞ = ∞ λ > 0 C1,1

(
[0, 1]

)
Corollary 1.2 a)

L∞(0, 1) (F1)–(F5) 0 < λ < λμ W 2,1(0, 1) Theorem 1.6

Theorem 1.6 (regularity for μ-elliptic densities and μ > 1 arbitrary). Suppose 0 ≤
f(t) ≤ 1 a.e. on [0, 1], and let F satisfy (F1)–(F3) as well as (F5). If the parameter λ
satisfies

0 < λ < sup
L>1

c1

∫ L

1

s ds

(1 + s)μ
=: λμ,

where c1 is as in (F5), then there exists v ∈ W 2,1(0, 1) satisfying 0 ≤ v(t) ≤ 1 for all
t ∈ [0, 1] and solving the Neumann problem (BVP) a.e. on [0, 1]. Furthermore, this
solution coincides with the unique K-minimizer u from the space BV (0, 1).

Remark 1.8. (i) The reader familiar with the theory of lower and upper solutions
will recognise the above bound λμ as a sort of “Nagumo-condition” (see, e.g., [21]),
which guarantees a priori bounds on the first derivative of the solution v.

(ii) If f is continuous, the differential equation implies v ∈ C2
(
[0, 1]

)
.

(iii) Using the example F (p) = Φμ(|p|), we would like to demonstrate how λμ might
actually improve the bound for λ stated in (1.7) of Theorem 1.1: obviously, the
integral defining λμ diverges for 1 < μ ≤ 2 and is unbounded if μ approaches
2 from above. In combination with part (ii) of this remark, we consequently
get full C2

(
[0, 1]

)
-regularity for arbitrarily large values of the parameter λ and

continuous data f if we let μ ↓ 2.

Since it is somewhat difficult to track the various regularity statements from Theo-
rem 1.1 up to Theorem 1.6, we have summarized our main results in the form of a table.
It shows the regularity of the K-minimizer u depending on the data f , the density F ,
and the bound on the parameter λ.

Our paper is organized as follows. In §2 we prove Theorem 1.1 and thus, the solvability
of problem (1.5) and the regularity of the unique W 1,1-minimizer under a rather strong
bound on the parameter λ > 0. §3 is devoted to the study of the relaxed problem (1.6),
where the parameter λ > 0 may be chosen arbitrarily large. The subsequent section deals
with a refinement of our regularity result for certain classes of “well-behaved” data. §5 is
devoted to the construction of the counterexample from Theorem 1.4. Subsequently, we
give the proof of Theorem 1.5, where μ-elliptic densities are considered for μ ∈ (1, 2],
and then take a closer look at the Neumann-type boundary value problem (BVP) from
Theorem 1.6 in §7. Finally, we compare our results with a numerically computed example.
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§2. Proof of Theorem 1.1

Proof of part a). Let us assume the validity of the hypotheses of Theorem 1.1. First,
we note that problem (1.5) has at most one solution thanks to the strict convexity of

the data fitting quantity
∫ 1

0
(w − f)2 dt with respect to w. Next, we show that there

exists at least one solution. For this, we approximate our original variational problem
by a sequence of more regular problems admitting smooth solutions with appropriate
convergence properties. This technique is well known from [5–7] or [11]. To become
more precise, for fixed δ ∈ (0, 1] we consider the problem

(2.1) Jδ[w] :=

∫ 1

0

Fδ(ẇ) dt+
λ

2

∫ 1

0

(w − f)2 dt → min in W 1,2(0, 1),

where

(2.2) Fδ(p) :=
δ

2
|p|2 + F (p), p ∈ R.

In the following lemma we state that (2.1) is uniquely solvable in W 1,2(0, 1) and in
addition we summarize some useful properties of the only Jδ-minimizer uδ. In fact, these
results are well known and have been proved in a much more general setting (see, e.g.,
[5] and [6, 7]). �

Lemma 2.1. Problem (2.1) admits a unique solution uδ ∈ W 1,2(0, 1), for which we have:

a) 0 ≤ uδ ≤ 1 on [0, 1],

b) uδ ∈ W 2,2
loc (0, 1) (not necessarily uniformly in δ),

c) sup0<δ≤1 ‖uδ‖W 1,1(0,1) < ∞,

d) sup0<δ≤1 δ
∫ 1

0
|u̇δ|2 dt < ∞.

Proof of Lemma 2.1. By the direct method, it is immediate that problem (2.1) has a
unique solution uδ ∈ W 1,2(0, 1). Since 0 ≤ f ≤ 1 a.e. on Ω, a truncation argument
as was already carried out in [5], proof of Theorem 1.8 a), (we refer the reader to [22]
as well) shows that 0 ≤ uδ ≤ 1 on Ω, and this proves part a). For part b) we use the
well-known difference quotient technique. Observing that we have the uniform estimate
Jδ[uδ] ≤ J [0] we directly obtain parts c) and d) if we use the definition of Jδ and recall
the linear growth of F . �

Remark 2.1. Note that the results of Lemma 2.1 do not depend on the size of the
parameter λ > 0.

Remark 2.2. In our particular one-dimensional case we emphasize once again that, using
Sobolev’s embedding W 2,2

loc (0, 1) ↪→ C1(0, 1) (see [16]), we conclude that u̇δ(t) exists for
all t ∈ (0, 1) and is continuous.

Before starting the proof of Theorem 1.1, we recall that from the assumptions (F1)–
(F4) imposed on the density F and the definition of λ∞ (compare (1.3)), it follows that

(2.3) Im(F ′) = (−λ∞, λ∞).

Next, we fix λ ∈ (0, λ∞) and observe the validity of the following lemma, which is of
elementary nature but will be important during the further proof.

Lemma 2.2. The inverse function of F ′
δ : R → R is uniformly (in δ) bounded on the set

[−λ, λ].

Proof of Lemma 2.2. We observe that F ′ is an odd and strictly monotone increasing
function (compare (F4)) inducing a diffeomorphism between R and the open interval
(−λ∞, λ∞). Let us write (F ′)−1

(
[−λ, λ]

)
= [−α, α], where F ′(α) = λ. Next we choose



666 M. FUCHS, J. MÜLLER, AND C. TIETZ

t ∈ [−λ, λ] and assume that (F ′
δ)

−1(t) > α. Then, since F ′
δ is strictly monotone increas-

ing, we have
t > F ′

δ(α) = δα+ F ′(α) = δα+ λ > λ,

which is a contradiction. The case where (F ′
δ)

−1(t) < −α is treated in the same manner.
Thus, the lemma is proved. �

After these preparations, we proceed with the proof of Theorem 1.1 a). First, we
introduce the continuous functions

(2.4) σδ := F ′
δ(u̇δ).

