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DIVISION BY 2 OF RATIONAL POINTS ON ELLIPTIC CURVES

B. M. BEKKER AND YU. G. ZARHIN

Easy reading for professionals

Abstract. The well-known divisibility by 2 condition for rational points on elliptic
curves with rational 2-torsion is reproved in a simple way. Next, the explicit formulas
for division by 2n obtained in §2 are used to construct versal families of elliptic curves
that contain points of orders 4, 5, 6, and 8. These families are further employed to
describe explicitly elliptic curves over certain finite fields Fq with a prescribed (small)
group E(Fq). The last two sections are devoted to the cases of 3- and 5-torsion.

§1. Introduction

Let E be an elliptic curve over a number field K. The famous Mordell–Weil theorem
asserts that the (Abelian) group E(K) of K-points on E is finitely generated [3, 18, 21].
The first step in its proof (and actual finding a finite set that generates E(K)) is the weak
Mordell–Weil theorem that asserts that the quotient E(K)/2E(K) is a finite (Abelian)
group. This step is called 2-descent and its basic ingredient is a criterion for a K-point on
E to be twice another K-point (under an additional assumption that all points of order 2
on E are defined over K). In this paper we give a new treatment of this criterion, which
seems to be less computational than the previous ones (see [10, Chapter 5, pp. 102–
104], [4], [8, Theorem 4.2 on pp. 85–87], [2, Lemma 7.6 on p. 67], [1, pp. 331–332]).
Our approach allows us to describe explicitly 2-power torsion on elliptic curves. Also,
we obtain explicit description of families of elliptic curves with various torsion subgroups
over arbitrary fields of characteristic different from 2 (the problem of constructing elliptic
curves with given torsion goes back to B. Levi [14]).

The paper is organized as follows. We work with elliptic curves E over an arbitrary
field K with char(K) �= 2. In §2 we discuss the criterion of divisibility by 2 and explicit
formulas for the “half-points” in E(K). Next we discuss a criterion of divisibility by
any power of 2 in E(K) (§3). In §4 we collect useful results about elliptic curves and
their torsion. In §§5, 6, and 7 we use the explicit formulas of §2 in order to construct
versal families of elliptic curves E such that E(K) contains a subgroup isomorphic to
Z/2mZ ⊕ Z/2Z with m = 2, 4, 3, respectively. (Moreover, in §5 we construct a versal
family of elliptic curves E such that E(K) contains a subgroup isomorphic to Z/4Z ⊕
Z/4Z.) Such families are parametrized by K-points of rational curves that are closely
related to certain modular curves of genus zero (see [9, 14–16]); however, our approach
remains quite elementary. Also, in §§6 and 8 we construct versal families of elliptic curves
E such that E(K) contains a subgroup isomorphic to Z/8Z⊕Z/4Z and Z/10Z⊕Z/2Z,
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respectively. These two families are parametrized by K-points of curves that are closely
related to certain modular curves of genus 1.

As an unexpected application, we describe explicitly (and without computations) el-
liptic curves E over small finite fields Fq such that E(Fq) is isomorphic to a certain finite
group (of small order). Using deep and highly nontrivial results of Mazur [12], Kami-
enny [5], and Kenku–Momose [7], we describe explicitly the elliptic curves E over the
field Q of rational numbers and over quadratic fields K such that the torsion subgroup
E(Q)t of E(Q) (respectively E(K)t of E(K)) is isomorphic to a certain finite group.

§2. Division by 2

Let K be a field of characteristic different from 2. Let

(1) E : y2 = (x− α1)(x− α2)(x− α3)

be an elliptic curve over K, where α1, α2, α3 are distinct elements of K. This means that
E(K) contains all three points of order 2, namely, the points

(2) W1 = (α1, 0), W2 = (α2, 0), W3 = (α3, 0).

The following statement is pretty well known, see [3, pp. 269–270], [10, Chapter 5,
pp. 102–104], [4], [8, Theorem 4.2 on pp. 85–87], [2, Lemma 7.6 on p. 67] [1, pp. 331–
332], [21, pp. 212–214] and also [22].

Theorem 2.1. Let P = (x0, y0) be a K-point on E. Then P is divisible by 2 in E(K)
if and only if all three elements x0 − αi are squares in K.

This statement is traditionally used in the proof of the weak Mordell–Weil theo-
rem. While the proof of the claim that divisibility implies squareness is straightfor-
ward, it seems that the known elementary proofs of the converse statement are more
involved/computational. (Note that there is another approach, based on Galois coho-
mology [17, X.1, pp. 313–315], which works for hyperelliptic Jacobians as well, see [13].)

We start with an elementary proof of a sufficient condition for divisibility, which seems
to be less computational. (Moreover, it will give us immediately explicit formulas for the
coordinates of all four 1

2P .)

Proof. So, assume that all three elements x0 − αi are squares in K, and let Q = (x1, y1)
be a point on E with 2Q = P . Since P �= ∞, we have y1 �= 0, so that the equation of
the tangent line L to E at Q may be written in the form

L : y = lx+m.

(Here x1, y1, l,m are elements of an overfield of K.) In particular, y1 = lx1 + m. By
the definition of Q and L, the point −P = (x0,−y0) is the “third” common point of L
and E; in particular, −y0 = lx0 + m, i.e., y0 = −(lx0 + m). Standard arguments (the
restriction of the equation for E to L, see [18, pp. 25–27], [21, pp. 12–14], [1, p. 331])
tell us that the monic cubic polynomial

(x− α1)(x− α2)(x− α3)− (lx+m)2

coincides with (x− x1)
2(x− x0). This implies that

−(lαi +m)2 = (αi − x1)
2(αi − x0) for all i = 1, 2, 3.

Since 2Q = P �= ∞, none of x1 − αi vanishes. Recall that all x0 − αi are squares in
K, and, obviously, they are distinct. Consequently, the corresponding square roots (see
[1, p. 331])

ri :=
lαi +m

x1 − αi
=

√
x0 − αi
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are distinct elements of K. In other words, the transformation

z �→ lz +m

−z + x1

of the projective line sends the three distinct K-points α1, α2, α3 to the three distinct
K-points r1, r2, r3, respectively. This implies that our transformation is not constant,
i.e., is an honest linear fractional transformation1 and is defined over K. Since one of the
“matrix entries”, −1, is already a nonzero element of K, all other matrix entries l,m, x1

also lie in K. Since y1 = lx1 +m, it also lies in K. So, Q = (x1, y1) is a K-point of E,
which proves the required statement. �

Let us get explicit formulas for x1, y1, l,m in terms of r1, r2, r3. We have

αi = x0 − r2i , lαi +m = ri(x1 − αi),

and, therefore,

l(x0 − r2i ) +m = ri[x1 − (x2 − r2i )] = r3i + (x1 − x2)ri,

which is equivalent to r3i + lr2i +(x1 − x0)ri − (lx0 +m) = 0, and this identity holds true
for all i = 1, 2, 3. This means that the monic cubic polynomial

h(t) = t3 + lt2 + (x1 − x0)t− (lx0 +m)

coincides with (t− r1)(t− r2)(t− r3). Recalling that −(lx0 +m) = y0, we get

(3) r1r2r3 = −y0.

Also,

l = −(r1 + r2 + r3), x1 − x0 = r1r2 + r2r3 + r3r1.

This implies that

(4) x1 = x0 + (r1r2 + r2r3 + r3r1).

Since y1 = lx1 +m and −y0 = lx0 +m, we obtain

m = −y0 − lx0 = −y0 + (r1 + r2 + r3)x0,

whence

y1 = −(r1 + r2 + r3)[x0 + (r1r2 + r2r3 + r3r1)] + [−y0 + (r1 + r2 + r3)x0],

i.e.,

(5) y1 = −y0 − (r1 + r2 + r3)(r1r2 + r2r3 + r3r1).

Observe that there are precisely four points Q ∈ E(K) with 2Q = P ,

(6) Q = (x0 + (r1r2 + r2r3 + r3r1),−y0 − (r1 + r2 + r3)(r1r2 + r2r3 + r3r1)) ,

each of which corresponds to one of the four choices of the three square roots ri =√
x0 − αi ∈ K (i = 1, 2, 3) with r1r2r3 = −y0. Using the last relation, we may rewrite

(5) as2

(7) y1 = −(r1 + r2)(r2 + r3)(r3 + r1).

Moreover,

(8) x1 = αi + (ri + rj)(ri + rk),

1Another way to see this is to suppose the contrary. Then the determinant lx1 +m is 0, i.e., y0 = 0,
whence P = 2Q is the infinite point, which is not true.

2This was brought to our attention by Robin Chapman.
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where i, j, k is any permutation of 1, 2, 3. Indeed,

x1 − αi = (x0 − αi) + r1r2 + r2r3 + r3r1

= r2i + r1r2 + r2r3 + r3r1 = (ri + rj)(ri + rk).

The remaining four choices of the “signs” of r1, r2, r3 bring us to the same values of
abscissas and the opposite values of ordinates and give the results of division by 2 of the
point −P .

Conversely, if we know Q = (x1, y1), then we can recover the corresponding (r1, r2, r3).
Namely, formulas (8) and (7) imply that

rj + rk = − y1
x1 − αi

,

ri =
−(rj + rk) + (ri + rj) + (ri + rk)

2

= −y1
2

·
(
− 1

x1 − αi
+

1

x1 − αj
+

1

x1 − αk

)
for any permutation i, j, k of 1, 2, 3.

Example 2.2. Let the role of P = (x0, y0) be played by the point W3 = (α3, 0) of
order 2 on E. Then r3 = 0, and we have two arbitrary independent choices of (nonzero)
r1 =

√
α3 − α1 and r2 =

√
α3 − α2. Thus,

Q = (α3 + r1r2,−(r1 + r2)r1r2) = (α3 + r1r2,−r1(α3 − α2)− r2(α3 − α1))

is a point on E with 2Q = P ; in particular, Q is a point of order 4. The same is true for
the (three remaining) points −Q = (α3 + r1r2, r1(α3 − α2) + r2(α3 − α1)),
(α3 − r1r2,−r1(α3 − α2) + r2(α3 − α1)), and (α3 − r1r2, r1(α3 − α2)− r2(α3 − α1)).

Recall that, in formula (6) for the coordinates of the points 1
2P , we may choose

the signs of r1, r2, r3 arbitrarily under condition (3). Let Q be one of 1
2P ’s that cor-

responds to a certain choice of r1, r2, r3. The remaining three halves of P correspond
to (r1,−r2,−r3), (−r1, r2,−r3), and (−r1,−r2, r3). Let these halves be denoted by
Q1,Q2,Q3, respectively. For each i = 1, 2, 3, the difference Qi −Q is a point of order 2
on E. Which one? The following assertion answers this question.

Theorem 2.3. Let i, j, k be a permutation of 1, 2, 3. Then:

(i) if P = Wi, then Qi = −Q;
(ii) if P �= Wi, then all three points Qi,−Q,Wi are distinct;
(iii) the points Qi,−Q,Wi lie on the line

y = (rj + rk)(x− αi);

(iv) Qi −Q = Wi.

Proof. First, assume that P = Wi. In this case, formulas (4) and (5) tell us that

Q =
(
αi + rjrk,−rjrk(rj + rk)

)
,

which implies
Qi =

(
αi + rjrk, rjrk(rj + rk)

)
= −Q

and
Qi −Q = −2Q = −P = P = Wi.

This proves (i) and a special case of (iv) when P = Wi. Now assume that P �= Wi

and prove that the three points Qi,−Q,Wi are distinct. Since none of Qi and −Q is of
order 2, none of them is Wi. On the other hand, if Qi = −Q, then

2Q = P = 2Qi = −2Q = −P,
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and so P has order 2, say P = Wj . Applying (a) to j in place of i, we get Qj = −Q;
but Qi �= Qj because i �= j. Therefore, Qi,−Q,Wi are three distinct points. This proves
(ii).

