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QUASI-LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS
WITH A FRACTIONAL BROWNIAN COMPONENT

YU. S. MISHURA

Abstract. The paper is devoted to stochastic differential equations with a fractional
Brownian component. The fractional Brownian motion is constructed on the white
noise space with the help of “forward” and “backward” fractional integrals. The
fractional white noise and Wick products are considered. A similar construction
for the “complete” fractional integral is considered by Elliott and van der Hoek.
We consider two possible approaches to the existence and uniqueness of solutions of
stochastic differential equation with a fractional Brownian motion.

1. Introduction

We consider quasi-linear stochastic differential equations with a fractional Brownian
component.

The paper is organized as follows. Section 2 contains the construction of the “for-
ward” and “backward” fractional Brownian motions on the white noise space (a similar
construction for the “two-sided” fractional Brownian motion is described in [1, 2]).

In Section 3, the fractional Brownian noise related to the “forward” fractional Brow-
nian motion is considered. It is proved that the fractional Brownian noise belongs to the
Hida space S∗.

Section 4 contains the conditions on the process Y under which the Wick product
Y �WH with a fractional Brownian noise WH is S∗-integrable. It is also proved that the
S∗-integral with a nonrandom integrand and a “forward” fractional Brownian motion as
the integrator can be reduced to the ordinary Itô integral with a nonrandom integrand
that is a kernel of the Volterra type, and with a Wiener process as the integrator.

Two possible methods of solving stochastic differential equations with a fractional
Brownian noise are described in Section 5. The first method is based on the Lipschitz and
growth conditions for negative norms of coefficients (note however that those conditions
are rather restrictive). The second method is applied only to quasi-linear equations
and is based on the Giessing lemma [3]. Both methods show that fractional stochastic
differential equations on the white noise space are very close in their properties to ordinary
stochastic differential equations with respect to the Wiener process.

2. “Forward” and “backward” fractional Brownian motion

Consider a probability white noise space. More precisely, let S(R) be the Schwartz
space of real smooth rapidly decreasing functions on R, and let S′(R) be the dual space
of tempered distributions equipped with the weak-star topology. We treat S′(R) as the
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probability space Ω with the σ-field F of Borel sets. According to the Bochner–Minlos
theorem, there exists a probability measure P on (Ω, F ) such that

(1) E exp{i 〈f, ω〉} = exp
{
−1

2
‖f‖22

}
for all functions f ∈ S(R), where ‖f‖22 =

∫
R |f(x)|2 dx.

Note that E 〈f, ω〉 = 0 and E 〈f, ω〉2 = ‖f‖22 for f ∈ S(R) by (1) and thus the duality
〈f, ω〉 can be extended by isometry to the whole space L2(R).

For H ∈ (1
2 , 1), consider fractional integrals of the form

MHf(x) = CH

∫ ∞
x

(t− x)H−3/2f(t) dt, M∗Hf(x) = CH

∫ x

−∞
(x− t)H−3/2f(t) dt,

where

CH =
(
sin(πH)Γ(2H + 1)

)1/2 ((
C1
H

)2
+
(
C2
H

)2)−1/2

,

C1
H = π

(
2 cos

((
3
4
− H

2

)
π

)
Γ
(

3
2
−H

))−1

,

C2
H = π

(
2 sin

((
3
4
− H

2

)
π

)
Γ
(

3
2
−H

))−1

.

We set M1/2f(x) = M∗1/2f(x) = f(x) for H = 1
2 .

According to [4], these operators are defined on Lp(R) for 1 ≤ p < α−1, where

α = H − 1
2
.

If 1 < p < 1
2 , then the operators are bounded and act from Lp(R) to Lq(R), where

q = p(1 − pα)−1. Let f1 ∈ L2(R) and f2 ∈ L1/H(R). Then MHf1 ∈ L1/(1−H)(R) and
MHf2 ∈ L2(R), so that one can introduce an inner product in L2(R) by putting

(f1,MHf2) =
∫

R

f1(x)MHf2(x) dx.

