OVERSHOOT FUNCTIONALS FOR ALMOST SEMICONTINUOUS PROCESSES DEFINED ON A MARKOV CHAIN

UDC 519.21

E. V. KARNAUKH

Abstract

The distributions of overshoot functionals are considered in the paper for almost semicontinuous processes defined on a finite irreducible Markov chain.

1. Introduction

The distributions of extremal values and overshoot functionals for semicontinuous processes (that is, for those processes that cross either a positive or a negative barrier in a continuous way) defined on a Markov chain are considered by many authors (see, for example, [1]-[3]). The distributions of extremal values are considered in the paper 4] for almost semicontinuous processes (that is, for those processes that cross either a positive or a negative barrier by means of exponential jumps only). Under some assumptions, these processes can be viewed as surplus risk processes with random premiums in a Markov environment. The distributions of some overshoot functionals are studied in this paper for lower almost semicontinuous processes defined on a Markov chain.

2. Main part

Consider a two dimensional Markov process

$$
Z(t)=\{\xi(t), x(t)\}, \quad t \geq 0
$$

where $x(t)$ is a finite irreducible aperiodic Markov chain whose phase space is

$$
E^{\prime}=\{1, \ldots, m\}
$$

and whose matrix of transient probabilities is given by

$$
\mathbf{P}(t)=e^{t \mathbf{Q}}, \quad t \geq 0, \quad \mathbf{Q}=\mathbf{N}(\mathbf{P}-\mathbf{I})
$$

Here

$$
\mathbf{N}=\left\|\delta_{k r} \nu_{k}\right\|_{k, r=1}^{m}
$$

ν_{k} are the parameters of the exponential random variables ζ_{k} (meaning the sojourn times of $x(t)$ at states $k), \mathbf{P}=\left\|p_{k r}\right\|$ is the matrix of transient probabilities of the embedded chain, and $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{m}\right)$ is the stationary distribution. The process $\xi(t)$ is homogeneous with conditionally independent increments given that the values of $x(t)$ are fixed (see [1]).

The evolution of the process $Z(t)$ is described by the matrix characteristic function

$$
\boldsymbol{\Phi}_{t}(\alpha)=\left\|\mathbf{E}\left[e^{\imath \alpha(\xi(t+u)-\xi(u))}, x(t+u)=r / x(u)=k\right]\right\|, \quad u \geq 0
$$

[^0]which can be represented in the following form:
$$
\mathbf{\Phi}_{t}(\alpha)=\mathbf{E} e^{\imath \alpha \xi(t)}=e^{t \mathbf{\Psi}(\alpha)}, \quad \boldsymbol{\Psi}(0)=\mathbf{Q}
$$

In what follows we study the processes with the cumulant

$$
\begin{equation*}
\boldsymbol{\Psi}(\alpha)=\int_{0}^{\infty}\left(e^{\imath \alpha x}-1\right) d \mathbf{K}_{0}(x)+\boldsymbol{\Lambda} \mathbf{F}_{0}(0)\left(\mathbf{C}(\mathbf{C}+\imath \alpha \mathbf{I})^{-1}-\mathbf{I}\right)+\mathbf{Q} \tag{1}
\end{equation*}
$$

where $d \mathbf{K}_{0}(x)=\mathbf{N} d \mathbf{F}(x)+\boldsymbol{\Pi}(d x)$,

$$
\mathbf{F}(x)=\left\|\mathrm{P}\left\{\chi_{k r}<x ; x\left(\zeta_{1}\right)=r / x(0)=k\right\}\right\|
$$

$\chi_{k r}$ are the heights of jumps of $\xi(t)$ at the moments when $x(t)$ jumps from the state k to the state r,

$$
\boldsymbol{\Pi}(d x)=\boldsymbol{\Lambda} d \mathbf{F}_{0}(x), \quad \mathbf{F}_{0}(x)=\left\|\delta_{k r} F_{k}^{0}(x)\right\|
$$

$F_{k}^{0}(x)$ are the distribution functions of the heights of jumps of $\xi(t)$ given $x(t)=k$, $\boldsymbol{\Lambda}=\left\|\delta_{k r} \lambda_{k}\right\|$, and where λ_{k} are the parameters of the exponential random variables ζ_{k}^{\prime} (meaning the time between two successive jumps of $\xi(t)$ given $x(t)=k$). Let $\mathbf{C}=\left\|\delta_{k r} c_{k}\right\|$, where c_{k} are the parameters of the exponential negative jumps of $\xi(t)$ given $x(t)=k$. A process $Z(t)$ with a cumulant of this kind is called a lower almost semicontinuous process (this definition is introduced in [4]).

