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A LIMIT THEOREM FOR STOCHASTIC NETWORKS
AND ITS APPLICATIONS

E. O. LEBEDEV

Abstract. A service process in an overloaded regime for multichannel stochastic
networks is considered. A general functional limit theorem is proved, and the prop-
erties of the limit process are studied. An application of the approximation obtained
is given for the case of networks with a semi-Markov input.

1. Introduction

A multichannel network of queueing systems is the main model considered in the
paper. Assume that customers arrive at an ith node of the network, i = 1, 2, . . . , r, at
instances τ (i)

k , k = 1, 2, . . . . Let νi(t) be the total number of customers arrived to the ith
node on the interval [0, t]. Every node consists of infinitely many similar servers. The
service time of every server is exponentially distributed with parameter µi, i = 1, 2, . . . , r.
After the service at an ith node, a customer moves to a jth node with probability pij ,
and exits the network with probability pi r+1 = 1 −

∑r
j=1 pij . Here P = ‖pij‖r1 is the

route matrix of the network. An extra, (r + 1)th, node is treated as the “exit” from the
network. We denote this model by [G|M |∞]r.

The [G|M |∞]r models of networks are used when designing computer or communi-
cation systems (see, for example, [1]) and in the studies of primary ionization processes
(see [2]).

An r-dimensional process Q(t) = (Q1(t), . . . , Qr(t)) is called a service process in a
[G|M |∞]r network if Qi(t) is the number of busy servers at the ith node at the mo-
ment t ≥ 0. We study the service process Q(t) for a critical traffic in the network. This
means that the parameters of input flows νi(t) and service intensities µi, i = 1, 2, . . . , r,
depend on “n” (the series number), and moreover

1) there are constants λi > 0, i = 1, 2, . . . , r, for which

n−1/2
(
ν

(n)
1 (nt)− λ1nt, . . . , ν

(n)
r (nt)− λrnt

)
U⇒

n→∞
W (t) = (W1(t), . . . ,Wr(t)),

where W (t) is an r-dimensional Wiener process with zero mean vector,

EW (1) = 0,

and correlation matrix EW (1)W ′(1) = σ2 = ‖σij‖r1. (The symbol U⇒ stands for
the weak convergence in the uniform topology);

2) limn→∞ nµi(n) = µi 6= 0, i = 1, 2, . . . , r.
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Consider the sequence of stochastic processes

ξ(n)(t) = n−1/2(Q(n)(nt)− nq(t)), t ≥ 0,

Q(n)′(0) = (0, . . . , 0),

where q′(t) = (q1(t), . . . , qr(t)) = (θ/µ)′(I − P (t)), (θ/µ)′ = (θ1/µ1, . . . , θr/µr),

θ′ = (θ1, . . . , θr) = λ′(I − P )−1

is a solution of the balance equation for a [G|M |∞]r network, λ′ = (λ1, . . . , λr),

P (t) = ‖pij(t)‖r1 = exp[∆(µ)(P − I)t],

and ∆(µ) = ‖δijµi‖r1 is a diagonal matrix.
The condition Q(n)′(0) = (0, . . . , 0) means that the prelimit process is in a transient

regime.

2. The convergence of the service process

We introduce two independent Gaussian processes ξ(1)′(t) = (ξ(1)
1 (t), . . . , ξ(1)

r (t)) and
ξ(2)′(t) = (ξ(2)

1 (t), . . . , ξ(2)
r (t)) in order to describe the limit behavior of the sequence

ξ(n)(t), n ≥ 1.
The process ξ1(t) is completely determined by its mean value

E ξ(1)(t) = 0

and correlation matrices

R(1)(t) = E ξ(1)(t)ξ(1)′(t)− E ξ(1)(t) E ξ(1)′(t) =
∫ t

0

P ′(u)σ2P (u) du,

R(1)(s, t) = E ξ(1)(s)ξ(1)′(t)− E ξ(1)(s) E ξ(1)′(t) = R(1)(s)P (t− s), s < t.

The process ξ(2)(t) satisfies

E ξ(2)(t) = 0,

R(2)(t) =
r∑

m=1

λm

∫ t

0

(∆[pm(u)]− pm(u)p′m(u)) du,

R(2)(s, t) = R(2)(s)P (t− s), s < t,

where p′m(u) = (pm1(u), . . . , pmr(u)) is the mth row of the matrix P (u), and

∆[pm(u)] = ‖pmi(u)δij‖r1
is a diagonal matrix.