We prove (iii). Since

x1 − αi = (ri + rj)(ri + rk), y1 = −(r1 + r2)(r2 + r3)(r3 + r1),

we have y1 = (rj + rk)(x1 − αi). Next,

x(−Qi)− αi = (ri − rj)(ri − rk),

y(−Qi) = (ri − rj)(−rj − rk)(−rk + ri) = (rj + rk) (x(−Qi)− αi) .

Therefore, Qi,−Q and Wi lie on the line

y = (rj + rk)(x− αi).

We have already proved (iv) when P = Wi. So, we assume that P �= Wi. Now (iv)
follows from (iii) combined with (i). �

§3. Division by 2n

Using the above formulas that describe division by 2 on E, we may easily deduce
the following necessary and sufficient condition of divisibility by any power of 2. For
an overfield L of K, we consider a sequence of points Qμ in E(L) such that Q0 = P

and 2Qμ+1 = Qμ for all μ = 0, 1, 2, . . . . Let r
(μ)
1 , r

(μ)
2 , r

(μ)
3 (μ = 0, 1, 2, . . . ) be arbitrary

sequences of elements of L that satisfy the relations(
r
(μ)
i

)2
= x(Qμ)− αi.

Then for each permutation i, j, k of 1, 2, 3, using formula (8), we get

x(Qμ+1)− αi =
(
r
(μ)
i + r

(μ)
j

)(
r
(μ)
i + r

(μ)
k

)
,

which implies that (
r
(μ+1)
i

)2
=

(
r
(μ)
i + r

(μ)
j

)(
r
(μ)
i + r

(μ)
k

)
.

By changing the signs of r
(μ)
i , r

(μ)
j , r

(μ)
k in the product (r

(μ)
i +r

(μ)
j )(r

(μ)
i +r

(μ)
k ), we obtain

all possible values of the abscissas of Q(μ+1) with 2Qμ+1 = Qμ.
Suppose that Qμ ∈ E(K). Then Qμ is divisible by 2 in E(K) if and only if one may

choose r
(μ)
i , r

(μ)
j , r

(μ)
k in such a way that the (r

(μ)
i + r

(μ)
j )(r

(μ)
i + r

(μ)
k ) are squares in K

for all i = 1, 2, 3. We have proved the following statement.

Theorem 3.1. Let P = (x0, y0) ∈ E(K). Let r
(μ)
1 , r

(μ)
2 , r

(μ)
3 (μ = 0, 1, 2, . . . ) be sequences

of elements of L such that(
r0i
)2

= r2i = x0 − αi,
(
r
(μ+1)
i

)2
=

(
r
(μ)
i + r

(μ)
j

)(
r
(μ)
i + r

(μ)
k

)
for all permutations i, j, k of 1, 2, 3. Then P is divisible by 2n in E(K) if and only if all

x0 −αi are squares in K, and, for each μ = 0, 1, . . . n− 1, the square roots r
(μ)
1 , r

(μ)
2 , r

(μ)
3

may be chosen in such a way that the products (r
(μ)
i + r

(μ)
j )(r

(μ)
i + r

(μ)
k ) are squares in K

(and, therefore, all r
(μ)
i lie in K for μ = 0, 1, . . . n− 1).

The knowledge of the sequences r
(μ)
1 , r

(μ)
2 , r

(μ)
3 allows us to find the points 1

2P,
1
4P,

1
8P

etc. step by step.
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Example 3.2. Let P = (x0, y0), let R be a point of E such that 4R = P , and let
Q = 2R = (x1, y1). By formulas (4) and (7),

x1 = x0 + (r1r2 + r2r3 + r3r1), y1 = −(r1 + r2)(r2 + r3)(r3 + r1),

where the square roots
ri =

√
x0 − αi, i = 1, 2, 3,

are chosen in such a way that r1r2r3 = −y0. Next, let

r
(1)
i =

√
(ri + rj)(ri + rk)

be square roots chosen so that

r
(1)
1 r

(1)
2 r

(1)
3 = −y1 = (r1 + r2)(r2 + r3)(r3 + r1).

By (4) and (7), we have

x(R) = x1 + r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1 ,

y(R) = −
(
r
(1)
1 + r

(1)
2

)(
r
(1)
2 + r

(1)
3

)(
r
(1)
3 + r

(1)
1

)
,

which implies that

x(R) = x0 + (r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
,

y(R) = −
(
r
(1)
1 + r

(1)
2

)(
r
(1)
2 + r

(1)
3

)(
r
(1)
3 + r

(1)
1

)
.

(9)

§4. Torsion of elliptic curves

In the sequel, we will freely use the following well-known elementary observation.
Let κ be a nonzero element of K. Then there is a canonical isomorphism of the elliptic

curves

E : y2 = (x− α1)(x− α2)(x− α3)

and

E(κ) : y′
2
=

(
x′ − α1

κ2

)(
x′ − α2

κ2

)(
x′ − α3

κ2

)
that is given by the change of variables

x′ =
x

κ2
, y′ =

y

κ3

and respects the group structure. Under this isomorphism, the point (αi, 0) ∈ E(K) goes
to (αi/κ

2, 0) ∈ E(κ)(K) for all i = 1, 2, 3. Moreover, if P = (0, y(P )) lies in E(K), then
it goes (under the above isomorphism) to (0, y(P )/κ3) ∈ E(κ)(K).

We will also use the following classical result of Hasse (Hasse bound), see [21, Theo-
rem 4.2 on p. 97].

Theorem 4.1. If q is a prime power, Fq a q-element finite field and E an elliptic
curve over Fq, then E(Fq) is a finite Abelian group whose cardinality |E(Fq)| satisfies
the inequalities

(10) q − 2
√
q + 1 ≤ |E(Fq)| ≤ q + 2

√
q + 1.

Another result that we are going to use is the following immediate corollary to a
celebrated theorem of Mazur (see [12] and [11, Theorem 2.5.2 on p. 187]).

Theorem 4.2. If E is an elliptic curve over Q and the torsion subgroup E(Q)t of
E(Q) is not cyclic, then E(Q)t is isomorphic to Z/2mZ⊕Z/2Z with m = 1, 2, 3 or 4. In
particular, if m equals 3 or 4 and E(Q) contains a subgroup isomorphic to Z/2mZ⊕Z/2Z,
then E(Q)t is isomorphic to Z/2mZ⊕ Z/2Z.
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The next assertion follows readily from the list of possible torsion subgroups of elliptic
curves over quadratic fields, as obtained by Kamienny in [5] and Kenku–Momose in [7]
(see also [6, Theorem 1]).

Theorem 4.3. Let E be an elliptic curve over a quadratic field K. Assume that all
points of order 2 on E are defined over K. Let E(K)t be the torsion subgroup of E(K).
Then E(K)t is isomorphic either to Z/4Z⊕Z/4Z, or to Z/2mZ⊕Z/2Z with 1 ≤ m ≤ 6.

In particular, E(K)t enjoys the following properties.

(1) If m = 5 or 6 and E(K) contains a subgroup isomorphic to Z/2mZ⊕Z/2Z, then
E(K)t is isomorphic to Z/2mZ⊕ Z/2Z.

(2) If E(K) contains a subgroup isomorphic to Z/4Z⊕Z/4Z, then E(K)t is isomor-
phic to Z/4Z⊕ Z/4Z.

§5. Rational points of order 4

We are going to describe explicitly the elliptic curves (1) that contain a K-point of
order 4. For that, we consider the elliptic curve

E1,λ : y2 = (x+ λ2)(x+ 1)x

over K. Here λ is an element of K \ {0,±1}. In this case, we have

α1 = −λ2, α2 = −1, α3 = 0.

Notice that

E1,λ = E1,−λ.

All three differences

α3 − α1 = λ2, α3 − α2 = 12, α3 − α3 = 02

are squares in K. Dividing the order 2 point W3 = (0, 0) ∈ E1,λ(K) by 2, we get r3 = 0
and the four choices

r1 = ±λ, r2 = ±1.

Now Example 2.2 gives us four points Q with 2Q = W3, namely,

(λ,∓(λ+ 1)λ), (−λ,±(λ− 1)λ).

This implies that the group E1,λ(K) contains the subgroup generated by any Q and W1,
which is Z/4Z⊕ Z/2Z.

Remark 5.1. Our computations show that whenever Q is a K-point on E1,λ, we have

2Q = W3 if and only if x(Q) = ±λ.

Both cases (signs) do occur.

Remark 5.2. There is another family of elliptic curves (see [9, Table 3 on p. 217] and
also [15, Part 2] and [11, Appendix E])

E1,t : y2 + xy −
(
t2 − 1

16

)
y = x3 −

(
t2 − 1

16

)
x2

whose group of K-points contains a subgroup isomorphic to Z/4Z⊕ Z/2Z. If we put

y1 := y +
x− (t2 − 1

16 )

2
,

then the equation may be rewritten as

y21 = x3−
(
t2− 1

16

)
x2+

[
x− (t2− 1

16 )

2

]2
=

(
x− t2+

1

16

)(
x+

t

2
+

1

8

)(
x− t

2
+

1

8

)
.
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If we put x1 := x− t2 + 1/16, then the equation becomes

y21 = x1

(
x1 +

(
t+

1

4

)2
)(

x1 +

(
t− 1

4

)2
)
,

which determines the elliptic curve E1,λ(1/κ) with

λ =
t− 1

4

t+ 1
4

, κ = t+
1

4
.

In particular, E1,t is isomorphic to E1,λ.

Theorem 5.3. Let E be an elliptic curve over K. Then E(K) contains a subgroup
isomorphic to Z/4Z ⊕ Z/2Z if and only if there exists λ ∈ K \ {0,±1} such that E is
isomorphic to E1,λ.

Proof. We already know that E1,λ(K) contains a subgroup isomorphic to Z/4Z⊕ Z/2Z.
Conversely, suppose that E is an elliptic curve over K such that E(K) contains a sub-
group isomorphic to Z/4Z⊕Z/2Z. Then E(K) contains all three points of order 2, and,
therefore, E can be represented in the form (1). It is also clear that at least one of the
points (2) is divisible by 2 in E(K). Suppose that W3 is divisible by 2. We may assume
that α3 = 0. By Theorem 2.1, both nonzero differences

−α1 = α3 − α1, −α2 = α3 − α2

are squares in K; moreover, they are distinct elements of K. Thus, there are nonzero
a, b ∈ K such that a �= ±b and −α1 = a2, −α2 = b2. Since α3 = 0, the equation for E is

E : y2 = (x+ a2)(x+ b2)x.

If we put κ = b, then we see that E is isomorphic to

E(κ) : y′
2
=

(
x′ +

a2

b2

)
(x′ + 1)x′,

which is none other than E1,λ with λ = a/b. �

Corollary 5.4. Let E be an elliptic curve over F5. The group E(F5) is isomorphic to
Z/4Z⊕ Z/2Z if and only if E is isomorphic to the elliptic curve y2 = x3 − x.

Proof. Suppose that E(F5) is isomorphic to Z/4Z ⊕ Z/2Z. By Theorem 5.3, E is iso-
morphic to

y2 = (x+ λ2)(x+ 1)x with λ ∈ F5 \ {0, 1,−1}.
This implies that λ = ±2, λ2 = −1, and so E is isomorphic to

E1,2 : y2 = (x− 1)(x+ 1) = x3 − x.

