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FOUR-DIMENSIONAL GRAPH-MANIFOLDS WITH FUNDAMENTAL

GROUPS QUASIISOMETRIC TO FUNDAMENTAL GROUPS

OF ORTHOGONAL GRAPH-MANIFOLDS

A. SMIRNOV

Abstract. A topological invariant called the type of a graph-manifold, which takes
natural values, is introduced. For a 4-dimensional graph-manifold whose type does
not exceed two it is proved that its universal cover is bi-Lipschitz equivalent to a
universal cover of an orthogonal graph-manifold (for arbitrary Riemannian metrics
on graph-manifolds).

§1. Introduction

The main result of this paper (see Theorem 1.1) establishes a bi-Lipschitz equiva-
lence of universal covers for some classes of 4-dimensional graph-manifolds. This result
is motivated by the problem of finding asymptotic invariants of graph-manifolds, in par-
ticular, the asymptotic dimension (asdim π1(M)) and the linearly-controlled asymptotic
dimension (�-asdim π1(M)) of their fundamental groups. Theorem 1.1 allows us to reduce
finding these dimensions for a wide class of graph-manifolds to the results of [9].

In the 3-dimensional case, dimM = 3, the problem of finding asymptotic dimen-
sions were solved in [6]. For the case where dimM ≥ 4, the asymptotic dimensions
asdim π1(M) and �-asdim π1(M) were found only for graph-manifolds of a special type,
called the orthogonal graph-manifolds. Namely, for the orthogonal graph-manifolds in [9]
it was proved that

asdim π1(M) = �-asdim π1(M) = dimM.

The definition of these invariants can be found, e.g., in [4, 5, 9].
In the 3-dimensional case, the orthogonal graph-manifolds are analogs of the so-called

flip graph-manifolds, for which gluings between blocks are especially simple. In accor-
dance with [7], the fundamental group of any closed 3-dimensional graph-manifold is
quasiisometric to the fundamental group of a flip graph-manifold, therefore, the funda-
mental groups of any closed 3-dimensional graph-manifolds are pairwise quasiisometric.
In higher dimensions this is not true. In this paper we introduce a topological invariant,
typeM , of the graph-manifold M , which takes natural values. In any dimension greater
than 3 it is not difficult to construct a graph-manifold of any type. However, for the
4-dimensional orthogonal graph-manifolds, the type always does not exceed 2. The main
result of this paper is as follows.

Theorem 1.1. If the type of a 4-dimensional graph-manifold M does not exceed two,
typeM ≤ 2, then its universal cover is bi-Lipschitz equivalent to the universal cover of
some orthogonal graph-manifold (for any Riemannian metrics on graph-manifolds).
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Corollary 1.2. For the fundamental group of any 4-dimensional graph-manifold M with
typeM ≤ 2, there is a quasiisometric embedding into the product of 4 metric trees, and,
consequently, asdim π1(M) = �-asdim π1(M) = 4, where asdim and �-asdim are the
asymptotic and linearly-controlled asymptotic dimensions.

This corollary yields a simple and easily verifiable sufficient condition that allows us
to calculate asdimπ1(M) and �-asdimπ1(M).

Moreover, the class GM2 of graph-manifolds with typeM ≤ 2 is much wider (see §5)
than the class of orthogonal graph-manifolds. Next, it is highly doubtful that any graph-
manifold of class GM2 has a finite cover by an orthogonal graph-manifold.

As an important additional result we give a criterion of orthogonality for the 4-dimen-
sional graph-manifolds whose blocks have type 2, see Theorem 5.2. As a consequence, we
obtain a wide class of nonorthogonal 4-dimensional graph-manifolds whose type is equal
to 2 (see Corollary 5.3).

The proof of Theorem 1.1 consists of two steps. An important role is played by the
intersection number and the secondary intersection number, which in the general case
can be arbitrary positive integers (see Subsection 2.5). For orthogonal graph-manifolds,
these numbers are equal to 1. At the first step, in §3, we pass to a finite cover of
the graph-manifold M to build a 4-dimensional graph-manifold N whose intersection
numbers and secondary intersection numbers are equal to 1. Since the universal covers
of graph-manifolds M and N coincide, we only need to prove Theorem 1.1 for the graph-
manifold N .

At the second step, we “reglue” the graph-manifold N to an orthogonal graph-manifold
without changing the bi-Lipschitz type of its universal cover. The procedure of regluing
is described in §4. It is a generalization of the procedure used in [7] for 3-dimensional
graph-manifolds.

Corollary 1.2 follows from the result of [9] saying that the fundamental group of any
n-dimensional orthogonal graph-manifold M can be quasiisometrically embedded into
the product of n metric trees, and, consequently,

asdim π1(M) = �-asdim π1(M) = n.