It follows from the Fubini theorem that

(2)
(f1,MHf2) = CH

∫
R

f1(x)
(∫ ∞

x

(t− x)H−3/2f2(t) dt
)
dx

= CH

∫
R

f2(t)
(∫ t

−∞
f1(x)(t− x)H−3/2 dx

)
dt = (M∗Hf1, f2).

Relation (2) means that the operators MH and M∗H are, in some sense, conjugate. Note
that MH and M∗H transform S(R) into S(R).

Let I[0,t](s), 0 ≤ t, be the indicator function. For t < 0 we put I[0,t](s) = −I[t,0](s). Set
MH,t(x) = MHI[0,t](x) and M∗H,t(x) = M∗HI[0,t](x). Consider two stochastic processes

(3) BH(t)(ω) = 〈MH,t, ω〉 and B∗H(t)(ω) =
〈
M∗H,t, ω

〉
, t ∈ R.

Note that BH and B∗H are Gaussian stochastic processes such that

EBH(t) = EB∗H(t) = 0.

It follows from the Parseval equality that

EBH(t)BH(s) =
∫

R

MH,t(x)MH,s(x) dx =
1

2π

∫
R

M̂H,t(λ)M̂H,s(λ) dλ,
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where f̂(λ) =
∫
R
e−iλyf(y) dy is the Fourier transform. The “fractional” Fourier trans-

form is of the form

M̂Hf(λ) = CH
(
C1
H + i · sgnλ · C2

H

)
|λ|1/2−H f̂(λ),

M̂∗Hf(λ) = CH
(
C1
H − i · sgnλ · C2

H

)
|λ|1/2−H f̂(λ)

(see [4]). In the particular case of f(x) = I[0,t](x) we have

M̂H,t(λ) = CH
(
C1
H + i · sgnλ · C2

H

)
|λ|1/2−H 1− e−iλt

iλ
,

M̂∗H,t(λ) = CH
(
C1
H − i · sgnλ · C2

H

)
|λ|1/2−H 1− e−iλt

iλ
.

Therefore

(4)
EBH(t)BH(s) =

1
2π
C2
H

((
C1
H

)2
+
(
C2
H

)2) ∫
R

|λ|−1−2H
(
1− e−iλt

) (
1− eiλs

)
dλ

=
1
2
(
|t|2H + |s|2H − |t− s|2H

)
for all t, s ∈ R.

It follows from (3) and (4) that the processes BH(t) and B∗H(t) are fractional Brownian
motions and have stationary increments. Moreover, representation (3) allows one to
express BH(t) and B∗H(t) in terms of a standard Brownian motion B(t) = B1/2(t) =〈
I[0,t], ω

〉
:

BH(t) =
∫

R

MH,t(u) dB(u), B∗H(t) =
∫

R

M∗H,t(u) dB(u)

or

BH(t) = CH

(
H − 1

2

)−1 ∫ t

−∞

(
(t− u)H−1/2 − (−u)H−1/2

+

)
dB(u),(5)

B∗H(t) = CH

(
H − 1

2

)−1 ∫ ∞
t

(
u
H−1/2
+ − (u − t)H−1/2

)
dB(u).(6)

It is seen from representations (5)–(6) thatBH is a “forward” fractional Brownian motion,
since it depends only on the “past”, namely on {B(u),−∞ < u ≤ t}. Similarly, B∗H is
a “backward” fractional Brownian motion, since it depends on the “future”, namely on
{B(u), t ≤ u < ∞}. In what follows we consider only stochastic equations with BH(t),
since the solutions are adapted and depend on σ{B(u), u ≤ t} in this case.

Note that the so-called “two-sided” fractional Brownian motion is considered in [1].
This process depends on the whole trajectory {B(t), t ∈ R}. This property creates
difficulties when calculating the mutual correlation of the processes BH and B, since
B(t)−B(s), s > u, depends on BH(u).

