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ABELIAN AND TAUBERIAN THEOREMS FOR RANDOM FIELDS

ON TWO-POINT HOMOGENEOUS SPACES
UDC 519.21

A. A. MALYARENKO

ABSTRACT. We consider centered mean-square continuous random fields for which
the variance of increments between two points depends only on the distance between
these points. Relations between the asymptotic behavior of the variance of increments
near zero and the asymptotic behavior of the spectral measure of the field near infinity
are investigated. We prove several Abelian and Tauberian theorems in terms of slowly
varying functions.

1. INTRODUCTION

Let &(z) be a centered mean-square continuous random field defined on the space
R™ and whose covariance function is B(x,y) = E£(x){(y). The classical definition of a
homogeneous isotropic random field can be formulated in two different but equivalent
ways (see [L1]). Here are these two definitions.

Definition 1. A random field £(z) is called homogeneous and isotropic if its correlation
function B(x,y) is invariant with respect to the isometry group G of the space R™.

Definition 2. A random field £(z) is called homogeneous and isotropic if its correlation
function B(x,y) depends only on the distance p(x,y) between points x and y.

An easy proof of the equivalence of Definitions 1 and 2 is based on the following
important property of the space R™. The isometry group of R™ is transitive on equidistant
pairs of points. In other words, whenever 1,2, y1,y2 € R™ are such that p(z1,y1) =
p(x2,y2), there is an isometry g such that g(z1) = z2 and g(y1) = ya.

Any metric space (X, p) possessing this property is called a two-point homogeneous
space. We are concerned with the case where X is both a two-point space and a connected
Riemann manifold. The complete classification of such spaces is known (see [4]). We
present this classification in Tables 1 and 2.

In Table 1, S™, n > 1, denotes the n-dimensional sphere, RP™, CP", and HP™, n > 2,
stand for the n-dimensional projective spaces over fields of real numbers R, complex
numbers C, and quaternions H, respectively, while CaP? means the projective plane over
Cayley numbers. Similarly in Table 2, R™ n > 1, denotes the n-dimensional Euclidean
space, RA™, CA™, and HA™, n > 2, stand for the n-dimensional hyperbolic spaces over
the fields of real numbers R, complex numbers C, and quaternions H, respectively, while
CaA? means the hyperbolic plane over Cayley numbers.
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TABLE 1. Compact two-point homogeneous spaces.

X G K « 16}

S™ 1 8S0(n+1) SO(n) (n—2)/2| (n—2)/2
RP™ | SO(n+1) O(n) (n—2)/2 -1/2
CP™ | SU(n+1) | S(Un)xU1)| n-1 0
HP™ | Sp(n+1) | Sp(n) xSp(1) | 2n—1 1
(C&P2 F4(_52) Spln(9) 7 3

TABLE 2. Noncompact two-point homogeneous spaces.

X G K M a 3

R™ ISO(n) SO(n) SO(n —1) (n—2)/2|(n—-2)/2
RA™ | SOq(n,1) SO(n) SO(n —1) (n—2)/2| -1/2
CA™ | SU(n,1) | S(U(n) x U(1) | S(U(n) x U(1)*) | n-—1 0
HA™ | Sp(n,1) | Sp(n) x Sp(1) | Sp(n) x Sp(1)* 2n —1 1
CaA? | Fy_ap) Spin(9) Spin(7) 7 3

One must distinguish between the dimension n of the space X considered over some
number system, and the topological dimension N of the manifold X. We have N = n for
the case of real numbers, N = 2n for complex numbers, N = 4n for quaternions, while
N = 8n = 16 for Cayley numbers.

In what follows the symbol X stands for an arbitrary space in the first columns of
Tables 1 and 2. The second column in these tables presents the connected component G of
the identity element of the corresponding isometry group. We use the standard notation
for Lie groups; see [I8].

Let K denote the stationary group of a fixed point 0 € X, namely

K ={g € G: go=o}.

This group is described in the third column in Tables 1 and 2. Then the space X can be
represented as the homogeneous space G/K.

Definition 3 ([21]). A random field {(z) on a space X = G/K is called homogeneous if
its correlation function is invariant with respect to the group G.

Unfortunately, the commonly accepted terminology differs from that introduced in
Definition 3 for two cases. First, if X = R" = ISO(n)/SO(n), then according to Def-
inition 1 the fields possessing the property of Definition 3 are called homogeneous and
isotropic. Second, if

X =5"=8S0(n+1)/S0O(n),

then those fields are called isotropic [I1]. In both cases we use the commonly accepted
terminology.

