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Mathematical Challenges
in Cardiac
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John W. Cain

O
n his website, University of Utah math-
ematics professor JamesKeener poses
the question, “Did you know that heart
attacks can give you mathematics!?”
Indeed, there are a host of important

research problems in cardiology that appear ideal
for unified attack by mathematicians, clinicians,
and biomedical engineers. What follows is a survey
of six ongoing Challenge Problems that (i) seem
tractable and (ii) draw from a variety of mathe-
matical subdisciplines. We hope that this article
will serve as a “call to arms” for mathematicians
so that we, as a community, can contribute to an
improved understanding of cardiac abnormalities.

The emphasis of this article will be on cardiac
electrophysiology, because some of the most excit-
ing research problems in mathematical cardiology
involve electrical wave propagation in heart tis-
sue. The quantitative study of electrophysiology
has a fascinating history, with its notable mile-
stones touched by tragedy and triumph. Nearly
a century has passed since the tragically prema-
ture death of George Ralph Mines (1886–1914),
a brilliant physiologist who apparently died from
self-experimentation in his laboratory. Perhaps
Mines would be comforted to know that his
pioneering research continues to influence the
mathematical study of reentrant arrhythmia (see
Temporal Pattern Challenge below). Nearly half a
century after Mines’s death, in a stunningly elegant
blend of mathematicsand experimentation,British
physiologists Alan Hodgkin and Andrew Huxley
introduced a model of electrical propagation in the
squid giant axon [11]. Their mathematical model
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was so far ahead of its time that it is mind-boggling

to think that it was constructed without the luxury

of modern computing. Soon after Hodgkin and

Huxley shared the 1963 Nobel Prize in Medicine

or Physiology for their efforts, the first of many

adaptations of their model to cardiac tissue was

proposed. Such models are the subject of our first

two challenge problems.

Electrophysiology

Examining the electrical activity in a person’s

body can reveal a great deal of physiological in-

formation. At some point in our lives, many of

us will undergo an electroencephalogram (EEG), a

recording of electrical activity in the brain, or an

electrocardiogram (ECG), a recording of electrical

activity in the heart. To understand where these

tiny electrical currents originate, we must “zoom

in” to the molecular level. Bodily fluids such as

blood contain dissolved salts and, consequently,

contain positively charged sodium, potassium,

and calcium ions. As these ions traverse cell

membranes, the resulting electrical currents elicit

changes in the voltage v across the membrane.

In the absence of electrical stimulation, v rests

at approximately -85 millivolts, the negative sign

indicating that a cell’s interior contains less pos-

itive charge than its exterior. Electrical stimuli

can cause a resting cardiac cell to respond in a

rather dramatic fashion. Namely, if a sufficiently

strong stimulus current is applied to a suffi-

ciently well-rested cell, then the cell experiences

an action potential: v suddenly spikes and remains

elevated for a prolonged interval (Figure 1). The

existence of threshold stimulus strengths pro-

vides a mechanism by which a cell can distinguish
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between “background noise” and real electrical
stimuli [16].
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Figure 1. Action potentials in a paced cardiac
cell. Bold circles correspond to periodically
applied stimuli (period BBB). (a) Slow pacing
(large BBB) yields a normal response in which
every stimulus elicits an action potential. (b)
Faster pacing (smaller BBB) can cause alternans,
an abnormal alternation of APD. (c) Under
extremely rapid pacing (very small BBB), every
second stimulus fails to produce an action
potential.

Modeling the Action Potential

Mathematically modeling the cardiac action po-
tential is an attractive research topic, in part
because such models tend to be rooted in the
Nobel Prize-winning work of Hodgkin and Huxley.
For a well-written, modern mathematical treat-
ment of how that model was constructed, see the
text of Keener and Sneyd [16]. The key idea is to
model the cardiac cell membrane as an electrical
circuit. The membrane acts both as a capacitor
because it supports a charge differential and as
a variable resistor because it can open and close
ion channels to regulate the inward and outward
flow of current. Letting Cm denote the capacitance
of a cardiac cell membrane, then the capacitive
current Cmdv/dt must balance the total ionic cur-
rent Iionic. In other words, Cmdv/dt + Iionic = 0. In
building a realistic model, the tricky part is to
determine the specific form of Iionic. Herein lies
a challenge for mathematicians, amounting to a
balancing problem.