We wish to note (see, e.g., [11]) that σδ is the (unique) solution of the variational problem
dual to (2.1) (we will come back to this later in the proof of Theorem 1.3 c)). Using (F2)
together with Lemma 2.1 d), we obtain

(2.5) σδ ∈ L2(0, 1) uniformly in δ.

Next, we observe that uδ solves the Euler equation

(2.6) 0 =

∫ 1

0

F ′
δ(u̇δ)ϕ̇ dt+ λ

∫ 1

0

(uδ − f)ϕdt

for all ϕ ∈ W 1,2(0, 1). Note that, by (2.4), this equation states that σδ is weakly differ-
entiable with

(2.7) σ̇δ = λ(uδ − f) a.e. on (0, 1).

Combining Lemma 2.1 a) with (2.5) and (2.7), we see (recall our assumption 0 ≤ f ≤ 1
a.e. on (0, 1)) that

(2.8) σδ ∈ W 1,∞(0, 1) = C0,1
(
[0, 1]

)
uniformly in δ and ‖σ̇δ‖∞ ≤ λ.

Choosing ϕ ∈ C1
(
[0, 1]

)
in (2.6) and recalling (2.7), we get (see [23, (18.16) Theorem,

p. 285] or [15, Chapter 2])

0 =

∫ 1

0

(
σ̇δϕ+ σδϕ̇

)
dt =

∫ 1

0

d

dt

(
σδϕ

)
dt = σδ(1)ϕ(1)− σδ(0)ϕ(0).

Thus, since ϕ ∈ C1
(
[0, 1]

)
is arbitrary, we must have

(2.9) σδ(0) = σδ(1) = 0.

Note that (2.8) and (2.9) imply

(2.10) ‖σδ‖∞ ≤ λ.

At this point, the definition of σδ, (2.8), (2.9), (2.10), and Lemma 2.2 yield the existence
of a constant M > 0 independent of δ and such that

(2.11) ‖u̇δ‖∞ ≤ M.

Here we have made essential use of the restriction λ < λ∞. As a consequence, there
exists a function u ∈ W 1,∞(0, 1) such that uδ ⇒ u uniformly as δ ↓ 0, and u̇δ ⇁ u̇ in
Lp(0, 1) for all finite p > 1 as δ ↓ 0, at least for a subsequence. Now, our goal is to show
that u is J-minimal: thanks to the Jδ-minimality of uδ it follows for all v ∈ W 1,2(0, 1)
we have

J [uδ] ≤ Jδ[uδ] ≤ Jδ[v]
δ↓0−−→ J [v]

together with
J [u] ≤ lim inf

δ→0
J [uδ].

Thus, we have J [u] ≤ J [v] for all v ∈ W 1,2(0, 1) and from this we get J [u] ≤ J [w]
for all w ∈ W 1,1(0, 1) by approximating w with a sequence (vk) ⊂ W 1,2(0, 1) in the
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W 1,1-topology. This finally proves that u is a solution of problem (1.5). This proves
part a).

Proof of part b). Considering the relaxed variant K from (1.6) of the functional J , it is
easy to check that K has a unique solution ru ∈ BV (0, 1), compare the comments given
at the beginning of the proof of Theorem 1.2 a). Together with the J-minimality of u,
this implies K[ru] ≤ J [u] because K[w] = J [w] for all functions w ∈ W 1,1(0, 1). To show
the reverse inequality, we note that we can approximate ru ∈ BV (0, 1) by a sequence of
smooth functions (un) ⊂ C∞(0, 1) such that (as n → ∞)

un → ru in L1(0, 1) and

∫ 1

0

√
1 + u̇2

n dt →
∫ 1

0

√
1 + |Dru|2

(see, e.g., [24, Proposition 2.3]), where
∫ 1

0

√
1 + |Dru|2 denotes the total variation of the

vector measure (L1, Du)T . Note that for any finite p > 1 we even have un → ru in Lp(0, 1)
by the BV -embedding theorem. Now it is well known that the functional K is continuous
with respect to the above notion of convergence (see, e.g., [24, Proposition 2.2]), and it
follows that

K[ru] = lim
n→∞

K[un] = lim
n→∞

J [un] ≥ J [u].

Hence, K[ru] = J [u], i.e., u is K-minimal and u = ru due to the uniqueness of the K-mi-
nimizer. �

Proof of part c). By (2.6) and Lemma 2.1 b),

üδ = λ
(uδ − f)

F ′′
δ (u̇δ)

a.e. on (0, 1),

whence u̇δ ∈ W 1,∞(0, 1) uniformly in δ on account of (2.11). Thus, the functions u̇δ

have a unique Lipschitz extension to the boundary points 0 and 1, which in particular
implies the differentiability of uδ at 0 and 1, with values of the derivatives given by
the values of the Lipschitz extension of u̇δ. Thus, there is a clear meaning of u̇δ(0)
and u̇δ(1). By continuity reasons, the defining equation (2.4) for σδ extends to the
boundary points of (0, 1), and since F ′

δ vanishes exactly at the origin, from (2.9) it
follows that u̇δ(0) = u̇δ(1) = 0. Combining this with the uniform boundedness of uδ

in C1,1
(
[0, 1]

)
, we immediately see that u ∈ C1,1

(
[0, 1]

)
, together with the boundary

condition u̇(0) = u̇(1) = 0. Furthermore, u solves the Euler equation

0 =

∫ 1

0

F ′(u̇)ϕ̇ dt+ λ

∫ 1

0

(u− f)ϕdt

for all ϕ ∈ C1
0 (0, 1) and from this we conclude the validity of the relation

d

dt
F ′(u̇) = λ(u− f) a.e. on (0, 1).

Consequently, we have

ü = λ
u− f

F ′′(u̇)
a.e. on (0, 1),

together with u̇(0) = u̇(1) = 0, i.e., u solves the boundary value problem (BVP), which
was the statement of part c). �
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§3. Proof of Theorem 1.2

Let us assume the validity of the hypotheses of Theorem 1.2. We start with the
following.