Denote by θ_{s} an exponential random variable whose parameter is $s>0$ (that is, $\mathrm{P}\left\{\theta_{s}>t\right\}=e^{-s t}$ for $\left.t \geq 0\right)$ and assume that θ_{s} is independent of $Z(t)$. Then the characteristic function of $\xi\left(\theta_{s}\right)$ can be written as follows:

$$
\begin{equation*}
\mathbf{\Phi}(s, \alpha)=\mathbf{E} e^{\imath \alpha \xi\left(\theta_{s}\right)}=s \int_{0}^{\infty} e^{-s t} \boldsymbol{\Phi}_{t}(\alpha) d t=s(s \mathbf{I}-\mathbf{\Psi}(\alpha))^{-1} \tag{2}
\end{equation*}
$$

We introduce the main functionals of interest:

$$
\begin{gathered}
\xi^{ \pm}(t)=\sup _{0 \leq u \leq t}(\inf) \xi(u), \quad \xi^{ \pm}=\sup _{0 \leq u \leq \infty}(\inf) \xi(u) ; \\
\bar{\xi}(t)=\xi(t)-\xi^{+}(t), \quad \check{\xi}(t)=\xi^{-}(t)-\xi(t), \\
\tau^{+}(x)=\inf \{t: \xi(t)>x\}, \quad \gamma^{+}(x)=\xi\left(\tau^{+}(x)\right)-x, \quad x \geq 0 \\
\gamma_{+}(x)=x-\xi\left(\tau^{+}(x)-0\right), \quad \gamma_{x}^{+}=\gamma^{+}(x)+\gamma_{+}(x),
\end{gathered}
$$

The distributions of the functionals $\xi^{ \pm}\left(\theta_{s}\right), \bar{\xi}\left(\theta_{s}\right)$, and $\check{\xi}\left(\theta_{s}\right)$ are obtained in 4. The aim of this paper is to obtain explicitly the joint moment generating functions of overshoot functionals for lower almost semicontinuous processes and moment generating functions of the random vectors $\left\{\tau^{+}(x), \gamma^{+}(x)\right\},\left\{\tau^{+}(x), \gamma_{+}(x)\right\}$, and $\left\{\tau^{+}(x), \gamma_{x}^{+}\right\}$.

Put

$$
\begin{gathered}
\mathbf{V}(s, x, u, v, \mu)=\mathbf{E}\left[e^{-s \tau^{+}(x)-u \gamma^{+}(x)-v \gamma_{+}(x)-\mu \gamma_{x}^{+}}, \tau^{+}(x)<\infty\right] \\
\mathbf{W}(x, u, v, \mu)=\int_{x}^{\infty} e^{(u-v) x-(u+\mu) z} d \mathbf{K}_{0}(z), \quad \overline{\mathbf{K}}_{0}(x)=\mathbf{W}(x, 0,0,0), \\
\mathbf{P}_{s}=s \int_{0}^{\infty} e^{-s t} \mathbf{P}(t) d t=s(s \mathbf{I}-\mathbf{Q})^{-1}, \\
\mathbf{P}_{+}(s, x)=\mathbf{P}\left\{\xi^{+}\left(\theta_{s}\right)<x\right\}, \quad x>0, \quad \mathbf{P}^{-}(s, x)=\mathbf{P}\left\{\bar{\xi}\left(\theta_{s}\right)<x\right\}, \quad x<0, \\
\widetilde{\mathbf{P}}^{0}(s)=\mathbf{P}\left\{\xi\left(\theta_{s}\right)=0\right\}, \quad \mathbf{p}_{ \pm}(s)=\mathbf{P}\left\{\xi^{ \pm}\left(\theta_{s}\right)=0\right\}, \quad \check{\mathbf{R}}_{-}(s)=\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s), \\
\check{\mathbf{p}}_{-}(s)=\mathbf{P}\left\{\bar{\xi}\left(\theta_{s}\right)=0\right\}, \quad \check{\mathbf{q}}_{-}(s)=\mathbf{P}_{s}-\check{\mathbf{p}}_{-}(s), \quad \check{\mathbf{R}}_{c}(s)=\check{\mathbf{R}}_{-}(s) \mathbf{C}, \\
\mathbf{G}_{+}(s, x, u, v, \mu)=\int_{-\infty}^{0} d \mathbf{P}^{-}(s, y) \mathbf{W}(x-y, u, v, \mu) .
\end{gathered}
$$