In what follows {(x) denotes a homogeneous random field on X. The correlation
function B(z,y) of a random field £(x) can be represented in the form B(x,y) = B(r)
where r denotes the distance between the points x and y. Homogeneous random fields
on compact two-point homogeneous spaces are studied in [I3]. The case of noncompact
spaces is presented in [7].

Consider the variance of an increment of a random field &(x):

o*(x,y) = E(§(z) — £(y)*.
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It is easy to see that o2(x,y) = 0(r) where 7 = p(z,y). Indeed,

(1) o*(x,y) = 2(B(0) — B(r)).

Note that the converse is not true. A random field n(x) on a space X is not necessarily
homogeneous even though the variance of the increments depends only on the distance
between points.

Consider an example. Let Wi (t) and Wa(t), t € [0,00), be two independent Wiener
processes. Let the stochastic process 7(t) be defined by

. Wl(t), t> 0,
n(t) = {WQ(—t), t <0.

The variance of increments of the process 7(t) is 02(s,t) = |s — t|; however the process
is not homogeneous.

Random fields n(z) whose variance of increments between two points depends only
on the distance between these points were studied in [17] for various spaces X under an
additional assumption that n(o) = 0. We are interested in the cases where X is one of
the spaces listed in Tables 1 and 2.

It is easy to check that the variance of increments of the random field n(x) = £(x)—£(0)
depends only on the distance between points. According to [17], this is the only possibility
in the case of compact spaces. Nevertheless there are other possibilities in the case
of noncompact spaces. For simplicity we consider only the case of X = R", which
corresponds to the first row of Table 2.

Throughout the paper n(x) denotes a centered mean square continuous random field on
X = R"™ whose variance of increments between two points depends only on the distance
between these points.

Many problems on local properties of Gaussian and sub-Gaussian random fields require
the asymptotic behavior of the function o2(r) near zero (see [Z, [12]). In this paper,
we prove several theorems concerning relations between the asymptotic behavior of the
spectral measure of random fields £(x) and n(x) at infinity and the asymptotic behavior
of the variance of increments near zero. Other kinds of Abelian and Tauberian theorems
for homogeneous and isotropic random fields are studied in [51 [6] 8] [L1] [19].

In Section 2, we give statements of results. Section 3 is devoted to the proofs. Con-
cluding remarks are given in Section 4.

The author is indebted to Professor N. H. Bingham for helpful discussions of Abelian
and Tauberian theorems.

2. RESULTS

To formulate our results, we need some preparation.

Consider a homogeneous random field {(z). By 7 we denote the mapping from G
onto X that sends g € G to the corresponding coset gK € X. Recall that a subgroup
K of a group G is called massive (see [3]) if any irreducible unitary representation U
of the group G contains at most one copy of the trivial representation of the group K.
A representation U is called a representation of class 1 with respect to a group K if it
contains exactly one copy of the trivial representation of the group K.

The group K is massive for all spaces listed in Tables 1 and 2. Thus according to [21],
the correlation function B(z,y) of the random field £(z) is of the form

(2) B(x7y)=/é Too (As 95 '91) dp(N)
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where G denotes the set of equivalence classes of the irreducible unitary representations
of class 1 of the group G with respect to the group K, Too()\; g5 ! g1) denotes the zonal
spherical function (see [2I]) that corresponds to an element A € Gk, g1 is an arbitrary
element of the set 71z, go is an arbitrary element of the set 7—'y, and p is a finite
measure on G'gc. The measure p is called the spectral measure of the random field &(z).

The set Gk can be identified with the set Z of nonnegative integers in the case of
compact spaces listed in Table 1 (see [I3]). We have Gx = [0,00) for the space R™.
For all other noncompact spaces in Table 2, the set G can be identified with the set
{ip} U [0,is0] U (0, 00) where the parameters p and s¢ are given by

p=a+p+1, so = min{p,a — f+ 1}

(see [16]).

Consider a random field n(x), € R™, for which the variance of increments depends

only on the distance between points. Assume that 7(0) = 0. According to [I7], the
correlation function of the field () is of the form

o0 Jin_2)/2(Ar)
2/ N _ .2 _ o(n—2)/2 (n—2)/2
3) (1) = or? + /0 (1 2022 (n/2) T ) du(N)
where ¢ > 0 is a constant, .J,(z) is the Bessel function of order v, and p denotes the
so-called Lévy—Khinchin measure on the interval (0, 00), that is, a measure such that

> N du(N)
/0 T S

Therefore all the cases above deal with the asymptotic behavior of the spectral measure u
at infinity.
The class of random fields considered above has an alternative description. Recall that
a random field n(x) has homogeneous increments if the variance o(x, y) of its increments
is such that
o*(z + 2,y +2) = o2(z,y), z € R™

Definition 4 ([11]). A random field n(z) is called isotropic if the expectation En(z)
depends only on the norm ||z| and

B(gz, gy) = B(z,y)
for all g € SO(n).