Proof of part a). That in fact the functional K as in (1.6) admits a unique minimizer
u ∈ BV (0, 1) is straightforward in the framework of the theory of BV -functions (see, e.g.,
[18, Theorem 3.23, p. 132] as well as [18, Remark 5.46 and Theorem 5.47, pp. 303–304]).
The justification that we have 0 ≤ u ≤ 1 a.e. on (0, 1) follows by a truncation argument
(see [7] in the case of pure denoising and [22]). For later purposes, we show that the
minimizer u can also be obtained as the limit of the regularizing sequence introduced in
Lemma 2.1, giving 0 ≤ u ≤ 1 as a byproduct of Lemma 2.1 a): as done there, we study
the problem

Jδ[w] :=
δ

2

∫ 1

0

|ẇ|2dx+ J [w], w ∈ W 1,2(0, 1),

where, in particular, 0 ≤ uδ ≤ 1 for all t ∈ [0, 1] (see Lemma 2.1, a)). Next we show
that uδ → u in L1(0, 1) and a.e. at least for a subsequence. First, by Lemma 2.1 c),
there exists ru ∈ BV (0, 1) such that (for a subsequence) uδ → ru in L1(0, 1). By lower
semicontinuity we have

K[ru] ≤ lim inf
δ↓0

J [uδ],

which, by using the K-minimality of u, yields

K[u] ≤ K[ru] ≤ lim inf
δ↓0

Jδ[uδ].

As in the proof of Theorem 1.1 b), we approximate the function u by a sequence of
smooth functions (um) ⊂ C∞(0, 1) such that (as m → ∞)

um → u in L1(0, 1),

∫ 1

0

√
1 + u̇2

m dt →
∫ 1

0

√
1 + |Du|2,

and observe that um → u in Lp(0, 1) for each finite p > 1. Since K is continuous with
respect to the above notion of convergence, we obtain K[um] → K[u] as m → ∞. By
the Jδ-minimality of uδ, this implies

K[u] ≤ K[ru] ≤ lim inf
δ↓0

Jδ[uδ] ≤ lim inf
δ↓0

Jδ[um] = J [um] = K[um].

Thus, after passing to the limit as m → ∞, we get

K[u] ≤ K[ru] ≤ K[u],

which implies u = ru by the uniqueness of the K-minimizer, whence 0 ≤ u ≤ 1 a.e.
on (0, 1). �

Proof of part b). With σδ as defined in the proof of Theorem 1.1 (see (2.4)), we recall
that we have (2.7)–(2.9) at hand. Note that at this stage no bound on λ was necessary.
Thus, there exists σ ∈ W 1,∞(0, 1) with σδ ⇒ σ as δ ↓ 0 (at least for a subsequence).
Moreover

(3.1)

⎧⎪⎨⎪⎩
σ̇ = λ(u− f) and thus |σ̇(t)| ≤ λ a.e.,

|σ(t)| ≤ λ on [0, 1],

σ(0) = σ(1) = 0.

In accordance with [11, Theorem 1.3] (in the case of pure denoising), σ is the unique
solution of the dual problem associated with (1.5), and

(3.2) σ = F ′(u̇) a.e.,
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where u is the unique solution of problem (1.6) in the class BV (0, 1) and u̇ in what follows
denotes the Lebesgue point representative of the density of the absolutely continuous part
Dau of the measure Du. Thus, there is a null set A ⊂ (0, 1) such that

(3.3) σ(t) = F ′(u̇(t)), t ∈ (0, 1)−A,

(see (3.2)). Let us fix t0 ∈ (0, 1) − A. Then |σ(t0)| < λ∞, and since σ is continuous
(recall (3.1)), there exists ε > 0 with

(3.4) |σ(t)| ≤ λ∞ − α for all t ∈ [t0 − ε, t0 + ε],

where α > 0 is chosen appropriately. Recalling that σδ ⇒ σ, we see that, for δ ≤ δε,
(3.4) yields

(3.5) |σδ(t)| ≤ λ∞ − α

2
for all t ∈ [t0 − ε, t0 + ε].

By Lemma 2.2, (F ′
δ)

−1 is uniformly (with respect to δ) bounded on
[
− λ∞ + α

2 , λ∞ − α
2

]
.

Hence, there exists a number L > 0, independent of δ such that (compare (2.11))

(3.6) ‖u̇δ‖L∞(t0−ε,t0+ε) ≤ L for all ε ≤ δ.

Since u is the L1-limit of the sequence (uδ) (compare the proof of part a) of this theorem),
(3.6) ensures

u ∈ C0,1
(
[t0 − ε, t0 + ε]

)
.

Next, using the Euler equation (2.6) for uδ on (t0 − ε, t0 + ε), we deduce the identity

üδ = λ
(uδ − f)

F ′′
δ (u̇δ)

a.e. on (t0 − ε, t0 + ε),

which yields the existence of a number L′ > 0 independent of δ and such that

(3.7) ‖üδ‖L∞(t0−ε,t0+ε) ≤ L′.

From (3.7), it finally follows

u ∈ C1,1
(
[t0 − ε, t0 + ε]

)
,

showing that u is of class C1,1 in a neighborhood of a point t ∈ (0, 1) if and only if t is
a Lebesgue point of u̇. Recalling (3.1), we can conclude that (3.4) (which by the way
implies (3.6) and (3.7)) is true on a suitable interval [0, t1]. This can be achieved by
setting t1 < sup{s ∈ [0, 1] : |σ(s)| < λ∞}, for instance. Hence, u ∈ C1,1

(
[0, t1]

)
. Using

similar arguments, we can show the existence of a number t2 such that 0 < t1 ≤ t2 < 1
and u ∈ C1,1([t2, 1]). This proves part b) of the theorem.

Proof of part c). Our strategy is to prove uδ ∈ W 1,2
loc (a, b) uniformly with respect to δ.

With this result at hand along with the fact that theK-minimizing function u ∈ BV (0, 1)

is obtained as the limit of the sequence (uδ), we see that u ∈ BV (a, b) ∩W 1,2
loc (a, b), so

that u ∈ W 1,1(a, b). First, we recall that uδ ∈ W 2,2
loc (0, 1) (compare Lemma 2.1) and that

F ′
δ(u̇δ) is of class W

1,2
loc (0, 1) and satisfies

(F ′
δ(u̇δ))

′ = F ′′
δ (u̇δ)üδ a.e. on (0, 1).

Therefore, from (2.6) we get

(3.8)

∫ 1

0

F ′′
δ (u̇δ)üδϕ̇ dt = λ

∫ 1

0

(uδ − f)ϕ̇ dt

for all ϕ ∈ C∞
0 (0, 1); by approximation, (3.8) remains true for the functions ϕ ∈ W 1,2(0, 1)

that are compactly supported in (0, 1). Next, we fix a point x0 ∈ (a, b), a number R > 0
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such that (x0 − 2R, x0 + 2R) � (a, b) and η ∈ C∞
0 (x0 − 2R, x0 + 2R) with η ≡ 1 on

(x0 − R, x0 +R), 0 ≤ η ≤ 1 as well as |η̇| ≤ c
R . We choose ϕ := η2u̇δ in (3.8) obtaining

I0 :=

∫ x0+2R

x0−2R

F ′′
δ (u̇δ)(üδ)

2η2 dt

= −2

∫ x0+2R

x0−2R

F ′′
δ (u̇δ)üδu̇δ η̇η dt+ λ

∫ x0+2R

x0−2R

(uδ − f)ϕ̇ dt =: I1 + λI2.