Modeling Challenge: Simultaneously keep the
model minimally complicated so that it is amenable
to mathematical analysis, but make the model suf-
ficiently detailed that it can reproduce as much
clinically relevant data as possible.

Reference [23] provides the address of a large
Internet repository of ionic models. Although the
models span a wide range of complexity, vir-
tually all of them are based upon the original
Hodgkin-Huxley formalism and are presented as

systems of ordinary differential equations. Lower

dimensional systems are easier to analyze, allow-
ing us to characterize how certain physiological
parameters affect the dynamics. For example,

FitzHugh-Nagumo [7] reduction of the Hodgkin-
Huxley model can, under suitable rescaling, be
written as

ǫ
dv

dt
= f (v,w) = Av(v −α)(1− v)−w

dw

dt
= g(v,w) = v − βw,

where ǫ, A, α, and β are positive parameters,

and 0 < α < 1. This two-variable system can be
analyzed using standard phase-plane techniques
and, in the case that ǫ ≪ 1, one may extract

asymptotic solutions via singular perturbation
techniques. Adapting this single-cell model to the
tissue level, the resulting system of partial differ-

ential equations has been well studied, revealing
(i) existence of traveling pulse solutions (solitary
action potentials); (ii) existence of periodic wave-

train solutions; (iii) stability of these solutions and
how they evolve from initial data; (iv) asymptotic
estimates of action potential duration and velocity

in terms of the parameters; (v) existence of spiral
(2-D tissue) and scroll (3-D tissue) wave solutions;
and (vi) asymptotic estimates of the rotation fre-

quencies of spiral and scroll waves. We remark
that spiral waves are important in the genesis of
certain arrhythmias (see the last two Challenge
Problems below). For one of the earliest detailed

mathematical analyses of the FitzHugh-Nagumo
system, see Keener [15].

Although low-dimensional models allow us to

characterize how certain physiological parame-
ters affect the dynamics, such models may lack
important details known about cardiac electro-

physiology, thereby limiting their clinical use. By
contrast, higher-dimensional systems may suc-
cessfully mimic many features of the action

potential, but their resistance to mathematical
analysis makes it difficult to understand how
solutions depend upon parameters and initial

conditions.

Simulating Whole-Heart Dynamics

Action potentials can propagate through cardiac
tissue because the individual cells are electri-
cally coupled. In the domain Ω formed by heart
tissue, transmembrane voltage has both spatial

and temporal dependence: v = v(x, y, z, t) where
(x, y, z) ∈ Ω. The usual way to model electri-
cal wave propagation in cardiac tissue is via the

equation

(1)
sm

ν

(
Cm
∂v

∂t
+ Iionic

)
= ∇ · (σ∇v),

where sm/ν is the cell surface area per unit volume,
σ is a matrix of conductivities, Iionic is the total
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Figure 2. (a) Example of a restitution function fff . (b) The corresponding bifurcation diagram for
the mapping (2). The period-doubling bifurcation leads to alternans, an abnormal period-2

alternation of APD.

ionic current that flows across the cell membrane,
and the gradient ∇v is taken with respect to the
spatial variables. Neumann boundary conditions
are enforced on the boundary ∂Ω. For a derivation
of equation (1), see Chapter 11 of [16].

Equation (1) presents a nice challenge for nu-
merical analysts. Modeling groups around the
world, including those led by Peter Hunter (Auck-
land Bioengineering Institute, University of Auck-
land) and Rob MacLeod (Scientific Computing and
Imaging Institute, University of Utah), have made
considerable progress in tackling the following.

Simulation Challenge: Numerically solve (1) with
(i) a physiologically realistic choice of Iionic; (ii) a
domain Ω that mimics the geometry of the whole
heart; and (iii) enough computational efficiency to
simulate many heartbeats, in order to better un-
derstand how arrhythmias may suddenly develop.