§2. Preliminaries

2.1. Graph-manifolds.

Definition 1. Let n ≥ 3. A higher-dimensional graph-manifold is a closed, oriented,
n-dimensional manifold M that is glued from finitely many blocks Mv, M =

⋃
v∈V Mv,

such that the following conditions (1)–(3) are satisfied.

(1) Each blockMv is a trivial bundle of (n−2)-dimensional tori Tn−2 over a compact,
oriented surface Φv with boundary (the surface must be different from the disk
and the annulus);

(2) the manifold M is glued from blocks Mv, v ∈ V , by diffeomorphisms between
the boundary components (we do not exclude the case of gluing the boundary
components of a single block);

(3) the gluing diffeomorphisms do not identify the homotopy classes of fiber tori.

Such graph-manifolds for n ≥ 4 were introduced in [3].
With each graph-manifold M , the graph G dual to its block decomposition is associ-

ated. Thus, the set of blocks of a graph-manifold coincides with the set of vertices V of
the graph G, and the set of pairs of glued blocks coincides with the set of edges E of G.
The set of all directed edges of G will be denoted by W.
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The orthogonal graph-manifolds defined in [9] are only distinguished in the class of
graph-manifolds by the condition in item 3 on gluing diffeomorphisms. They are obtained
as follows.

For each vertex v ∈ V, we fix a trivialization of the fibration Mv → Φv, that is, we
represent the block Mv = Φv ×S1×· · ·×S1 as the product where S1 occurs n−2 times.
Thus, for each edge w = {vv′} adjacent to a vertex v, we have a trivialization of the
boundary torus Tw = S1×S1×· · ·×S1, ((n−1) times) of the block Mv that corresponds
to the edge w.

In the same way, for each edge −w going in the opposite direction, we have a trivial-
ization of the boundary torus T−w = S1 × S1 × · · · × S1 of the block Mv′ .

We fix an order on the set of all factors of the trivialization, and define a gluing diffeo-
morphism of the tori Tw and T−w by some permutation sw of factors of the trivialization
that does not identify the boundary components Φv and Φv′ .

Note that this map is a well-defined gluing, because the permutations sw, and s−w

are selected to be mutually inverse. Also, the map ηw does not identify the homotopy
classes of fiber tori.

In this case, for edges w and −w going in opposite directions, the permutations sw

and s−w are selected to be mutually inverse, i.e., s−w ◦ sw = id.
In other words, a graph-manifold is orthogonal if and only if there exists a trivialization

of all blocks such that the gluing maps are determined by permutations of the factors
as described above. The disadvantage of this definition is that it does not allow one to
verify whether a given graph-manifold is orthogonal or not. It depends on the choice of
trivializations of the blocks, which is not unique. For another choice of trivializations
of gluing blocks the graph-manifold in question may cease to be orthogonal. In §5 we
present a criterion of orthogonality for some class of 4-dimensional graph-manifolds. This
criterion does not depend on the choice of trivializations.

2.2. W-structure. The main tool for working with graph-manifolds is the so-called
W -structure, first described in the 3-dimensional case in the papers [1, 2] by Waldhausen.
For the n-dimensional case, the definition of a W -structure was given in [3]. For the
reader’s convenience, we give these definitions here.

Let G be the graph of a graph-manifold M . For a vertex v ∈ V, by ∂v we mean the
set of all directed edges adjacent to v.

With each directed edge w ∈ W, we associate the homology group Lw = H1(Tw;Z) �
Z
n−1 of the gluing torus Tw, and with each vertex v ∈ V we associate the homology

group Fv = H1(Tv;Z) � Z
n−2 of the fiber Tv of the block Mv.

Moreover, if w ∈ ∂v, then Fv embeds in Lw as a maximal subgroup Fw.
We call the group Fv � Fw a fiber group. Each orientation of the graph-manifold M

fixes the corresponding orientations of each block of M , and, thus, the corresponding
orientations of the groups Lw, w ∈ W. The orientations of the groups Lw and L−w are
opposite.

The gluing of blocks is described by an isomorphism ĝw : L−w → Lw such that

ĝ−w = ĝ−1
w ;(1)

ĝw(F−w) �= Fw.(2)

For each edge w ∈ ∂v, the choice of a trivialization of each block Mv, as well as a
trivialization of the fiber, fixes a basis of the group Lw (up to the choice of the signs of
its elements) so that the corresponding subset of elements forms a basis of the group Fw.

Such bases are said to be selected.
We describe the set of selected bases of the groups Lw, w ∈ W, in terms of their

transformation groups. Let fv = (f1
v , . . . , f

n−2
v ) be a basis of the group Fv.
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We choose a basis (zw, fw) of the group Lw so that fw = fv, and there exists a
trivialization Mv = Φv × Tn−2 such that the set {zw | w ∈ ∂v} corresponds to the
boundary of the surface Φv.