The following theorem is the main result of the paper.

Theorem 1. Assume that a [G(n)|M (n)|∞]r network of queue systems satisfies con-
ditions 1) and 2). If the spectral radius of the route matrix P is less than 1, then the
sequence of stochastic processes ξ(n)(t), n ≥ 1, converges to ξ(1)(t)+ξ(2)(t) in the uniform
topology on every finite interval [0, T ].

The proof of Theorem 1 is based on the following two auxiliary results.

Lemma 1. The finite-dimensional distributions of
∫ t

0 dW
′(u)P (t−u) coincide with those

of the Gaussian process ξ(1)(t).
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Lemma 1 follows from properties of the stochastic integral (see, for example, [3]).
The trajectory of a customer arrived at the network at an mth node, can be described

(until the time when it exits the network) by a Markov chain

η(m)(t) ∈ {1, 2, . . . , r, r + 1}, t ≥ 0,

whose infinitesimal matrix ‖qij‖r+1
1 and initial distribution P (η(m)(0) = i) are given by

qij =


−µi(1− pii), i = j = 1, 2, . . . , r,
µipij , i 6= j, i = 1, 2, . . . , r, j = 1, 2, . . . , r, r + 1,
0, i = r + 1, j = 1, 2, . . . , r, r + 1,

and P (η(m)(0) = i) = δmi, i = 1, 2, . . . , r + 1, respectively.
Let χ(m)(t) = (χ(m)

1 (t), . . . , χ(m)
r (t)), t ≥ 0, m = 1, . . . , r, be an r-dimensional process

defined by the chain η(m)(t) as follows:

χ(m) =

{
ej, η(m)(t) = j, j = 1, . . . , r,
e0, η(m)(t) = r + 1,

where ej is an r-dimensional vector whose jth coordinate is equal to 1 and all other
coordinates are 0; e0 is the zero r-dimensional vector.

For an arbitrary positive integer N and

z′(j) = (z1(j), . . . , zr(j)), j = 1, 2, . . . , N, |z(j)| ≤ 1,

we denote by Φ(m) = Φ(m)(t1, . . . , tN , z(1), . . . , z(N)) the joint moment generating func-
tion of the vectors χ(m)(t1), . . . , χ(m)(tN ), 0 < t1 < · · · < tN ,

Φ′ = (Φ(1), . . . ,Φ(r)).

Lemma 2. For an arbitrary N = 1, 2, . . . and 0 < t1 < · · · < tN ,

(1) Φ = 1̄ +
N∑
j=1

P (∆t1)∆[z(1)] · · ·P (∆tj−1)∆[z(j − 1)]P (∆tj)(z(j)− 1̄),

where 1̄ is the r-dimensional vector whose coordinates are 1s, and ∆ti = ti−ti−1 (t0 = 0)
and ∆[z(i)] = ‖zk(i)δkm‖r1 are diagonal matrices.

Equality (1) can be proved by induction.

Proof of Theorem 1. There are two steps in the proof:
a) we prove the convergence of finite-dimensional distributions;
b) we show that

(2) lim
∆→0

lim
n→∞

P
(
ω∆(ξ(n)) > δ

)
= 0

for all δ > 0, where

ω∆(x) = sup
|t−u|≤∆, 0≤t,u≤T

|x(t) − x(u)|.

Proof of a). Let χ(m,1)(t), χ(m,2)(t), . . . , χ(m,k)(t), . . . be a sequence of indicator type
independent stochastic processes whose finite-dimensional distributions coincide with
those of χ(m)(t). Applying the method of moment generating functions, we conclude
that, for a fixed trajectory of the input process ν(t) = (ν1(t), . . . , νr(t)), t ≥ 0, the
distribution of Q(t) coincides with that of

r∑
m=1

νm(t)∑
k=1

χ(m,k)
(
t− τ (m)

k

)
.
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This together with equality (1) implies that for N = 1 the moment generating function
Φ(t, z), z = (z1, . . . , zr), |z| ≤ 1, of the vector Q(t) such that Q′(0) = (0, . . . , 0) can be
represented as

(3) Φ(t, z) = E
r∏

m=1

νm(t)∏
k=1

[
1− p′m(t− τ (m)

k )(z − 1̄)
]
.