Lemma 1. Consider a process $Z(t)$ with the cumulant of the form (1). Then

$$
\begin{equation*}
s \mathbf{V}(s, x, u, v, \mu)=\int_{0}^{x} d \mathbf{P}_{+}(s, y) \mathbf{P}_{s}^{-1} \mathbf{G}_{+}(s, x-y, u, v, \mu), \quad x>0 \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{G}_{+}(s, x, u, v, \mu) \\
& =\check{\mathbf{p}}_{-}(s) \int_{x}^{\infty} e^{(u-v) x-(u+\mu) z} d \mathbf{K}_{0}(z) \\
& -\check{\mathbf{p}}_{-}(s) \mathbf{C}\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}-(u-v) \mathbf{I}\right)^{-1} e^{-(v+\mu) x} \\
& \times \int_{0}^{\infty}\left[(u+\mu) e^{-(u+\mu) z}\right. \tag{4}\\
& \left.-\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}+(\mu+v) \mathbf{I}\right) e^{-\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}+(v+\mu) \mathbf{I}\right) z}\right] \\
& \times \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(x+z) d z
\end{align*}
$$

for $u-v \notin \sigma\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}\right)$. Here the symbol $\sigma(A)$ stands for the spectrum of a matrix A.
Proof. Since we assume the almost semicontinuity, relation (3) follows from [1, Corollary 3.4]. According to [4] (see Remark 1 therein) the distribution of $\bar{\xi}\left(\theta_{s}\right)$ is given by

$$
\mathbf{P}^{-}(s, x)=\mathbf{P}\left\{\bar{\xi}\left(\theta_{s}\right)<x\right\}=e^{\check{\mathbf{p}}_{-}(s) \mathbf{C} \mathbf{P}_{s}^{-1} x \check{\mathbf{q}}_{-}(s), \quad x<0 . . ~}
$$

Then

$$
\begin{align*}
\mathbf{G}_{+}(s, x, u, v, \mu)= & \int_{-\infty}^{0} d \mathbf{P}^{-}(s, y) \mathbf{W}(x-y, u, v, \mu) \\
= & \check{\mathbf{p}}_{-}(s) \mathbf{W}(x, u, v, \mu) \tag{5}\\
& +\check{\mathbf{p}}_{-}(s) \mathbf{C} \int_{x}^{\infty} e^{\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}(x-y)} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \mathbf{W}(y, u, v, \mu) d y
\end{align*}
$$

By the definition of the function $\mathbf{W}(y, u, v, \mu)$,

$$
\begin{aligned}
\int_{x}^{\infty} & e^{\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}(x-y)} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \mathbf{W}(y, u, v, \mu) d y \\
= & -\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}-(u-v) \mathbf{I}\right)^{-1} e^{-(v+\mu) x} \\
& \times\left[\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}+(\mu+v) \mathbf{I}\right) \int_{0}^{\infty} e^{-\left(\mathbf{P}_{s}^{-1} \check{\mathbf{p}}_{-}(s) \mathbf{C}+(v+\mu) \mathbf{I}\right) z} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(x+z) d z\right. \\
& \left.\quad-(u+\mu) \int_{0}^{\infty} e^{-(u+\mu) z} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(x+z) d z\right]
\end{aligned}
$$

Now equality (4) follows from (5).
Note that

$$
\lim _{x \rightarrow-\infty} \mathbf{P}^{-}(s, x)=\mathbf{P}\left\{\bar{\xi}\left(\theta_{s}\right)<-\infty\right\}=0
$$