In this case, the basis fv determines an orientation of the fiber Fv, and the basis
(zw, fw) yields some orientation of the group Lw.

The group of transformations of these bases consists of matrices of the form

hw =

(
εv 0
nw σv

)
,

where εv = ±1, nw ∈ Z
n−2, σv ∈ GL(n− 2,Z), and on bases it acts as follows:

(zw, fw) · hw = (zw · εw + fw · nw, fw · σv).

We require that for each vertex v ∈ V the following conditions be fulfilled:

εv · det σv = 1;(3) ∑
w∈∂v

nw = 0.(4)

It is easily seen that the set H of matrices of the form

h =
⊕
w∈W

hw

satisfying conditions (3) and (4) is a group. Condition (3) means that each basis (zw, fw)
agrees with the fixed orientation of the group Lw, and condition (4) means that these
bases correspond to some trivialization of the block Mv.

The W -structure associated with a graph-manifold M is a collection of groups {Lw |
w ∈ W}, satisfying conditions (1) and (2) and the set of their bases of the form Θ =
(z, f) · H, where (z, f) is the set of bases mentioned above and det gz,fw = −1 for each
directed edge w ∈ W.

The last condition means that the isomorphism ĝw : L−w → Lw reverses orientation.
The elements (z, f) ∈ Θ are called a Waldhausen basis.

For a fixed Waldhausen basis (z, f), the gluing isomorphism is described by the matrix

gw = gz,fw =

(
aw bw
cw dw

)
,

where

(z−w, f−w) = (zw, fw) · gw(5)

(it is assumed that the groups L−w and Lw are identified by the isomorphism ĝw). Here
aw ∈ Z. The row bw and the column cw consist of n − 2 integers. The matrix dw is an
integral matrix of size (n− 2)× (n− 2).

Remark 1. A graph-manifold M is orthogonal if and only if on each block of M there
is a trivialization such that for each directed edge w ∈ W its induced bases (zw, fw)
and (z−w, f−w) of the groups Lw and L−w differ only by permutation of elements, and,
perhaps, by putting signs at vectors.

2.3. Fiber subspaces and intersection of lattices. In what follows, we shall use
subgroups of groups isomorphic to Z

n. In this case, the maximal subgroups will play an
important role. For brevity, we shall call them lattices.

The lattice in a group G isomorphic to Z
n is a maximal subgroup H that is isomorphic

to Z
k for some k ≤ n. That is, this is a subgroup for which there is no another subgroup

H ′ < G isomorphic to Z
k and such that H < H ′. By the dimension of the lattice we

mean the number k.
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Remark 2. The intersection G1 ∩ G2 of two lattices G1 and G2 is a lattice, because if
γm ∈ Gi, m �= 0, then γ ∈ Gi, i = 1, 2.

For each edge |w| ∈ E we denote by P|w| the intersection of the lattices Fw and F−w.
This lattice in L|w| will be called the intersection lattice for the edge w.

Definition 2. For any edges w, w′ ∈ ∂v, we say that the lattices P|w| and P|w′| are
parallel if and only if they are the same in the group Fv.

In this case, for brevity, we also say that the edges w and w′ are parallel.

Definition 3. The lattices P|w| viewed as subgroups of the group Fv, w ∈ ∂v, are called
the intersection lattices for the vertex v.

2.4. Type of a block and graph-manifolds. Let Mv be a block of a graph-manifold
M that corresponds to a vertex v.

Definition 4. The type of the vertex v (or of the block Mv) is the maximal number of
pairwise nonparallel edges w ∈ ∂v.

We denote the type of the vertex (of the block) by type v (typeMv). The type of a
graph-manifold M is the maximal type of its blocks, typeM := maxv∈V type v.

Remark 3. The type of a block, and consequently the type of the graph-manifold, do
not depend on the choice of a Waldhausen basis. This means that they are topological
invariants of the graph-manifold.

In this paper we consider only graph-manifolds of dimension 4, and we are interested
in blocks having type 1 or 2. For each block Mv of type 1, we denote a unique intersection
lattice of the vertex v by P 1

v . For each block Mv of type 2, we denote the corresponding
intersection lattices by P 1

v and P 2
v .

In what follows, unless otherwise stated, by a graph-manifold we mean a 4-dimensional
graph-manifold.

2.5. Intersection number and secondary intersection number. Recall the defi-
nitions of some invariants of W -structures, as described in [3].

Using condition (2), we see that any integer string bw is nonzero. Therefore, the
greatest common divisor iw ≥ 1 of its elements is well defined.

Definition 5. The number iw is called the intersection number of the W -structure on
the edge w.