Of course, operating within all of these con-
straints is difficult. As a rule, the more physiologi-
cally detailed the model, the larger the number of
differential equations and parameters that govern
Iionic. The domain Ω is quite complicated because

the heart has four distinct chambers (left and right
atria and ventricles) and is connected to various
large veins and arteries (e.g., pulmonary veins and
arteries, superior and inferior vena cava, and the
aorta). To further complicate matters, different
types of cardiac tissue (atrial, ventricular, Purkinje
fiber) have different conduction properties, imply-
ing that the conductivity tensor σ , as well as Iionic,
have spatial dependence.

For animations of action potential propagation
in a simulated heart, please see the websites [24]
and [25]. In particular, the latter website con-
tains some lovely movies showing action-potential
propagation around anatomical obstacles (e.g.,
dead tissue), as well as the formation of abnormal
spiral waves.

Restitution

Constructing an ionic model (1) of the action poten-
tial requires careful description of Iionic. However,
to be clinically useful, a model should be able to
do more than just reproduce traces of v and/or
the various transmembrane currents that affect v .
One of the ultimate goals of cardiac modeling is
to understand mechanisms for the onset of ar-
rhythmias that, by definition, are all about timing.
The ability to accurately predict the duration and
propagation speed of an action potential is an
important benchmark for an ionic model.

Electrical restitution is a special feature of car-
diac tissue that can be loosely defined as follows:
the more well-rested the tissue is, the longer the
duration of each action potential, and the faster
they propagate. More quantitatively, suppose that
a cell is repeatedly stimulated (paced) with period
B, eliciting a sequence of action potentials. Define
APDn, the action potential duration (APD) of the
nth action potential, as the amount of time during
which v remains elevated above some specified
threshold between the nth and (n + 1)st stimuli
(Figure 1). By restitution of APD, we mean the de-
pendence of APD on the pacing periodB—typically
APD decreases as B decreases.

The amount of rest that the cell receives be-
tween consecutive action potentials is known as
the diastolic interval (DI). As illustrated in Fig-
ure 1a, the DI preceding the nth action potential
is simply DIn−1 = B − APDn−1. Numerous authors
have modeled restitution using a one-dimensional
mapping

(2) APDn = f (DIn−1) = f (B − APDn−1).

The graph of the APD restitution function f
can be measured experimentally by recording the
steady-state APD values for a range of different
pacing periods B. Depending upon the shape of f ,
the mapping (2) may suffer from physiologically
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undesirable period-doubling bifurcations as the

pacing period B is varied (Figure 2). The resulting

abnormal alternation of APD is called alternans,

and its onset can be understood by straightforward

analysis [9] of equation (2). Assuming that f has the

qualitative appearance indicated in Figure 2a, then

the mapping (2) has a unique fixed point satisfying

APD∗ = f (B − APD∗). The fixed point is a stable

attractor if |f ′(B −APD∗)| < 1, and this condition

implicitly determines the critical pacing interval

B at which the bifurcation to alternans occurs. In

the literature, the conjecture that alternans would

occur if the slope of f exceeds 1 was known as

the restitution hypothesis. Given the complexity

of the heart, it should not be surprising that

the restitution hypothesis is false—alternans may

occur if restitution functions have shallow slope or

may fail to appear even when restitution functions

are steep. Over the past two decades, groups of

mathematicians, physicists, biomedical engineers,

and physiologists have attempted to modify the

restitution hypothesis, a collective effort that I will

refer to as the:

Alternans Challenge: Derive a mathematical crite-

rion that accurately predicts the onset of alternans.

Although it may serve as a reasonable model

in certain dynamical regimes, equation (2) is too

simplistic to capture all of the relevant behavior

of cardiac rhythm. First, in order to reproduce

experimentally obtained restitution data, the one-

dimensional mapping (2) should be replaced with

a higher dimensional mapping [19]. Second, a

cardiac cell needs a certain threshold amount

of recovery time θ before it is able to produce

another action potential, and any stimuli that are

applied before the cell recovers its excitability

are simply ignored (Figure 1c). Thus, in order to

account for abnormally rapid rhythms (small B),

the mapping (2) should be replaced by APDn =

f (kB−APDn−1), where k is the least positive integer

for which kB −APDn > θ.