Thus the representation

$$
\begin{aligned}
\mathbf{P}^{-}(s, x) & =e^{\check{\mathbf{P}}_{-}(s) \mathbf{C} \mathbf{P}_{s}^{-1} x} \mathbf{q}^{-}(s)=\mathbf{P}_{s} \mathbf{P}_{s}^{-1} e^{\check{\mathbf{p}}_{-}(s) \mathbf{C} \mathbf{P}_{s}^{-1}} \mathbf{P}_{s} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}-(s) \\
& =\mathbf{P}_{s} e^{\check{\mathbf{R}}_{c}(s) x}\left(\mathbf{I}-\check{\mathbf{R}}_{-}(s)\right)
\end{aligned}
$$

implies that the spectrum $\sigma\left(\check{\mathbf{R}}_{c}(s)\right)$ of the matrix $\check{\mathbf{R}}_{c}(s)$ consists of positive elements. Let

$$
\gamma_{1}(x)=\gamma^{+}(x), \quad \gamma_{2}(x)=\gamma_{+}(x), \quad \gamma_{3}(x)=\gamma_{x}^{+}
$$

Substituting $v=\mu=0, u \notin \sigma\left(\check{\mathbf{R}}_{c}(s)\right), u=\mu=0$, and $v=u=0$ we derive from equality (3) that

$$
\begin{aligned}
& \begin{aligned}
& \mathbf{E}\left[e^{-s \tau^{+}(x)-u \gamma_{i}(x)},\right.\left.\tau^{+}(x)<\infty\right]=s^{-1} \int_{0}^{x} d \mathbf{P}_{+}(s, y) \mathbf{P}_{s}^{-1} \mathbf{G}_{i}(s, x-y, u), \quad i=1,2,3 \\
& \mathbf{G}_{1}(s, x, u)= \check{\mathbf{p}}_{-}(s) \int_{x}^{\infty} e^{u(x-z)} d \mathbf{K}_{0}(z) \\
&-\check{\mathbf{p}}_{-}(s) \mathbf{C}\left(\check{\mathbf{R}}_{c}(s)-u \mathbf{I}\right)^{-1} \\
& \times \int_{0}^{\infty}\left[u e^{-u z}-\check{\mathbf{R}}_{c}(s) e^{-\check{\mathbf{R}}_{c}(s) z}\right] \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(x+z) d z \\
& \mathbf{G}_{2}(s, x, v)=\check{\mathbf{p}}_{-}(s) e^{-v x} \overline{\mathbf{K}}_{0}(x)+\check{\mathbf{p}}_{-}(s) \mathbf{C} e^{-v x} \int_{0}^{\infty} e^{-\left(\check{\mathbf{R}}_{c}(s)+v \mathbf{I}\right) z} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(x+z) d z \\
& \mathbf{G}_{3}(s, x, \mu)=\check{\mathbf{p}}_{-}(s) \int_{x}^{\infty} e^{-\mu z} d \mathbf{K}_{0}(z) \\
& \quad-e^{-\mu x} \int_{0}^{\infty}\left[\mu e^{-\mu z}-\left(\check{\mathbf{R}}_{c}(s)+\mu \mathbf{I}\right) e^{-\left(\check{\mathbf{R}}_{c}(s)+\mu \mathbf{I}\right) z}\right] \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(x+z) d z
\end{aligned} .
\end{aligned}
$$

Inverting with respect to u we obtain

$$
\begin{gathered}
\mathbf{E}\left[e^{-s \tau^{+}(x)}, \gamma_{i}(x) \in d z, \tau^{+}(x)<\infty\right]=s^{-1} \int_{0}^{x} d \mathbf{P}_{+}(s, y) \check{\mathbf{R}}_{-}(s) d_{z} \mathbf{g}_{i}^{*}(s, x-y, z) \\
d_{z} \mathbf{g}_{i}^{*}(s, x, z)=d_{z} \mathbf{w}_{i}^{*}(x, z)+\mathbf{C} \int_{x}^{\infty} e^{\check{\mathbf{R}}_{c}(s)(x-y)}\left(\mathbf{I}-\check{\mathbf{R}}_{-}(s)\right) d_{z} \mathbf{w}_{i}^{*}(y, z) d y \\
d_{z} \mathbf{w}_{1}^{*}(x, z)=d_{z} \mathbf{K}_{0}(x+z), \quad d_{z} \mathbf{w}_{2}^{*}(x, z)=d_{z} I\{z>x\} \overline{\mathbf{K}}_{0}(x) \\
d_{z} \mathbf{w}_{3}^{*}(x, z)=I\{z \geq x\} d \mathbf{K}_{0}(z)
\end{gathered}
$$