Consider one-dimensional distributions of the process ξ(n)(t), t ≥ 0. By

ϕn(s), s′ = (s1, . . . , sr) ∈ Rr,

we denote the characteristic function of ξ(n)(t). It follows from (3) that

ϕn(s) = E eiξ
(n)′(t)s

= exp
(
−i
√
nq′(t)s

)
E exp


r∑

m=1

νm(nt)∑
k=1

ln
[
1 + p′m

(
t− τ (m)

k /n
)(

eis/
√
n − 1̄

)] ,

where (
eis/
√
n
)′

=
(
eis1/

√
n, . . . , eisr/

√
n
)
.

Let (s2)′ = (s2
1, . . . , s

2
r). Then

(4)

lim
n→∞

ϕn(s) = lim
n→∞

exp(−i
√
nq′(t)s)

× E exp

{
r∑

m=1

ν(n)
m (nt)∑
k=1

[
i√
n
p′m

(
t− τ

(m)
k

n

)
s− 1

2
1
n
p′m

(
t− τ

(m)
k

n

)
s2

+
1
2

1
n
s′pm

(
t− τ

(m)
k

n

)
p′m

(
t− τ

(m)
k

n

)
s

]}
.

Put

W
(n)
k (t) =

ν
(n)
k (nt)− λknt√

n
, W (n)′(t) =

(
W

(n)
1 (t), . . . ,W (n)

r (t)
)
.

The sums on the right-hand side of (4) can be expressed in terms of integrals ofW (n)(t)
and thus

lim
n→∞

ϕn(s) = lim
n→∞

exp
(
−i
√
nq′(t)s

)
× E exp

{
i
√
nλ′

∫ t

0

P (u) dus+ i

∫ t

0

dW (n)′(u)P (t− u)

− 1
2
λ′
∫ t

0

P (u) dus2 +
1
2

r∑
m=1

λms
′
∫ t

0

p(u)p′(u) dus

}

= exp

{
−1

2

r∑
m=1

λms
′
∫ t

0

[∆[pm(u)]− pm(u)p′m(u)] dus

}

× E exp
{
i

∫ t

0

dW ′(u)P (t− u)s
}
.

The right-hand side of the last equality is the characteristic function of

ξ(1)(t) + ξ(2)(t).

The convergence of one-dimensional distributions is proved.
Consider two-dimensional distributions.
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Given a fixed trajectory of the input flow, the distribution of

(Q(t1), Q(t2)), 0 < t1 < t2,

coincides with that of
r∑

m=1

νm(t1)∑
k=1

χ(m,k)
(
t1 − τ (m)

k

)
,

νm(t1)∑
k=1

χ(m,k)
(
t2 − τ (m)

k

)
+

νm(t2)∑
k=νm(t1)+1

χ(m,k)
(
t2 − τ (m)

k

).
Applying equality (1) for N = 2 we represent the joint moment generating function

Φ(t1, t2, z(1), z(2)) of the vectors Q(t1), Q(t2) as follows:

Φ(t1, t2, z(1), z(2)) = E

{
r∏

m=1

νm(t1)∏
k=1

[
1 + p′m

(
t1 − τ (m)

k

)
(z(1)− 1̄)

+ p′m

(
t1 − τ (m)

k

)
∆[z(1)]P (∆t2)(z(2)− 1̄)

]
×

νm(t2)∏
νm(t1)+1

[1 + p′m(t2 − τ (m)
k )(z(2)− 1̄)]

}
.

This representation allows one to evaluate the limit of the joint moment generating
function

ϕn(s(1), s(2)), s(1), s(2) ∈ Rr,

of the vectors ξ(n)(t1) and ξ(n)(t2), namely

lim
n→∞

ϕn(s(1), s(2)) = lim
n→∞

E exp
(
iξ(n)′(t1)s(1) + iξ(n)′(t2)s(2)

)
= lim

n→∞
exp

(
−i
√
nq′(t1)s(1)− i

√
nq′(t2)s(2)

)
× E

{
r∑

m=1

{ν(n)
m (nt1)∑
k=1

ln
[
1 + p′m

(
t1 − τ (m)

k /n
)(

eis(1)/
√
n − 1̄

)
+ p′m

(
t1 − τ (m)

k /n
)

×∆
[
eis(1)/

√
n
]
P (∆t2)

(
eis(2)/

√
n − 1̄

)]

+
ν(n)
m (nt2)∑

ν
(n)
m (nt1)+1

ln
[
1 + p′m

(
t2 − τ (m)

k /n
)(

eis(2)/
√
n − 1̄

)]}}

= exp

{
−1

2

r∑
m=1

λms
′(1)