Now we construct a linear combination of our operators,

Mf(x) =
m∑
k=1

σkMHkf(x), Hk ∈
[

1
2
, 1
)
, σk > 0,

and the corresponding linear combination of fractional Brownian motions with different
Hurst indices,

BM (t) =
m∑
k=1

σkBHk(t) =
〈
MI[0,t], ω

〉
.
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3. Fractional white noise and its representation

in terms of Hermite functions

In what follows we adopt the following notation of [1, 5]. Let N0 = N∪ {0}, I be the
set of all finite multiindices α = (α1, . . . , αn) with αi ∈ N0. Put |α| = α1 + · · ·+ αn and
α! = α1!α2! · · ·αn!. Consider the Hermite polynomials

hn(x) = (−1)n exp
{
x2

2

}
dn

dxn
exp

{
−x

2

2

}
, n ≥ 0,

and the Hermite functions

h̃n(x) = π−1/4((n− 1)!)−1/2 · hn−1

(√
x
)

exp
{
−x

2

2

}
, n ≥ 1.

It is well known that the functions h̃n(x), n ≥ 1, form an orthonormal basis in L2(R).
Let Hα(ω) =

∏n
i=1 hαi

(〈
h̃i, ω

〉)
, and assume that

F = F (ω) ∈ L2(S′(R),F ,P) = L2(Ω)

for a random variable F . Then

(7) F (ω) =
∑
α∈I

cαHα(ω)

by [4], and
‖F‖2L2(Ω) =

∑
α∈I

α! c2α <∞.

Consider the following dual spaces.
(a) S: F ∈ S if the coefficients of expansion (7) are such that

‖F‖2k =
∑
α∈I

(α!)2c2α(2N)kα <∞

for all k ≥ 1, where (2N)γ =
∏m
j=1(2j)γj and γ = (γ1, . . . , γm) ∈ I.

(b) S∗: F ∈ S∗ if F admits a formal expansion (7) with a finite negative norm

‖F‖2−q =
∑
α∈I

c2α(2N)−qα <∞

for at least one q ∈ N (we write F ∈ S−q in this case).
For

F =
∑
α

cαHα ∈ S, G =
∑
α

dαHα ∈ S∗

we set
〈〈F,G〉〉 =

∑
α

α! cαdα.

Further we define the spaces

L2
M (R) = {f : Mf ∈ L2(R)} =

{
f : M̂f ∈ L2(R)

}
,

L2
M∗(R) = {f : M∗f ∈ L2(R)}.

The inner product in L2
M (R) and L2

M∗(R) is introduced by

〈f, g〉M =
∫

R

Mf ·Mg dt, 〈f, g〉M∗ =
∫

R

M∗f ·M∗g dt.

We also define the inverse operator M−1 in terms of the Fourier transform. Let

g(x) = M−1f(x);
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then

f̂(λ) = ĝ(λ) ·
m∑
k=1

σkDHk |λ|1/2−Hk ,

where DHk = CHk(C1
Hk

+ i · sgnλ · C2
Hk

). Thus

(M̂−1f)(λ) =
( m∑
k=1

σkDHk |λ|1/2−Hk
)−1

f̂(λ).

It is clear that the functions ek = M−1h̃k, k ≥ 1, form an orthonormal basis in the space
L2
M (R). Now we represent the linear combination of the fractional Brownian motions

BM (t) in terms of h̃k, k ≥ 1, by using the conjugacy property of M and M∗.

Lemma 1. The following representation holds:

(8) BM (t) =
∞∑
k=1

∫ t

0

M∗h̃k(x) dx
〈
h̃k, ω

〉
, t ∈ R, ω ∈ S′(R),

and the series converges in L2(Ω).