Geometrically, iw is the number of intersection components of Tw ∩ T−w ⊂ T|w|.
Since iw = i−w, i.e., the intersection number is independent of the edge direction, we

can introduce the intersection number of an undirected edge e = |w|, as ie = iw = i−w.
Let Fe be a smallest subgroup of the group Le that contains Fw and F−w, Fe =

〈Fw, F−w〉.

Lemma 2.1. The subgroup index (Le : Fe) is equal to the intersection number ie of the
edge e.

Proof. The group Fe is generated by the elements fw, f−w, Fe = 〈fw, f−w〉, while
Le = 〈zw, fw〉.

Condition (5) shows that the elements b1w · zw, b2w · zw, . . . , bn−2
w · zw belong to the

group Fe, where bw = (b1w, . . . , b
n−2
w ).

Since the intersection number ie is equal to the greatest common divisor of the numbers
b1w, b

2
w, . . . , b

n−2
w , we have α · zw ∈ Fe if and only if α is divisible by ie. Therefore,

(Le : Fe) = ie. �
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For each block Mv of type 2, the intersection lattices P 1
v , P

2
v ⊂ Fv generate a subgroup

Pv � Z
2, Pv = 〈P 1

v , P
2
v 〉 (the smallest subgroup in Fv containing P 1

v and P 2
v ) in the

group Fv.

Definition 6. We call the group Pv the group of fiber intersections for the block Mv.

The subgroup Pv is not necessarily maximal, so it may fail to be a lattice in Fv � Z
2.

Definition 7. The index jv of the subgroup Pv in the group Fv is called the secondary
intersection number at the vertex v.

For each block Mv of type 1, we choose Pv = Fv and jv = 1. (Since P 1
v � Z and

Pv � Z
2, we have Pv �= P 1

v .)

§3. Unwinding of intersection numbers up to 1.

In this section we prove that for any graph-manifold there is a finite sheet cover by
a graph-manifold with all intersection numbers and all secondary intersection numbers
equal to 1.

Lemma 3.1. For any graph-manifold M there is a finite sheet cover by a graph-manifold
N for which all intersection numbers are equal to 1, and also all secondary intersection
numbers are equal to 1.

Proof. For each vertex v ∈ V we consider a cover rv : T
2 → T 2 corresponding to a

subgroup Pv < Fv = π1(T
2) of the fundamental group of the fiber torus (for a vertex

of type 1 such a cover is trivial). The degree of this cover is equal to the secondary
intersection number jv at v.

Consider the surface Φv; we construct an orbifold Φ′
v as follows. For each edge w ∈ ∂v,

we glue a disk Dw with a conic point with an angle of 2π/ju, where u is the other end
of the edge w, to the corresponding component of the boundary of Φv.

Since the surface with boundary Φv is different from the disk and the ring, the orbifold
Φ′

v is a good compact 2-dimensional orbifold without boundary, and therefore (see [8,
Theorem 2.5]), there is a closed surface Ψ′

v and a finite cover p′v : Ψ
′
v → Φ′

v.
Let nv be the degree of this cover. We denote the product

∏
v∈V nv by N , and the

product
∏

v∈V jv by J .

From the surface Ψ′
v we cut out the preimage (p′)−1

v (
⋃

w∈∂v Dw) of the glued disks,
obtaining a surface Ψv with boundary that covers the surface Φv with boundary with
finite degree. We denote the corresponding cover by pv : Ψv → Φv.

Let Nv = Ψv × T 2. These manifolds will also be called blocks. We define the cover

qv : Nv → Mv = Φv × T 2,

as the product of the covers pv : Ψv → Φv and rv : T
2 → T 2.

Note that in the block Nv the group Pv plays the role of a fiber group.
Let w be an edge from a vertex v to a vertex u, and let γw be a boundary component

of the surface Φv corresponding to w. On each component of the preimage of the torus
Tw = γw × T 2 the cover qv is a product of covers and is determined by the subgroup
Aw = 〈Pv, Pu〉 = Bw × Pv of the group Lw, where Bw is a subgroup of the group
π1(γw) � Z with subgroup index ju.

Thus, the group Aw has the subgroup index (Lw : Aw) = ju · jv in the group Lw.
Now we describe the gluings of blocks. Let w be an edge from a vertex v to a vertex u.

Let Tv be a boundary component of the block Nv, and let Tu be a boundary component
of the block Nu. Let Tu and Tv cover the torus T|w|. A gluing g′w : Tv → Tu is determined
by an isomorphism of the groups H1(Tv;Z) and H1(Tu;Z).
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For each of these groups we have an isomorphism with the group Aw induced by the
covers qv and qu, respectively. This determines the required gluing. Since the lattices
Pu, Pv < Aw are different, such a gluing satisfies condition (3) of Definition 1.

Note that for the edge w from a vertex u to a vertex v of the graph G, we have
P|w| = Fw ∩ F−w = Pu ∩ Pv < Lw.