∫ t1

0

[∆[pm(u)]− pm(u)p′m(u)] dus(1)

− 1
2

r∑
m=1

λms
′(2)

∫ t2

0

[∆[pm(u)]− pm(u)p′m(u)] dus(2)

−
r∑

m=1

λms
′(1)

∫ t1

0

[∆[pm(u)]− pm(u)p′m(u)] duP (∆t2)s(2)

}

× E

{
i

∫ t1

0

dW ′(u)P (t1 − u)s(1) + i

∫ t2

0

dW ′(u)P (t2 − u)s(2)
}
.

The right-hand side of this equality is the characteristic function of the two-dimensional
distribution of ξ(1)(t) + ξ(2)(t).

The convergence of N -dimensional distributions, N > 2, can be checked similarly.
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Proof of b). We represent the process ξ(n)(t) as follows:

ξ(n)(t) = ξ(1,n)(t)− ξ(2,n)(t),

where

ξ(1,n)(t) = n−1/2
r∑

m=1

ν(n)
m (nt)∑
k=1

pm

(
t− τ

(m)
k

n

)
− nλm

∫ t

0

pm(t− u) du

 ,

ξ(2,n)(t) = n−1/2
r∑

m=1

ν(n)
m (nt)∑
k=1

[
pm

(
t− τ

(m)
k

n

)
− χ(m,k)

(
t− τ

(m)
k

n

)]
.

Since

ω∆

(
ξ(n)

)
≤ ω∆

(
ξ(1,n)

)
+ ω∆

(
ξ(2,n)

)
,

it is sufficient to check relation (2) for ξ(1,n)(t) and ξ(2,n)(t) separately. We follow the
method of the paper [4]. Integrating by parts, we get that for ∆ > 0,

∆ξ(1,n)′(t) = ∆
∫ t

0

dW (n)′(u)P (t− u) = ∆W (n)′(t)−
∫ t

−∆

∆W (n)′(u) dP (t− u),

where

∆x(t) = x(t+ ∆)− x(t)

and

W (n)(u) = 0

for u ≤ 0.
Let

µ(r) = max
1≤i≤r

µi.

Since P ′(t) = ∆(µ)(P − I)P (t),

sup
0≤t≤T

max
1≤i,j≤r

p′i,j(t) ≤ µ(r)

and

(5) ω∆

(
ξ(1,n)

)
≤
(
1 + µ(r)T

)
ω∆

(
W (n)

)
.

Estimate (5) implies that

lim
∆→0

lim
n→∞

P
(
ω∆

(
ξ(1,n)

)
> δ
)

= 0

for all δ > 0. Now we consider ξ(2,n)(t), t ∈ [0, T ].
The increment ∆ξ(2,n)(t) can be represented as

∆ξ(2,n)(t) = ζ1 + ζ2,
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where

ζ1 = n−1/2
r∑

m=1

ν(n)
m (nt)∑
k=1

α(m,k), ζ2 = n−1/2
r∑

m=1

ν(n)
m (nt+n∆)∑
ν

(n)
m (nt)+1

β(m,k),

α(m,k) =

[
χ(m,k)

(
t− τ

(m)
k

n

)
− χ(m,k)

(
t+ ∆− τ

(m)
k

n

)]

−
[
pm

(
t− τ

(m)
k

n

)
− pm

(
t+ ∆− τ

(m)
k

n

)]
,

k = 1, 2, . . . , ν(n)
m (nt),

β(m,k) = pm

(
t+ ∆− τ

(m)
k

n

)
− χ(m,k)

(
t+ ∆− τ

(m)
k

n

)
,

k = ν(n)
m (nt) + 1, . . . , ν(n)

m (nt+ n∆).

Let Fn be the σ-algebra generated by the family of random vectors{
ν(n)(nt), 0 ≤ t ≤ T

}
.

Now we obtain an upper bound for MFn(|∆ξ(2,n)(t)|4):

(6)

MFn

(
|∆ξ(2,n)(t)|4

)
≤ 8

(
MFn |ζ1|4 +MFn |ζ2|4

)
≤ 8r4n−2

r∑
m,i=1

MFn

ν(n)
m (nt)∑
k=1

α
(m,k)
i

4

+MFn

ν(n)
m (nt+n∆)∑
ν

(n)
m (nt)+1

β
(m,k)
i

4
 ,

where α(m,k)
i and β(m,k)

i are the ith coordinates of the vectors α(m,k) and β(m,k), respec-
tively. Now we estimate every term in (6) from above.