We remark that, as action potentials propagate

through tissue, their propagation speed exhibits

the same sort of dependence upon how well rested

the tissue is (i.e., speed depends upon DI). Letting

c(DI) denote the restitution function for action

potential speed, the graph of c is qualitatively

similar to that of f .

Rhythm

Coordinated, rhythmic contraction of the cardiac

muscle is vital for the heart to perform its primary

function: pumping oxygenated blood throughout

the body. Improving our ability to diagnose and

treat abnormal rhythms (arrhythmias) is critical in

our fight against heart disease, the leading cause

of death in the United States. In this section, we

RR Interval

Figure 3. Schematic diagram of one lead of an
electrocardiogram (ECG). The RR interval is the
time between consecutive peaks.

discuss three important problems involving car-
diac rhythm: (i) analysis of heart rate variability, (ii)
predicting spontaneous initiation and termination
of arrhythmias, and (iii) techniques for controlling
arrhythmias. The first two of these have been past
themes of the annual Computers in Cardiology
Challenge [26].

Heart Rate Variability

A perfectly regular heart rhythm is actually a sign
of potentially serious pathologies. The heart rate
is regulated by the autonomic nervous system

(ANS), baroreceptors, and other factors. The ANS
uses the neurotransmitters norepinephrine and
acetylcholine to speed up or slow down the heart,
respectively, and tiny fluctuations in the levels
of these neurotransmitters induce some degree
of variability in the intervals between consecutive
beats. The interbeat interval can be identified
with the RR interval in an ECG (see Figure 3),
and attempts to quantify heart rate variability
(HRV) usually involve analyzing time series of RR
intervals. Mathematicians and statisticians can be
of assistance by rising to the following:

HRV-Time Series Challenge: Devise quantitative
methods for distinguishing between the RR time
series of normal subjects and those with cardiac
pathologies. Can some pathologies be diagnosed
solely by analysis of RR time series, and, if so, which
ones?

Analysis of RR time series was the theme of
the 2002 Computers in Cardiology Challenge and
continues to be one of the most active research ini-
tiatives in mathematical cardiology. Before briefly
surveying three past attempts to quantify HRV, let
us consider two natural questions related to this
Challenge. First, could the variance of a sequence
u1, u2, . . . , un of RR intervals be a useful diagnos-
tic? Although an extremely low variance is a sign

of serious trouble, many patients with potentially
fatal cardiac abnormalities can exhibit perfectly
normal variance. For example, infants who suffer
an aborted sudden infant death syndrome (SIDS)
episode may have almost identical RR-interval vari-
ance as normal infants [17]. To spot more subtle
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pathologies, we need methods for quantifying the

“regularity” of a cardiac rhythm (see also Figure 4).
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Figure 4. Two signals with identical mean and
variance but much different approximate
entropies. (a) RR intervals ununun versus beat

number nnn from a healthy patient. Data were
obtained from the MIT-BIH Normal Sinus

Rhythm database at PhysioNet [26]. (b) A sine
wave with the same mean (0.594 s) and

variance (0.00224 s2s2s2) as the data in panel (a).

Second, given the existing array of diagnostic tests
that clinicians have at their disposal, what advan-
tages might “automated” mathematical/statistical
methods convey? Techniques such as multiscale
entropy (MSE) analysis (see below) could likely be
useful in diagnoses, risk stratification, or detecting
drug toxicity [5]. Consider, for example, that the di-
agnosis of congestive heart failure often involves a
battery of tests such as an echocardiogram, chest

X-ray, and ECG. In an encouraging finding [4],
MSE analysis of routine twenty-four-hour Holter
monitor recordings demonstrates that patients
with congestive heart failure are statistically well
separated from normal subjects.

