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ON THE ITERATED A POSTERIORI DISTRIBUTION
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Abstract. In theoretical considerations a Bayesian experiment consisting of many
independently drawn samples is usually modeled by a product space. However, in
some applications, as e.g. pattern recognition, the mathematical model is different.
This model will be presented and a rigid measure-theoretic proof will be given showing
that both models deliver the same a posteriori distribution.

1. Introduction

In Bayesian statistics one has an a priori distribution on the parameter space which
describes the knowledge about the true parameter before the outcome of the statistical
experiment is known. After a realization has occurred, one gets the a posteriori distri-
bution which can be used to define Bayesian tests or Bayesian estimators. Actually, the
realization is often a vector x = (x1, . . . , xn) and all xi are assumed to be realizations of
i.i.d. random variables. The adequate model is hence to use a product space. Among the
huge amount of literature concerning Bayesian statistics, we mention [1, 2] for a general
introduction and especially [3, 4, 5] for asymptotic results, i.e. results concerning the
convergence of the a posteriori distribution if n tends to infinity.

However this model has one shortcoming. When determining the a posteriori distri-
bution, one has to go through some calculations. One especially has to do the calculation
again and again if one increases n and wishes to have intermediate a posteriori distribu-
tions. Therefore, in applications with this demand, such as pattern recognition (cf. [6]) or
visualization of limit theorems in Bayesian statistics (cf. [7, pp. 175–180] and [8, pp. 12–
15]), a different approach is chosen. One starts with the above-described setting for one
experiment. After the sample x1 has occurred, the a priori distribution is replaced by
the respective a posteriori distribution. The second sample x2 yields again an a posteri-
ori distribution which is taken as the new a priori distribution and so on. We call this
concept the iterated a posteriori distribution. The natural question is of course: Having a
realization x = (x1, . . . , xn), do both models deliver the same final distribution over the
parameter space? A second question is: Is the ordering of the realizations important?

As far as we know, these questions have never been answered explicitly, but of course
one assumes (or hopes?) that the answers will be yes in the first case and no in the
second case. This can be verified with a short calculation for the discrete case. In this
paper we will answer these questions for the general case. We will prove that under some
measurability conditions both models deliver almost surely the same a posteriori distri-
bution. Furthermore, we will prove that the a posteriori distribution does not depend
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on the ordering of the realizations. In particular even in a long running experiment the
later realizations do not have a greater influence on the a posteriori distribution than the
first realization.

In Section 2 we will introduce the necessary notation and state the theorem. The
proof follows in Section 3.

2. Notation and the main theorem

A Bayesian experiment is a tuple (Γ×H,G ⊗H, Q⊗P ) where (H,H) is a measurable
space (the sample space) and (Γ,G, Q) is a Polish probability space (the parameter space).
Here Q is the a priori distribution and describes the knowledge about the unknown true
parameter γ ∈ Γ. Finally, P is a stochastic kernel from (Γ,G) to (H,H). In particular,
P (γ, ·) is a probability measure over (H,H) for all γ ∈ Γ, and P (γ, ·) is the true probability
measure.

The a posteriori distribution is a stochastic kernel H from (H,H) to (Γ,G) which
fulfills

(2.1) Q ⊗ P = H ⊗ (Q ⊗ P )πH
,

where (Q ⊗ P )πH
is the marginal distribution of Q⊗P on (H,H). Since (Γ,G) is Polish,

H exists (as a regular conditional distribution) and it is (Q ⊗ P )πH
-a.s. determined.

We write f(Q ⊗ P )πΓ|πH for the set of all these regular conditional distributions (cf. [2,
Anhang A 2]). If x ∈ H is a realization, then H(x, ·) is taken as the new distribution for
the unknown true parameter γ ∈ Γ. We remark that there is a slight inconsistency in the
notation which is however usual in the literature: The term “a posteriori distribution”
is used for the kernel H and for the probability measure H(x, ·).

If (Γ × Hi,G ⊗ Hi, Q ⊗ Pi) are Bayesian experiments for i = 1, 2, then (Γ × H,G ⊗
H, Q⊗P ) with H = H1×H2, H = H1⊗H2, and P (γ, ·) = P1(γ, ·)⊗P2(γ, ·) for all γ ∈ Γ
is also a Bayesian experiment. We will call it the product experiment of the experiments
(Γ× Hi,G ⊗Hi, Q ⊗ Pi), i = 1, 2. In the special case that both (Γ× Hi,G ⊗Hi, Q⊗ Pi)
are copies of the same (Γ × H0,G ⊗H0, Q ⊗ P0), we will call (Γ × H,G ⊗H, Q ⊗ P ) the
second power of (Γ × H0,G ⊗H0, Q ⊗ P0).