The random variable

χ
(m,k)
i

(
t− τ

(m)
k

n

)
− χ(m,k)

i

(
t+ ∆− τ

(m)
k

n

)

assumes only three values +1, −1, and 0, with probabilities

(7)

χ
(m,k)
i

(
t− τ

(m)
k

n

)
− χ(m,k)

i

(
t+ ∆− τ

(m)
k

n

)

=


+1, pk = pmi

(
t− τ

(m)
k

n

)
(1− pii(∆)),

−1, qk =
∑r

j=1, j 6=i pmj

(
t− τ

(m)
k

n

)
pji(∆),

0, 1− pk − qk,

respectively.
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It follows from (7) that

(8)

n−2MFn

ν(n)
m (nt)∑
k=1

α
(m,k)
i

4

≤ 3n−2

ν(n)
m (nt)∑
k=1

(pk + qk) +

ν(n)
m (nt)∑
k=1

(pk + qk)

2


≤ 3n−1∆
[
C

(m)
1 + 4n−1/2µ(r) sup

0≤t≤T
|W (n)

m (t)|
]

+ 3∆2

[
C

(m)
1 + 4n−1/2µ(r) sup

0≤t≤T
|W (n)

m (t)|
]2

= S
(m)
1,n (∆),

where

C
(m)
1 = 2µ(r)λm

∫ T

0

(1 − pmr+1(u)) du.

Similarly we get for the second term on the right-hand side of (6) that

(9)

n−2MFn

ν(n)
m (nt+n∆)∑
ν

(n)
m (nt)+1

β
(m,k)
i

4

≤ n−1

[
λm∆ + n−1/2ω∆

(
W (n)
m

)
+ 4µ(r)n

−1/2∆ sup
0≤t≤T

|W (n)
m (t)|

]
+ 3

[
λm∆ + n−1/2ω∆

(
W (n)
m

)
+ 4µ(r)n

−1/2∆ sup
0≤t≤T

|W (n)
m (t)|

]2

= S
(m)
2,n (∆).

Combining (8) and (9) we obtain the desired estimate:

(10) MFn

(
|∆ξ(2,n)(t)|4

)
≤ 8r5

r∑
m=1

(
S

(m)
1,n (∆) + S

(m)
2,n (∆)

)
,

whence it follows that
lim

∆→0
lim
n→∞

P
(
ω∆(ξ(2,n)) ≥ 3δ

)
= 0

for all δ > 0. Without loss of generality we assume that T = 1 and ∆ = 1/2p.
Let

ω(t, t+ ∆) = sup
u∈[t,t+∆]

∣∣∣ξ(2,n)(t)− ξ(2,n)(u)
∣∣∣ ,

ω
[N ]
∆ = max

|k/2N−j/2N |≤∆

∣∣∣ξ(2,n)(k/2N)− ξ(2,n)(j/2N)
∣∣∣ .

Then

ω∆

(
ξ(2,n)

)
≤ ω[N ]

∆ + 2 max
0≤k≤2N

ω

(
k

2N
,
k + 1
n

)
for N > p, and

(11) P
(
ω∆

(
ξ(2,n)

)
≥ 3δ

)
≤ P

(
ω

[N ]
∆ ≥ δ

)
+ P

2N−1⋃
k=0

{
ω

(
k

2N
,
k + 1
2N

)
≥ δ
} .

Consider the first term in (11). The random event
N⋂
s=p

2s⋂
k=1

{∣∣∣∣ξ(2,n)

(
k

2s

)
− ξ(2,n)

(
k − 1

2s

)∣∣∣∣ < δ

s2

}
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implies {ω[N ]
∆ < δ}. Passing to the complement events, we get that for p ≥ 3,

P
(
ω

[N ]
∆ ≥ δ

)
≤

N∑
s=p

2s∑
k=1

P

(∣∣∣∣ξ(2,n)

(
k

2s

)
− ξ(2,n)

(
k − 1

2s

)∣∣∣∣ ≥ δ

s2

)
.