Conversely, let E = E1,2. We need to check that E1,2(F5) ∼= Z/4Z ⊕ Z/2Z. By Theo-
rem 5.3, E(F5) contains a subgroup isomorphic to Z/4Z⊕Z/2Z; in particular, 8 divides
|E(F5)|. To finish the proof, now it suffices to check that |E(F5)| < 16, but this follows
from the Hasse bound (10)

|E(F5)| ≤ 5 + 2
√
5 + 1 < 11. �

Corollary 5.5. Let E be an elliptic curve over F7. The group E(F7) is isomorphic to
Z/4Z⊕ Z/2Z if and only if E is isomorphic to the elliptic curve y2 = (x+ 2)(x+ 1)x.
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Proof. Suppose that E(F7) is isomorphic to Z/4Z⊕ Z/2Z. From Theorem 5.3 it follows
that E is isomorphic to y2 = (x+λ2)(x+1)x with λ ∈ F7 \ {0, 1,−1}. This implies that
λ equals ±2 or ±3, and, therefore, λ2 is 4 or 2, i.e., E is isomorphic to one of the two
elliptic curves

E1,3 : y2 = (x+ 2)(x+ 1)x, E1,2 : y2 = (x+ 4)(x+ 1)x.

Since 1/4 = 2 in F7, the elliptic curve E1,3 coincides with E1,2(2); in particular, E1,2 and
E1,3 are isomorphic.

Now suppose that E = E1,2. We need to prove that E(F7) is isomorphic to Z/4Z ⊕
Z/2Z. By Theorem 5.3, E(F7) contains a subgroup isomorphic to Z/4Z⊕Z/2Z; in partic-
ular, 8 divides |E(F7)|. In order to finish the proof, it suffices to check that |E(F7)| < 16,
but this follows from the Hasse bound (10)

|E(F7)| ≤ 7 + 2
√
7 + 1 < 14. �

Theorem 5.6. Suppose that K contains i =
√
−1. Let a, b be nonzero elements of K

such that a �= ±b, a �= ±ib. Consider the elliptic curve

Ea,b : y2 = (x− α1)(x− α2)(x− α3)

over K with α1 = (a2 − b2)2, α2 = (a2 + b2)2, α3 = 0. Then all points of order 2 on E
are divisible by 2 in E(K), i.e., E(K) contains all twelve points of order 4. In particular,
Ea,b(K) contains a subgroup isomorphic to Z/4Z⊕ Z/4Z.

Proof. Clearly, all αi and −αj are squares in K. Moreover,

α2 − α1 = (a2 + b2)2 − (a2 − b2)2 = (2ab)2, α1 − α2 = (2iab)2.

This implies that all αi − αj are squares in K. From Theorem 2.1 it follows that all
points Wi = (αi, 0) of order 2 are divisible by 2 in E(K), and, therefore, E(K) contains
all twelve (3× 4) points of order 4. �

Keeping the notation and assumptions of Theorem 5.6, we use formula (6) to describe
explicitly all twelve points of order 4.

(1) Dividing the point W2 = (α2, 0) =
(
(a2 + b2)2, 0

)
by 2, we have r2 = 0 and

get four choices r1 = ±2ab, r3 = ±(a2 + b2). This gives us four points Q with
2Q = W2, namely, two points(
(a2 + b2)2 + 2ab(a2 + b2), ±(a2 + b2 + 2ab)2ab(a2 + b2)

)
=

(
(a2 + b2)(a+ b)2, ±2ab(a2 + b2)(a+ b)2

)
and two points

(
(a2 + b2)(a− b)2, ±2ab(a2 + b2)(a− b)2

)
.

(2) Dividing the point W3 = (α3, 0) = (0, 0) by 2, we have r3 = 0 and get four
choices r1 = ±i(a2 − b2), r2 = ±i(a2 + b2). This gives us four points Q with
2Q = W3, namely, two points(
(a2 − b2)(a2 + b2), ±(i((a2 − b2) + i(a2 + b2))(a2 − b2)(a2 + b2)

)
=

(
a4 − b4, ±2ia2(a4 − b4)

)
and two points

(
b4 − a4, ±2ib2(b4 − a4)

)
.

(3) Dividing the point W1 = (α1, 0) =
(
(a2 − b2)2, 0

)
by 2, we have r1 = 0 and get

four choices r2 = ±2iab, r3 = ±(a2 − b2). This gives us four points Q with
2Q = W3, namely, two points(
(a2 − b2)2 + 2iab(a2 − b2), ±(2iab+ (a2 − b2))2iab(a2 − b2)

)
=

(
(a2 − b2)(a+ ib)2, ±2iab(a2 − b2)(a+ ib)2

)
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and two points
(
(a2 − b2)(a− ib)2, ±2iab(a2 − b2)(a− ib)2

)
.

Remark 5.7. Let λ be an element of K \ {0,±1,±
√
−1}. We write E2,λ for the elliptic

curve

E2,λ : y2 =

(
x+

(λ2 − 1)2

(λ2 + 1)2

)
(x+ 1)x

over K. The elliptic curves E2,λ and Ea,b are isomorphic if a = λb. Indeed, it only suffices
to put κ = a2 + b2 and observe that Ea,b(κ) = E2,λ. Theorem 5.6 shows that E2,λ(K)
contains a subgroup isomorphic to Z/4Z⊕ Z/4Z.

There is another family of elliptic curves with this property, namely,

y2 = x(x− 1)

(
x− (u+ u−1)2

4

)

(see [19] and [15, pp. 451–453]; see also Remark 5.9).

Theorem 5.8. Let E be an elliptic curve over K. Then E(K) contains a subgroup
isomorphic to Z/4Z⊕ Z/4Z if and only if K contains

√
−1 and there exists

λ ∈ K \ {0,±1,±
√
−1} such that E is isomorphic to E2,λ.

Proof. Recall (Remark 5.7) that E2,λ(K) contains a subgroup isomorphic to Z/4Z⊕Z/4Z.
Conversely, suppose that E is an elliptic curve over K and E(K) contains a subgroup

isomorphic to Z/4Z ⊕ Z/4Z. By Theorem 5.3, there is δ ∈ K \ {0,±1} such that E is
isomorphic to

E1,δ : y2 = (x+ δ2)(x+ 1)x.

Hence, we may assume that α1 = −δ2, α2 = −1, α3 = 0. From Theorem 2.1 it follows
that all ±1,±(δ2 − 1) are squares in K. (In particular, i =

√
−1 lies in K.) So, there is

γ ∈ K with γ2 = 1− δ2. Clearly, γ �= 0,±1. We have

δ2 + γ2 = 1.

The well-known parametrization of the “unit circle” (that goes back to Euler) tells us
that there exists λ ∈ K such that λ2 + 1 �= 0 and

δ =
λ2 − 1

λ2 + 1
, γ =

2λ

λ2 + 1
.

Now it only suffices to plug the formula for δ in the equation of E1,δ and get E2,λ. �

Remark 5.9. Using a different parametrization of the unit circle in the proof of Theo-
rem 5.8, we obtain the family of elliptic curves

E : y2 =

(
x+

(2λ)2

(λ2 + 1)2

)
(x+ 1)x

with the same property as the family E2,λ. Notice that, for each λ ∈ K \ {0,±1}, the
elliptic curve E is isomorphic to the elliptic curve

y2 = x(x− 1)
(
x− (u+ u−1)2/4

)
mentioned in Remark 5.7. Indeed, the latter differs from E(κ) with κ = 2λ

√
−1/(λ2 + 1),

only by the change of the parameter λ by u.

Corollary 5.10. Let E be an elliptic curve over Fq, where q = 9, 13, 17. The group
E(Fq) is isomorphic to Z/4Z⊕Z/4Z if and only if E is isomorphic to one of the elliptic
curves E2,λ. Moreover, if q = 9, then E(Fq) is isomorphic to Z/4Z⊕Z/4Z if and only if
E is isomorphic to y2 = x3 − x.
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Proof. First, Fq contains
√
−1. Suppose that E(Fq) is isomorphic to Z/4Z ⊕ Z/4Z.

Theorem 5.8 shows that E is isomorphic to E2,λ.
Conversely, suppose that E is isomorphic to one of those curves. We need to prove

that E(Fq) is isomorphic to Z/4Z⊕ Z/4Z. By Theorem 5.8, E(Fq) contains a subgroup
isomorphic to Z/4Z ⊕ Z/4Z; in particular, 16 divides |E(Fq)|. Now it suffices to check
that |E(Fq)| < 32, but this inequality follows from the Hasse bound (10)

|E(Fq)| ≤ q + 2
√
q + 1 ≤ 17 + 2

√
17 + 1 < 27.

Now we assume that q = 9. Then λ is one of four ±(1± i). For all such λ we have

λ2 = ±2i = ∓i,
(λ2 − 1)2

(λ2 + 1)2
=

(1∓ i)2

(−1∓ i)2
=

∓2i

±2i
= −1.

Therefore, the equation for E2,λ is

y2 = (x− 1)(x+ 1)x = x3 − x. �

Corollary 5.11. Let E be an elliptic curve over F29. The group E(F29) is isomorphic
to Z/8Z⊕ Z/4Z if and only if E is isomorphic to one of the elliptic curves E2,λ.

Proof. First, F29 contains
√
−1. Suppose that E(F29) is isomorphic to Z/8Z ⊕ Z/4Z.

Then E(F29) contains a subgroup isomorphic to Z/4Z⊕ Z/4Z. Theorem 5.8 shows that
E is isomorphic to E2,λ.

Conversely, suppose that E is isomorphic to one of those curves. We need to prove
that E(F29) is isomorphic to Z/8Z⊕Z/4Z. By Theorem 5.8, E(F29) contains a subgroup
isomorphic to Z/4Z ⊕ Z/4Z; in particular, 16 divides |E(F29)|. The Hasse bound (10)
yields

29 + 1− 2
√
29 ≤ |E(Fq)| ≤ 29 + 1 + 2

√
29,

whence

19 < |E(F29)| < 41.

It follows that |E(F29)| = 32; in particular, E(F29) is a finite 2-group. Clearly, E(F29) is
isomorphic to the product of two cyclic 2-groups, each of which has order divisible by 4.
Consequently, E(F29) is isomorphic to Z/8Z⊕ Z/4Z. �

Theorem 5.12. Let K = Q(
√
−1), and let E be an elliptic curve over Q(

√
−1). Then

the torsion subgroup E(Q(
√
−1))t of E(Q(

√
−1)) is isomorphic to Z/4Z ⊕ Z/4Z if and

only if there exists λ ∈ K \ {0,±1,±
√
−1} such that E is isomorphic to E2,λ.

Proof. By Theorem 4.3, if E(Q(
√
−1)) contains a subgroup isomorphic to Z/4Z⊕Z/4Z,

then E(Q(
√
−1)t is isomorphic to Z/4Z ⊕ Z/4Z. Now the desired result follows from

Theorem 5.3. �

§6. Points of order 8

We return to the curve E1,λ and consider Q ∈ E1,λ(K) with 2Q = W3. Let us try to
divide Q by 2 in E(K). By Remark 5.1, x(Q) = ±λ. First, we assume that x(Q) = λ
(such Q does exist).

Lemma 6.1. Let Q be a point of E1,λ(K) with x(Q) = λ. Then Q is divisible by 2 in

E1,λ(K) if and only if there exists c ∈ K \ {0,±1,±1±
√
2,±

√
−1} such that

λ =

[
c− 1

c

2

]2
.
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Proof. We have

λ− α1 = λ− (−λ2) = λ+ λ2, λ− α2 = λ− (−1) = λ+ 1, λ− α3 = λ− 0 = λ.

By Theorem 2.1, Q ∈ 2E1,λ(K) if and only if all three λ+ λ2, λ+ 1, λ are squares in K.
The latter means that both λ and λ+ 1 are squares in K, i.e., there exist a, b ∈ K such
that a2 = λ+ 1, λ = b2. This implies that the pair (a, b) is a K-point on the hyperbola

u2 − v2 = 1.