Lemma 1. Let n(x), x € R™, be a centered mean square continuous random field. Then
the following two conditions are equivalent:
(1) the variance of increments of the random field n(z) depends only on the distance
between points;
(2) n(zx) is an isotropic field with homogeneous increments.

Let @ > § > —1 be arbitrary real numbers and let P,(na’ A (r) be the Jacobi polynomials,
that is, polynomials orthogonal on the interval [—1, 1] with respect to the measure
(1 —r)*(1+7)°dr.
Further let @.5)
Py
Rg,‘f”g)(r) = (7')
PO (1)
We write f(r) ~ g(r) as r | 0 if
lim M =1.
rl0 g(r)
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Similarly we write a,, ~ b, as m — oo if
a
lim = =1.
m—0o0 m

Lemma 2. Let 02(r) denote the variance of increments of either a centered mean square
continuous homogeneous random field on a space X or a centered mean square continuous
isotropic random field with homogeneous increments on the space R™. In both cases, there
are a sequence of real numbers a,,, m > 1, depending only on the spectral measure i,
and real numbers o and (3 depending only on the space X such that

e}

(4) o?(r) ~ Z am {1 - Rfﬁ‘”ﬁ’)(cos 7“)} , r ] 0.
m=1
Moreover
o0
A, > 0, Z Ay, < 00.
m=1

In this case the values of am, o/, and B’ for various spaces are given by formulas (16),

B0), and @2)-@7) below.

We need an auxiliary result. Put

(5) Am: Z ag.

For all real numbers @ > —1 and 8 > —1 let

@m+a+B+1DIB+ 1T (m+a+ B8+ 1T (m+a+1)
FNa+DI'(a+B+2)m!IT(m+ G +1)

where 2m +a+ 8+ 1)I'(m+a+ S +1) equals 1 for m = 0 and o = 8 = —1/2. Note

that the norm of the polynomial Rgﬁf’ﬁ)(cos 6) in the Hilbert space L?([0, 7], dG) is equal

to (11)7(7?”3))_1/2 (see [14]). Let the probability measure G be defined by

I'a+5+2)

(6) wip? =

_ - 2041 28+1
dG(9) Tla+ LB+ 1) sin (0/2) cos (0/2)de.
Lemma 3. We have
% 2( ) 9 AO(O/ + 06+ 2) n i mev(v?url’ﬁ/) R(a’-i-l,ﬁ’)( )
o \r r —4(a/ T 1) P m2a’+4 m CcosT

as r | 0, where

(2m+ o 4 ﬁ, + Q)Am . m2a/+4

(a'+1,4)

®) o 4(o + D)wy,

We also recall some definitions of the theory of regularly varying functions (see [19]).
We say that a function L(t) is slowly varying at infinity if

L(at)
im =
0]
for all @ > 0. In what follows we assume that
(9) A ~m”2 L(m), m — oo, v € [0,1],

for some slowly varying function L. We additionally assume that L(m) — 0 as m — oo
in the case of v = 0, since A,, is the tail of a convergent series.
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TABLE 3. Intervals related to types of convergence.

X Absolute | Conditional Abel
convergence | convergence | summability
St R2, RA? (1/2,1) (0,1/2) {0}
52, RP% R3 RA3, CA™ (1/4,1) [0,1/4] @
53, RP3, R*, RA* (0,1) {0} 1%}
Other spaces [0,1) 1%} 1%}

The convergence of the series on the right-hand side of () can be understood in
various senses depending on the parameter v and space X. According to [14], we distin-
guish between the three types of convergence, namely absolute convergence, conditional
convergence, and Abel summability. The types of convergence are shown in Table 3.

Table 3 contains the values of the parameter v € [0,1) for all two-point homogeneous
spaces for which the series on the right-hand side of (@) converges for a given type of
convergence. For every type of convergence we provide the Abelian theorem and its
Tauberian counterpart. We also provide a result for the limit value v = 1.

Recall that £(z) means a centered square mean continuous homogeneous random field
on a space X, while n(z) means a centered square mean continuous isotropic random
field on a space R™ with homogeneous increments. These types of random fields are
determined by their spectral measure p. Applying Lemma 1 and equality (B) one can
evaluate the coefficients A,,.