Therefore, for the edge w′ that corresponds to the gluing of the blocks Nu and Nv,
we have P|w′| = P|w|. Consequently, the group Pv plays the role of the fiber intersection
group for the block Nv. This means that the secondary intersection number of the block
Nv is equal to (Pv : Pv) = 1.

By Lemma 2.1, the intersection number on the edge w′ is equal to the subgroup index
(Aw : 〈Pu, Pv〉) of the subgroup 〈Pu, Pv〉 in the group Aw, i.e., it is equal to 1.

For each vertex v ∈ V we consider N/nv · J/jv copies of the block Nv.
For each edge w ∈ W (e = |w|) between u, v ∈ V, we have N/nu · J/ju copies of the

block Nu and N/nv · J/jv copies of the block Nv.
The block Nu has (nu · ju)/(ju · jv) = nu/jv boundary components covering the torus

Te, and the block Nv has nv/ju boundary components covering the torus Te.
Then all copies of the block Nu have N/nu · J/ju · nu/jv = (N · J)/(ju · jv) boundary

components covering the torus Te.
All copies of the block Nv have one and the same number of boundary components

covering the torus Te.
Having some correspondence between these copies, we glue each boundary component

of a copy of the block Mu with the corresponding boundary component of a copy of the
block Mv by some gluing homeomorphism g′w.

We obtain a graph-manifold M ′ that is an (N · J)-sheeted cover of M ; all secondary
intersection numbers of M ′ are equal to 1. �

Applying Lemma 3.1 to the graph-manifold M , we arrive at a graph-manifold N for
which all intersection numbers are equal to 1, and also all secondary intersection numbers
are equal to 1. Moreover, the fundamental groups π1(N) and π1(M) are quasiisometric.

§4. Proof of Theorem 1.1

For the reader’s convenience, here we present Lemma 2.4 from [7]. This lemma plays
an important role in the proof of Theorem 1.1.

Lemma 4.1. Let S be a smooth compact manifold with strictly negative curvature and

totally-geodesic boundary. Denote by rS the universal cover of S. Let α be a closed smooth

1-form on ∂S. Denote by α′ the pull-back of α to ∂ rS.

Then there exists a smooth Lipschitz function h : rS → R satisfying dh
∣∣
∂ rS

= α′.

Let M be a 4-dimensional graph-manifold with type at most 2.
Passing to a finite cover, we may assume that all intersection numbers of M are equal

to 1 and also all secondary intersection numbers are equal to 1.
Since all secondary intersection numbers of M are equal to 1, we can choose a Wald-

hausen basis {(zw, fw) | w ∈ ∂v, v ∈ V} such that for each block Mv of type 2 we have
f1
v ∈ P 1

v and f2
v ∈ P 2

v .
Moreover for each block of type 1 we can choose f1

v ∈ P 1
v .

For each edge w ∈ W from v to u, the gluing ĝ−w of blocks Mv and Mu is given by
bases (zw, fw) and (z−w, f−w) of the lattice L|w|.

In other words, the matrix g−w is obtained by decomposing the basis (zw, fw) over
the basis (z−w, f−w).
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We may assume that P 1
u = Pw = P 1

v , where Pw = Fw ∩ F−w. Then, in this notation,
f1
w = ±f1

−w. Moreover, since the intersection numbers are equal to 1 and f1
w = ±f1

−w,
formula (5) shows that f2

−w − zw ∈ Fw.
We denote the vector f2

−w − zw by δw.
Stepwise, changing gluings on the edges, we construct an orthogonal graph-manifold

N whose universal cover rN is bi-Lipschitz equivalent to the universal cover ĂM of the
graph-manifold M .

We fix an edge w ∈ W. Let it connect vertices v and u. The new gluing ĝ′−w of the
blocks Mv and Mu will be defined via the basis z′w = zw + δw, f

′
w = fw.

Thus, the isomorphism ĝ′−w is obtained from the isomorphism ĝ−w by translation by
the vector δw along the first coordinate. That is, such a gluing identifies the vectors f1

w

and f1
−w, as well as the vectors zw and f2

−w.
Since the lattices Pv, v ∈ V, and Fe, e ∈ E (see Definitions 5, and 7) do not change un-

der such a modification of gluings, the intersection number and the secondary intersection
number will remain unchanged.

Cutting the graph-manifold M along the torus T|w|, and then gluing along it with the
gluing ĝ′−w, we obtain the graph-manifold N .

Lemma 4.2. The universal covers of the graph-manifold M and N are bi-Lipschitz
homeomorphic.

Proof. The graph-manifolds M and N have a common graph G, and hence, the Bass–
Serre tree of M coincides with that of N .

Moreover, for each vertex v′ ∈ V the blocks Mv′ and Nv′ are isomorphic.