Proof. First assume that ω ∈ S(R). Using relation (2) we obtain

BM (t) =
〈
MI[0,t], ω

〉
=
〈
I[0,t],M

∗ω
〉
,

where M∗ω ∈ S(R). Since I[0,t] ∈ L2
M (R), we have I[0,t] =

∑∞
k=1

〈
I[0,t], ek

〉
M
· ek, where

the series converges in L2
M (R). Then

〈
I[0,t],M

∗ω
〉

=
∑∞

k=1

〈
I[0,t], ek

〉
M
· 〈ek,M∗ω〉 and

the series converges in L2(Ω). Further,
∞∑
k=1

〈
I[0,t], ek

〉
M
· 〈ek,M∗ω〉 =

∞∑
k=1

∫
R

MI[0,t](x)Mek(x) dx · 〈Mek, ω〉

=
∞∑
k=1

∫
R

I[0,t](x)M∗h̃k(x) dx ·
〈
h̃k, ω

〉
=
∞∑
k=1

∫ t

0

M∗h̃k(x) dx ·
〈
h̃k, ω

〉
and (8) is proved for ω ∈ S(R). Now we can extend (8) to the whole space Ω = S′(R),
since S(R) is tight in S′(R) in the weak-star topology generating the weak convergence.
Finally 〈

h̃k, ω
〉

= Hεk(ω), εk = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . ),

and
∞∑
k=1

∣∣∣∣∫ t

0

M∗h̃k(x) dx
∣∣∣∣2 (εk!)2 =

∞∑
k=1

∣∣∣∣∫ t

0

M∗h̃k(x) dx
∣∣∣∣2 <∞,

whence it follows that series (8) converges in L2(Ω). �
Now we define the fractional white noise WH(t) as the formal series

WH(t)(ω) =
∞∑
k=1

M∗H h̃k(x) dx ·
〈
h̃k, ω

〉
.

The linear combination of fractal noises is given by

WH(t)(ω) :=
∞∑
k=1

M∗h̃k(x) dx ·
〈
h̃k, ω

〉
.
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Lemma 2. The fractional noises WH(t) and WM (t) belong to the space S∗ for any
t ∈ R.

Proof. It is sufficient to consider the case of WH(t). In what follows we denote by C
the constants whose exact values have no importance for our consideration. Using the
Fourier transform we obtain∣∣∣M∗h̃k(x)

∣∣∣ = C

∣∣∣∣∫
R

eixt̂̃hk(t)|t|1/2−H dt
∣∣∣∣ ≤ C∣∣∣∣∫

|t|≤1

∣∣∣∣+ C

∣∣∣∣∫
|t|>1

∣∣∣∣.
It is known that

̂̃hk(t) = Ch̃k(t),

|h̃k(t)| ≤
{
Ck−1/12 if |t| ≤ 2

√
k,

Ce−γt
2

if |t| > 2
√
k,

where the constants C > 0 and γ > 0 do not depend on k and t ∈ R (see [1, 5]).
Therefore

(9)

∣∣∣M∗H h̃k(x)
∣∣∣ ≤ C(∫

|t|≤1

k−1/12|t|1/2−H dt+
∫

1<t≤2
√
k

|t|1/2−Hk−1/12 dt

+
∫
|t|>2

√
k

|t|1/2−He−γt2 dt
)

≤ C
(
k−1/12 + k−1/12 · k3/4−H/2 + e−2γ

√
k
)
≤ C

(
k2/3−H/2 + k−1/2

)
≤ Ck2/3−H/2,

whence

‖WH(t)‖2−q =
∞∑
k=1

∣∣∣M∗h̃k(t)
∣∣∣2 (2k)−q ≤ C

∞∑
k=1

k4/3−H−q <∞

for q > 7
3 −H . Since H ≥ 1

2 , we get that for q > 11
6 ,

‖WH(t)‖2−q <∞

for all t ∈ R and H ≥ 1
2 . The proof is complete. �

4. Wick products, integrals, and some representations

Let F (ω) =
∑
α∈I cαHα(ω) and G(ω) =

∑
α∈I dαHα(ω). Then the Wick product is

defined by

(F �G)(ω) =
∑
α,β∈I

cαdβHα+β(ω).

According to [5], F �G ∈ S for F,G ∈ S, and F �G ∈ S∗ for F,G ∈ S∗.
Let Z : R→ S∗ and

〈〈Z(t), F 〉〉 ∈ L1(R), t ∈ R,

for all F ∈ S. We define the S∗-integral
∫
R Z(t) dt as the unique element of S∗ such that〈〈∫

R

Z(t) dt, F
〉〉

=
∫

R

〈〈Z(t), F 〉〉 dt.