Theorem 1. Let the parameter v belong to the set of absolute convergence (column 2
of Table 3). Let equality @) hold. Then the asymptotic behavior of the variance of
increments of random fields £(x) and n(x) is given by

2 (1 —~)l( 2y —1
(10) o (r) ~ 2(217F(3/)_’_(7:11))r L(r ), r]0.

Theorem 1 claims that the asymptotic relation (I0) follows from the asymptotic re-
lation (@) without any additional assumption. Results of this type are called Abelian
theorems. The Tauberian counterpart of Theorem 1 should claim that, conversely, (@)
follows from ([I0). In most cases (in our case as well) Tauberian theorems hold under
extra conditions called Tauberian conditions.

We now introduce Tauberian conditions for our case.

Condition 1. There exists a function w(¢) such that

m2Y

2—2~
m
li — | = A — A, < .
e 2, T |(5) Ae] S0 <o
Moreover
lim w =0.
im w(C)

We say that a sequence a,, is slowly varying in the Schmidt sense [14] if

o : o > _
lig&fmglgrlcm(aj am) > —w(()

where

0<w(()<oo for(>1, léglw(g):o.

Condition 2. A sequence m*YA,,/L(m), m > 1, is slowly varying in the Schmidt sense.
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Condition 3. Sequence (B) is slowly varying in the Schmidt sense.

Theorem 2. Assume that the parameter v belongs to the set of absolute convergence
(column 2 of Table 3). Let (IU) hold as well as any of Conditions 1, 2, or 3. Then
equality @) is valid.

Now we turn to the case of parameters of the set of conditional convergence. A
positive function f(¢) is called quasimonotone [14] if it is of a bounded variation on
compact subsets of the interval [0, c0) and

[ ewoi-o@rw).  e-
for some 6 > 0.

Theorem 3. Let the parameter v belong to the set of conditional convergence (column 3
of Table 3). Assume that equality Q) holds and the function L(t) is slowly varying and
quasimonotone. Then equality [IQ) is satisfied.

Theorem 4. Let the parameter v belong to the set of conditional convergence (column 3
of Table 3). Assume that equality (I0) and Condition 3 hold. Then equality @) is
satisfied.

The situation becomes simpler if the parameter v belongs to the set of Abel summa-
bility. The set of Tauberian conditions is empty in this case.

Theorem 5. Let the parameter v belongs to the set of Abel summability (column 4 of
Table 3). Assume that condition (Q) holds and both sequences L(m) and

m(L(m) — L(m — 1))
are slowly varying and quasimonotone. Then equality (I) is satisfied.

Theorem 6. Let the parameter v belong to the set of Abel summability (column 4 of
Table 3). Assume that condition ([I0) holds. Then equality (@) is satisfied.

Now let v = 1. If the series > °_ | L(m)/m converges, then the series on the right-hand
side of ([7) converges absolutely. In this case

o) ~ 2O T L)

4(a’ +1)
Otherwise the following result holds.

Theorem 7. Let A,, ~m~2L(m) (m — o0) and

o0
L
_(m) = 00.

m=1 m

Then
2 rt
o2(r) ~ 7“7/ L(w) du.
2(0{’ + 1) 0 u
3. PROOFS

Proof of Lemma 1. Tt is sufficient to prove that all possible correlation functions of cen-
tered mean square continuous isotropic random fields with homogeneous increments can
be represented in the form (B)). Let a field n(z), * € R™, have homogeneous increments.
According to [10], its correlation function is of the form

(11) B(z,y) = (Az,y) + / (e“w) - 1) (e—“pw) - 1) dv(p),
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where A is a positive semidefinite linear operator in the space R™ and v is Lévy—Khinchin
measure. Assume that the random field 7(x) is isotropic. Then the operator A commutes
with all operators g € SO(n). By Schur’s lemma [3] the operator A is of the form

(12) A=cl.
Moreover the measure v is such that
v(gC) =v(C), g € S0(n), C € BR"),

where B(R") is the o-algebra of Borel sets in the space R™. The measure in this case is
of the form

(13) dv(p) = w21 (lIpll) dp du(lip])

where wy,—1(|[p||) denotes the Lebesgue measure of a sphere S™~1(||p||) of radius ||p|| in
the space R"™, while 1 denotes the measure on the interval [0, 00) defined by

nw(C) =v({peR": |p[[ € C}),  CeB([0,0)).
Substitute ([2) and (I3)) into (II]) and use the following result:

w,,. ' T Jin—2)s2(llpll - ll])
! i(q,x) da = 2(n—2)/2 9 (n—2)/2
(el S ! (n/2) (Ipll - =]y m=2/2