Recall that λ �= 0,±1. Using the well-known parametrization

u =
t+ 1

t

2
, v =

t− 1
t

2

of the hyperbola, we see that both λ and λ+1 are squares in K if and only if there exists
a nonzero c ∈ K such that

λ =

[
c− 1

c

2

]2
.

If this is the case, then

a = ±
c+ 1

c

2
, b = ±

c− 1
c

2
and

λ+ 1 =

[
c+ 1

c

2

]2
.

Recall that λ �= 0,±1. This means that

c− 1
c

2
�= 0, ±1, ±

√
−1, i.e., c �= 0, ±1, ±1 ±

√
2, ±

√
−1. �

Now we assume that x(Q) = −λ (such Q does exist).

Lemma 6.2. Let Q be a point of E1,λ(K) with x(Q) = −λ. Then Q is divisible by 2 in

E1,λ(K) if and only if there exists c ∈ K \ {0,±1,±1±
√
2,±

√
−1} such that

λ = −
[
c− 1

c

2

]2
.

Proof. Applying Lemma 6.1 to −λ (in place of λ) and the curve E1,−λ = E1,λ, we see
that Q ∈ 2E1,−λ(K) = 2E1,λ(K) if and only if there exists

c ∈ K \ {0, ±1, ±1, ±
√
2, ±

√
−1}

such that

−λ =

[
c− 1

c

2

]2
. �

Lemmas 6.1 and 6.2 give us the following statement.

Proposition 6.3. The point W3 = (0, 0) is divisible by 4 in E1,λ(K) if and only if there

exists c ∈ K such that c �= 0,±1,±1±
√
2,±

√
−1 and

λ = ±
[
c− 1

c

2

]2
, i.e., λ2 =

[
c− 1

c

2

]4
.

Proposition 6.4. The following conditions are equivalent.

(i) If Q ∈ E1,λ(K) is any point with 2Q = W3, then Q lies in 2E1,λ(K).
(ii) If R is any point of E1,λ with 4R = W3, then R lies in E1,λ(K).
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(iii) There exist c, d ∈ K \ {0,±1,±1±
√
2,±

√
−1} such that

λ =

[
c− 1

c

2

]2
, −λ =

[
d− 1

d

2

]2
.

If these equivalent conditions are fulfilled, then K contains
√
−1 and E1,λ(K) contains

all (twelve) points of order 4.

Proof. The equivalence of (i) and (ii) is obvious. It is also clear that (ii) implies that all
points of order (dividing) 4 lie in E1,λ(K).

Recall (Remark 5.1) that the Q with 2Q = W3 are exactly the points of E1,λ with
x(Q) = ±λ. Now the equivalence of (ii) and (iii) follows from Lemmas 6.1 and 6.2.

To finish the proof, we note that λ �= 0 and

−1 =
−λ

λ
=

[[d− 1
d

2

]
[ c− 1

c

2

]
]2

. �

Suppose that

λ =

[
c− 1

c

2

]2
with c ∈ K \ {0,±1,±1±

√
2,±

√
−1}

and consider Q = (λ, (λ+ 1)λ) ∈ E1,λ(K) of order 4 with 2Q = W3. Let us find a point
R ∈ E1,λ(K) of order 8 with 2R = Q. First, observe that

Q = (λ, (λ+ 1)λ) =

([
c− 1

c

2

]2
,

[
c+ 1

c

2

]2
·
[
c− 1

c

2

]2)
=

(
(c2 − 1)2

4c2
,
(c4 − 1)2

4c4

)
.

We have

r1 =
√
λ+ λ2 =

√
(λ+ 1)λ, r2 =

√
λ+ 1, r3 =

√
λ; r1r2r3 = −(λ+ 1)λ.

This means that

r1 = ±
c− 1

c

2
·
c+ 1

c

2
, r2 = ±

c+ 1
c

2
, r3 = ±

c− 1
c

2
,

and the signs should be chosen in such a way that the product r1r2r3 coincide with

−
[
c− 1

c

2

]2
·
[
c+ 1

c

2

]2
.

For example, we may take

r1 = −
c− 1

c

2
·
c+ 1

c

2
= −

c2 − 1
c2

4
= −c4 − 1

4c2
, r2 =

c+ 1
c

2
, r3 =

c− 1
c

2
,

obtaining

r1 + r2 + r3 = −c4 − 1

4c2
+ c =

−c4 + 4c3 + 1

4c2
,

r1r2 + r2r3 + r3r1 = cr1 + r2r3 = −c(c4 − 1)

4c2
+

c4 − 1

4c2
=

(1− c)(c4 − 1)

4c2

(because r2 + r3 = c and r2r3 = (c4 − 1)/4c2)).
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Now (4) and (7) show that the coordinates of the corresponding R with 2R = Q look
like this:

x(R) = x(Q) + r1r2 + r2r3 + r3r1 =
(c2 − 1)2

4c2
+

(1− c)(c4 − 1)

4c2
=

(1− c)3(c+ 1)

4c
,

y(R) = −(r1 + r2)(r2 + r3)(r1 + r3)

= −
(
−
c− 1

c

2
·
c+ 1

c

2
+

c+ 1
c

2

)
c

(
−
c− 1

c

2
·
c+ 1

c

2
+

c− 1
c

2

)

= −
(
1−

c− 1
c

2

)
·
c+ 1

c

2
· c ·

(
1−

c+ 1
c

2

)
c− 1

c

2

= −
c2 − 1

c2

16
·
(
c− 2− 1

c

)(
c− 2 +

1

c

)
c = −

(
c2 − 1

c2

) (
(c− 2)2 − 1

c2

)
c

16
.

So, we get the K-point of order 8

R =

(
(1− c)3(c+ 1)

4c
,−

(
c2 − 1

c2

) (
(c− 2)2 − 1

c2

)
c

16

)

on the elliptic curve

E4,c := E
1,
(
± c− 1

c
2

)2 : y2 =

[
x+

(
c− 1

c

2

)4
]
(x+ 1)x

for any c ∈ K \ {0,±1,±1 ±
√
2,±

√
−1}. The group E4,c(K) contains the subgroup

generated by R and W1, which is isomorphic to Z/8Z⊕ Z/2Z.

Theorem 6.5. Let E be an elliptic curve over K. Then E(K) contains a subgroup

isomorphic to Z/8Z⊕ Z/2Z if and only if there exists c ∈ K \ {0,±1,±1±
√
2,±

√
−1}

such that E is isomorphic to E4,c.

Proof. We know that E4,c(K) contains a subgroup isomorphic to Z/8Z⊕ Z/2Z.
Conversely, suppose that E(K) contains a subgroup isomorphic to Z/8Z⊕Z/2Z. This

implies that E(K) contains all three points of order 2, i.e., E can be represented in the
form (1). Clearly, one of the points (2) is divisible by 4 in E(K). We may assume that
W3 is divisible by 4. We may also assume that α3 = 0, i.e., W3 = (0, 0). Then we
know that there exist distinct nonzero a, b ∈ K such that α1 = −a2, α2 = −b2, i.e., the
equation of E is

y2 = (x+ a2)(x+ b2)x.

Replacing E by E(b) and putting λ = a/b, we may assume that

E = E1,λ : y2 = (x+ λ2)(x+ 1)x.

Since W3 is divisible by 4 in E1,λ(K), the desired result follows from Proposition 6.3. �

Remark 6.6. There is another family of elliptic curves (see [9, Table 3 on p. 217], [11,
Appendix E]))

y2 + (1− a(t))xy − b(t)y = x3 − b(t)x2

with

a(t) =
(2t+ 1)(8t2 + 4t+ 1)

2(4t+ 1)(8t2 − 1)t
, b(t) =

(2t+ 1)(8t2 + 4t+ 1)

(8t2 − 1)2
,

whose group of rational points contains a subgroup isomorphic to Z/8Z⊕ Z/2Z.
Assume that t is an element of an arbitrary field K (with char(K) �= 2) such that

t �= 0, 8t2 − 1 �= 0, 4t+ 1 �= 0
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and put

U(t) := (2t+ 1)(8t2 + 4t+ 1), A(t) = 2(4t+ 1)(8t2 − 1)t �= 0, B(t) = (8t2 − 1)2 �= 0,

a(t) =
U(t)

A(t)
, b(t) =

U(t)

B(t)
.

Consider the cubic curve E4,t over K defined by the same equation

E4,t : y2 + (1− a(t))xy − b(t)y = x3 − b(t)x2

as above. By Theorem 6.5, if E4,t is an elliptic curve over K, then E4,t is isomorphic to
E4,c for some c ∈ K. Let us find the corresponding λ (as a rational function of t). First,
we rewrite the equation for E4,t as(

y +
(1− a(t)x)− b(t)

2

)2

= x3 − b(t)x2 +

(
(1− a(t))x− b(t)

2

)2

,

i.e.,

(
y +

(1− a(t)x)− b(t)

2

)2

= x3 − U(t)

B(t)
· x2 +

⎛
⎝
(
1− U(t)

A(t)

)
x− U(t)

B(t)

2

⎞
⎠

2

.

Second, multiplying the last equation by (A(t)B(t))6 and introducing the new variables

y1 = (A(t)B(t))3 ·
(
y +

(1− a(t))x− b(t)

2

)
, x1 = (A(t)B(t))2 · x,

we obtain (with the help of magma) the following equation for an isomorphic cubic

curve rE4,t :

y21 = x3
1 +

−U(t)A(t)2B(t) + ((U(t)−A(t))2B(t)2

4
x2
1

+
(U(t)−A(t))U(t)A(t)3B(t)3

2
x1 +

A(t)6B(t)4U(t)2

4
= (x1 − α1)(x1 − α2)(x1 − α3),

where

α1 = − (−4194304t15 − 5242880t14 − 262144t13 + 2162688t12 + 753664t11

− 262144t10 − 172032t9 − 2048t8 + 14336t7 + 2304t6 − 320t5 − 112t4 − 8t3),

α2 = − (4194304t16 + 4194304t15 − 1048576t14 − 2359296t13 − 327680t12

+ 491520t11 + 163840t10 − 40960t9 − 25600t8 + 1792t6 + 192t5 − 48t4 − 8t3),

α3 = − (−4194304t15 − 5242880t14 − 262144t13 + 2424832t12 + 1015808t11

− 294912t10 − 286720t9 − 25600t8 + 30720t7 + 8960t6 − 832t5

− 720t4 − 72t3 + 16t2 + 4t+ 1/4).

Using magma, we obtain

α2 − α1 = −222t4(t+ 1/2)4(t2 − 1/8)4, α3 − α1 = −218(t+ 1/4)4(t2 − 1/8)4.

This implies that rE4,t (and, therefore, E4,t) is an elliptic curve over K (i.e., all three
α1, α2, α3 are distinct elements of K) if and only if

t �= 0, −1

2
, −1

4
, ± 1

2
√
2
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and
α2 − α1

α3 − α1
=

(
2t(t+ 1/2)

t+ 1/4

)4

�= 1.

Assume that all these inequalities are satisfied. Then the change of variable x2 = x1+α1

transforms rE3,t to the elliptic curve

E : y21 = x2(x2 − (α2 − α1))(x2 − (α3 − α1))

= x2

(
x2 + 222t4(t+ 1/2)4(t2 − 1/8)4

) (
x2 + 218(t+ 1/4)4(t2 − 1/8)4

)
.

Putting κ = 29(t+ 1/4)2(t2 − 1/8)2, we get

κ2 = −(α3 − α1)

and E is isomorphic to the elliptic curve

E(κ) : y′
2
= x′

(
x′ +

α2 − α1

α3 − α1

)
(x′ + 1) = x′

(
x′ +

(
2t(t+ 1/2)

t+ 1/4

)4
)
(x′ + 1).