Theorem 1. Suppose Y (t) ∈ S∗ is represented as Y (t) =
∑
α∈I cα(t)Hα(ω), t ∈ R,

where the coefficients cα satisfy K := supα
{
α! · ‖cα‖2L1(R)(2N)−qα

}
<∞ for some q > 0.
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Then the Wick product Y (t) �WM (t) is S∗-integrable and

(10)
∫

R

Y (t) �WM (t) dt =
∑
α,k

∫
R

cα(t)M∗h̃k(t) dt ·Hα+εk(ω).

Proof. We consider the case of WH(t); the proof for WM (t) is the same. It is clear that
Y (t)�WH(t) ∈ S∗ and the Wick product equals

∑
α,k cα(t)M∗h̃k(t)Hα+εk(ω). We apply

Lemmas 2.5.6 and 2.5.7 of [5] to prove that Y (t) �WH(t) is S∗-integrable. According to
these results, the S∗-integrability follows from

∑
β∈I

β! ·
∥∥∥∥∥ ∑
α,k : α+εk=β

cα(t)M∗H h̃k(t)

∥∥∥∥∥
2

L1(R)

(2N)(−pβ) <∞

for some p > 0. We proved in Lemma 2 that
∣∣M∗H h̃k(t)

∣∣ < Ck2/3−H/2 < Ck5/12 for all
k ≥ 1 and some C > 0. Therefore∫

R

∣∣∣cα(t)M∗H h̃k(t)
∣∣∣ dt ≤ Ck5/12‖cα‖L1(R)

and ∥∥∥∥∥∥
∑

α,k : α+εk=β

cα(t)M∗H h̃k(t)

∥∥∥∥∥∥
2

L1(R)

≤

 ∑
α,k : α+εk=β

∥∥∥cα(t)M3h̃k(t)
∥∥∥
L1(R)

2

< C

 ∑
α,k : α+εk=β

k5/12‖cα‖L1(R)

2

.

Further

S =
∑
β∈I

β! ·
( ∑
α,k : α+εk=β

k(5/12)‖cα(t)‖L1(R)

)2

(2N)(−pβ)

≤
∑
β∈I

β! · (l(β))5/6 ·
( ∑
α,k : α+εk=β

‖cα(t)‖L1(R)

)2

(2N)(−pβ)

where l(β) equals the subscript of the last nonzero element in the index β (the length of
the index β). It is shown in the proof of Lemma 2.5.7 in [5] that for all α and β there
exists at most one number k such that α+ εk = β, whence ∑

α,k : α+εk=β

‖cα(t)‖L1(R)

2

≤ l(β)2
∑

α,k : α+εk=β

‖cα‖2L1(R).

Thus
S ≤

∑
α,k

(α+ εk)! (l(α+ εk))17/6‖cα‖2L1(R)(2N)−pα(2N)−pεk

≤ K
∑
α,k

(α+ εk)!
α!

(l(α+ εk))3(2N)−(p−q)α(2N)−pεk

≤ K
∑
α,k

(|α|+ 1)42−|α|(p−q)k−p <∞

for p > q + 1. This result means that Y (t) �WH(t) is S∗-integrable.
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By the definitions of the S∗-integral and Wick product,

(11)

〈〈∫
R

Y (t) �WH(t) dt, F
〉〉

=
∫

R

〈〈∑
α,k

cα(t)M∗H h̃k(t)Hα+εk(ω), F
〉〉
dt

=
∫

R

∑
α,k

(α+ εk)! cα(t) dα,kM∗H h̃k(t)(ω) dt

for all F ∈ S, F =
∑
β,kHβ+εk(ω). Note that∑
α,k

(α+ εk)! |dα,k|2(2N)2q(α+εk) = Cq <∞

for all q ∈ N, whence∑
α,k

∫
R

(α+ εk)! |cα(t)| · |dα,k|M∗H h̃k(t) dt ≤
∑
α,k

(α+ εk)! |dα,k|k5/12‖cα(t)‖L1(R)