The universal cover ĂM of the graph-manifold M is divided into blocks dual to the
Bass-Serre tree TM , each of which is the universal cover of some block of the graph-ma-
nifold M .

We call the blocks that cover the block Mv the distinguished blocks.

The universal cover rN of the graph-manifold N is also divided into blocks. Since

the Bass–Serre trees of these graph-manifolds coincide, the blocks of the manifold rN are

copies of the blocks of the manifold ĂM .

The manifold ĂM differs from the manifold rN only by gluings along boundary com-
ponents of distinguished blocks. The blocks that correspond to the distinguished blocks
will also be called distinguished blocks.

Now we prove that the universal covers ĂM and rN are bi-Lipschitz homeomorphic.

We construct a map ĂM → rN in the following way: each nondistinguished block of
ĂM is mapped identically to the corresponding nondistinguished block of rN . For each

distinguished block ĂMv = rΦv ×R
2, our map induces a map of the boundary of this block

to the boundary of the corresponding distinguished block rNv = rΦv × R
2. This map is

identical on each boundary component that does not correspond to the edge w. On the
boundary component �w × R

2 corresponding to the edge w, this map is an affine map
Aw : �w × R

2 → �w × R
2 that corresponds to the map

hw = (g′−w)
−1 ◦ g−w : H1(T|w|;Z) → H1(T|w|;Z).

The map Aw is determined up to an integral shift in the second factor.
We expand the vector δw in the basis (f1

w, f
2
w) of the space Fw, δw = γ1f

1
w + γ2f

2
w.

In the basis (zw, f
1
w, f

2
w) the map hw is given by the formulas

hw(zw) = zw − δw = zw − γ1f
1
w − γ2f

2
w, hw(f

1
w) = f1

w, hw(f
2
w) = f2

w.



FOUR-DIMENSIONAL GRAPH-MANIFOLDS 1039

Consider a coordinate system (x, y, z) on the boundary component �w×R
2; we assume

that the line y = z = 0 corresponds to the direction zw, the line x = z = 0 corresponds
to the direction f1

w, and the line x = y = 0 corresponds to the direction f2
w.

In this coordinate system, the map hw corresponds to the class Aw of maps

A : �w × R
2 → �w × R

2

of the form

A(x, y, z) = (x, y − γ1 · x+ c1, z − γ2 · x+ c2), (c1, c2) ∈ Z
2.

Consider the function ϕ1 : ∂rΦv → R equal to −γ1 on the components that correspond
to the edge w and equal to 0 on the other components. This function determines a closed
1-form on the boundary of the compact surface Φv with boundary.

Similarly, the function ϕ2 : ∂rΦv → R equal to −γ2 on the components that correspond
to the edge w and to 0 on the other components determines a closed 1-form on the
boundary of the compact surface Φv with boundary.

From Lemma 4.1 we know that there exists a smooth Lipschitz function h1 : rΦv → R

satisfying dh1

∣∣
∂ rΦv

= ϕ1.

Similarly, there exists a smooth Lipschitz function h2 : rΦv → R with dh2

∣∣
∂ rΦv

= ϕ2.

In other words, the restrictions of the functions h1 and h2 to the boundary components

of the surface rΦv are affine functions.
By construction, on each boundary component σ of the blockMv, the homeomorphism

ĥ : ĂMv → rNv given by the formula ĥ(x, y, z) = (x, y+ h1(x), z+ h2(x)) differs from some
map of class Aw by a bounded vector (cσ1 , c

σ
2 ) ∈ R

2. We consider Lipschitz functions

h′
1, h

′
2 : rΦv → R with support in a sufficiently small neighborhood of the boundary ∂rΦv

and such that on each boundary component σ of the block Mv we have h1 = cσ1 and
h2 = cσ2 .

Then the difference h(x, y, z) = ĥ(x, y, z) − (0, h′
1(x), h

′
2(x)) is a bi-Lipschitz homeo-

morphism, as required. �

For the graph-manifold N , for the edge −w opposite to the edge w of the graph G,
we act as above to construct a gluing ĝ′w : L−w → Lw that identifies the vectors f1

w and
f1
−w and the vectors z−w and f2

w.
This gluing does not change the vectors zw and f2

−w.
Cutting the graph-manifold N along the torus T|w|, and then gluing along it with the

gluing ĝ′w, we obtain a graph-manifold N ′ whose gluing along the edge |w| is orthogonal.
From Lemma 4.2 it follows that the universal covers of the graph-manifolds M and

N ′ are bi-Lipschitz homeomorphic.
Applying the above operation step-by-step to all opposing pairs of edges (w,−w) of

the graph G, we pass from the graph-manifold M to a graph-manifold N . The universal
cover of N is bi-Lipschitz homeomorphic to the universal cover of M .