Notice that

2t(t+ 1/2)

t+ 1/4
=

2t(4t+ 2)

(4t+ 1)
=

4t(4t+ 2)

2(4t+ 1)
=

(4t+ 1)2 − 1

2(4t+ 1)
=

(4t+ 1)− 1
(4t+1)

2
,

whence E(κ) = E4,c with c = (4t + 1). This implies that E4,t is isomorphic to E4,c with
c = (4t+ 1).

Remark 6.7. Suppose that K = Fq with q equal to 3, 5, 7, or 9. Then

Fq \ {0, 1,−1,±1±
√
2,±

√
−1} = ∅.

Corollary 6.8. Let E be an elliptic curve over Fq, where q = 11, 13, 17, 19. The group
E(Fq) is isomorphic to Z/8Z⊕Z/2Z if and only if E is isomorphic to one of the elliptic
curves E4,c.

Proof. Suppose that E(Fq) is isomorphic to Z/8Z⊕Z/2Z. Theorem 6.5 shows that E is
isomorphic to one of the elliptic curves

E4,c : y2 =

[
x+

(
c− 1

c

2

)4
]
(x+ 1)x

with c ∈ K \ {0,±1,±
√
−1,±

√
−1}. Conversely, suppose that E is isomorphic to one

of those curves. We need to prove that E(Fq) is isomorphic to Z/8Z ⊕ Z/2Z. By
Theorem 6.5, E(Fq) contains a subgroup isomorphic to Z/8Z ⊕ Z/2Z; in particular, 16
divides |E(Fq)|. Now, it suffices to check that |E(Fq)| < 32, but this follows from the
Hasse bound (10)

|E(Fq)| ≤ q + 2
√
q + 1 ≤ 19 + 2

√
19 + 1 < 29. �

Corollary 6.9. Let E be an elliptic curve over F47. The group E(F47) is isomorphic to
Z/24Z⊕ Z/2Z if and only if E is isomorphic to one of the elliptic curves E4,c.

Proof. Suppose that E(F47) is isomorphic to Z/24Z⊕Z/2Z. Then it contains a subgroup
isomorphic to Z/8Z⊕Z/2Z. From Theorem 6.5 it follows that E is isomorphic to one of
the elliptic curves

E4,c : y2 =

[
x+

(
c− 1

c

2

)4
]
(x+ 1)x

with c ∈ K \ {0,±1,±1±
√
2,±

√
−1}.
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Conversely, suppose that E is isomorphic to one of those curves. We need to prove
that E(F47) is isomorphic to Z/24Z⊕Z/2Z. By Theorem 6.5, E(F47) contains a subgroup
isomorphic to Z/8Z⊕ Z/2Z; in particular, 16 divides |E(F47)|. By the Hasse bound, we
have

47 + 1− 2
√
47 ≤ |E(F47)| ≤ 47 + 1 + 2

√
47,

whence 34 < |E(F47)| < 62. This implies that |E(F47)| = 48; in particular, E(F47)
contains a point of order 3. This implies that E(F47) contains a subgroup isomorphic to

(Z/8Z⊕ Z/2Z)⊕ Z/3Z ∼= Z/24Z⊕ Z/2Z.

Since this subgroup has the same order 48 as the entire group E(F47), we get the desired
result. �

Theorem 6.10. Let K = Q, and let E be an elliptic curve over Q. Then the torsion
subgroup E(Q)t of E(Q) is isomorphic to Z/8Z ⊕ Z/2Z if and only if there exists c ∈
Q \ {0,±1} such that E is isomorphic to E4,c.

Proof. By Theorem 4.2 applied to m = 4, if E(Q) contains a subgroup isomorphic to
Z/8Z⊕Z/2Z, then E(Q)t is isomorphic to Z/8Z⊕Z/2Z. Now the desired result follows

from Theorem 6.5, because neither
√
2 nor

√
−1 lies in Q. �

Theorem 6.11. Let E be an elliptic curve over K. Then E(K) contains a subgroup
isomorphic to Z/8Z⊕ Z/4Z if and only if K contains i =

√
−1 and there exist

c, d ∈ K \ {0,±1,±1±
√
2,±

√
−1} such that c− 1

c
= i

(
d− 1

d

)
and E is isomorphic to E4,c.

Remark 6.12. The above equation and inequalities determine a dense open set in the
plane affine curve

(11) M8,4 : (c2 − 1)d = i(d2 − 1)c.

It is immediate that the corresponding projective closure is a nonsingular cubic M̄8,4

with a K-point, i.e., an elliptic curve. To obtain a Weierstrass normal form of M̄8,4,
first we slightly simplify equation(11) by the change of variables d = s, ic = t, getting
s2t+ ts2 + s− t = 0. Then, using the birational transformation

s =
η

ξ + ξ2
, t =

η

1 + ξ
,

we obtain η2 = ξ3 − ξ3.

Proof of Theorem 6.11. We have already seen that E4,c(K) contains an order 8 point
R with 4R = W3. From Proposition 6.4 it follows that E4,c(K) contains all points of
order 4. In particular, it contains an order 4 point Q with 2Q = W1. Clearly, R and Q
generate a subgroup isomorphic to Z/8Z⊕ Z/4Z.

Conversely, suppose that E(K) contains a subgroup isomorphic to Z/8Z ⊕ Z/4Z.
This implies that E(K) contains all twelve points of order 4. In particular, E can be
represented in the form (1). Clearly, one of the points of order 2 is divisible by 4 in
E(K). We may assume that W3 is divisible by 4. The same arguments as in the proof
of Theorem 6.5 allow us to assume that

E = E1,λ : y2 = (x+ λ2)(x+ 1)x.

3See [16, Example 1.4.2 on p. 88] for an explicit description of the (finite) set of all Q(i)-points on
this elliptic curve; none of them corresponds to the (c, d) that satisfy the conditions of Theorem 6.11.
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Since W3 is divisible by 4 in E1,λ(K) and all points of order dividing 4 lie in E1,λ(K),
every point R of E1,λ with 4R = W3 also lies in E1,λ(K). Proposition 6.3 shows that K

contains i =
√
−1 and there exist

c, d ∈ K \ {0, 1,−1,±1±
√
2,±

√
−1}

such that

λ =

[
c− 1

c

2

]2
, −λ =

[
d− 1

d

2

]2
.

This implies that

c− 1

c
= ±i

(
d− 1

d

)
.

Replacing if necessary d by −d, we obtain the desired relation

c− 1

c
= i

(
d− 1

d

)
. �

§7. Points of order 3

The following assertion gives a simple description of points of order 3 on elliptic curves.

Proposition 7.1. A point P = (x0, y0) ∈ E(K) has order 3 if and only if one can choose
three square roots ri =

√
x0 − αi in such a way that

r1r2 + r2r3 + r3r1 = 0.

Proof. Indeed, let P be a point of order 3. Then 2(−P ) = P . Hence, all x0 − αi are
squares in K. By (4),

x(−P ) = x0 + (r1r2 + r2r3 + r3r1)

for a suitable choice of r1, r2, r3. Since x(−P ) = x(P ) = x0, we get r1r2+r2r3+r3r1 = 0.
Conversely, suppose that there exists a triple of square roots ri =

√
x0 − αi such that

r1r2 + r2r3 + r3r1 = 0. Since P ∈ E(K), we have

(r1r2r3)
2 = (x0 − α1)(x0 − α2)(x0 − α3) = y20 ,

i.e., r1r2r3 = ±y0. Replacing r1, r2, r3 by −r1,−r2,−r3 if necessary, we may assume that
r1r2r3 = −y0. Then there exists a point Q = (x(Q), y(Q)) ∈ E(K) such that 2Q = P ,
and x1 = x(Q), y1 = y(Q) are expressed in terms of r1, r2, r3 as in (6). Therefore,

x(Q) = x0 + (r1r2 + r2r3 + r3r1) = x0,

y(Q) = −y0 − (r1 + r2 + r3)(r1r2 + r2r3 + r3r1) = −y0,

i.e., Q = −P, 2(−P ) = P , whence P has order 3. �
Theorem 7.2. Let a1, a2, a3 be elements of K such that all a21, a

2
2, a

2
3 are distinct. Con-

sider the elliptic curve

E = Ea1,a2,a3
: y2 = (x+ a21)(x+ a22)(x+ a23)

over K and its K-point P = (0, a1a2a3). Then P enjoys the following properties.

(i) P is divisible by 2 in E(K). More precisely, there are four points Q ∈ E(K) with
2Q = P , namely,

(a2a3 − a1a2 − a3a1, (a1 − a2)(a2 + a3)(a3 − a1)),

(a3a1 − a1a2 − a2a3, (a1 − a2)(a2 − a3)(a3 + a1)),

(a1a2 − a2a3 − a3a1, (a1 + a2)(a2 − a3)(a3 − a1),

(a1a2 + a2a3 + a3a1, (a1 + a2)(a2 + a3)(a3 + a1)).

(ii) The following conditions are equivalent.
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(1) P has order 3.
(2) None of ai vanishes, i.e., ±a1,±a2,±a3 are six distinct elements of K, and

one of the following four relations is fulfilled:

a2a3 = a1a2 + a3a1, a3a1 = a1a2 + a2a3,

a1a2 = a2a3 + a3a1, a1a2 + a2a3 + a3a1 = 0.

(iii) Suppose that the equivalent conditions (i)–(ii) are satisfied. Then one of four
points Q coincides with −Q and has order 3, while the three other points are of
order 6. Moreover, E(K) contains a subgroup isomorphic to Z/6Z⊕ Z/2Z.

Remark 7.3. Clearly, Ea1,a2,a3
= E±a1,±a2,±a3

.

Proof of Theorem 7.2. We have

α1 = −a21, α2 = −a22, α3 = −a23.

Let us try to divide P by 2 in E(K). We have

r1 = ±a1, r2 = ±a2, r3 = ±a3.

Since all ri lie in K, the point P = (0, a1a2a3) is divisible by 2 in E(K). Let Q be a
point on E with 2Q = P . By (4) and (7),

x(Q) = r1r2 + r2r3 + r3r1, y(Q) = −(r1 + r2)(r2 + r3)(r3 + r1)

with r1r2r3 = −a1a2a3. Plugging ri = ±ai in the formulas for x(Q) and y(Q), we get
explicit formulas for points Q as in the statement of the theorem. This proves (i).

We prove (ii). Suppose that P has order 3. Since P is not of order 2, we have
0 = x(P ) �= αi for all i = 1, 2, 3. Since

{α1, α2, α3} = {−a21,−a22,−a23},

none of the ai vanishes. Proposition 7.1 allows us to choose the signs for ri in such a
way that r1r2 + r2r3 + r3r1 = 0. Plugging ri = ±ai in this formula, we get four relations
between a1, a2, a3 as in (ii), (2).

Now suppose that one of relations as in (ii), (2) is fulfilled. This means that the signs
of ri = ±ai can be chosen in such a way that r1r2+r2r3+r3r1 = 0. From Proposition 7.1
it follows that P has order 3. This proves (ii).

Now we prove (iii). Since P has order 3, we have 2(−P ) = P , i.e., −P is one of the
four Q’s. Suppose that Q is a point of E with 2Q = P, Q �= −P . Clearly, the order of
Q is either 3 or 6. Assume that Q has order 3. Then P = 2Q = −Q, whence Q = −P ,
which is not the case. Hence, Q has order 6. Then 3Q has order 2, i.e., 3Q coincides
with Wi = (−a2i , 0) for some i ∈ {1, 2, 3}. Pick j ∈ {1, 2, 3} \ {i} and consider the point
Wj = (−a2j , 0) �= Wi. Then the subgroup of E(K) generated by Q and Wj is isomorphic
to Z/6Z⊕ Z/2Z. This proves (iii). �

Remark 7.4. In Theorem 7.2 we do not assume that char(K) �= 3!