(see [11]]). Then

Bleuy) = ol + [ (1202002 e BT

(14 s [T (1= 2y 2B oy

> _ Jn—2y2(Mz —yll)
+/ (1—2<" /20 (n/2 dp(\
) "D -y ) N

where A = ||p||. Substituting ({4)) into () we obtain (B). O

Proof of Lemma 2. First we consider the case of a compact two-point homogeneous
space X (Table 1). According to [13], in this case equality (2)) takes the following form:

(15) B(r) = f: bm R (cos )

m=0

where the numbers « and 3 are shown in the corresponding columns in Table 1, and
oo
by >0, Z b < 0.
m=1

Substituting ([I5) in ) we obtain () with
(16) A = 2byy, o =a, 8 =5.

Now we consider the case of a noncompact two-point homogeneous space X (Table 2).
In the case of X = R™ let M = SO(n—1). In all other cases, the group G is a semisimple
Lie group of rank 1. Let G = KAN be its Iwasawa decomposition (see [I8]). The
group A can be identified with the group R. Let M be the centralizer of the group A
in the group K, that is, the set of elements k € K commuting with all elements a € A.
The group M is shown in column 4 of Table 2. We use the following notation in [16]:

U@)" ={(k,k): k€ U)},  Sp(1)" ={(k,k): k € Sp(1)}.
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Denote by Rs(k) the zonal spherical function that corresponds to the element § € K.
Then

(17) TQO )\ 92 91 Z T(SQ ;—aq R5 (k? kl) T(;Q(/\ ag)
seKn

Note that the elements a; € R and k; € K/M are uniquely determined by the elements g;,

j = 1,2. The symbol Tso(A;a), 6 € Ky, denotes the associated spherical function [3].

The homogeneous space K/M is the sphere SV = {z € X: p(z,0) = 1}. Relation (I7)

is proved in [16]. In the special cases X = R™ and X = RA"™ it is proved in [3].
Substitute (I7) into ). Thus

By = 3 /G Tho(As a1) Tso (A az) dyu(\) Ry (ky k)
561%1\4 K

Substituting the latter result in () we obtain

(18) (x,y) =2 Z Tso(A; a1)Tso(N; az) du(N) - (Rs(e) — Rs (k3 k1))
SeK G

If r = p(z,y) is sufficiently small, then one can find an element g € G such that the
points gz and gy lie on the sphere SV ~1. Since the random field £(z) is homogeneous,
we have

2 _ 2 2
o (gz,9y) = 0" (z,y) = o~ (r).
This means that one can assume from the beginning that =, y € SN¥~1. For these points
x and y it follows that a1 = as = 1.

Consider the restriction of the random field ¢(x) to the sphere SN~1. This random
field is homogeneous with respect to the group K. In the cases of X = R™ and X = RA"
(Table 2, N = n) we have K = SO(n), whence &(z), € S"~!, is an isotropic random
field on a sphere. Thus the variance of its increments must be of the following form:

(oo}
(19) o?(r') = Z am {1 — R{(n=3)/2:(n=3)/2) (o r')}
m=1
where 7’ is the distance between points  and y measured along the geodesic line on the
sphere S™1.

It is clear that ' ~ r as r | 0. Comparing (I9) and (I8) we see that the set Ky can
be identified with the set Z,. Moreover, in this case the zonal spherical function R,,
depends only on one variable r’ and

(20) = 2/ Do DEdu(V), o = 8/ = (n —3)/2.
Gk
Other cases listed in Table 2 are more complicated (see [16]). The group K is a
subgroup of SO(N — 1). The set Ky can be identified with the set
{(k,)eZZ:0<1<k}.

The zonal spherical function Rs is described in [16] and depends on two real variables.
The function Rs is of the following form:

Ry (u, ) = Rl(a_ﬁ_l’ﬁ"rk_l) (2u* — 1) rk*lR,(f__ll/Q’ﬁ_l/Q)(cos ©)

where 0 < u < 1 and —7 < ¢ < 7 for X = CA™, while 0 < ¢ < 7 for X = HA™ or
X = CaAZ2.
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Relation (I8) can be rewritten as follows:

(21) :222 / Toa (% —an) Tt (3 a2) dp(N) - (1 — Ria (1, )
—01=0“/GK

where 7 = p(x,y). It is shown in [16] that
coshr = ‘cosh aq cosh as — ue® sinh ay sinh a2| .

If r is sufficiently small, then there is an element g € G such that the points gx and gy
lie on the surface of the sphere SV, whence a1 = as =1 and v = 1. Thus

2 o 1.2
coshr = ‘COSh 1 — ¥ sinh 1‘

and " ~ r as r | 0. Hence equality implies an asymptotic relation of the form ()
with

(22) am—ZZ/ TN D)2 du(N), o =f =6-1/2.