Approximate Entropy, ApEn. Pincus and Gold-
berger [17] noted that, for the purposes of
distinguishing between normal infants and those

with aborted SIDS episodes, a statistic known as
the approximate entropy (ApEn) appears to pro-
vide a useful diagnostic. In their data, ApEn is
roughly twice as large in a normal infant relative
to an infant with an aborted SIDS episode. The
definition of ApEn = ApEn(m, r) incorporates the
conditional probability that data patterns that re-
main close (i.e., within some tolerance r ) over a

window ofm observations will also remain close if
the window size is increased tom+1. More specif-
ically, ApEn is calculated as follows: (1) Given a
sequence u1, u2, . . . , un of RR intervals and a win-
dow size m ∈ N, for each i = 1,2, . . . , n −m + 1
define vectors xi = (ui , ui+1, . . . , ui+m−1) consisting
of m consecutive data points. (2) For each pair
of vectors xi and xj , compute their distance (e.g.,
maximum difference between corresponding com-

ponents). (3) Given a tolerance r ∈ R+, for each
i = 1,2, . . . , n −m + 1, compute the (estimated)
probability that a vector will be within distance r

of the vector xi . (4) Let Φ(m, r) denote the average

of the logarithms of these probabilities. Repeat
the above steps with a larger window size m + 1

and calculate Φ(m+1, r ). (5) Approximate entropy
is defined as

ApEn(m, r) = lim
n→∞

[Φ(m + 1, r )− Φ(m, r)].

Note that the limit is taken as the number of data
points grows without bound.

Although ApEn may be clinically useful in pre-
dicting aborted SIDS episodes, as explained below,

detecting other pathologies may require a finer
approach.

Multiscale Entropy Analysis. Subsequent

work, much of it by the same research group,
points out that ApEn has several drawbacks.

Whereas ApEn performs well in distinguishing
between normal and abnormally regular rhythms,

ApEn can be misleading when it comes to rec-
ognizing abnormally irregular rhythms (which

are likely to produce higher ApEn values). The
ApEn statistic fails to account for the multiple
scales involved in regulating cardiac rhythm—the

physiological control mechanisms for heart rate
span a wide range of spatial scales (subcellular

to systemic) and temporal scales. These issues
are addressed in [4], which illustrates how a

multiscale entropy (MSE) method can be used
to analyze cardiac rhythm. The MSE method
can successfully distinguish between normal

rhythms and two different routes to heart disease:
increased regularity due to heart failure versus

increased randomness due to arrhythmias such
as atrial fibrillation.

Fast Fourier Transforms and Power Spectra.
Another way to seek regular patterns within se-

quences of data points is to take the fast Fourier
transform (FFT) and create a power spectral den-
sity plot [1]. Any tall, narrow spikes in such plots

correspond to dominant frequencies and are a sig-
nature of regularity. Power spectral density plots

for normal infants and aborted-SIDS infants both
have been shown to exhibit broadband noise. How-

ever, the plots for normal infants tend to be more
broadbanded, with power distributed over a wider
range of frequencies [17]. Although this does in-

dicate that normal infants have less regularity in
their heart rhythms, it remains to be seen whether

the FFT can give a clinically useful diagnostic.

Spontaneous Initiation and Termination of
Arrhythmias

Anatomical obstacles such as regions of dead (non-

conducting) cardiac tissue can interfere with the
normal propagation of electrical signals. Normally,

the heart relies upon its own native pacemaker
cells to supply electrical stimuli that generate
propagating action potentials. Both the timing of

the stimuli and the positioning of the pacemaker
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Figure 5. Wavefront of an action potential
propagating around a circular, nonconducting
obstacle in homogeneous tissue. (a) Snapshots
of a single wave front propagating left to
right. The wavefront breaks at the obstacle but
reemerges on the other side. (b) A spiral wave
propagates unidirectionally (counterclockwise
in this case) while anchored to the obstacle.

relative to the obstacle are critical in determining

whether an arrhythmia will result. For example,

Figure 5a shows five snapshots of a solitary action
potential wavefront colliding with a circular, non-

conducting obstacle in a square sheet of otherwise
homogeneous tissue. In this case, the wavefront

breaks at the obstacle but reemerges (with a slight

deflection) on the far side of the obstacle. The
deflection of this wavefront causes spatial het-

erogeneity in the amount of local recovery time

that the cells experience. One specific pathology
that can be induced by such heterogeneity is the

formation of spiral waves (Figure 5b) that become
anchored to the obstacle [12]. The figure shows a

counterclockwise rotating spiral wave whose tip

is pinned to the nonconducting obstacle. Spiral
waves in cardiac tissue can be quite dangerous,

because the period of the rotation is often signifi-
cantly faster than the period of the heart’s native

pacemaker cells. As the rotating spiral arm col-

lides with advancing wavefronts emanating from
the pacemaker, the higher frequency spiral arm

may seize control of more territory, ultimately

taking over the pacing of the heart and resulting
in tachycardia (faster-than-normal rhythm). Com-

petition between the heart’s pacemaker and these
abnormal reentrant spiral waves can lead to spo-

radic episodes of tachycardia, which is the subject

of the following.