This proves Theorem 1.1. �

§5. A criterion of orthogonality

In this section, we present a criterion of orthogonality for the 4-dimensional graph-
manifolds such that the type of each vertex is equal to 2. As a consequence, we construct
an example of a 4-dimensional graph-manifold that is not orthogonal, all blocks of which
have type 2, and the intersection numbers and secondary intersection numbers are equal
to 1.

We recall the definition (see [3]) of the charge map of a graph-manifold (for the case
of graph-manifolds M of arbitrary dimension, dimM = n).
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Below, we pass to homology groups with real coefficients, keeping the same notation.
In particular, we denote Fw ⊗Z R by Fw and L|w| ⊗Z R by L|w|.

For each directed edge w of the graph G of the graph-manifoldM , the gluing matrix gw
gives rise to a map Dw : F−w → Fw such that Dw(f−wpw) = fwdwpw, where pw ∈ R

n−2

is a column of reals. In other words, the map Dw is defined in the bases f−w, and fw by
the submatrix dw of the matrix gw. This map can be interpreted as a projection of the
space F−w onto the space Fw along the vector zw.

In particular, the map Dw is the identity map at the intersection F−w ∩ Fw.
For each directed edge w of the graph G of the graph-manifold M , we fix an orientation

of the space Fw.
Let uw = f1

w ∧ f2
w ∧ · · · ∧ fn−2

w . Identifying the spaces L−w and Lw via the map gw,
we obtain a space L|w| with the couple of oriented subspaces Fw and F−w.

Under these conditions, we have the canonical intersection orientation uw∩−w on the
subspace Fw ∩ F−w (see [3]).

Definition 8. The charge map of the vertex v ∈ V is the restriction

Kv : Qv → Fv

of the map ⊕
w∈∂v

1

iw
Dw :

⊕
w∈∂v

F−w → Fv

to the subspace Qv, where Qv ⊂
⊕

w∈∂v F−w consists of all vectors qv =
⊕

w∈∂v q−w,
such that there exists a number α ∈ R with q−w ∧ uw∩−w = α · u−w for each w ∈ ∂v.

This subspace does not depend on the choice of the Waldhausen basis (z, f), and for
its dimension we have dimQv = (n − 3)|∂v| + 1 (for the details see [3]). Note that the
subspace

Av = {qv =
⊕
w∈∂v

q−w | q−w ∧ uw∩−w = 0} ⊂ Qv

is a hyperplane in Qv, dimAv = (n− 3)|∂v|.
In the 3-dimensional case, n = 3, the map Kv : Qv → Fv is a linear map of 1-dimen-

sional spaces, and therefore it is uniquely determined by a rational number kv, the charge
of the vertex v.

Although the charge map in higher dimensions is not a number, nevertheless, we can
speak about the vanishing of the vertex charge.

Definition 9. We say that the charge of a vertex v ∈ V vanishes if and only if the kernel
Kv of the charge map is not included in the subspace Av ⊂ Qv, kerKv �⊂ Av.

In this case we write kv = 0.

Remark 4. In the 3-dimensional case we have dimFv = dimQv = 1 and Av = {0}, so
that the condition kv = 0 is equivalent to kerKv = Qv, i.e., kerKv �⊂ Av; then our
definition coincides with the regular definition of kv = 0.

Let M be a 4-dimensional graph-manifold all blocks of which have type 2. For each
vertex v of the graph G of M , and for each edge w from v to u, there are two intersection
lattices in the fiber lattice Fu of the block Mu. We denote by sPu one of them, namely,
the one that is not an intersection lattice for the edge w.

Also, we denote sPu ⊗Z R by J−w.

Definition 10. We define the subspace of intersection vectors in the space Qv by the
formula

Bv := Qv ∩
⊕
w∈∂v

J−w.
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Remark 5. From the definition it follows that the subspace of intersection vectors for the
vertex v does not depend on the Waldhausen basis and, consequently, is a topological
invariant of the graph-manifold M .

Lemma 5.1. For any orthogonal graph-manifold M and any vertex v of its graph G, we
have Bv ⊂ kerKv.

Moreover, the charge of any vertex of M vanishes.

Proof. By Remark 1, on each block of the graph-manifolds M we can choose a Wald-
hausen basis so that, for each edge w ∈ W, the bases (zw, fw) and (z−w, f−w) of the
groups Lw and L−w differ only by a permutation of elements, and, perhaps, the signs
before vectors. Fix a vertex v.

By orthogonality, for each edge w ∈ ∂v the subspace J−w is generated by the vector
zw. Therefore, Bv ⊂ kerKv. Moreover, we can choose a sign εw = ±1 before the vector
zw so that εw · zw ∧ uw∩−w = 1 · u−w.