It remains to consider the case of an isotropic random field
n(x), x € R™,

with homogeneous increments. Let Ti,0(A; ||z]|) be the associated spherical function of
the space R™ =ISO(n)/SO(n) [3]. Then

Jn—2y2(Mz —yl)
(Al = y[))(n=2/2

= > TN 2l Tomo(X; [yID R 27207372 (cos )
m=0

2n=2)/2(p,/2)

and
= " To sl ) o O 191
m=0

where ¢ denotes the angle between the vectors x and y. Substituting the latter re-
sults into (B) and considering the points x and y on the surface of the sphere S™~! we
obtain (#). In this case the numbers b,,, o/, and 8" are defined by (20).

The associated spherical function is given by

. n—3)/2,(n—3)/2) o (n— mt(n—2)/2(Aa)
@) Tlha) =iyl RO g0 g ) Pt

it X =R" (see [3]), or by

(24) \/ (n=3)/2,(n=3)/2) y (n=3)/2,(n=3)/2) ()

7m7

if X =RA" (see [16]), or by

(25) Tia(Xsa) = /w020 B ()
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in all other cases (see [16]), where

(a,ﬁ)(a)_F((oz—l—ﬁ—l—l—l—z/\)/Z—l-k) ((a=B+14+N)/2+ DT (a+1)
ML T (a4 BH14+3N)/2)T((a— B+ 1+iN)/2)T(a+k+1+1)
x sinh* ™ g cosh* ' a
(26) X2F1(04+B42-1+i/\+k,a+642—1—i/\+k;

a+k+l+1;—sillh2a)

and
(o) _ (k204264 V(k+1+a+F+3/2T(+a+1)
(27) k.l I(a+ 128+ 2)(a+ B+5/2)
" MNk—-1+28+1DI'k+a+8+3/2)T(5+ 3/2).
Nk-DIT(k+6+3/2)
The symbol o F; stands for the hypergeometric function. The coefficient 77,(;1[ 2 equals
the dimension in the representation 6 = (k,1) € Kay. O

Proof of Lemma 8. We rewrite relation (@) as follows:

o?(r) ~ (Am — Apt1) {1 — R (cos 7“)} ) r | 0.

m=1

The partial sum of the series on the right-hand side is equal to

k
Z — Ay [1—R£,‘f/’ﬁ/)(cosr)}
=1
k—1
(28) = A {1 - R(a’ (cosr } + Z mt1 {Rg,‘f/’ﬁl)(cos r) — Rg:_Hﬁ )(cos T)
m=1

— Ap1 {1 — (cosr)| .

The factor Ag41 is the tail of a convergent series, thus it approaches zero as k — oo.
Applying relation (7.32.2) of [9] with o/ > 8’ > —1/2 we have

‘Rﬁ,?/’ﬁl)(cosr)‘ < R (1) =1.

This implies that the last term on the right-hand side of equality ([28]) tends to zero as
k — oo. Approaching the limit we get

o0
(29) o2(r) ~ A {1 _ R4 )(cosr)} + Z At [Rgg',ﬁ’)(cosr) - Rgr‘fﬂﬁ )(cost)| .
m=1

According to relation (32) in Section 10.8 in [I] we have

(2m + o + [ +2)sin® (T/Q)R(a 41,89

(30) RA)(cosr) — Rg,?ﬂﬁ )(cosr) = o1

(cosr).

Substituting (30) into (29) and taking into account that sin®(r/2) ~ r2/4 as r | 0 we
prove (@) and (8). O
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Now we explain how to compute the values shown in Table 3. Assume that relation (@)
holds. Applying (@) and the Stirling formula we get

o/ + 1)T(o/ + 5" +3)
4T(p' + 1)
According to [14], the series on the right-hand side of (BI)) converges absolutely if

(31) Cm ~ m?* 2 L(m), m — 00.

0<2—2y<a +3/2.

Then v € (—a//2 — 1/4,1). Using Tables 1 and 2 and relations (I6), 20), and 22)
we obtain the numbers in column 2 of Table 3. The rest of the numbers can be found
similarly.

The proofs of all theorems are based on the results in [14]. Theorem 1 follows from
BI) and Theorem la in [14]. Relation (@) for Theorem 2 in the case of Condition 1
follows from relation (I0) and Theorem 2 in [14]. Similarly, relation (@) in the case of
Condition 2 follows from (I0) by Corollary 1 in [14], while in the case of Condition 3 it
follows from ([I0) by Corollary 2 in [14].