Let (Γ×H0,G ⊗H0, Q⊗ P0) be a Bayesian experiment with an a posteriori distribu-
tion H1. If a sample x ∈ H0 occurs in the iterated model, then we get a new Bayesian
experiment (Γ× H0,G ⊗H0, H1(x, ·)⊗ P0). The a posteriori distribution for this exper-
iment depends on x and is an element of f(H1(x, ·) ⊗ P0)πΓ|πH0 .

The questions raised in the introduction are answered for n = 2 in the following
theorem.

Theorem 2.1. Let (Γ × H0,G ⊗H0, Q ⊗ P0) be a Bayesian experiment, and let

(Γ × H,G ⊗H, Q ⊗ P )

be the second power of (Γ × H0,G ⊗ H0, Q ⊗ P0). Furthermore let H ∈ f(Q ⊗ P )πΓ|πH ,
H1 ∈ f(Q ⊗ P0)πΓ|πH0 , and let Hx

2 ∈ f(H1(x, ·) ⊗ P0)πΓ|πH0 for all x ∈ H0 be such that
the mapping

(x, y) �→ Hx
2 (y, G)

is H-measurable for all G ∈ G. Then there exists a (Q ⊗ P )πH
-null-set N such that

Hx
2 (y, G) = H((x, y), G) = H((y, x), G) = Hy

2 (x, G), (x, y) ∈ Nc, G ∈ G.

We remark that a similar statement holds for n > 2. We will give a sketch of the proof
of this generalization in the next section.
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3. The proof

In this section we will prove Theorem 2.1. To this end, we have to show the claimed
existence of the null-set N . It is obvious that, if N exists, then it could be chosen with
the additional property: If (x, y) ∈ N , then (y, x) ∈ N . To formalize this, we give the
following definition: A set M ⊂ H0 × H0 is symmetric if and only if for all x, y ∈ H0 we
have (x, y) ∈ M ⇐⇒ (y, x) ∈ M . The following short lemma shows that we can always
assume w.l.o.g. that a null-set is symmetric.

Lemma 3.1. With the notation of Theorem 2.1 let N be a (Q ⊗ P )πH
-null-set. Then

there is a symmetric (Q ⊗ P )πH
-null-set N with N ⊆ N .

Proof. The mapping Y : H0 × H0 → H0 × H0 defined by Y (x, y) = (y, x) is measurable
and we have

(Q ⊗ P )πH
= ((Q ⊗ P )πH

)Y .

Define
N := N ∪ {(x, y) | (y, x) ∈ N} = N ∪ Y −1(N).

Then N is measurable with measure zero, and N ⊆ N . �
The proof of Theorem 2.1 consists of two key lemmas. The first lemma shows that

the a posteriori distribution for the product space model is almost surely symmetric.

Lemma 3.2. Let (Γ × H0,G ⊗H0, Q ⊗ P0) be a Bayesian experiment and let

(Γ × H,G ⊗H, Q ⊗ P )

be the second power. Then for each a posteriori distribution H ∈ f(Q ⊗ P )πΓ|πH there is
a symmetric (Q ⊗ P )πH

-null-set N such that

H((x, y), G) = H((y, x), G), (x, y) ∈ Nc, G ∈ G.

This result could also be stated in the following way: The symmetric σ-algebra (i.e.
the σ-algebra which consists of all symmetric sets of H) is sufficient (cf. [9, chapter 2] for
a definition of Bayesian sufficiency).

The second lemma is the core of the proof of Theorem 2.1. It states that the iterated
a posteriori distribution is almost surely equal to the usual one. Note that we formulate
this lemma for possibly different Bayesian experiments. The lemma can therefore be
used to prove a generalization of Theorem 2.1 for n samples by induction.

Lemma 3.3. Let (Γ × Hi,G ⊗Hi, Q ⊗ Pi), i = 1, 2, be Bayesian experiments, let

(Γ × H,G ⊗H, Q ⊗ P )

be the product experiment, let H ∈ f(Q ⊗ P )πΓ|πH , H1 ∈ f(Q ⊗ P1)πΓ|πH1 and let

Hx
2 ∈ f(H1(x, ·) ⊗ P2)πΓ|πH2 , x ∈ H1,

be such that the mapping
(x, y) �→ Hx

2 (y, G)
is H-measurable for all G ∈ G. Then there exists a (Q ⊗ P )πH

-null-set N such that

Hx
2 (y, G) = H((x, y), G), (x, y) ∈ Nc, G ∈ G.