The case of $x=0$ is treated in the following result.
Theorem 1. Consider a process $Z(t)$ with the cumulant of the form (11). If $z>0$, then

$$
\begin{gathered}
\mathbf{E}\left[e^{-s \tau^{+}(0)}, \gamma^{+}(0)>z, \tau^{+}(0)<\infty\right] \\
=s^{-1} \widetilde{\mathbf{P}}^{0}(s)\left(\overline{\mathbf{K}}_{0}(z)+\mathbf{C} \int_{z}^{\infty} e^{(z-y) \check{\mathbf{R}}_{c}(s)} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(y) d y\right) \\
\mathbf{E}\left[e^{-s \tau^{+}(0)}, \gamma_{+}(0)>z, \tau^{+}(0)<\infty\right]=s^{-1} \widetilde{\mathbf{P}}^{0}(s) \mathbf{C} \int_{z}^{\infty} e^{-y \check{\mathbf{R}}_{c}(s)} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(y) d y \\
\mathbf{E}\left[e^{-s \tau^{+}(0)}, \gamma_{0}^{+}>z, \tau^{+}(0)<\infty\right] \\
=s^{-1} \widetilde{\mathbf{P}}^{0}(s)\left(\overline{\mathbf{K}}_{0}(z)+\mathbf{C}\left(\check{\mathbf{R}}_{c}(s)\right)^{-1} \int_{z}^{\infty}\left(\mathbf{I}-e^{-y \check{\mathbf{R}}_{c}(s)}\right) \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) d \mathbf{K}_{0}(y)\right) .
\end{gathered}
$$

Proof. Relation (3) implies that

$$
\begin{gather*}
\mathbf{V}(s, x, u, v, \mu)=\overline{\mathbf{P}}_{+}(s, x) \mathbf{P}_{s}^{-1}+s^{-1} \int_{0}^{x} d \mathbf{P}_{+}(s, y) \mathbf{P}_{s}^{-1} \overline{\mathbf{G}}_{+}(s, x-y, u, v, \mu), \tag{7}\\
x>0
\end{gather*}
$$

where

$$
\overline{\mathbf{G}}_{+}(s, x, u, v, \mu)=\mathbf{G}_{+}(s, x, u, v, \mu)-\mathbf{G}_{+}(s, x, 0,0,0)
$$

Since

$$
\begin{aligned}
\mathbf{V}_{k}(s, x, u) & =\mathbf{E}\left[e^{-s \tau^{+}(x)-u \gamma_{k}(x)}, \tau^{+}(x)<\infty\right] \\
& =\overline{\mathbf{P}}_{+}(s, x) \mathbf{P}_{s}^{-1}-u \int_{0}^{\infty} e^{-u z} \mathbf{E}\left[e^{-s \tau^{+}(x)}, \gamma_{k}(x)>z, \tau^{+}(x)<\infty\right] d z
\end{aligned}
$$

for $k=1,2,3$, equality (17) yields

$$
\begin{gather*}
\int_{0}^{\infty} e^{-u z} \mathbf{E}\left[e^{-s \tau^{+}(x)}, \gamma_{k}(x)>z, \tau^{+}(x)<\infty\right] d z \\
\quad=-\frac{1}{s u} \int_{-0}^{x} d \mathbf{P}_{+}(s, y) \mathbf{P}_{s}^{-1} \overline{\mathbf{G}}_{k}(s, x-y, u) \tag{8}
\end{gather*}
$$

where

$$
\begin{gather*}
\overline{\mathbf{G}}_{k}(s, x, u)=\check{\mathbf{p}}_{-}(s) \overline{\mathbf{W}}_{k}(x, u)+\int_{-\infty}^{0-} d \mathbf{P}^{-}(s, y) \overline{\mathbf{W}}_{k}(x-y, u) \tag{9}\\
\overline{\mathbf{W}}_{1}(x, u)=\int_{x}^{\infty}\left(e^{u(x-z)}-\mathbf{I}\right) d \mathbf{K}_{0}(z), \quad \overline{\mathbf{W}}_{2}(x, u)=\left(e^{-u x}-\mathbf{I}\right) \overline{\mathbf{K}}_{0}(x) \tag{10}\\
\overline{\mathbf{W}}_{3}(x, u)=\int_{x}^{\infty}\left(e^{-u z}-\mathbf{I}\right) d \mathbf{K}_{0}(z)
\end{gather*}
$$