To prove Theorem 3 we use Theorem 3a in [14], whereas to prove Theorem 4 we
use Theorem 3b in [14]. Similarly we apply Theorem 4a in [14] to prove Theorem 5,
Theorem 4c in [T4] to prove Theorem 6, and Theorem 6 in [T4] to prove Theorem 7.

4. CONCLUDING REMARKS

Remark 1. The approach considered in this paper is not applicable for X = R!. In this
case the Abelian and Tauberian theorems can be found in [20].

Remark 2. Let X be one of the spaces listed in Table 2. Let n(x), x € X, denote a
centered mean square continuous random field such that 7(o) = 0 and whose variance
of increments between two points depends only on the distance between these points.
Lemma 1 describes all the fields with these properties in the case of X = R™. Random
fields for other cases in Table 2 are partially described in [17]. The Abelian and Tauberian
theorems for such fields can be obtained using the methods of this paper.

Remark 3. Condition (9) can be written explicitly in terms of the spectral measure u
in the case of noncompact spaces. For example, if a random field is isotropic and has
homogeneous increments on the space R™, then

2"2[[(n/2))? i": (2j +n—2)(j +n—3)! /°° itV
0

(n—1)! i = () ~m=* L(m)

Jj=m+1

by @v @)v Gm)v and (]23])

It would be interesting to obtain equivalent conditions in terms of the asymptotic
behavior of the measure y at infinity.

BIBLIOGRAPHY

1. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions,
vol. II, McGraw—Hill, New York, 1953. MR0058756//(15:4191)

2. V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and
Random Processes, TVIMS, Kiev, 1998; English transl., Translations of Mathematical Mono-
graphs, vol. 188, Amer. Math. Soc., Providence, RI, 2000. MR1743716//(2001g:60089)

3. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, “Nauka”, Moscow,
1991; English transl., Translations of Mathematical Monographs, vol. 22, Amer. Math. Soc.,
Providence, RI, 1968. MR1177172|(93d:33013)

4. J. A. Wolf, Spaces of Constant Curvature, Publish or Perish, Wilmington, DE, 1984.
MRI0928600 |(88k:53002)


http://www.ams.org/mathscinet-getitem?mr=0058756
http://www.ams.org/mathscinet-getitem?mr=0058756
http://www.ams.org/mathscinet-getitem?mr=1743716
http://www.ams.org/mathscinet-getitem?mr=1743716
http://www.ams.org/mathscinet-getitem?mr=1177172
http://www.ams.org/mathscinet-getitem?mr=1177172
http://www.ams.org/mathscinet-getitem?mr=0928600
http://www.ams.org/mathscinet-getitem?mr=0928600

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ABELIAN AND TAUBERIAN THEOREMS 127

N. N. Leonenko and A. Ya. Olenko, Tauberian and Abelian theorems for the correlation function
of a homogeneous isotropic random field, Ukrain. Mat. Zh. 43 (1991), no. 12, 1652-1664; English
transl. in Ukrainian Math. J. 43 (1991), 1539-1548. MR1172306/(93{:60069)

. A. A. Malyarenko, Local properties of Gaussian random fields on compact symmetric spaces,

and Jackson-type and Bernstein-type theorems, Ukrain. Mat. Zh. 51 (1999), no. 1, 60-68;
English transl. in Ukrainian Math. J. 43 (1991), 66-75. MR1712757 (2000j:60053)

. G. M. Molchan, Homogeneous random fields on symmetric spaces of rank one, Teor. Veroyat-

nost. Matem. Statist. (1979), no. 21, 123-148; English transl. in Theory Probab. Math. Statist.
21 (1980), 143-168. MR0550252|(81f:60077)

. A. Ya. Olenko, Tauberian and Abelian theorems for random fields with strong dependence,

Ukrain. Mat. Zh. 48 (1996), no. 3, 368-382; English transl. in Ukrainian Math. J. 48 (1996),
412-427. MRI408658(97k:60143)

. G. Szeg6, Orthogonal Polynomials, Colloquium Publications, vol. XXIII, Amer. Math. Soc.,

Providence, RI, 1975. MR0372517 (51:8724)

A. M. Yaglom, Certain types of random fields in n-dimensional space similar to stationary
stochastic processes, Teor. Veroyatnost. i Primenen. 2 (1957), 292-338; English transl. in Theory
Probab. Appl. MR0094844(20:1353)

M. I. Yadrenko, Spectral Theory of Random Fields, “Vyshcha Shkola”, Kiev, 1980; English
transl., Translation Series in Mathematics and Engineering, Optimization Software, Inc., Pub-
lications Division, New York, 1983. MR0590889) (82¢:60001)