Suppose now for a moment that the above lemmas were proved. Then we can prove
Theorem 2.1.

Proof of Theorem 2.1. We choose the null-set N as the union of the exception sets that
appear in Lemma 3.2 and Lemma 3.3. W.l.o.g. we can assume that N is symmetric (cf.
Lemma 3.1). Then for all (x, y) ∈ Nc and G ∈ G we have

Hx
2 (y, G) = H((x, y), G) = H((y, x), G) = Hy

2 (x, G). �
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It remains to prove Lemma 3.2 and Lemma 3.3. This will be done in the rest of this
section. First we will derive some useful equations for the product space. With the
notation of Section 2 (i.e. H = H1 × H2, H = H1 ⊗H2 and P (γ, ·) = P1(γ, ·) ⊗ P2(γ, ·)
for all γ ∈ Γ) we have

(3.1) P (γ, A1 × A2) = P1(γ, A1) · P2(γ, A2), A1 ∈ H1, A2 ∈ H2, γ ∈ Γ,

respectively,

(3.2) P (γ, A) =
∫

H1

P2(γ, Ax) P1(γ, dx) =
∫

H2

P1(γ, Ay) P2(γ, dy), A ∈ H, γ ∈ Γ,

where Ax, resp. Ay, is the x-cut, resp. y-cut of A. Moreover, the measure Q⊗P fulfills

(3.3)

(Q ⊗ P )(G × A1 × A2)

=
∫

G

P (γ, A1 × A2) Q(dγ)

=
(3.1)

∫
G

P1(γ, A1) · P2(γ, A2) Q(dγ), A1 ∈ H1, A2 ∈ H2, G ∈ G,

and

(3.4)

(Q ⊗ P )(G × A)

=
∫

G

P (γ, A) Q(dγ)

=
(3.2)

∫
G

( ∫
H1

P2(γ, Ax) P1(γ, dx)
)

Q(dγ), A ∈ H, G ∈ G.

Next we define a special a posteriori distribution which is symmetric without any
exceptions.

Lemma 3.4. Let (Γ × H0,G ⊗H0, Q ⊗ P0) be a Bayesian experiment and let

(Γ × H,G ⊗H, Q ⊗ P )

be the second power. Then there is an a posteriori distribution H ∈ f(Q ⊗ P )πΓ|πH such
that for all (x, y) ∈ H and all G ∈ G we have

(3.5) H((x, y), G) = H((y, x), G).

Proof. We want to distinguish the two instances of (Γ×H0,G⊗H0, Q⊗P0). Therefore, let
(Γ×Hi,G⊗Hi, Q⊗Pi) = (Γ×H0,G⊗H0, Q⊗P0), i = 1, 2. Then (Γ×H,G⊗H, Q⊗P ) is
the product experiment of these two experiments. In particular H = H0×H0 = H1×H2.
Let Y : H1 ×H2 → H1 ×H2 be defined as Y (x, y) = (y, x). For all A1 ∈ H1 and A2 ∈ H2

it follows from H1 = H2 that

(3.6) Y −1(A1 × A2) = A2 × A1 ∈ H2 ⊗H1 = H1 ⊗H2.

The set of all A1 × A2 ∈ H1 ×H2 is a generating system for H1 ⊗H2 = H. Hence Y is
H-H-measurable. Again let A1 ∈ H1 and A2 ∈ H2. Then

(3.7)

((Q ⊗ P )πH
)Y (A1 × A2) = (Q ⊗ P )πH

(Y −1(A1 × A2))

=
(3.6)

(Q ⊗ P )πH
(A2 × A1)

= (Q ⊗ P )(Γ × A2 × A1)

=
(3.3),

P1=P2

(Q ⊗ P )(Γ × A1 × A2)

= (Q ⊗ P )πH
(A1 × A2).
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Hence (3.7) and the measure-extension theorem show that

(3.8) ((Q ⊗ P )πH
)Y = (Q ⊗ P )πH

.

Since (Γ,G) is Polish, there exists a regular conditional distribution

H ∈ f(Q ⊗ P )πΓ|πH .

Here H is a stochastic kernel from (H,H) to (Γ,G). We define

H((x, y), G) :=
1
2
(
H((x, y), G) + H(Y (x, y), G)

)
.