Thus, qv =
⊕

w∈∂v εw · zw ∈ Qv, and, at the same time, q /∈ Av.
We see that Kv(qv) = 0, and, consequently kv = 0. �

Remark 6. Lemma 2.1 and Definition 7 show that the intersection numbers of any edge
and the secondary intersection numbers of any vertex of an orthogonal graph-manifold
are equal to 1.

This means that the fact that an intersection number or a secondary intersection
number is not equal to 1 is an obstruction to the orthogonality of graph-manifolds.
However, even in the class of graph-manifolds all blocks of which have type 2 and whose
intersection numbers and the secondary intersection numbers are equal to 1, there exist
nonorthogonal graph-manifolds. Below (see Corollary 5.3) we give an example of such a
graph-manifold.

Theorem 5.2. Let M be a graph-manifold all blocks of which have type 2. The graph-ma-
nifold M is orthogonal if and only if the following three conditions are satisfied:

1) the intersection number of each edge is equal to 1;
2) the secondary intersection number of each vertex is equal to 1;
3) the subspace of intersection vectors of each vertex is contained in the kernel of

the charge map Bv ⊂ kerKv.

Proof. If M is orthogonal, then Lemma 2.1, Definition 7, and Lemma 5.1 show that
conditions 1)–3) are satisfied.

Conversely, since the secondary intersection numbers are equal to 1, it follows that we
can choose a Waldhausen basis {(zw, fw) | w ∈ ∂v, v ∈ V} such that for every block Mv

we have f1
v ∈ P 1

v and f2
v ∈ P 2

v .
For each edge w ∈ W from the vertex v to the vertex u, the gluing ĝ−w of the blocks

Mv and Mu is given by the bases (zw, fw) and (z−w, f−w) of the space L|w|.
In other words, the matrix g−w of this gluing is obtained by expanding the elements

of the basis (zw, fw) in the basis (z−w, f−w). We may assume that P 1
u = Pw = P 1

v , where
Pw = Fw ∩ F−w. Then, in this notation, f1

w = ±f1
−w. Moreover, since the intersection

numbers are equal to 1 and f1
w = ±f1

−w, from formula (5) we have f2
−w − zw ∈ Fw.

Condition (3) implies the relation

q =
⊕
w∈∂v

f2
−w ∈ kerKv.

This means that
∑

w∈∂v Dw(f
2
−w) = 0. On the other hand, since f2

−w − zw ∈ Fw, we

have Dw(f
2
−w) = f2

−w − zw.
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Denote f2
−w − zw by nw. Properties (3) and (4) and the identity

∑
w∈∂v nw = 0 show

that there exists a Waldhausen basis {(szw, sfw) | w ∈ ∂v, v ∈ V} such that szw = zq + nw

and sfw = fw for any directed edge of the graph G.
For such a basis the following conditions are satisfied: sf1

w = sf1
−w,

sf2
−w = szw and

sf2
w = sz−w.
This means that the manifold M is orthogonal. �

Corollary 5.3. There exists a 4-dimensional nonorthogonal graph-manifold all blocks of
which have type 2, all intersection numbers are equal to 1, and all secondary intersection
numbers are equal to 1.

Proof. As a graph G of a graph-manifold M we take a cycle of length k ≥ 3.
We enumerate its vertices: v1, . . . , vk.
For each vertex vi, i = 1, . . . , k, we consider a block Mi = Φ× T 2, where Φ is a torus

with 2 boundary components. We glue the graph-manifold from blocks so that for each
edge w ∈ W the corresponding gluing matrix is equal to

gw = gz,fw =

⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠ .

From the definition (see Subsection 2.1), it follows that the resulting graph-manifold is
orthogonal. Consequently, by Theorem 5.2, for each vertex v ∈ V the set of intersection
vectors is included in the kernel of the charge map, Bv ⊂ kerKv.

Consider the edge w from the vertex v2 to the vertex v3.
Replacing the gluing on this edge by the gluing

sgw = sgz,fw =

⎛
⎝0 0 1
0 1 1
1 0 0

⎞
⎠ ,

we obtain a graph-manifold M ′ all blocks of which have type 2. By Lemma 2.1 and
Definition 7, all intersection numbers of M ′ are equal to 1, and all secondary intersection
numbers of M ′ are equal to 1. On the other hand, the charge map of the vertex v1 does
not change. At the same time, the spaces of intersection vectors are different. Indeed,
consider the edges wk and w2 from v1 to vk and v2, respectively. Then the new space of
intersection vectors B′

v1 is obtained from the previous one by translation by the vector

0 + f1
−w2

∈ F−wk
⊕ F−w2

. This means that Kv(q) = f1
v1 , where q = f2

−wk
⊕ f2

−w2
�= 0.

Therefore, B′
v1 does not lie in the kernel kerKv1 . By Theorem 5.2, the graph-manifold

M ′ is not orthogonal. �
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