Passing to the limit as $x \rightarrow 0$ we obtain from equality (8) that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-u z} \mathbf{E}\left[e^{-s \tau^{+}(0)}, \gamma_{k}(0)>z, \tau^{+}(0)<\infty\right] d z=-\frac{1}{s u} \mathbf{p}_{+}(s) \mathbf{P}_{s}^{-1} \overline{\mathbf{G}}_{k}(s, 0, u) \tag{11}
\end{equation*}
$$

Considering relation (9) for $x=0$ and taking into account equality (10) we get

$$
\begin{aligned}
& \overline{\mathbf{G}}_{1}(s, 0, u)=-u \check{\mathbf{p}}_{-}(s)\left(\int_{0}^{\infty}\right. e^{-u z} \overline{\mathbf{K}}_{0}(z) d z \\
&\left.+\mathbf{C} \int_{0}^{\infty} e^{-u z} \int_{z}^{\infty} e^{(z-y) \check{\mathbf{R}}_{c}(s)} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(y) d y d z\right) \\
& \overline{\mathbf{G}}_{2}(s, 0, u)=-u \check{\mathbf{p}}_{-}(s) \mathbf{C} \int_{0}^{\infty} e^{-u z} \int_{z}^{\infty} e^{-y \check{\mathbf{R}}_{c}(s)} \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) \overline{\mathbf{K}}_{0}(y) d y d z \\
& \overline{\mathbf{G}}_{3}(s, 0, u)=-u \check{\mathbf{p}}_{-}(s)\left(\int_{0}^{\infty} e^{-u z} \overline{\mathbf{K}}_{0}(z) d z\right. \\
&+\mathbf{C}\left(\check{\mathbf{R}}_{c}(s)\right)^{-1} \\
&\left.\times \int_{0}^{\infty} e^{-u z} \int_{z}^{\infty}\left(\mathbf{I}-e^{-y \check{\mathbf{R}}_{c}(s)}\right) \mathbf{P}_{s}^{-1} \check{\mathbf{q}}_{-}(s) d \mathbf{K}_{0}(y) d z\right) .
\end{aligned}
$$

Substituting the above expressions for $\overline{\mathbf{G}}_{k}(s, 0, u)$ into (11) and inverting with respect to u we prove (6).

Consider some corollaries of Theorem 2.3. We also apply some of results of [2]; namely, we need an analog of the Pollachek-Khinchine formula and two-sided Lundberg inequality. Assume that $\chi_{k r}=0, k, r=1, \ldots, m$. Almost semicontinuous processes satisfying these assumptions can be treated as surplus risk processes with random premiums in a Markov environment.

Let ζ^{*} be the moment of the first jump of the process $\xi(t)$. Then

$$
\zeta_{k r}^{*} \doteq \begin{cases}\zeta_{k}+\zeta_{j r}^{*}, & \zeta_{k}^{\prime}>\zeta_{k}, x\left(\zeta_{k}\right)=j \\ \zeta_{k}^{\prime}, & \zeta_{k}^{\prime}<\zeta_{k}\end{cases}
$$

(see [1, p. 42]), where the indices $k r$ mean that $x\left(\zeta^{*}\right)=r, x(0)=k, k, r=1, \ldots, m$. Taking into account the definition of the process $Z(t)$, the latter relations imply that

$$
\begin{aligned}
\mathrm{E} e^{-s \zeta_{k r}^{*}} & =\mathrm{E}\left[e^{-s \zeta^{*}}, x\left(\zeta^{*}\right)=r / x(0)=k\right] \\
& =\mathrm{E}\left[e^{-s \zeta_{k}^{\prime}}, \zeta_{k}^{\prime}<\zeta_{k}\right] \delta_{k r}+\sum_{j=1}^{m} \mathrm{E}\left[e^{-s \zeta_{j r}^{*}+\zeta_{k}}, \zeta_{k}^{\prime}>\zeta_{k}, x\left(\zeta_{k}\right)=j\right] \\
& =\int_{0}^{\infty} \lambda_{k} e^{-s y} e^{-\lambda_{k} y} e^{-\nu_{k} y} d y \delta_{k r}+\sum_{j=1}^{m} \int_{0}^{\infty} e^{-s y} \nu_{k} e^{-\nu_{k} y} e^{-\lambda_{k} y} \mathrm{E} e^{-s \zeta_{j r}^{*}} p_{k j} d y \\
& =\lambda_{k}\left(s+\lambda_{k}+\nu_{k}\right)^{-1} \delta_{k r}+\sum_{j=1}^{m} \nu_{k}\left(s+\nu_{k}+\lambda_{k}\right)^{-1} p_{k j} \mathrm{E} e^{-s \zeta_{j r}^{*}}
\end{aligned}
$$