Corollary 7.5. Let a1, a2, a3 be elements of K such that a21, a
2
2, a

2
3 are distinct.

The following conditions are equivalent.

(i) The point P = (0, a1a2a3) ∈ Ea1,a2,a3
(K) has order 3.

(ii) None of the ai vanishes, and the signs for

a = ±a1, b = ±a2, c = ±a3

can be chosen in such a way that c = ab/(a+ b).
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If these conditions are satisfied, then

Ea1,a2,a3
= Eλ,b : y2 =

(
x2 + (λb)2

) (
x+ b2

)(
x+

(
λ

λ+ 1
b

)2
)
,

where λ = a/b ∈ K \
{
0,±1,−2,− 1

2

}
.

Proof. Suppose that condition (ii) of the corollary is fulfilled, i.e., none of the ai vanishes,
and the signs for

a = ±a1, b = ±a2, c = ±a3

can be chosen in such a way that c = ab/(a + b). Then none of a, b, c vanishes and
ab = ac+ bc. By Theorem 7.2(ii), P = (0, abc) is a point of order 3 on the elliptic curve

Eλ,b = Ea1,a2,a3
.

Since abc = ±a1a2a3, either P = P , or P = −P . In both cases P has order 3.
Observe that±a1,±a2,±a3 are six distinct elements ofK. This means that ±a,±b,±c

are also six distinct elements of K. If we put λ = a/b, then

±λb, ±b, ±λ+ 1

λ
b

are six distinct elements of K. This means (since a �= 0, b �= 0) that

λ �= 0, ±1, −2, −1

2
.

Suppose P has order 3. By Theorem 7.2(ii), none of the ai vanishes and one of the
following four identities is true:

a2a3 = a1a2 + a3a1, a3a1 = a1a2 + a2a3,

a1a2 = a2a3 + a3a1, a1a2 + a2a3 + a3a1 = 0.

Here are the corresponding choices of a, b, c with c = ab/(a+ b):

a = a1, b = −a2, c = a3; a = a1, b = −a2, c = a3;

a = a1, b = a2, c = a3; a = a1, b = a2, c = −a3.

To finish the proof, now we only need to note that a = λb and

c =
ab

a+ b
=

λb · b
λb+ b

=
λ

λ+ 1
b. �

Theorem 7.6. Let E be an elliptic curve over K. Then E(K) contains a subgroup
isomorphic to Z/6Z⊕Z/2Z if and only if there exists λ ∈ K \ {0,±1,−2,− 1

2} such that
E is isomorphic to

E3,λ : y2 =
(
x2 + λ2

)
(x+ 1)

(
x+

(
λ

λ+ 1

)2
)
.

Proof of Theorem 7.6. Let λ ∈ K \ {0,±1,−2,−1/2} and put a1 = λ, a2 = 1, a3 =
λ/(λ+ 1). Then all ai do not vanish, a21, a

2
2, a

2
3 are three distinct elements of K, a1a2 =

a2a3 + a3a1, and E3,λ = Ea1,a2,a3
. Referring to Theorem 7.2, we see that E3,λ contains a

subgroup isomorphic to Z/6Z⊕ Z/2Z.
Conversely, suppose that E is an elliptic curve over K such that E(K) contains a

subgroup isomorphic to Z/6Z ⊕ Z/2Z. It follows that all three points of order 2 lie in
E(K), so that E can be represented in the form (1). It is also clear that E(K) contains
a point of order 3. Let us choose a point P = (x(P ), y(P )) ∈ E(K) of order 3. We may
assume that x(P ) = 0. We have P = 2(−P ), and, therefore, P is divisible by 2 in E(K).
By Theorem 2.1, all x(P ) − αi = −αi are squares in K. This implies that there exist
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elements a1, a2, a3 ∈ K such that αi = −a2i . Clearly, all three a21, a
2
2, a

2
3 are distinct.

Since P lies on E, we have

y(P )2 = (x(P ) + a21)(x(P ) + a22)(x(P ) + a23) = a21a
2
2a

2
3 = (a1a2a3)

2,

whence y(P ) = ±a1a2a3. Replacing P by −P if necessary, we may assume that y(P ) =
a1a2a3, i.e., P = (0, a1a2a3) is a K-point of order 3 on

E = Ea1,a2,a3
: y2 = (x+ a1)

2(x+ a22)(x+ a3)
2.

By Corollary 7.5, there exists a nonzero element b ∈ K and λ ∈ K \ {0,±1,−2,−1/2}
such that

E = Ea1,a2,a3
= Eλ,b : y2 =

(
x+ (λb)2

) (
x+ b2

)(
x+

[
λ

λ+ 1
b

]2)
.

But Eλ,b is isomorphic to

Eλ,b(b) : y′
2
= (x′ + λ2)(x′ + 1)

(
x′ +

[
λ

λ+ 1

]2)
,

and the latter coincides with E3,λ. �
Remark 7.7. There is a family of elliptic curves over Q (see [9, Table 3 on p. 217] and
also [11, Appendix E]),

E3,t : y2 + (1− a(t))xy − b(t)y = x3 − b(t)x2,

where

a(t) =
10− 2t

t2 − 9
, b(t) =

−2(t− 1)2(t− 5)

(t2 − 9)2

and t ∈ Q \ {1, 5,±3, 9}, whose group of rational points contains a subgroup isomorphic
to Z/6Z⊕ Z/2Z. (The point (0, 0) of E3,t has order 6, ibid.) Assume that t �= ±3 is an
element of an arbitrary field K (with char(K) �= 2) and consider the cubic curve E3,t

over K defined by the same equation as above.
By Theorem 7.6, if E3,t is an elliptic curve over K, then E3,t is isomorphic to E3,λ for

some λ ∈ K. Let us find the corresponding λ (as a rational function of t). First, rewrite
the equation for E3,λ as(

y +
(1− a(t)x)− b(t)

2

)2

= x3 − b(t)x2 +

(
(1− a(t))x− b(t)

2

)2

.

Second, multiplying the last equation by (t2 − 9)6 and introducing the new variables

y1 = (t2 − 9)3 ·
(
y +

(1− a(t))x− b(t)

2

)
, x1 = (t2 − 9)2 · x,

we obtain (with the help of magma) an equation for an isomorphic cubic curve

rE3,t : y21 = (x1 − α1)(x1 − α2)(x1 − α3),

where

α1 = −(2t3 − 10t2 − 18t+ 90) = −2(t− 5)(t− 3)(t+ 3),

α2 = −(2t3 − 10t2 + 14t− 6) = −2(t− 3)(t− 1)2,

α3 = −
(
1

4
t4 − t3 − 5

2
t2 + 7t− 15

4

)
= −1

4
(t− 5)(t+ 3)(t− 1)2.

We have

α1 − α2 = −25(t− 3), α2 − α3 =
1

4
· (t− 1)3(t− 9), α3 − α1 = −1

4
· (t− 5)3(t+ 3).
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This implies that rE3,t (and, therefore, E3,t) is an elliptic curve over K if and only if

t ∈ K \ {1,±3, 5, 9}.

Next, assume that this condition is fulfilled, so that rE3,t and E3,t are elliptic curves

over K. Clearly, all three points of order 2 on rE3,t are defined over K, and the K-point

Q = (x1(Q), y1(Q)) = (0,−(t− 5)(t− 3)(t+ 3)(t− 1)2)

lies on rE3,t. We prove that Q has order 6. Consider the point P = 2Q ∈ E(K) with
coordinates x1(P ), y1(P ) ∈ K. (Since y1(P ) �= 0, we have P �= ∞.) In accordance with
the formulas of §1, there exists a unique triple r1, r2, r3 of distinct elements of K such
that

(r1 + r2)(r2 + r3)(r3 + r1) = −y1(Q) = (t− 5)(t− 3)(t+ 3)(t− 1)2

and, for all i = 1, 2, 3,

x1(P )− αi = r2i ,

0 �= −αi = x1(Q)− αi = (ri + rj)(ri + rk),

where (i, j, k) is a permutation of (1, 2, 3). This implies that

r1 + r2 =
(t− 5)(t− 3)(t+ 3)(t− 1)2

−a3
=

(t− 5)(t− 3)(t+ 3)(t− 1)2

1
4 (t− 5)(t+ 3)(t− 1)2

= 4(t− 3),

r2 + r3 =
(t− 5)(t− 3)(t+ 3)(t− 1)2

−a1
=

(t− 5)(t− 3)(t+ 3)(t− 1)2

2(t− 5)(t− 3)(t+ 3)
=

1

2
· (t− 1)2,

r3 + r1 =
(t− 5)(t− 3)(t+ 3)(t− 1)2

−a2
=

(t− 5)(t− 3)(t+ 3)(t− 1)2

2(t− 3)(t− 1)2

=
1

2
· (t− 5)(t+ 3).

Consequently,

r1 + r2 = 4(t− 3), r2 + r3 =
(t− 1)2

2
, r3 + r1 =

(t+ 3)(t− 5)

2
,

whence

r1 + r2 + r3 =
1

2
· ((r1 + r2) + (r2 + r3) + (r3 + r1)) =

1

2
· (t2 + 2t− 19),

which, in turn, implies that

r1 = 2t− 10 = 2(t− 5), r2 = 2t− 2 = 2(t− 1), r3 =
1

2
· (t− 1)(t− 5) =

1

8
r1r2.

It is easy to check that

c(t) := −2t3 + 14t2 − 22t+ 10 = r2i + αi for all i = 1, 2, 3.

This implies that

x1(P ) = c(t), c(t)− αi = r2i for all i = 1, 2, 3,

and rE3,t is isomorphic to the elliptic curve

Er1,r2,r3 : y21 = (x2 + r21)(x2 + r22)(x3 + r23)

with x2 = x1 − c(t). Moreover,

y1(P ) = −r1r2r3 = −2(t− 1)2(t− 5).

We have

r1r2 = 8r3, r2 − r1 = 8.
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This implies (r2 − r1)r3 = r1r2, which means that

(−r1)r2 + r2r3 + (−r1)r3 = 0.

Proposition 7.1 shows that P has order 3 in rE3,t(K). (In particular, all ri �= 0.) Since

2Q = P , the order of Q in rE3,t is 6.
Observe that

−r3 =
(−r1)r2

(−r1) + r2
and

Er1,r2,r3 = E−r1,r2,−r3 .

From Corollary 7.5 and the end of the proof of Theorem 7.6 it follows that Er1,r2,r3 is
isomorphic to E3,λ with

λ =
−r1
r2

=
−(2t− 10)

2t− 2
= − t− 5

t− 1
.

This implies that E3,t is isomorphic to E3,λ with λ = −(t− 5)/(t− 1).

Corollary 7.8. Let E be an elliptic curve over Fq, where q = 7, 9, 11, 13. The group
E(Fq) is isomorphic to Z/6Z⊕Z/2Z if and only if E is isomorphic to one of the elliptic
curves E3,λ.

Proof. Suppose that E(Fq) is isomorphic to Z/6Z ⊕ Z/2Z. By Theorem 7.6, E is iso-
morphic to one of the elliptic curves E3,λ.

Conversely, suppose that E is isomorphic to one of those curves. We need to prove
that E(Fq) is isomorphic to Z/6Z⊕ Z/2Z. By Theorem 7.6, E(Fq) contains a subgroup
isomorphic to Z/6Z ⊕ Z/2Z; in particular, 12 divides |E(Fq)|. Now, it suffices to check
that |E(Fq)| < 24, but this follows from the Hasse bound (10)

|E(Fq)| ≤ q + 2
√
q + 1 ≤ 13 + 2

√
13 + 1 < 22. �

Corollary 7.9. Let E be an elliptic curve over F23. The group E(F23) is isomorphic to
Z/12Z⊕ Z/2Z if and only if E is isomorphic to one of the elliptic curves E3,λ.