≤
∑
α,k

(α+ εk)! |dα,k|2(2N)2q(α+εk)
∑
α,k

k5/6‖cα‖2L1(R)(α + εk)! (2N)−2q(α+εk)

≤ Cq ·K
∑
α,k

k5/6(|α|+ 1)(2N)−q|α|k−2q <∞

for q > 11
12 . Interchanging the sum and the integral in (11) we obtain〈〈∫

R

Y (t) �WH(t) dt, F
〉〉

=
∑
α,k

(α+ εk)! dα,k
∫

R

cα(t)M∗H h̃k(t)(ω) dt

=
〈〈∑

α,k

∫
R

cα(t)M∗H h̃k(t)(ω) dt, F
〉〉
,

and (10) follows. �

Corollary 1. Let Y (t) =
∑

α cα(t)Hα(ω) ∈ S∗ be a stochastic process such that∫ T

0

EY 2(t) dt <∞

for some T > 0. Then ∑
α

α!
∫ T

0

c2α(t) dt =
∫ T

0

EY 2(t) dt <∞,

whence K := supα
{
α! ‖cα‖2L1(R)(2N)−qα

}
< ∞ for all q > 0 (we use the notation

cα = cα(t)I[0,T ](t)). By Theorem 1 this means that Y (t) �WM (t) is S∗-integrable and
(10) holds.

Corollary 2. Let Y (t) ≡ 1. Then it follows from Corollary 1 that∫ T

0

WM (t) dt =
∑
α,k

∫ T

0

M∗h̃k(t) dt ·Hα+εk (ω) =
∑
k

∫ T

0

M∗h̃k(t) dt ·
〈
h̃k, ω

〉
= BM (T ).

In this sense, we say that a fractional noise is the S∗-derivative of a fractional Brownian
motion.
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Consider the case where Y (t) ∈ L2(R) is a nonrandom function. Then cα(t) = Y (t)
for α = 0 and cα(t) = 0 otherwise. It follows from Theorem 1 that∫ T

0

Y (t) �WM (t) dt =
∑
k

∫ T

0

Y (t)M∗h̃k(t) dt ·
〈
h̃k, ω

〉
=
∑
k

∫
R

MY T (t)h̃k(t) dt ·
〈
h̃k, ω

〉
=
∑
k

∫
R

MY T (t)h̃k(t) dt ·Hεk(ω),

(12)

Y T (t) = Y (t)I[0,T ](t).

The right-hand side of (12) is the same as that of equality (2.5.22) in [5]. Thus the
left-hand sides also are equal, and

(13)

∫ T

0

Y (t) �WM (t) dt =
∫

R

MY T (t) �WM (t) dt =
∫

R

MY T (t) ·WM (t) dt

=
∫ T

−∞

m∑
k=1

(
σkcHk

∫ T

0∨t
Y (x)(x − t)Hk−3/2 dx

)
WM (t) dt.

Now let Y (t), t ∈ R, be a stochastic process such that Y (t) �WM (t) is S∗-integrable
on any interval [0, T ]. Let∫ T

0

Y (t) dBM (t) :=
∫ T

0

Y (t) �WM (t) dt, T > 0.

Then it follows from (13) and Theorems 2.5.4 and 2.5.9 in [5] that

(14)

∫ T

0

Y (t) dBM (t) =
∫

R

MY T (t) ·WM (t) dt =
∫

R

MY T (t) δB(t)

=
∫

R

MY T (t) dB(t)

for nonrandom Y ∈ L2(R), where the symbols δ and d stand for the Skorokhod and Itô
integrals, respectively. Therefore, the S∗-integral

∫ T
0
Y (t) �WM (t) dt is an ordinary Itô

integral with nonrandom integrand

CH

∫ T

0∨t
Y (x)(x − t)H−3/2

dx

of Volterra type if Y ∈ L2(R) is nonrandom. Note that

∥∥MHY T
∥∥2

L2(R)
= c2H

∫ 0

−∞

(∫ T

0

Y (x)(x − t)H−3/2
dx

)2

dt

+ c2H

∫ T

0

(∫ T

t

Y (x)(x − t)H−3/2
dx

)2

dt

≤ ‖Y ‖2L2[0,T ] · c2H · (1−H)−1 ·
∫ 0

−∞

(
(T − t)2H−2 − (−t)2H−2

)
dt <∞,

so that the Itô integral is well defined.
Note also that it is proved in [1] that the integrals