(3.9)

We start with estimating I1 where, by using Young’s inequality for fixed ε > 0, we get

(3.10) |I1| ≤ εI0 + cε−1

∫ x0+2R

x0−2R

F ′′
δ (u̇δ)u̇

2
δ η̇

2 dt.

For I2, integration by parts (recall that f ∈ W 1,2
loc (a, b)) gives

(3.11) I2 = −
∫ x0+2R

x0−2R

(u̇δ − ḟ)u̇δη
2 dt = −

∫ x0+2R

x0−2R

u̇2
δη

2 dt+

∫ x0+2R

x0−2R

ḟ u̇δη
2 dt.

Putting together (3.10) and (3.11) and absorbing terms (we choose ε > 0 sufficiently
small), we see that (3.9) implies∫ x0+2R

x0−2R

F ′′
δ (u̇δ)(üδ)

2η2 dt+ λ

∫ x0+2R

x0−2R

u̇2
δη

2 dt

≤ c

∫ x0+2R

x0−2R

F ′′
δ (u̇δ)u̇

2
δ η̇

2 dt+ c

∫ x0+2R

x0−2R

|ḟ | |u̇δ|η2 dt.
(3.12)

The first integral on the right-hand side of (3.12) can be handled by the uniform estimate
Jδ[uδ] ≤ J [0], the linear growth of F , and condition (F6). More precisely, we get∫ x0+2R

x0−2R

F ′′
δ (u̇δ)u̇

2
δ η̇

2 dt ≤ c(R)

∫ x0+2R

x0−2R

(δ + (1 + u̇2
δ)

− 1
2 )u̇2

δ dt ≤ c(R),

where c(R) denotes a local constant independent of δ. To the second integral, we apply
Young’s inequality (ε > 0):∫ x0+2R

x0−2R

|ḟ | |u̇δ|η2 dt ≤ ε

∫ x0+2R

x0−2R

u̇2
δη

2 dt+ cε−1

∫ x0+2R

x0−2R

ḟ2η2 dt.

Absorbing terms by choosing ε > 0 sufficiently small and using (3.12) (recall that η ≡ 1

on (x0 −R, x0 +R) and f ∈ W 1,2
loc (a, b) once again), we obtain

(3.13)

∫ x0+R

x0−R

F ′′
δ (u̇δ)(üδ)

2 dt+ λ

∫ x0+R

x0−R

u̇2
δ dt ≤ c(f,R),

where c(f,R) is a local constant independent of δ. This proves that

uδ ∈ W 1,2(x0 −R, x0 +R) uniformly with respect to δ.

Now part c) of the theorem follows from a covering argument. �

Remark 3.1. From the proof of part b) we see how the singular set Sing(u) := [0, 1] −
Reg(u) can be given in terms of σ: due to (3.2), we have |σ(t)| < λ∞ at almost all points
t ∈ [0, 1] and thus, since σ is continuous, we have

−λ∞ ≤ σ(t) ≤ λ∞ for all t ∈ [0, 1].

We claim that Sing(u) is exactly the set of points where |σ| attains the maximal value
λ∞, i.e.,

Sing(u) =
{
t ∈ [0, 1] : |σ(t)| = λ∞

}
.
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Indeed, let t0 ∈ [0, 1] be a regular point of u, i.e., there is a small neighborhood
(t0 − ε, t0 + ε) of t0 such that u is of class C1,1(t0 − ε, t0 + ε). Hence |u̇| is bounded
on (t0 − ε, t0 + ε) and (3.3) along with the continuity of σ implies |σ(t0)| < λ∞. Con-
versely, if s0 ∈ [0, 1] is a point where |σ(s0)| < λ∞, the arguments after (3.3) show that
s0 is a regular point.

§4. Proof of Theorem 1.3

Proof of part a). Without loss of generality, in the following we identify f with the rep-
resentative that is continuous at t0. Moreover, we recall that we consider the “good”
representative of u as specified in the Introduction around formula (1.4). Assume that
the statement is false, i.e., the left and the right limit of u at t0,

u−(t0) := lim
tk↑t0

u(tk), u+(t0) := lim
tk↓t0

u(tk),

do not coincide. We may assume that

(4.1) u−(t0) < f(t0) and u+(t0) ≥ f(t0),

and from the proof it will be clear that all the other possible cases can be treated similarly.
Let h0 := u+(t0) − u−(t0) denote the jump-height at t0. Then, from (4.1) it follows in
particular that there exist numbers ε > 0 and 0 < d < h0 such that

u(t) < f(t)− d for all t ∈ [t0 − ε, t0].

We may further assume that u is continuous at t0 − ε. Now we define ru by

ru(t) := u(t) + dχ[t0−ε,t0](t).

That means that on [t0 − ε, t0] we “move” u a little closer to f so that, in particular,

(4.2)

∫ 1

0

(ru− f)2 dt <

∫ 1

0

(u− f)2 dt.

We write (cf. (1.4)) Du = u̇L1+
∑∞

k=0 hkδxk
+Dcu, where {tk}∞k=0 is the jump-set of u.

Clearly, ru ∈ BV (0, 1),

Dru = u̇L1 + (h0 − d)δt0 + dδt0−ε +

∞∑
k=1

hkδxk
+Dcu,

and in conclusion

K[ru] =

∫ 1

0

F (u̇) dt+ λ∞

(
|h0 − d|+ d+

∞∑
k=1

|hk|
)
+ λ∞|Dcu|(0, 1) + λ

2

∫ 1

0

(ru− f)2 dt.

Since d < h0 and by (4.2), this implies

K[ru] < K[u],

which contradicts the minimality of u.

Proof of part b). First we notice that, by Theorem 1.2 part b), there are s1 and s2 in
(a, b), arbitrarily close to a and b respectively such that s1 < s2 and u is C1,1-regular in
a small neighborhood of s1 and s2. Hence, the singular set

S := Sing(u) ∩ [s1, s2]

is a compact subset of (s1, s2). Moreover, by part a) of Theorem 1.3 we have u ∈ C0(a, b).
Assume S �= ∅. Then there exists ss := inf S > a, which is an element of S itself, because
the singular set is closed. In particular, σ(ss) = ±λ∞ (cf. Remark 3.1), i.e., σ has a
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maximum (respectively, minimum) in ss, and since σ̇ = λ(u − f) ∈ C0(a, b), it follows
that

σ̇(ss) = 0,

whence

(4.3) u(ss) = f(ss).