(see [1, p. 64]). The latter equality can be rewritten in the matrix form as follows:

$$
\mathbf{E} e^{-s \zeta^{*}}=\boldsymbol{\Lambda}(s \mathbf{I}+\boldsymbol{\Lambda}+\mathbf{N})^{-1}+(s \mathbf{I}+\boldsymbol{\Lambda}+\mathbf{N})^{-1} \mathbf{N} \mathbf{P} \mathbf{E} e^{-s \zeta^{*}}
$$

This implies the following representation for the moment generating function of the first jump moment:

$$
\mathbf{E} e^{-s \zeta^{*}}=(s \mathbf{I}+\boldsymbol{\Lambda}-\mathbf{Q})^{-1} \boldsymbol{\Lambda}
$$

Since $\widetilde{\mathbf{P}}^{0}(s)=\left(\mathbf{I}-\mathbf{E} e^{-s \zeta^{*}}\right) \mathbf{P}_{s}$, we obtain

$$
\lim _{s \rightarrow 0} s^{-1} \widetilde{\mathbf{P}}^{0}(s)=(\boldsymbol{\Lambda}-\mathbf{Q})^{-1}=\left\|\mathrm{P}\left\{x\left(\zeta^{*}\right)=r / x(0)=k\right\}\right\| \boldsymbol{\Lambda}^{-1}
$$

Let

$$
m_{1}^{0}=\sum_{k=1}^{m} \pi_{k} \int_{R} x \lambda_{k} d F_{k}^{0}(x)
$$

Corollary 1. If $m_{1}^{0}<0$, then

$$
\begin{equation*}
1-\psi_{i}(u)=\mathrm{P}_{i}\left\{\xi^{+} \leq u\right\}=\mathbf{e}_{i}^{\prime} \sum_{n=0}^{\infty} \mathbf{G}_{+}^{* n}(u)(\mathbf{I}-\|\mathbf{G}\|) \mathbf{e} \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{G}_{+}(y, \infty)=\mathbf{P}\left\{\gamma^{+}(0)>y, \tau^{+}(0)<\infty\right\} \\
& \quad=(\boldsymbol{\Lambda}-\mathbf{Q})^{-1}\left(\boldsymbol{\Lambda} \overline{\mathbf{F}}_{0}(y)+\mathbf{C} \int_{-\infty}^{0} e^{\check{\mathbf{R}}_{-}(0) \mathbf{C} x}\left(\mathbf{I}-\check{\mathbf{R}}_{-}(0)\right) \boldsymbol{\Lambda} \overline{\mathbf{F}}_{0}(y-x) d x\right) \tag{13}\\
& \|\mathbf{G}\|=\int_{0}^{\infty} \mathbf{G}_{+}(d x), \quad \mathbf{e}=(1, \ldots, 1)^{\prime}, \quad \mathbf{e}_{i}^{\prime}=(0, \ldots, \stackrel{i}{1}, \ldots, 0)
\end{align*}
$$

Proof. In fact, equality (12) is known (see the proof of Proposition 2.2 in [2]). Equality (13) follows from the first equality in (6) by passing to the limit as $s \rightarrow 0$.