Temporal Pattern Challenge: Create a mathemat-

ical model that reproduces temporal patterns of

spontaneous initiation and termination of tachy-
cardia.

This problem is a variant of the 2004 Computers

in Cardiology Challenge.
There is a significant ongoing effort devoted

to this Challenge and related problems, and, in

particular, it is known that there are many mecha-
nisms and tissue geometries that can support the

creation and destruction of spiral waves. However,

few modeling studies focus specifically on tempo-
ral patterns of intermittent bursts of rapid activity.
One interesting exception was provided by Bub et
al. [2], who blended mathematics with experiment
to investigate bursting dynamics of rotors. Their
experiments with cultures of embryonic chick
heart cells revealed intermittent bursts of rotor
waves, each lasting on the order of half a minute
and with consecutive bursts separated by approx-
imately forty seconds. Using a cellular automaton
model of an idealized two-dimensional sheet of
cardiac cells, they qualitatively reproduced the
same bursting dynamics.

Because cellular automata models are difficult
to analyze, other mathematical studies tend to in-
corporate another type of discrete-time model. As
a first step toward understanding whether tissue
can support a sustained spiral wave, numerous
authors (e.g., [13, 20, 21]) have used partial dif-
ference equations (P∆Es) to model propagation
of action potentials in idealized, one-dimensional
circular domains, such as the one formed by the
boundary of the obstacle in Figure 5b. For exam-
ple, Ito and Glass [13] introduced the following
discrete, restitution-based model of a reentrant
action potential in a ring composed of m cells,
each of length ∆L:

DIi,n = −f (DIi,n−1)

(3)

+

i−1∑

j=1

∆L
c(DIn,j)

+

m∑

j=1

∆L
c(DIn−1,j)

,

i = 1,2, . . . ,m.

Here, f (DI) and c(DI) are the restitution func-
tions for action potential duration and speed,
respectively, and are defined only for DI > θ,
the threshold amount of rest required to sus-
tain propagation. Although this P∆E incorporates
less physiological detail than the one-dimensional
version of the PDE in equation (1), solution of
P∆E (3) is far less computationally intensive. This
allows for simulation over long time scales, which
is important in studying intermittent reentrant
tachycardia.

Equation (3) does not account for the competi-
tion between the action potentials supplied by the
heart’s native pacemaker and those that are recir-
culated around the obstacle. Recently, Sedaghat
and collaborators [20] modified (3) to allow for
spontaneous transitions between normal pacing,
in which the rhythm is driven by the heart’s na-
tive pacemaker, and (abnormal) reentry, in which
the rhythm is driven by a recirculating action
potential in a ring-shaped pathway. It remains
to be seen whether such models can reproduce
the erratic patterns of intermittent arrhythmias,
patterns that involve time scales ranging from
seconds to months.
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Controlling the Rhythm

Upon detecting an arrhythmia, the natural next
step is to (try to) stop it. Virtually every hospital-
themed television program includes scenes in
which a manual external defibrillator is used to
violently shock a patient during cardiac arrest.
Although wonderful for dramatic effect, this sort
of defibrillation has adverse physiological side
effects. Certain patients with heart disease re-
ceive a more humane alternative: battery-operated
implantable cardioverter defibrillators (ICDs) that
intervene when onset of an arrhythmia is detected.
Although newer ICDs are better at distinguishing
between non-life-threatening tachycardia and life-
threatening fibrillation, when an ICD elects to
defibrillate, it can cause excruciating pain. Rather
than having an ICD deliver a high-frequency train
of strong stimuli, is it possible (via careful timing)
to deliver a train of tiny stimuli that accomplish
the same goal? Below is a brief discussion of two
attempts to tackle our final challenge.