Without loss of generality we may assume that σ(ss) = λ∞. Since σ is continuous at ss,
for any sequence tk ↑ ss approaching ss from the left we must have σ(tk) → λ∞ and thus,
since of u̇ = DF−1(σ), we see that

(4.4) u̇(tk) → ∞ for any sequence tk ↑ ss.

In particular, for arbitrary M > 0 there exists ε > 0 such that

(4.5) u̇(t) > M for t ∈ [ss− ε, ss).

Now choose M := ‖ḟ‖∞;[s1,s2] in (4.5). Then d
dt (u − f) > 0 on [ss − ε, ss), which is not

compatible with (4.3) unless u − f < 0 on [ss − ε, ss). But in this case, the differential
equation

(4.6) ü = λ
u− f

F ′′(u̇)
a.e. on [ss− ε, ss)

implies that u̇ is strictly monotone decreasing on [ss−ε, ss) and thereby u̇(ss−ε) ≥ u̇(s) for
all s ∈ [ss− ε, ss), which is inconsistent with (4.4). This shows that Sing(u)∩ (a, b) = ∅ by
contradiction, and hence u ∈ C1(a, b). Moreover, since σ is locally bounded away from

λ∞, we even have u ∈ W 2,∞
loc (a, b). Hence, (4.6) is true at almost all points of (a, b), and

by the continuity of u̇ the right-hand side of (4.6) is continuous. Therefore, u ∈ C2(a, b).

Proof of part c). As has already been mentioned, the auxiliary quantity σ introduced in
the proof of Theorem 1.2 has an independent meaning as the solution of the dual problem
to J → min. As, e.g., in [7] or [11], we obtain the dual problem from the Lagrangian
given by

L(v, κ) :=

∫ 1

0

κv̇ dt−
∫ 1

0

F ∗(κ) dt+
λ

2

∫ 1

0

(v − f)2 dt︸ ︷︷ ︸
=:Ψ(v)

,

where (v, κ) ∈ W 1,1(0, 1)× L∞(0, 1),

F ∗(κ) := sup
w∈L1(0,1)

(
〈κ,w〉 − F (w)

)
is the convex conjugate, and

〈κ,w〉 :=
∫ 1

0

κw dt

denotes the duality product of L1(0, 1) and L∞(0, 1). By standard results from convex
analysis (see, e.g., [25, Remark 3.1, p. 56]), the functional J can be expressed in terms
of the Lagrangian by

J [v] = sup
κ∈L∞(0,1)

L(v, κ),

and

R[κ] := inf
v∈W 1,1(0,1)

L(v, κ), κ ∈ L∞(0, 1),

is called the dual functional. The dual problem consists in maximizing R[κ] in L∞(0, 1).
Obviously, κ := σ is an admissible choice, and since σ ∈ W 1,∞(0, 1) and σ(0) =
F ′(u̇(0)) = 0 = F ′(u̇(1)) = σ(1) (cf. (3.1)), we can integrate by parts and derive
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the following integral representation of the dual functional (cf. also [26, Theorem 9.8.1,
p. 366]):

R[σ] = inf
v∈W 1,1(0,1)

∫ 1

0

σv̇ dt−
∫ 1

0

F ∗(σ) dt+Ψ(v)

= −
∫ 1

0

F ∗(σ) dt− sup
v∈W 1,1(0,1)

(
−
∫ 1

0

σv̇ dt−Ψ(v)

)
= −

∫ 1

0

F ∗(σ) dt− sup
v∈W 1,1(0,1)

(∫ 1

0

σ̇v dt−Ψ(v)

)
= −

∫ 1

0

F ∗(σ) dt−Ψ∗(σ̇).

Next, we want to compute Ψ∗(σ̇). By definition, we have

Ψ∗(σ̇) = sup
v∈W 1,1(0,1)

(
〈v, σ̇〉 − λ

2
〈v − f, v − f〉

)
= sup

v∈W 1,1(0,1)

〈
v, σ̇ − λ

2
v + λf

〉
− λ

2
〈f, f〉.

Applying Hölder’s inequality, we get

(4.7)

〈
v, σ̇ − λ

2
v + λf

〉
≤ −λ

2
‖v‖22 + ‖σ̇ + λf‖2‖v‖2

and elementary calculus shows that the right-hand side is maximal for ‖v‖2 = ‖ σ̇
λ + f‖2.

An easy computation confirms that for the choice v = σ̇
λ + f the left-hand side of (4.7)

attains this maximal value, and it follows that

Ψ∗(σ̇) =

∫ 1

0

(
σ̇

λ
+ f

)
σ̇ dt− λ

2

∫ 1

0

(
σ̇

λ
+ f

)2

dt =

∫ 1

0

σ̇2

2λ
+ σ̇f dt.

Thereby for R[σ] we obtain

(4.8) R[σ] = −
∫ 1

0

σ̇2

2λ
+ σ̇f dt−

∫ 1

0

F ∗(σ) dt.

Now assume that Sing(u) �= ∅. By Remark 3.1, this means that there exists at least one

point t ∈ [0, 1] where σ(t) = ±λ∞. Let t̂ denote the smallest such t. Since σ(0) = 0,

we have t̂ > 0, and without loss of generality we may assume that σ(t̂) = λ∞. Let

ϕ ∈ C∞
0

(
[0, t̂)

)
be an arbitrary test function. On [0, t̂) we have |σ| < λ∞ and since

sptϕ is a compact subset of [0, t̂) (and σ is continuous) there exists ε0 = ε0(ϕ) such that
|σ(t) + εϕ(t)| ≤ λ∞ − δ for some δ > 0 and for all 0 ≤ ε < ε0. By Theorem 26.4 and
Corollary 26.4.1 in [27], F ∗ is finite and continuously differentiable on (−λ∞, λ∞) (with
the derivative (F ∗)′ = (F ′)−1), whence

d

dε

∣∣∣∣
ε=0

F ∗(σ(t) + εϕ(t)) = (F ∗)′(σ(t))ϕ(t) ∈ L1(0, t̂).

Together with (4.8) and the maximality of σ, this implies that the following Euler equa-

tion must be fulfilled for all ϕ ∈ C∞
0 (0, t̂):

(4.9) −
∫ 1

0

σ̇

λ
ϕ̇+ fϕ̇ dt−

∫ 1

0

(F ∗)′(σ)ϕdt = 0.

Since [0, t̂) ⊂ Reg(u) and f ∈ W 1,1(0, 1) by assumption, we have (see (3.1))

(4.10) σ̇ = λ(u− f) ∈ W 1,1(0, t̂),

and therefore σ ∈ W 2,1(0, 1), so that (4.9) implies the following differential equation:

(4.11)
σ̈

λ
+ ḟ − (F ∗)′(σ) = 0 a.e. on (0, t̂).
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Let {sk} ⊂ [0, t̂), k ∈ N, denote a sequence with sk ↑ t̂ as k → ∞. Multiplying (4.11) by

σ̇ and integrating by parts (recall that σ̇ ∈ W 1,1(0, t̂)) yields

σ̇(sk)
2

2λ
− σ̇(0)2

2λ
+

∫ sk

0

ḟ σ̇ dt− F ∗(σsk) = 0.