∫
R Y (t) dBM (t) and

∫
RMY (t) dB(t)

coincide in the case of a nonrandom Y and a “two-sided” fractional Brownian motion.
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5. Stochastic differential equations with a fractional white noise

Consider two possible methods for solving stochastic differential equations with a
fractional noise.

5.1. Lipschitz and growth conditions posed on negative norms of coefficients.
Consider a stochastic differential equation of the form

(15) X(t) = X0 +
∫ t

0

a(s,X(s)) ds+
m∑
k=1

∫ t

0

bk(s,X(s)) �WHk(s) ds, 0 ≤ t ≤ T,

where Hk ∈ [1
2 , 1) for all k ≤ m, and Hi 6= Hj , i 6= j. The case of equation (15) with

a usual (nonfractional) white noise is considered in [6]. Note that the proof presented
in [6] does not use the structure of a white noise; it is based on the fact that the white
noise belongs to the space S∗, and this is true for fractional noises as well. If F ∈ S−r,
G ∈ S−q, and r < q − 1, then

‖F �G‖−r ≤ Cr,q‖F‖−r‖G‖−q
by Theorem 1 in [6]. According to Lemma 2, WHk(t) ∈ S−q for all q > 11

6 . In particular,
WHk(t) ∈ S−2. Moreover, supt≥0 ‖WHk(t)‖−2 ≤ C for some C > 0. Thus

‖F �WHk(t)‖−r ≤ C‖F‖−r
for r < −3, F ∈ S−r, and t > 0.

Assume that the coefficients a and b and initial value X0 of equation (15) satisfy
(A) for all T > 0, 1 ≤ k ≤ m, and some r > 3

a, bk : [0, T ]× S−r → S−r,

X0 ∈ S−r, and the functions a(t,X(t)) and bk(t,X(t)), 1 ≤ k ≤ m, are strongly
measurable on [0, T ] for all X ∈ C([0, T ], S−r);

(B) The Lipschitz and growth conditions on negative norms of coefficients a and bk,
namely

‖a(t, x)− a(t, y)‖−r +
m∑
k=1

‖bk(t, x)− bk(t, y)‖−r ≤ C‖x− y‖−r, t ≤ T ;

‖a(t, x)‖−r +
m∑
k=1

‖bk(t, x)‖−r ≤ C(1 + ‖x‖−r), t ≤ T.

Since bk are strongly measurable, it follows from Theorem 6 of [6] that

bk(t,X(t)) �WHk(t)

also is strongly measurable. The existence of the integrals∫ t

0

a(s,X(s)) ds

and ∫ t

0

bk(s,X(s)) �WHk(s) ds

follows from condition (B). The latter integrals can be viewed as Bochner integrals in
S−r if X ∈ C([0, T ], S−r).

The following result can be proved by the standard successive approximation method
(a similar proof for a white noise can be found in [6]).

Theorem 2. Assume conditions (A) and (B). Then equation (15) has a unique solution
on [0, T ], and this solution belongs to C([0, T ], S−r).
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5.2. Quasi-linear stochastic differential equations with a fractional noise. The
Lipschitz and growth conditions on negative norms of coefficients together are very re-
strictive (see [6]). Consider a stochastic differential equation for which one can drop
these conditions, namely the following quasi-linear equation:

(16) Xt = X0 +
∫ t

0

a(s,X(s)) ds+
m∑
k=1

∫ t

0

σk(s)X(s) �WHk (s) ds,

where Hk ∈ [1
2 , 1) for all k ≤ m, and the coefficients and initial value X0 are such that

(C) σk(s), 1 ≤ k ≤ m, are nonrandom functions, σk ∈ L1/Hk [0, T ];
(D) the function a(s, x, w) : [0, T ]×R×S′(R)→ R is measurable in all its arguments,

|a(s, x, w)| ≤ c(1 + |x|), w ∈ S′(R), 0 ≤ s ≤ T, x ∈ R,

|a(s, x, w) − a(s, y, w)| ≤ c|x− y|, x, y ∈ R, w ∈ S′(R), 0 ≤ s ≤ T ;

(E) X0 ∈ Lp(Ω) for some p > 0.