R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General Gauss-
ian Processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 12,
Institute of Mathematical Statistics, Hayward, CA, 1990. MR 1088478/ (92g:60053)

R. Askey and N. H. Bingham, Gaussian processes on compact symmetric spaces, Z. Wahrschein-
lichkeitstheorie verw. Gebiete 37 (1976), no. 2, 127-143. MR0423000//(54:10984)

N. H. Bingham, Tauberian theorems for Jacobi series, Proc. London Math. Soc. (3) 36 (1978),
no. 2, 285-309. MR0620813/(58:29795)

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia of Mathemat-
ics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR0898871
(881:26004)

M. Flensted-Jensen and T. H. Koornwinder, Positive definite spherical functions on a noncom-
pact, rank one symmetric space, Analyse Harmonique sur les Groupes de Lie II, Lect. Notes
Math., vol. 739, Springer-Verlag, Berlin-Heidelberg-New York, 1979, pp. 249-282. MR0560841
(81j:43015)

R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes
related to Lévy’s Brownian motion of several parameters, Ann. Inst. H. Poincaré, Sect. B 3
(1967), 121-226. MR0215331/(35:6172)

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in
Mathematics, vol. 34, Amer. Math. Soc., Providence, RI, 2001. MR 1834454 (2002b:53081)

N. N. Leonenko and A. Ya. Olenko, Tauberian theorems for correlation functions and limit
theorems for spherical averages of random fields, Random Oper. Stochastic Equations 1 (1993),
no. 1, 57-67. MR1254176//(95a:60068)

E. J. G. Pitman, On the behavior of the characteristic function of a probability distribution in
the neighborhood of the origin, J. Austral. Math. Soc. 8 (1968), 423-443. MR0231423|(37:6978)
A. M. Yaglom, Second order homogeneous random fields, Proc. IV Berkeley Symp. Math. Stat.
Probab., vol. 2, 1961, pp. 593-622. MR0146880/(26:4399)

INTERNATIONAL MATHEMATICAL CENTRE, NATIONAL ACADEMY OF SCIENCES OF UKRAINE
Current address: Malardalen University, P. O. Box 883, SE-721 23 Visteras, Sweden
E-mail address: anatoliy.malyarenko@nmdh.se

URL: http://wuw.ima.mdh.se/personal/amo

Received 3/JAN/2003

Translated by THE AUTHOR


http://www.ams.org/mathscinet-getitem?mr=1172306
http://www.ams.org/mathscinet-getitem?mr=1172306
http://www.ams.org/mathscinet-getitem?mr=1712757
http://www.ams.org/mathscinet-getitem?mr=1712757
http://www.ams.org/mathscinet-getitem?mr=0550252
http://www.ams.org/mathscinet-getitem?mr=0550252
http://www.ams.org/mathscinet-getitem?mr=1408658
http://www.ams.org/mathscinet-getitem?mr=1408658
http://www.ams.org/mathscinet-getitem?mr=0372517
http://www.ams.org/mathscinet-getitem?mr=0372517
http://www.ams.org/mathscinet-getitem?mr=0094844
http://www.ams.org/mathscinet-getitem?mr=0094844
http://www.ams.org/mathscinet-getitem?mr=0590889
http://www.ams.org/mathscinet-getitem?mr=0590889
http://www.ams.org/mathscinet-getitem?mr=1088478
http://www.ams.org/mathscinet-getitem?mr=1088478
http://www.ams.org/mathscinet-getitem?mr=0423000
http://www.ams.org/mathscinet-getitem?mr=0423000
http://www.ams.org/mathscinet-getitem?mr=0620813
http://www.ams.org/mathscinet-getitem?mr=0620813
http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=0560841
http://www.ams.org/mathscinet-getitem?mr=0560841
http://www.ams.org/mathscinet-getitem?mr=0215331
http://www.ams.org/mathscinet-getitem?mr=0215331
http://www.ams.org/mathscinet-getitem?mr=1834454
http://www.ams.org/mathscinet-getitem?mr=1834454
http://www.ams.org/mathscinet-getitem?mr=1254176
http://www.ams.org/mathscinet-getitem?mr=1254176
http://www.ams.org/mathscinet-getitem?mr=0231423
http://www.ams.org/mathscinet-getitem?mr=0231423
http://www.ams.org/mathscinet-getitem?mr=0146880
http://www.ams.org/mathscinet-getitem?mr=0146880

	1. Introduction
	2. Results
	3. Proofs
	4. Concluding remarks
	Bibliography