Since σ̇ is bounded by λ, this implies the estimate

(4.12) F ∗(σ(sk)) < λ

(
1

2
+ ‖ḟ‖1

)
+

σ̇(sk)
2

2λ
.

At t̂, σ attains its maximum, and since it is continuously differentiable on (0, 1) (this
follows from (3.1) in combination with the fact that u is continuous on (0, 1) by part a)
of Theorem 1.3), it follows that

σ̇(sk)
2

2λ
→ 0 for k → ∞,

whence

(4.13) lim
k→∞

F ∗(σ(sk)) ≤ λ

(
1

2
+ ‖ḟ‖1

)
.

But the following calculation shows (see also Figure 2) that the limit on the left-hand
side coincides with the quantity ω∞ from the assumptions of part c):

Figure 2.

∫ q

0
(F ′)−1(t) dt = pq −

∫ p

0
F ′(t) dt.

lim
q↑λ∞

F ∗(q) = lim
q↑λ∞

∫ q

0

(F ∗)′(t) dt = lim
q↑λ∞

∫ q

0

(F ′)−1(t) dt

= lim
q↑λ∞

q(F ′)−1(q)−
∫ (F ′)−1(q)

0

F ′(t) dt
p:=(F ′)−1(q)

= lim
p↑∞

pF ′(p)− F (p).

Hence, (4.13) contradicts our requirements on f and λ, and therefore the assumption
Sing(u) �= ∅ is false. �

§5. Proof of Theorem 1.4

Suppose all the assumptions of Theorem 1.4 are fulfilled. In the sequel, we make the
dependence of the minimizer on the parameter λ more explicit by denoting by uλ the
unique solution of problem (1.6) for a given λ > 0. Thanks to Theorems 1.2 and 1.3, we
have the following properties:

(i) uλ ∈ C2
(
[0, 1]− { 1

2}
)
(cf. Theorem 1.3 b)), 0 ≤ uλ ≤ 1 a.e., and uλ satisfies⎧⎪⎨⎪⎩

üλ = λ
uλ

F ′′(u̇λ)
, u̇λ(0) = 0, on [0, 1

2 ) (1),

üλ = λ
1− uλ

F ′′(u̇λ)
, u̇λ(1) = 0, on ( 12 , 1] (2),
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(ii) üλ ≥ 0 on [0, 1
2 ) and hence u̇λ increases on [0, 1

2 ); üλ ≤ 0 on ( 12 , 1] and hence u̇λ

decreases on [0, 12 ),

(iii) u̇λ ≥ 0 on [0, 12 ) (due to u̇λ(0) = 0 and (ii)), and hence uλ increases on [0, 1
2 ).

Furthermore, we see that the symmetry of our data f with respect to the point
( 12 ,

1
2 ) is reproduced by uλ:

(iv) The two continuous branches of uλ, uλ|[0, 12 ) and uλ|( 1
2 ,1]

, are symmetric with

respect to the point ( 12 ,
1
2 ), i.e.,

uλ(t) = 1− uλ(1− t)︸ ︷︷ ︸
=:ruλ(t)

, t ∈ [0, 1]− {1/2}.

Proof of (iv). We show that K[ruλ] = K[uλ]. Then the result follows from the uniqueness
of the K-minimizer in BV (0, 1) (Theorem 1.2 a)). Let

h := lim
t↓ 1

2

uλ(u)− lim
t↑ 1

2

uλ(u)

denote the height of the (possible) jump of uλ at t = 1
2 . Then the distributional derivative

of uλ is given by

Duλ = Dauλ + hδ1/2

and, consequently,

K[uλ] =

∫ 1
2

0

u̇λ dt+

∫ 1

1
2

u̇λ dt+ λ∞|hδ1/2|(0, 1) +
λ

2

∫ 1

0

(uλ − f)2 dt

=

∫ 1
2

0

u̇λ dt+

∫ 1

1
2

u̇λ dt+
|h|

μ− 1
+

λ

2

∫ 1

0

(uλ − f)2 dt.

For ruλ we obtain

K[ruλ] =

∫ 1
2

0

u̇λ(1− t) dt+

∫ 1

1
2

u̇λ(1− t) dt+ λ∞|hδ1/2|(0, 1) +
λ

2

∫ 1

0

(ruλ − f)2 dt

=

∫ 1
2

0

u̇λ dt+

∫ 1

1
2

u̇λ dt+
|h|

μ− 1
+

λ

2

∫ 1

0

(ruλ − f)2 dt,

but clearly
∫ 1

0
(ruλ − f)2 dt =

∫ 1

0
(uλ − f)2 dt, whence K[ruλ] = K[uλ]. �

Finally, we note that the value of uλ(0) tends to zero as λ → ∞:
(v) lim

λ→∞
uλ(0) = 0.

Proof of (v). Since uλ is K-minimal in BV (0, 1) and f ∈ BV (0, 1), we have

K[uλ] ≤ K[f ] = λ∞|δ1/2|(0, 1) = λ∞ =
1

μ− 1
,

and thus, by properties (iii) and (iv),

λ

2
uλ(0)

2 = 2
λ

2

∫ 1
2

0

uλ(0)
2 dt ≤ λ

2

∫ 1
2

0

(uλ − f)2 dt ≤ K[uλ] ≤ K[f ] =
1

μ− 1
,

so that

�(5.1) uλ(0) ≤
√

2

λ(μ− 1)

λ→∞−−−−→ 0.
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By property (iv), the continuity of uλ necessarily implies uλ(1/2) = 1/2. We can
exploit this fact to prove that the minimizer develops jumps once we can show that,
starting from a certain value of the parameter λ, uλ is bounded away from 1/2 on
[0, 1/2). To this end, we make use of equation (1) from property (i):

üλ(t) = λ
uλ(t)

F ′′(u̇λ(t))
⇔ F ′′(u̇λ(t))üλ(t) = λuλ(t)

⇔ d

dt
F ′(u̇λ(t))u̇λ(t) = λuλ(t)u̇λ(t).