Theorem 3. Assume conditions (C)–(E). Then equation (16) has a unique solution X
on [0, T ], and moreover X ∈ Lp′(P) for all p′ < p.

Proof. For simplicity we give the proof for the case of m = 1 and H = H1 >
1
2 . Consider

the differential form of equation (16),

(17)
dX(t)
dt

= a(t,X(t)) + σ(t)X(t) �WH(t), X(0) = X0.

Set σt(s) = σ(s)I[o,t](s) and let

Jσ(t) = exp�
(
−
∫ t

0

σ(s) dBH(s)
)
,

where

exp�X =
∞∑
n=0

X�n

n!

is the Wick exponential. It follows from (14) that

Jσ(t) = exp�
{
−
∫

R

MHσt(s) dB(s)
}
.

Put Z(t) := Jσ(t) �X(t). By the rules of stochastic differentiation given in [5],

dZ(t)
dt

= Jσ(t) � dX(t)
dt

− dJσ(t)
dt

�X(t) �WH(t) · σ(t).

Taking the Wick product of both sides with dJσ(t)
dt , we obtain from (17) that

(18)
dZ(t)
dt

=
dJσ(t)
dt

� a(t,X(t)).

Now we apply the Giessing lemma:

(19)
dJσ(t)
dt

� a(t,X(t), w) =
dJσ(t)
dt

· a (t, T−MHσtX(t), w −MHσt) ,

where T is the shift operator and Tw0f(w) = f(w + w0). Similarly,

Z(t) = Jσ(t) · T−MHσtX(t).

By (18)–(19), Z(t) is a solution of the ordinary differential equation

(20)
dZ(t)
dt

=
dJσ(t)
dt

· a
(
t, J−1

σ (t) · Z(t), w −MHσt
)

for every w ∈ S′(R), Z(0) = X0.
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The only difference between equations (20) and (3.6.15) in [5] is that the function
MHσt is involved in (20) instead of σt in (3.6.15). Since the structures of MHσt and σt
are the same, equation (20) has a unique solution on [0, T ] for all w ∈ Ω = S′(R) (here
we take conditions (C)–(D) into account).

Now we estimate the moments of the solution X(t). It follows from condition (C) that

|Z(t)| ≤ |X0|+
∫ t

0

Jσ(s)
∣∣a (s, J−1

σ (s)Z(s), w −MHσs
)∣∣ ds

≤ |X0|+ C

∫ t

0

Jσ(s)
(
1 + J−1

σ (s)|Z(s)|
)
ds

≤ |X0|+ C

∫ t

0

Jσ(s) ds+ C

∫ t

0

|Z(s)| ds,

whence

|Z(t)| ≤
(
|X0|+ C

∫ T

0

Jσ(s) ds

)
exp{CT },

E |Z(t)|p ≤ exp{pCT }2p
(

E |X0|p + CE

∫ T

0

|Jσ(s)|p ds
)

(21)

by the Gronwall inequality. Since

E |Jσ(s)|p = E exp�
{
−p
∫

R

(MHσt)(s) dB(s)
}

= exp
{
p2‖MHσt‖22

}
,

we obtain from (21) that

E |Z(t)|p <∞

as condition (C) implies that MHσt ∈ L2(R). Further,

T−MHσtX(t) = Z(t)J−1
σ (t),

and E |J−1
σ (t)|q <∞ for all q > 0. Therefore

T−MHσtX(t) ∈ Lp′(Ω)

for all p′ < p. Since MHσt ∈ L2(R), we haveX ∈ Lp′(Ω) for all p′ < p by Corollary 2.10.5
in [5]. �
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