Using a Chebyshev type inequality for conditional probabilities and estimate (10), we
obtain

lim
p→∞

lim
n→∞

P
(
ω

[N ]
∆ ≥ δ

)
≤ lim
p→∞

lim
n→∞

N∑
s=p

2s∑
k=1

E

{
PFn

(∣∣∣∣ξ(2,n)

(
k

2s

)
− ξ(2,n)

(
k − 1

2s

)∣∣∣∣ ≥ δ

s2

)}

≤ lim
p→∞

lim
n→∞

δ−4
N∑
s=p

s8
2s∑
k=1

E

{
MFn

∣∣∣∆s
kξ

(2,n)
∣∣∣4}

≤ 24δ−4r5
r∑

m=1

(
C

(m)2
1 + λ2

m

)
lim
p→∞

∞∑
s=p

s82−s = 0,

where

∆s
kξ

(2,n) = ξ(2,n)

(
k

2s

)
− ξ(2,n)

(
k − 1

2s

)
.

The equality

lim
p→∞

lim
n→∞

2N−1∑
k=0

P

(
ω

(
k

2N
,
k + 1
2N

)
≥ δ
)

= 0

can be checked similarly.
The theorem is proved. �

The two terms of the limit process depend on the prelimit processes in the queueing
system as follows: ξ(1)(t) is related to the fluctuations of the input flow, while ξ(2)(t) is
related to the fluctuations of the service time at the nodes of the network.

3. Properties of the limit process

Prior to our study of the properties of the limit process we give some sufficient condi-
tions for a multidimensional Gaussian process to be Markovian.

Theorem 2. Let ξ(t) be an r-dimensional Gaussian process with zero mean vector and
such that

a) the correlation functions R(s) and R(s, t) are related by

R(s, t) = R(s)P (t− s), P (t) = exp(Qt)

for some matrix Q and all 0 ≤ s < t;
b) the matrices R(s) and R(t)− P ′(t− s)R(s)P (t− s) are nonsingular.

Then the process ξ(t) is Markovian. Moreover the conditional distribution

P
(
ξ(t) ∈ B

/
ξ(s) = x

)
, B ∈ BRr ,

is Gaussian with the mean vector P ′(t− s)x and correlation matrix

R(t)− P ′(t− s)R(s)P (t− s).
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The set G of Gaussian processes satisfying condition a) is closed in the sense that if
two processes of G are independent and have the same matrix Q in representation a),
then every linear combination of them belongs to G. As a corollary of Theorem 1 we
obtain the following result: the sum of two independent Markov G-processes with the
same matrix Q is a Markov process if condition b) holds.

Note that the multidimensional Ornstein–Uhlenbeck process satisfies condition a).
The following result for block matrices is the main tool in the proof of Theorem 1.

Lemma 3. Let P (t) = exp(Qt) and let R1, . . . , Rn be symmetric r×r matrices. Assume
that

∆Rk+1 = Rk+1 − P ′(∆tk+1)RkP (∆tk+1), k = 0, 1, . . . , n− 1,
are nonsingular, where 0 < t1 < · · · < tn, ∆tk+1 = tk+1 − tk, and R0 is the zero matrix.
Then the block rn× rn matrix R consisting of n2 blocks

Rij =

{
RiP (tj − ti), i ≤ j,
P ′(ti − tj)Rj , i > j,

has the inverse matrix R−1 =
∥∥R(−1)

ij

∥∥n
1

, which is three-diagonal. Moreover,

R
(−1)
ii−1 = −∆R(−1)

i P ′(∆ti), i = 2, . . . , n,

R
(−1)
ii+1 = −P (∆ti+1)∆R(−1)

i+1 , i = 1, . . . , n− 1,

R
(−1)
ii = ∆R−1

i + P (∆ti+1)∆R−1
i+1P

′(∆ti+1), i = 1, . . . , n− 1, R(−1)
nn = ∆R−1

n .

To prove Lemma 3 we use induction on n and the following result: if a square matrix
A is of the block form

A =
(
A11 A12

A21 A22

)
,

where A11 and A22 are square matrices, then A−1 is also a block matrix, and moreover,

A−1 =

(
A

(−1)
11 A

(−1)
12

A
(−1)
21 A

(−1)
22

)
,

where

(12)
A

(−1)
22 =

[
A22 −A21A

−1
11 A12

]−1
, A

(−1)
11 = A−1

11 +A−1
11 A12A

(−1)
22 A21A

(−1)
11 ,

A
(−1)
21 = −A(−1)

22 A21A
(−1)
11 , A

(−1)
12 = −A−1

11 A12A
(−1)
22 ,

provided the inverse matrices on the right-hand side of (12) exist. A similar result can
be found in [5].