It can be shown easily that H is a stochastic kernel from (H,H) to (Γ,G). For all A ∈ H
and G ∈ G it follows that

(H ⊗ (Q ⊗ P )πH
)(G × A) =

(3.8)
(H ⊗ (Q ⊗ P )πH

)(G × A) =
(2.1)

(Q ⊗ P )(G × A).

Using the measure-extension theorem, we conclude that

Q ⊗ P = H ⊗ (Q ⊗ P )πH
.

Therefore H ∈ f(Q ⊗ P )πΓ|πH . Furthermore H fulfills (3.5) by construction. �

Proof of Lemma 3.2. Choose H according to Lemma 3.4. Since (Γ,G) is Polish, the a
posteriori distribution H is (Q ⊗ P )πH

-a.s. determined, i.e. there is a (Q ⊗ P )πH
-null-

set N , such that

H((x, y), G) = H((x, y), G), (x, y) ∈ Nc, G ∈ G.

Due to Lemma 3.1 we can assume w.l.o.g. that N is symmetric, which proves the claim.
�

The key idea in the proof of Lemma 3.3 is this: Express the marginal distribution
on the sample space with the help of a stochastic kernel. The existence of this kernel
however is a little surprising since we did not suppose that the sample spaces are Polish.

Lemma 3.5. Let (Γ × Hi,G ⊗Hi, Q ⊗ Pi), i = 1, 2, be Bayesian experiments, let

(Γ × H,G ⊗H, Q ⊗ P )

be the product experiment, and let H1 ∈ f(Q ⊗ P1)πΓ|πH1 (such an H1 always exists).
Define the mapping K : H1 ×H2 → R as

(3.9) K(x, A2) := (H1(x, ·) ⊗ P2)πH2
(A2).

Then K is a stochastic kernel from (H1,H1) to (H2,H2) and

(3.10) (Q ⊗ P )πH
= (Q ⊗ P1)πH1

⊗ K

(i.e. K ∈ f((Q ⊗ P )πH
)πH2 |πH1 ).

Proof. Since (Γ,G) is Polish, H1 ∈ f(Q ⊗ P1)πΓ|πH1 and H ∈ f(Q ⊗ P )πΓ|πH exist. For
all x ∈ H1

K(x, ·) = (H1(x, ·) ⊗ P2)πH2

is a probability measure over (H2,H2). For the a posteriori distribution H1 follows as
in (2.1)

(3.11) Q ⊗ P1 = H1 ⊗ (Q ⊗ P1)πH1
.
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Let A2 ∈ H2 be arbitrary. We have for all x ∈ H1 that

(3.12)
K(x, A2) = (H1(x, ·) ⊗ P2)πH2

(A2) = (H1(x, ·) ⊗ P2)(Γ × A2)

=
∫

Γ

P2(γ, A2) H1(x, dγ).

The mapping

(x, γ) �→ P2(γ, A2)

is H1⊗G-measurable (since it does not depend on x and P2(·, A2) is G-measurable) and H1

is a stochastic kernel from (H1,H1) to (Γ,G). From Fubini’s theorem for stochastic
kernels it follows that the mapping

x �→
∫

Γ

P2(γ, A2) H1(x, dγ)

is H1-measurable. Therefore (3.12) shows that

x �→ K(x, A2)

is H1-measurable. Hence we have shown that K is a stochastic kernel.
Let A1 ∈ H1 and A2 ∈ H2. Then

(Q ⊗ P )πH
(A1 × A2) = (Q ⊗ P )(Γ × A1 × A2)

=
(3.3)

∫
Γ

P1(γ, A1)P2(γ, A2) Q(dγ)

=
∫

Γ

(∫
A1

P2(γ, A2) P1(γ, dx)
)

Q(dγ)

=
Fubini

∫
Γ×A1

P2(γ, A2) (Q ⊗ P1)(d(x, γ))

=
(3.11)

∫
Γ×A1

P2(γ, A2) (H1 ⊗ (Q ⊗ P1)πH1
)(d(x, γ))

=
Fubini

∫
A1

(∫
Γ

P2(γ, A2) H1(x, dγ)
)

(Q ⊗ P1)πH1
(dx)

=
(3.12)

∫
A1

K(x, A2) (Q ⊗ P1)πH1
(dx) = ((Q ⊗ P1)πH1

⊗ K)(A1 × A2).

In view of the measure-extension theorem, equation (3.10) is valid. �

Proof of Lemma 3.3. Let A ∈ H and G ∈ G be arbitrary. We choose K as in Lemma 3.5.
As in (2.1) it follows for Hx

2 that

Hx
2 ⊗ (H1(x, ·) ⊗ P2)πH2

= H1(x, ·) ⊗ P2, x ∈ H1.