Proof. Suppose that E(F23) is isomorphic to Z/12Z⊕Z/2Z. Then it contains a subgroup
isomorphic to Z/6Z⊕Z/2Z. By Theorem 7.6, E is isomorphic to one of the elliptic curves
E3,λ.

Conversely, suppose that E is isomorphic to one of those curves. We need to prove
that E(F23) is isomorphic to Z/12Z⊕Z/2Z. By Theorem 7.6, E(F23) contains a subgroup
isomorphic to Z/6Z ⊕ Z/2Z; in particular, 12 divides |E(F23)|. The Hasse bound (10)
shows that

23 + 1− 2
√
23 ≤ |E(F23)| ≤ 23 + 1 + 2

√
23,

whence 14 < |E(F23)| < 34. It follows that |E(F23)| = 24; in particular the 2-primary
component E(F23)(2) of E(F23) has order 8. On the other hand, E(F23)(2) is isomorphic
to a product of two cyclic groups each of which has even order. This implies that
E(F23)(2) is isomorphic to Z/4Z ⊕ Z/2Z. Since E(F23) contains a point of order 3, we
conclude that it contains a subgroup isomorphic to

(Z/4Z⊕ Z/2Z)⊕ Z/3Z ∼= Z/12Z⊕ Z/3Z.

This subgroup has the same order 24 as the entire group E(F23), which finishes the
proof. �

Theorem 7.10. Let K = Q, and let E be an elliptic curve over Q. Then the torsion
subgroup E(Q)t of E(Q) is isomorphic to Z/6Z ⊕ Z/2Z if and only if there exists λ ∈
Q \ {0,±1,−2,− 1

2} such that E is isomorphic to E3,λ.
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Proof. By Theorem 4.2 applied to m = 3, if E(Q) contains a subgroup isomorphic to
Z/6Z⊕Z/2Z, then E(Q)t is isomorphic to Z/6Z⊕Z/2Z. Now the desired result follows
from Theorem 7.6. �

§8. Points of order 5

The following assertion gives a description of points of order 5 on elliptic curves.

Proposition 8.1. Let P = (x0, y0) ∈ E(K). The point P has order 5 if and only if the

square roots ri =
√
x0 − αi and r

(1)
i =

√
(ri + rj)(ri + rk), where i, j, k is a permutation

of 1, 2, 3, can be chosen in such a way that

(12)
(r1r2 + r2r3 + r3r1) +

(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
= 0,

r1r2 + r2r3 + r3r1 �= 0.

Remark 8.2. Observe that if we drop the condition r1r2r3 = −y0 in formulas (4) and
(7), then we get 8 points Q such that 2Q = ±P . Similarly, if we drop the conditions

r1r2r3 = −y0, r
(1)
1 r

(1)
2 r

(1)
3 = (r1 + r2)(r2 + r3)(r3 + r1) in formulas (9), then we obtain

all points R for which 4R = ±P .

Proof of Proposition 8.1. Suppose that P has order 5. Then −P is a 1/4th of P . There-

fore, there exist ri and r
(1)
i such that

x(−P ) = x(P ) + (r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
.

Since x(P ) = x(−P ), we have

(r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
= 0.

On the other hand, if r1r2+r2r3+r3r1, then the corresponding Q (with 2Q = P ) satisfies

x(Q) = x(P ) + (r1r2 + r2r3 + r3r1) = x(P ),

whence Q = P or −P . Since 2Q = P , either P = 2P or Q = −P = −2Q has order 5.
Clearly, P �= 2P . If Q = −2Q, then Q has order dividing 3, which is not true because
its order is 5. The contradiction obtained proves that r1r2 + r2r3 + r3r1 �= 0.

Conversely, suppose there exist square roots

ri =
√
x0 − αi and r

(1)
i =

√
(ri + rj)(ri + rk)

that satisfy (12). Replacing if necessary all ri by −ri, we may and shall assume that
r1r2r3 = −y(P ). Let Q = (x(Q), y(Q)) be the corresponding half of P with x(Q) =
x(P ) + (r1r2 + r2r3 + r3r1). Since r1r2 + r2r3 + r3r1 �= 0, we have x(Q) �= x(P ); in

particular, Q �= −P . Replacing if necessary all r
(1)
i by r

(1)
i , we may and will assume

that

r
(1)
1 r

(1)
2 r

(1)
3 = (r1 + r2)(r2 + r3)(r3 + r1) = −y(Q).

Let R = (x(R), y(R)) be the corresponding half of Q. Then 4R = 2(2R) = 2Q = P and

x(R) = x(P ) + (r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
= x(P ).

This means that either R = P , or R = −P . If R = P , then R = 4R and R has
order 3. This implies that both Q = 2R and P = 4R also have order 3. It follows that
P = 2Q = −Q, whence P = −Q, which is not the case. Therefore, R = −P . This means
that R = −4R, i.e., R has order 5 and, therefore, P = −R also has order 5. �
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Below, we use the following identities in the polynomial ring Z[t1, t2, t3], which can be
checked either directly, or by using magma:

(−t21 + t22 + t23)(t
2
1 − t22 + t23) + (t21 − t22 + t23)(t

2
1 + t22 − t23)

+ (t21 + t22 − t23)(−t21 + t22 + t23)

= −(t1 + t2 + t3)(−t1 + t2 + t3)(t1 − t2 + t3)(t1 + t2 − t3),

(13)

(−t21 + t22 + t23)(t
2
1 − t22 + t23) + (t21 − t22 + t23)(t

2
1 + t22 − t23)

+ (t21 + t22 − t23)(−t21 + t22 + t23) + 4t21t2t3 + 4t1t
2
2t3 + 4t1t2t

2
3

= t41 + t42 + t43 − 2t21t
2
2 − 2t22t

2
3 − 2t21t

2
3 − 4t21t2t3 − 4t1t

2
2t3 − 4t1t2t

2
3

= (t1 + t2 + t3)
(
t31 + t32 + t33 − t21t2 − t1t

2
2 − t22t3 − t2t

2
3 − t21t3 − t1t

2
3 − 2t1t2t3

)
.

(14)

Theorem 8.3. Let a1, a2, a3 be elements of K such that ±a1,±a2,±a3 are six distinct
elements of K and none of three elements

β1 = −a21 + a22 + a23, β2 = a21 − a22 + a23, β3 = a21 + a22 − a23

vanishes. Then the following conditions are satisfied.

(i) None of the ai vanishes and β2
1 , β

2
2 , β

2
3 are three distinct elements of K.

(ii) Consider the elliptic curve

E5;a1,a2,a3
: y2 =

(
x+

β2
1

4

)(
x+

β2
2

4

)(
x+

β2
3

4

)
with P = (0,−β1β2β3/8) ∈ E5;a1,a2,a3

(K).
Then P enjoys the following properties.

(1) P ∈ 2E5;a1,a2,a3
(K).

(2) Assume that

(15)
a31 + a32 + a33 − a21a2 − a1a

2
2 − a22a3 − a2a

2
3 − a21a3 − a1a

2
3 − 2a1a2a3 = 0,

(a1 + a2 + a3)(a1 − a2 − a3)(a1 + a2 − a3)(a1 − a2 + a3) �= 0.

Then P has order 5. Moreover, E5;a1,a2,a3
(K) contains a subgroup isomorphic

to Z/10Z⊕ Z/2Z.

Proof. (i) Since ai �= −ai, none of the ai vanishes. Let i, j ∈ {1, 2, 3} be two distinct
indices and k ∈ {1, 2, 3} the third index. Then

βi − βj = a2j − a2i �= 0, βi + βj = 2a2k �= 0.

This implies that β2
i �= β2

j .
(ii) Keeping our notation, we obtain

r1 = ±β1

2
=±−a21 + a22 + a23

2
, r2=±β2

2
=

a21 − a22 + a23
2

, r3=±β3

2
= ±a21 + a22 − a23

2
,

r
(1)
i = ±

√
(ri + rj)(ri + rk),

where i, j, k is any permutation of 1, 2, 3. By Proposition 8.1, it suffices to check that the

square roots ri and r
(1)
i can be chosen in such a way that r1r2 + r2r3 + r3r1 �= 0 and

(16) (r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
= 0.

Put

ri =
βi

2
=

−a2i + a2j + a2k
2

.

We have
r1 + r2 = a23, r1 + r3 = a22, r2 + r3 = a21.
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It follows that
(r

(1)
1 )2 = a22a

2
3, (r

(1)
2 )2 = a21a

2
3, (r

(1)
3 )2 = a21a

2
1.

Let
r
(1)
1 = a2a3, r

(1)
2 = a1a3, r

(1)
3 = a1a2.

Then condition (16) can be rewritten as follows:

(−a21 + a22 + a23)(a
2
1 − a22 + a23) + (a21 − a22 + a23)(a

2
1 + a22 − a23)

+ (a21 + a22 − a23)(−a21 + a22 + a23) + 4a21a2a3 + 4a1a
2
2a3 + 4a1a2a

2
3 = 0.

By (14), condition (16) may be rewritten as

(a1 + a2 + a3)(a
3
1 + a32 + a33 − a21a2 − a1a

2
2 − a22a3 − a2a

2
3 − a21a3 − a1a

2
3 − 2a1a2a3) = 0.

The last identity follows readily from the assumption (15) of Theorem. By Proposi-
tion 8.1, now it suffices to check that r1r2 + r2r3 + r3r1 �= 0. In other words, we need to
prove that

(17)
(−a21 + a22 + a23)(a

2
1 − a22 + a23) + (a21 − a22 + a23)(a

2
1 + a22 − a23)

+ (a21 + a22 − a23)(−a21 + a22 + a23) �= 0.

By (13), this inequality is equivalent to

(a1 + a2 + a3)(a1 − a2 − a3)(a1 + a2 − a3)(a1 − a2 + a3) �= 0.

But the last inequality holds true by the assumption (15) of the theorem. Hence, P
has order 5. Clearly, P and all points of order 2 generate a subgroup isomorphic to
Z/10Z⊕ Z/2Z. �

Theorem 8.4. Let E be an elliptic curve over K. The following conditions are equiva-
lent:

(i) E(K) contains a subgroup isomorphic to Z/10Z⊕ Z/2Z;
(ii) there exists a triple {a1, a2, a3} ⊂ K that satisfies all the conditions of Theo-

rem 8.3, including (15), and such that E is isomorphic to E5;a1,a2,a3
.

Proof. Statement (i) follows from (ii), thanks to Theorem 8.3.
Suppose (i) is true. In order to prove (ii), it suffices to check that E is isomorphic

to a certain E5;a1,a2,a3
over K. We may assume that E is defined by an equation of

the form (1). Suppose that P = (0, y(P )) ∈ E(K) has order 5. Then P = 4(−P ) is
divisible by 4 in E(K). This implies the existence of square roots ri =

√
−αi ∈ K and

r
(1)
i =

√
(ri + rj)(ri + rk) ∈ K such that

x(−P ) = x(P ) + (r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
,

r
(1)
1 r

(1)
2 r

(1)
3 = (r1 + r2)(r2 + r3)(r3 + r1).

Since x(−P ) = x(P ) = 0, we have

(18) (r1r2 + r2r3 + r3r1) +
(
r
(1)
1 r

(1)
2 + r

(1)
2 r

(1)
3 + r

(1)
3 r

(1)
1

)
= 0.

Since the order of P is not 3, it follows that

(19) r1r2 + r2r3 + r3r1 �= 0.