The proof of Theorem 2 follows from Lemma 1 and Theorem 2 in [3], p. 262.
It is clear that the limit ξ(1)(t), t ≥ 0, is an r-dimensional Ornstein–Uhlenbeck process.

The following is an immediate corollary of Theorem 2 for the sum ξ(1)(t) + ξ(2)(t).

Corollary 1. If the spectral radius of the matrix P does not exceed 1, then the limit
Gaussian process ξ(1)(t) + ξ(2)(t) is an r-dimensional diffusion process with the shift
vector A(x) = Q′x and diffusion matrix

B(t) = ∆[q′(t)Q]−Q′∆[q(t)] −∆[q(t)]Q + σ2,

where Q = ∆(µ)(P−I) and ∆(x) is a diagonal matrix whose principal diagonal coincides
with the vector x.

Theorem 1 is a result of the diffusion approximation type. Note also that Theorem 1
contains more information about the structure of the limit process than do other results
of this type.
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4. An application for networks with a semi-Markov input

Consider a particular case of a [G|M |∞]r network where the input flow has a special
structure. We assume that r servers have a common input flow of customers governed
by a semi-Markov process ζ(t) ∈ {1, 2, . . . , N}. This means that the arrival times of
customers coincide with the moments τn, n = 1, 2, . . . , at which the process ζ(t) changes
its state. If the process ζ(t) moves to a state “i” at a moment τn, then the probability
that the nth customer arrives at the server j is hij ,

∑r
j=1 hij = 1. The matrix H = ‖hij‖

is of size N × r. Denote by
F (t) = ‖Fij(t)‖N1

the semi-Markov matrix of the process ζ(t). Let

Fi(t) =
N∑
j=1

Fij(t)

be the distribution function of the time spent by the process ζ(t) at the state “i”, let

fij = Fij(+∞)

be the transient probabilities of the embedded Markov chain, and F = ‖fij‖N1 . Such a
multichannel network with the input flow specified above is denoted by [SM |M |∞]r in
the theory of queues.

It is known that condition 1) of Theorem 1 holds for the input flows ν1(t), . . . , νr(t) if
3) the matrix F is indecomposable;
4) there exist the first and second moments of the time spent at every state,

mi =
∫ ∞

0

t dFi(t) <∞, di =
∫ ∞

0

t2 dFi(t) <∞, i = 1, 2, . . . , N

(see [6, 7]).
Following the method of the paper [8], we represent the intensities λi, i = 1, . . . , r,

and the matrix σ2 as follows:

λi =
1
m

N∑
j=1

πjhji, i = 1, . . . , r,

σ2 = H ′CH +
1
m

N∑
j=1

πj [∆(hj)− hjh′j ],(13)

C = ‖cαβ‖N1 ,

cαβ = πα
1
m

N∑
j=1

rαjfjβ + πβ
1
m

N∑
j=1

rβjfjα + παπβ
d− 2m(2)

m3
+ δαβ

πα
m
,(14)

R1 = ‖rij‖N1 =
(
I − 1

m
Π∆(m)

)
R0

(
I − 1

m
∆(m)Π

)
.(15)

Here π1, π2, . . . , πN and h′j = (hj1, . . . , hjr) are the stationary distribution of the embed-
ded chain and the jth row of the matrix H , respectively,

m =
N∑
i=1

miπi, d =
N∑
i=1

diπi, m(2) =
N∑
i=1

m2
iπi,

∆(m) = ‖miδij‖N1 , Π is an N×N matrix whose rows are equal to each other and coincide
with the stationary distribution, and R0 = (I − F + Π)−1 − Π is the potential of the
embedded Markov chain.
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The following result is a corollary of Theorem 1.

Theorem 3. Assume that conditions 2)–4) hold for a queueing [SM (n)|M (n)|∞]r net-
work and the spectral radius of the route matrix P is less than 1. Then the normalized
queueing process ξ(n)(t) weakly converges in the uniform topology on every finite interval
[0, T ] to a diffusion process ξ(t) (ξ(0) = 0) with the shift vector A(x) = Q′x and diffusion
matrix

B(t) = ∆[q′(t)Q]−Q′∆[q(t)] −∆[q(t)]Q + σ2,

where the matrix σ2 is defined by (13)–(15).

The convergence of the functionals of the process ξ(n)(t) can be used to evaluate the
quality index of a network and the optimal control for the service processes.
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