Using (3.9), we get

(3.13) Hx
2 ⊗ K(x, ·) = H1(x, ·) ⊗ P2, x ∈ H1.



ON THE ITERATED A POSTERIORI DISTRIBUTION IN BAYESIAN STATISTICS 169

The required measurability yields for all A ∈ H∫
A

Hx
2 (y, G) (Q ⊗ P )πH

(d(x, y))

=
(3.10)

∫
A

Hx
2 (y, G) ((Q ⊗ P1)πH1

⊗ K)(d(x, y))

=
Fubini

∫
H1

(∫
Ax

Hx
2 (y, G) K(x, dy)

)
(Q ⊗ P1)πH1

(dx)

=
∫

H1

(Hx
2 ⊗ K(x, ·))(G × Ax) (Q ⊗ P1)πH1

(dx)

=
(3.13)

∫
H1

(H1(x, ·) ⊗ P2)(G × Ax) (Q ⊗ P1)πH1
(dx)

=
∫

H1

(∫
G

P2(γ, Ax) H1(x, dγ)
)

(Q ⊗ P1)πH1
(dx)

=
Fubini

∫
G×H1

P2(γ, Ax) ((Q ⊗ P1)πH1
⊗ H1)(d(x, γ))

=
H1 ∈ f(Q ⊗ P1)

πΓ|π
H1

∫
G×H1

P2(γ, Ax) (Q ⊗ P1)(d(x, γ))

=
Fubini

∫
G

(∫
H1

P2(γ, Ax)P1(γ, dx)
)

Q(dγ)

=
(3.4)

(Q ⊗ P )(G × A)

=
H ∈ f(Q ⊗ P )πΓ|π

H

∫
A

H(x, y, G) (Q ⊗ P )πH
(d(x, y)).

Since A ∈ H was arbitrary, we have Hx
2 (y, G) = H(x, y, G) (Q ⊗ P )πH

-a.s. Hence there
exists a (Q ⊗ P )πH

-null-set NG depending on G, with

Hx
2 (y, G) = H((x, y), G), (x, y) ∈ Nc

G.

We can now apply a standard technique: Since (Γ,G) is Polish, G has a countable ring
R as a generating system. For the (Q ⊗ P )πH

-null-set N :=
⋃

G∈R NG it follows that

Hx
2 (y, G) = H((x, y), G), (x, y) ∈ Nc, G ∈ R.

From the measure-extension theorem it follows therefore that

Hx
2 (y, G) = H((x, y), G), (x, y) ∈ Nc, G ∈ G. �

Bibliography

1. J. A. Hartigan, Bayes Theory, Springer, New York, 1983. MR715782 (85k:60008)
2. W. Eberl and O. Moeschlin, Mathematische Statistik, de Gruyter, Berlin, 1982. MR670752

(84e:62003)
3. L. LeCam, Asymptotic Methods in Statistical Decision Theory, Springer, New York, 1986.

MR856411 (88a:62004)
4. L. LeCam, Asymptotics in Statistics, Springer, New York, 1990. MR1066869 (92k:62050)
5. P. Rao, Asymptotic Theory of Statistical Inference, John Wiley, New York, 1987. MR874342

(88b:62001)
6. T. Y. Young and T. W. Calvert, Classification, Estimation, and Pattern Recognition, Elsevier

Science Publishers, Amsterdam, 1974. MR0350975 (50:3467)
7. O. Moeschlin, E. Grycko, C. Pohl, and F. Steinert, Experimental Stochastics, Springer, Berlin–

New York, 1998.

http://www.ams.org/mathscinet-getitem?mr=715782
http://www.ams.org/mathscinet-getitem?mr=715782
http://www.ams.org/mathscinet-getitem?mr=670752
http://www.ams.org/mathscinet-getitem?mr=670752
http://www.ams.org/mathscinet-getitem?mr=856411
http://www.ams.org/mathscinet-getitem?mr=856411
http://www.ams.org/mathscinet-getitem?mr=1066869
http://www.ams.org/mathscinet-getitem?mr=1066869
http://www.ams.org/mathscinet-getitem?mr=874342
http://www.ams.org/mathscinet-getitem?mr=874342
http://www.ams.org/mathscinet-getitem?mr=0350975
http://www.ams.org/mathscinet-getitem?mr=0350975


170 F. RECKER

8. O. Moeschlin and F. Steinert, Bayessche Statistik, Birkhäuser, Basel, 1995.
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