Control Challenge: Devise a robust feedback
control algorithm that can suppress abnormal
rhythms in the whole heart.

In both experiments and numerical simulations,
Isomura et al. [12] were able to terminate an
abnormal spiral wave by applying a brief, high-
frequency train of tiny electrical stimuli. This is
precisely what an ICD does during antitachycardia
pacing, and this technique is often effective in
restoring a normal rhythm. Prior explanations
of why antitachycardia pacing works tend to be
heuristic as opposed to mathematical. It would
be of great physiological interest if mathematical
analysis could show either (i) why existing anti-
tachycardia pacing techniques often work or (ii)
that there is a better way.

Another abnormal rhythm that has been suc-
cessfully controlled both experimentally and in
simulations is known as T-wave alternans. Mathe-
matically, the onset of alternans can be understood
by examining the bifurcation diagram in Figure 2b.
In the one-dimensional mapping (2), a period-
doubling bifurcation may occur as the pacing
period B is decreased. The bifurcation causes APD
alternans, a pattern in which APD values exhibit
beat-to-beat alternation.

Both experiments [10] and theory [14] indicate
that simple feedback control can terminate alter-
nans in small patches of cardiac tissue. The idea
is to make small perturbations to the period B in
order to prevent the period-doubling bifurcation
from occurring in the restitution mapping (2). As
an illustration, consider the famous discrete logis-
tic mapping xn+1 = µxn(1− xn), where x0 ∈ [0,1]
and 0 ≤ µ ≤ 4. As the parameter µ is increased, a
cascade of period-doubling bifurcations ultimately
leads to chaos when µ ≈ 3.5699. This cascade can
be prevented if small adjustments are made to µ at

each iteration. If µ is replaced by µ+ǫ · (xn−xn−1)

where ǫ > 0 is a feedback gain parameter, then,

depending upon the choice of ǫ, we can (i) stabi-

lize previously unstable fixed points; (ii) prevent

period-doubling cascades from occurring; and (iii)

control chaos.

Although the aforementioned feedback control

algorithms succeed in small patches of tissue,

both experimental [3] and theoretical [6] studies

suggest that applying such schemes locally (via an

implantable electrode) cannot control the rhythm

over large enough spatial domains to be useful

in the whole heart. This issue lies at the core of

the above Challenge problem—controlling whole-

heart dynamics is difficult!

Discussion and Further Reading
This article is intended to serve as an open invi-

tation to the mathematics community to join the

fight for an improved understanding of cardiac

electrophysiology and arrhythmias. The featured

Challenges were chosen, in part, because each

problem has aspects that will appeal to vari-

ous mathematical subdisciplines (e.g., numerical

analysis, discrete dynamical systems, topology,

differential equations, and mathematical statis-

tics). The reader is urged to consider how his or

her own areas of mathematical expertise might

aid in these exciting research efforts.

The above presentation should be accompanied

by several disclaimers. First, much of this article

represents a mathematician’s interpretation of

various cardiac phenomena. For example, Figure 5

is a mathematical idealization of the substrate for

a pinned spiral wave and is quite different from

the anatomical circuits that a cardiologist would

associate with tachycardia. Readers interested in a

more accurate portrayal of reality are encouraged

to consult with cardiologists and electrophysiol-

ogists. Second, it must be emphasized that there

is already a vast literature dedicated to these six

Challenges. Rather than vainly attempting to com-

pile a comprehensive bibliography, the references

are merely intended to provide a few leads for

those who might be interested in this fascinating

field.

For more information on mathematical cardi-

ology (or mathematical physiology in general),

there are several books that serve as good starting

points. Keener and Sneyd’s text [16], Mathemati-

cal Physiology, provides an excellent mathematical

treatment of electrophysiology and heart rhythm.

Some older books, such as Glass and Mackey [8],

Plonsey and Barr [18], and Winfree [22], in-

clude well-written introductions to mathematical

cardiology. Finally, most of the websites that

are referenced in this article contain extensive

bibliographies.
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