Integrating the last equation from 0 to s for some s ∈ [0, 1
2 ) yields∫ s

0

d

dt
F ′(u̇λ(t))u̇λ(t) dt =

∫ s

0

λuλ(t)u̇λ(t) dt

⇔
[
F ′(u̇λ(t))u̇λ(t)

]s
0

−
∫ s

0

F ′(u̇λ(t))üλ(t)︸ ︷︷ ︸
= d

dtF (u̇λ(t))

dt =

[
λ

2
uλ(t)

2

]s
0

,

and with u̇λ(0) = 0 and F ′(0) = 0 we arrive at

(5.2) u̇λ(s)F
′(u̇λ(s))− F (u̇λ(s)) =

λ

2

(
uλ(s)

2 − uλ(0)
2
)
.

Note that (5.2) formally corresponds to a law of conservation if we interpret (1) as the
equation of motion of a particle of mass 1/λ under the influence of a time-independent
exterior force.

The left-hand side of (5.2) is nonnegative by the convexity of F and therefore we get

(5.3) uλ(s) =

√
uλ(0)2 +

2

λ

(
u̇λ(s)F ′(u̇λ(s))− F (u̇λ(s))

)
for s ∈

[
0, 1/2

)
.

From (5.3) we see that if the left-hand side of (5.2) is bounded, then by property (iv) uλ

is bounded from below by 1/2 if we choose λ sufficiently large. But for our density F
from (1.10) we have (see Remark 1.3 (iii))

lim
p→∞

pF ′(p)− F (p) =

{
∞ if 1 < μ ≤ 2,

1
(μ−1)(μ−2) if 2 < μ,

and for μ > 2, the last equation together with (5.1) and (5.3) gives

uλ(s) ≤
√

2

λ(μ− 1)
+

2

λ(μ− 1)(μ− 2)
=

√
2

λ(μ− 2)
for s ∈ [0, 1/2)

which implies sup0≤s< 1
2
uλ(s) <

1
2 if λ satisfies (1.13). The corresponding lower bound

on the infimum follows by the symmetry property (iv). �
Proof of Corollary 1.2 b). We define the critical value of λ by

λcrit := sup{λ : uλ is continuous}.
First we note that any minimizer uλ (independently of λ) satisfies 0 ≤ uλ ≤ 1

2 on [0, 1
2 )

because otherwise “cutting-off” at height 1
2 would yield a BV -function for which the

functional K has a strictly smaller value. Thus, (5.3) implies

1

2
≥

√
uλ(0)2 +

2

λ

(
u̇λ(s)F ′(u̇λ(s))− F (u̇λ(s))

)
for s ∈

[
0, 1/2

)
.

Consequently the limit as s → 1
2 gives (remember that u̇λ(s) → ∞ as s → 1

2 because
λ > λcrit) 1

2
≥

√
uλ(0)2 +

2

λ
ω∞,
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whence

uλ(0)
2 ≤ λ− 8ω∞

4λ
and therefore λ ≥ 8ω∞. The upper bound on λcrit follows like in the proof of Theorem 1.4
from estimate (5.1) (with general λ∞ in place of 1/(μ− 1)) and (5.3). �

§6. Proof of Theorem 1.5

Under the assumptions of Theorem 1.5, we set

Reg(u) :=
{
t ∈ [0, 1] : u is C1,1 on a neighborhood of t

}
.

From Theorem 1.2 b) we deduce that Sing(u) := [0, 1] − Reg(u) is a compact subset
of (0, 1). Assume that Sing(u) �= ∅, and let s denote the first singular point so that
u ∈ C1,1

(
[0, s)

)
and therefore

(6.1) üF ′′(u̇) = λ(u− f) a.e. on (0, s).

From (6.1) we deduce (compare the derivation of (5.2)) that

(6.2) u̇(t)F ′(u̇(t))− F (u̇(t)) =
λ

2

(
u(t)2 − u(0)2

)
−
∫ t

0

f(τ )u̇(τ ) dτ for t ∈ [0, s).

Clearly (6.2) implies (ω(p) := pF ′(p)− F (p))

(6.3) |ω(u̇(t))| ≤ λ

2
+ |Du|(0, 1), t ∈ [0, s),

because 0 ≤ u, f ≤ 1 a.e. on (0, 1). By the convexity of F (together with F (0) = 0), we
see that ω ≥ 0, ω(0) = 0, and moreover,

ω(p) =

∫ p

0

ω′(q) dq =

∫ q

0

qF ′′(q) dq.

Thus, ω is monotone increasing with

(6.4) lim
p→∞

ω(p) = ∞, lim
p→−∞

ω(p) = ∞,

which follows from (F5) together with the assumption (1.14). Since we assume that s is
the first singular point of u, it follows that

lim
k→∞

|u̇(tk)| = ∞

for a suitable sequence tk ↑ s, because otherwise |σ(s)| < λ∞ and hence s ∈ Reg(u) (cf.
Remark (3.1)). This contradicts (6.3) in view of (6.4). �

Proof of Corollary 1.2 a). The fact that Sing(u) �= ∅ follows exactly along the same lines
because now we have (6.4) due to our assumption ω∞ = ∞. �

§7. Proof of Theorem 1.6

Essentially, we need to show that for λ < λμ the conditions of Theorem 6 on page 295
in [20] are fulfilled. Without further explanation we shall adopt the notation of that
work. First of all, we notice that due to our restriction 0 ≤ f(t) ≤ 1 we see that α(t) ≡ 0
and β(t) ≡ 1 is a trivial lower and upper solution of (BVP), respectively, because

0 ≥ λ
0− f

F ′′(0)
and 0 ≤ λ

1− f

F ′′(0)
,

due to ‖f‖∞ ≤ 1 and F ′′ > 0. Second, the right-hand side of the equation (BVP) can
be rewritten as

Φ(t, v, v̇) = λ
v − f(t)

F ′′(v̇)
,
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Figure 3. The sets S0, S1, S2 and S3.

where Φ(t, y, p) := λ
y − f(t)

F ′′(p)
is a Carathéodory function if f is merely measurable.

Moreover, by (F5) we can estimate Φ by

|Φ(t, y, p)| ≤ λ

c1

(
1 + |p|

)μ
,

and hence, letting h(p) := λ
c1
(1 + |p|)μ, sh(p) ≡ 1, r(t) := ε for some ε > 0 and choosing

λ in such a way that

(7.1) λ <
c1

1 +Kε

∫ ∞

1

s ds

(1 + s)μ
,

where K denotes the quantity sup{s/h(s) | s ∈ [1,∞]}, we find that if L > 0 is sufficiently
large, then Φ satisfies the following Bernstein–Nagumo–Zwirner condition (compare [20,
Definition 4]):{

|Φ(t, y, p)| ≤ h(|p|)sh(p) + r(t) for all (t, y) ∈ [0, 1]× [0, 1] and∫ L

1
s ds
h(s) > 1 +Kε.