Recall that none of ri + rj vanishes. Let the square roots

b1 =
√
r2 + r3, b2 =

√
r1 + r3, b3 =

√
r1 + r2

be chosen in such a way that r
(1)
1 = b2b3, r

(1)
2 = b3b1. Since

r
(1)
1 r

(1)
2 r

(1)
3 = b21b

2
2b

2
3 = (b1b2b3)

2,
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we conclude that

r
(1)
3 =

r
(1)
1 r

(1)
2 r

(1)
3

r
(1)
2 r

(1)
3

=
(b1b2b3)

2

(b2b3)(b3b1)
= b1b2.

We obtain

(20) r
(1)
1 = b2b3, r

(1)
2 = b3b1, r

(1)
3 = b1b2.

Unfortunately, bi may fail to lie in K. However, all the ratios bi/bj lie in K∗. We have

r2 + r3 = b21, r1 + r3 = b22, r1 + r2 = b23,

whence

(21)

r1 =
−b21 + b22 + b23

2
, r2 =

b21 − b22 + b23
2

, r3 =
b21 + b22 − b23

2
,

α1 = −r21 =
(−b21 + b22 + b23)

2

4
, α2 = −r22 = − (b21 − b22 + b23)

2

4
,

α3 = −r23 = − (b21 + b22 − b23)
2

4
,

P = (0,−(r1 + r2)(r2 + r3)(r3 + r1)) = (0,−b21b
2
2b

2
3) ∈ E(K).

Since none of the ri vanishes, we get

−b21 + b22 + b23 �= 0, b21 − b22 + b23 �= 0, b21 + b22 − b23 �= 0.

Put
γ1 = −b21 + b22 + b23, γ2 = b21 − b22 + b23, γ3 = b21 + b22 − b23.

Theorem 8.3(i) shows that all βi are distinct nonzero elements of K. Inequality (19)
combined with the first formula in (21) yields

(−b21+b22+b23)(b
2
1−b22+b23)+(b21−b22+b23)(b

2
1+b22−b23)+(b21+b22−b23)(−b21+b22+b23) �= 0,

which is equivalent (by (13)) to

(b1 + b2 + b3)(b1 − b2 − b3)(b1 + b2 − b3)(b1 − b2 + b3) �= 0.

In particular,
b1 + b2 + b3 �= 0.

Identity (18) (with the help of (14)) yields

(b1 + b2 + b3)(b
3
1 + b32 + b33 − b21b2 − b1b

2
2 − a22b3 − b2b

2
3 − b21b3 − b1b

2
3 − 2b1b2b3) = 0,

i.e.,
b31 + b32 + b33 − b21b2 − b1b

2
2 − a22b3 − b2b

2
3 − b21b3 − b1b

2
3 − 2b1b2b3 = 0.

Put

a1 =
b1
b3
, a2 =

b2
b3
, a3 =

b3
b3

= 1.

All ai lie in K. Clearly, the triple {a1, a2, a3} satisfies all the conditions of Theorem 8.3,
including (15). Let

β1 = −a21 + a22 + a23 =
γ1
b23

=
γ1

r1 + r2
,

β2 = a21 − a22 + a23 =
γ2
b23

=
γ2

r1 + r2
,

β3 = a21 + a22 − a23 =
γ3
b23

=
γ3

r1 + r2
.

The equation of E is

y2 =

(
x+

γ2
1

4

)(
x+

γ2
2

4

)(
x+

γ2
3

4

)
.
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Then E is isomorphic to

E(r1 + r2) : y
′2 =

(
x′ +

γ2
1

4(r1 + r2)2

)(
x′ +

γ2
2

4(r1 + r2)2

)(
x′ +

γ2
3

4(r1 + r2)2

)

=

(
x′ +

β2
1

4

)(
x′ +

β2
2

4

)(
x′ +

β2
3

4

)
.

Clearly, E(r1 + r2) coincides with E5;a1,a2,a3
. �

Remark 8.5. Suppose that E5;a1,a2,a3
is as in Theorem 8.3. Clearly, E5;a1,a2,a3

(a3) =
E5;a1/a3,a2/a3,1. Putting λ = a1/a3, μ = a2/a3, we have

(22)

E5;a1/a3,a2/a3,1 = E5;λ,μ,1 :

y2 =

[
x+

(
−λ2 + μ2 + 1

2

)2
][

x+

(
λ2 − μ2 + 1

2

)2
][

x+

(
λ2 + μ2 − 1

2

)2
]
.

The equation of the curve E5;λ,μ,1

(
λ2+μ2−1

2

)
, isomorphic to E5;λ,μ,1, looks like this:

(23)

E5;λ,μ,1

(
λ2 + μ2 − 1

2

)
: y2 =

[
x+

(
1− λ2 + μ2

λ2 + μ2 − 1

)2
][

x+

(
λ2 − μ2 + 1

λ2 + μ2 − 1

)2
]
(x+ 1).

The conditions on a1, a2, a3 can be rewritten in terms of λ, μ as follows:

(24)

λ3 + μ3 − λ2μ− λμ2 − λ2 − 2λμ− μ2 − λ− μ+ 1 = 0,

λ± μ �= ±1, λ �= 0, μ �= 0, λ �= ±μ,

λ2 + μ2 �= 1, λ2 − μ2 �= ±1.

Identity (24) is equivalent to

(25) (λ+ μ)(λ− μ)2 − (λ+ μ)2 − (λ+ μ) + 1 = 0.

Multiplying (25) by the (nonvanishing) number λ+ μ, we get the equivalent equation

(26) (λ2 − μ2)2 − (λ+ μ)3 − (λ+ μ)2 + (λ+ μ) = 0.

The change of variables
ξ = λ+ μ, η = λ2 − μ2

transforms (26) to

(27) η2 = ξ(ξ2 + ξ − 1),

which is an (affine model of an) elliptic curve whenever char(K) �= 5, and a singular
rational plane cubic (Cartesian leaf) if char(K) = 5. Since

(28) λ2 + μ2 =
(λ+ μ)2 + (λ− μ)2

2
=

ξ2 + η2

ξ2

2
=

ξ2 + ξ2+ξ−1
ξ

2
=

ξ3 + ξ2 + ξ − 1

2ξ
,

the only restrictions on (ξ, η) besides (27) are the inequalities

ξ(ξ2 + ξ − 1) �= 0,±1; ξ3 + ξ2 + ξ − 1 �= 2ξ, ±1 �= η

ξ
=

√
ξ(ξ2 + ξ − 1)

ξ2
,

i.e.,

(29) ξ �= 0, ±1,
−1±

√
5

2
.

This means that

(30) (ξ, η) �∈
{
(0, 0), (±1,±1),

(−1±
√
5

2
, 0
)}

.
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Using (28), we can rewrite equation (22) with coefficients that are rational functions in
ξ, η (rather than (λ, μ)) as follows.

E5,ξ,η : y2 =

[
x+

(
2(1− η)

ξ3 + ξ2 + ξ − 3

)2
][

x+

(
2(η + 1)

ξ3 + ξ2 + ξ − 3

)2
]
(x+ 1).

Theorem 8.6. Let E be an elliptic curve over K. Then the following conditions are
equivalent:

(i) E(K) contains a subgroup isomorphic to Z/10Z⊕ Z/2Z;
(ii) there exist (ξ, η) ∈ K2 satisfying (27) and (30) and such that E is isomorphic

to E5,ξ,η.

Proof. This follows from Theorem 8.4 combined with Remark 8.5. �

Remark 8.7. In Theorem 8.6 it is not assumed that char(K) �= 5!

Corollary 8.8. Let E be an elliptic curve over Fq with q = 13, 17, 19, 23, 25, 27. Then
E(Fq) is isomorphic to Z/10Z⊕ Z/2Z if and only if E is isomorphic to one of E5,ξ,η.

Proof. Suppose that E(Fq) is isomorphic to Z/10Z ⊕ Z/2Z. By Theorem 8.6, E is
isomorphic to one of the elliptic curves E5,ξ,η.

Conversely, suppose that E is isomorphic to one of those curves. We need to prove
that E(Fq) is isomorphic to Z/10Z⊕Z/2Z. By Theorem 8.6, E(Fq) contains a subgroup
isomorphic to Z/10Z⊕ Z/2Z; in particular, 20 divides |E(Fq)|. Now, it suffices to check
that |E(Fq)| < 40, but this follows from the Hasse bound (10)

|E(Fq)| ≤ q + 2
√
q + 1 ≤ 27 + 2

√
27 + 1 < 40. �

Corollary 8.9. Let E be an elliptic curve over Fq with q = 31, 37, 41, 43. Then E(Fq)
is isomorphic to Z/20Z⊕Z/2Z if and only if E is isomorphic to one of the curves E5,ξ,η.

Proof. Suppose that E(Fq) is isomorphic to Z/20Z⊕Z/2Z; the latter contains a subgroup
isomorphic to Z/10Z ⊕ Z/2Z. By Theorem 8.6, E is isomorphic to one of the elliptic
curves E5,ξ,η.

Conversely, suppose that E is isomorphic to one of these curves. We need to prove
that E(Fq) is isomorphic to Z/20Z⊕Z/2Z. By Theorem 8.6, E(Fq) contains a subgroup
isomorphic to Z/10Z ⊕ Z/2Z; in particular, 20 divides |E(Fq)|. The Hasse bound (10)
yields

20 < 31− 2
√
31 + 1 ≤ |E(Fq)| ≤ 43 + 2

√
43 + 1 < 60.

This implies that |E(Fq)| = 40, and therefore, E(Fq) is isomorphic to a direct sum of
Z/5Z and the order 8 Abelian group E(Fq)(2); moreover, the latter group is isomorphic
to a direct sum of two cyclic groups of even order (because it contains a subgroup
isomorphic to Z/2Z⊕Z/2Z). This implies that E(Fq)(2) is isomorphic to Z/4Z⊕Z/2Z.
Consequently, E(Fq) is isomorphic to the direct sum

Z/5Z⊕ Z/4Z⊕ Z/2Z ∼= Z/20Z⊕ Z/2Z. �

Corollary 8.10. Let E be an elliptic curve over Fq with q = 59 or 61. Then E(Fq) is
isomorphic to Z/30Z⊕ Z/2Z if and only if E is isomorphic to one of the curves E5,ξ,η.

Proof. Suppose that E(Fq) is isomorphic to Z/30Z⊕Z/2Z; the latter contains a subgroup
isomorphic to Z/10Z ⊕ Z/2Z. By Theorem 8.6, E is isomorphic to one of the elliptic
curves E5,ξ,η.

Conversely, suppose that E is isomorphic to one of those curves. We need to prove
that E(Fq) is isomorphic to Z/30Z⊕Z/2Z. By Theorem 8.6, E(Fq) contains a subgroup
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isomorphic to Z/10Z ⊕ Z/2Z; in particular, 20 divides |E(Fq)|. The Hasse bound (10)
yields

40 < 59− 2
√
59 + 1 ≤ |E(Fq)| < 61 + 2

√
61 + 1 < 80.

This implies that |E(Fq)| = 60; in particular, E(Fq) contains a subgroup isomorphic
to Z/3Z. Therefore, E(Fq) contains a subgroup isomorphic to

(Z/10Z⊕ Z/2Z)⊕ Z/3Z ∼= Z/30Z⊕ Z/2Z.

The order of this subgroup is 60, i.e., it coincides with the order of the entire
group E(Fq). �

Theorem 8.11. Let K be a quadratic field, and let E be an elliptic curve over K. Then
the following conditions are equivalent:

(i) the torsion subgroup E(K)t of E(K) is isomorphic to Z/10Z⊕ Z/2Z;
(ii) there exist (ξ, η) ∈ K2 satisfying (27) and (30) and such that E is isomorphic

to E5,ξ,η.

Proof. By Theorem 4.3, if E(K) contains a subgroup isomorphic to Z/10Z⊕Z/2Z, then
E(K)t is isomorphic to Z/10Z ⊕ Z/2Z. Now the desired result follows from
Theorem 8.6. �
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