The boundary conditions are formulated as set conditions, i.e., (v(0), v̇(0)) ∈ J (0) and
(v(1), v̇(1)) ∈ J (1) for some closed connected subsets J (0),J (1) ⊂ [0, 1] × R. In our
case, we can choose

J (0) = J (1) = [0, 1]× {0}
which corresponds to our Neumann condition. The verification that the sets J (0) =
J (1) := [0, 1] × {0} are of “compatible type 1” in the sense of Definition 14 in [20] is
straightforward. Let sets S0, S1, S2, and S3 be introduced as in Definition 15 in [20] (see
Figure 3 below). Then

J (0) ∩ {S0 ∪ S2} = J (1) ∩ {S1 ∪ S3} = {(0, 0), (0, 1)} �= ∅.

That is, all conditions of Theorem 4 are fulfilled and there is a solution v ∈ W 2,1(0, 1)
of (BVP) with 0 ≤ v(t) ≤ 1 for almost all t ∈ [0, 1]. Note that letting ε tend to zero in
(7.1) gives the postulated bound λμ for λ.

Now, let v ∈ W 2,1(0, 1) be a solution of (BVP). We want to show that v coincides
with the K-minimizer u from Theorem 1.2. The convexity of the functional J shows that
for any w ∈ C1,1

(
[0, 1]

)
we have

J [w] ≥ J [v] + 〈DJ [v], w − v〉
with

〈DJ [v], w − v〉 =
∫ 1

0

F ′(v̇)(ẇ − v̇) dt+ λ

∫ 1

0

(v − f)(w − v) dt.

Since F ′(0) = 0, we have∫ 1

0

F ′(v̇)(ẇ− v̇) dt =

∫ 1

0

d

dt

[
F ′(v̇)(w−v)

]
dt−

∫ 1

0

F ′′(v̇)v̈(w−v) dt = −
∫ 1

0

F ′′(v̇)v̈(w−v) dt.
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By assumption, v solves (BVP) a.e. on (0, 1), which implies that

(7.2) 〈DJ [v], w − v〉 =
∫ 1

0

(w − v)
[
F ′′(v̇)v̈ − λ(v − f)

]
dt = 0

for all w ∈ C1,1
(
[0, 1]

)
. Thus, we get J [v] ≤ J [w] for all w ∈ C1,1

(
[0, 1]

)
. Now let u

denote the minimizer of K in BV (0, 1). We can construct a sequence uk ∈ C∞(
[0, 1]

)
such that

|Duk|(0, 1) k→∞−−−−→ |Du|(0, 1), uk → u in L1(0, 1),

and √
1 + |Duk|2(0, 1)

k→∞−−−−→
√
1 + |Du|2(0, 1).

To see this, consider

(7.3) û : R → [0, 1], û(t) :=

⎧⎪⎨⎪⎩
u(0), t ≤ 0,

u(t), 0 ≤ t ≤ 1,

u(1), t ≥ 1.

Since u is of class C1,1 near 0 and 1, it follows that û ∈ BVloc(R) and

(7.4) |Dû|({0}) = |Dû|({1}) = 0.

Let η ∈ C∞
0 (R) be a cut-off function such that η ≡ 1 on [0, 1], and consider a symmetric

mollifier ρε supported on the closed ball with radius ε > 0 around 0. By the properties
of mollification, ûε := ρε ∗ (ηû) converges to û in L1(0, 1) as ε ↓ 0. Moreover, by (7.4)
and [18, Proposition 3.7, p. 121], we have

|D(ûε)|(0, 1)
ε↓0−−→ |D(ηû)|(0, 1) = |Du|(0, 1)

and, by similar arguments,∫ 1

0

√
1 + |D(ûε)|2 dt =

∣∣ρε ∗ (L1, D(ηû))T
∣∣ (0, 1) ε↓0−−→

√
1 + |Du|2(0, 1).

Hence, uk := ρ1/k ∗ ηû for k ∈ N has the desired properties. From Proposition 2.3 in [24]
it follows that

J [v] ≤ J [uk] = K[uk]
k→∞−−−−→ K[u],

and since u is K-minimal, we conclude that

K[u] ≤ K[v] = J [v] ≤ K[u],

which means that K[u] = K[v], whence u = v by the uniqueness of the K-minimizer. �

Figure 4. Example plots of the K-minimizer u for μ = 3 and a) λ = 4,
b) λ = 5.
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§8. Comparison with a numerical example

In this short appendix we would like to compare the above theoretical considerations
with a numerical example, which has been computed with the free software Scilab1.
Besides giving a confirmation of our previous results, this is mainly intended to show
that none of our given bounds on the parameter λ is actually sharp. In fact, we seem
to obtain smooth solutions for values of λ larger than max{λ∞, ω∞}, and discontinuous
minimizers can occur below the threshold 8

μ−2 , which was predicted by Corollary 1.2 b).

It is still an open problem to determine exact bounds, which clearly should depend on
both F and f .

We choose the data f from (1.12), i.e., f is constant on [0, 1/2] and (1/2, 1] with a
single jump of height 1 at t = 1/2, and the μ-elliptic density F (p) = Φ3(|p|) (remember
that by Theorem 1.5 there will be no singular minimizers for μ ≤ 2, which justifies our
choice μ = 3). Then our K-minimizer u should be smooth for λ < 8ω∞ = 4. In practice,
we seem to get smooth solutions up to about λ < 4.16. For λ = 4.16 the tangent of u
at t = 1/2 becomes nearly vertical, and for λ > 4.16 the minimizer develops a jump. In
Figure 4 we show exemplarily the graphs of u for λ = 4 and λ = 5. Next, we would like
to note that for λ = 4.16 the value of u(0) is approximately 0.183; for the bound (5.3)
established in the proof of Theorem 1.4 this yields

u(s) ≤
√
0.1832 +

1

4.16
≈ 0.523,

and thus suits our previous considerations quite well.
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vol. 80, Birkhäuser Verlag, Basel, 1984. MR775682

[18] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity prob-
lems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York,
2000. MR1857292

[19] H. B. Thompson, Second order ordinary differential equations with fully nonlinear two-point bound-

ary conditions. I, Pacific J. Math. 172 (1996), no. 1, 255–277. MR1379297 (976:34026)
[20] H. B. Thompson, Second order ordinary differential equations with fully nonlinear two-point bound-

ary conditions. II, Pacific J. Math. 172 (1996), no. 1, 279–297. MR1379297 (976:34026)
[21] C. De Coster and P. Habets, Two-point boundary value problems: lower and upper solutions, Math-

ematics in Science and Engineering, vol. 205, Elsevier B. V., Amsterdam, 2006. MR2225284
[22] M. Bildhauer and M. Fuchs, A geometric maximum principle for variational problems in spaces of

vector valued functions of bounded variation (English, with English and Russian summaries), Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), no. Kraevye Zadachi
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