Let $k(r)$ be the real eigenvalue whose real part is maximal among eigenvalues of the matrix $\mathbf{K}(r)=\mathbf{\Psi}(-\imath r)$ (that is, $k(r)$ is the Perron root of the matrix \mathbf{K}). Let $\gamma>0$ be a solution of the equation $k(r)=0$ and let $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{m}\right)$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{m}\right)^{\prime}$ be the left and right eigenvectors of the matrix $\mathbf{K}(\gamma)$ such that their coordinates are positive and $\boldsymbol{\nu} \mathbf{h}=1$. Put

$$
C_{+}=\max _{j \in E^{\prime}} \frac{1}{h_{j}} \sup _{x \geq 0} \frac{\overline{F_{j}^{0}}(x)}{\int_{x}^{\infty} e^{\gamma(y-x)} F_{j}^{0}(d y)}, \quad C_{-}=\min _{j \in E^{\prime}} \frac{1}{h_{j}} \inf _{x \geq 0} \frac{\overline{F_{j}^{0}}(x)}{\int_{x}^{\infty} e^{\gamma(y-x)} F_{j}^{0}(d y)}
$$

Corollary 2. If $m_{1}^{0}<0$, then

$$
\begin{equation*}
C_{-} h_{i} e^{-\gamma u} \leq \psi_{i}(u) \leq C_{+} h_{i} e^{-\gamma u} \tag{14}
\end{equation*}
$$

for all $i \in E^{\prime}$ and $u \geq 0$.
Proof. The proof of the corollary is similar to that of Theorem 3.11 in [2].
Example. Let $Z(t)=\{\xi(t), x(t)\}$ be a process defined on the Markov chain $x(t)$ whose infinitesimal matrix is $\mathbf{Q}=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$.

Assume that $\chi_{k r}=0, k, r=1,2$. We also assume that the component $\xi(t)$ given $x(t)=i$ is represented as follows:

$$
\xi_{i}(t)=S_{i}(t)-S_{i}^{\prime}(t)=\sum_{k \leq \nu_{i}^{\prime}(t)} \eta_{k}^{i}-\sum_{k \leq \nu_{i}(t)} \xi_{k}^{i}, \quad i=1,2,
$$

where $S_{i}(t)$ and $S_{i}^{\prime}(t)$ are generalized Poisson processes with positive jumps $\xi_{k}^{i}>0$ and $\eta_{k}^{i}>0$ and parameters λ_{i} and $\lambda_{i}^{\prime}=1$, respectively. Furthermore let

$$
\mathrm{P}\left\{\xi_{k}^{i}>x\right\}=e^{-c_{i} x}, \quad \frac{\partial}{\partial x} \mathrm{P}\left\{\eta_{k}^{i}<x\right\}=\delta_{i}^{2} x e^{-\delta_{i} x}, \quad x \geq 0, i=1,2
$$

Consider an auxiliary process $Z_{1}(t)=\left\{\xi_{1}(t), x(t)\right\}=\{-\xi(t), x(t)\}$ whose cumulant is given by

$$
\mathbf{\Psi}_{1}(-\imath r)=\left(\begin{array}{cc}
\frac{-3 r^{3}+\left(2 c_{1}-6 \delta_{1}\right) r^{2}+\left(4 c_{1} \delta_{1}-2 \delta_{1}^{2}\right) r+c_{1} \delta_{1}}{\left(r-c_{1}\right)\left(r+\delta_{1}\right)^{2}} & 1 \\
1 & \frac{-3 r^{3}+\left(2 c_{2}-6 \delta_{2}\right) r^{2}+\left(4 c_{2} \delta_{2}-2 \delta_{2}^{2}\right) r+c_{2} \delta_{2}}{\left(r-c_{2}\right)\left(r+\delta_{2}\right)^{2}}
\end{array}\right)
$$

Then the stationary distribution is $\boldsymbol{\pi}=\left(\frac{1}{2}, \frac{1}{2}\right)$. If $c_{1}=\frac{1}{3}, c_{2}=\frac{1}{2}, \delta_{1}=2$, and $\delta_{2}=1$, then $m_{1}^{0}=1>0$. According to Theorem 3 of [4, ξ_{1}^{-}has a nondegenerate distribution. Consider the matrix

$$
\mathbf{G}(r):=r \mathbf{\Psi}_{1}^{-1}(-\imath r)(\mathbf{C}-r \mathbf{I})^{-1}=\frac{1}{D(r)}\left(\begin{array}{ll}
g_{11}(r) & g_{12}(r) \\
g_{21}(r) & g_{22}(r)
\end{array}\right)
$$

where $D(r)=48 r^{5}+263 r^{4}+387 r^{3}+114 r^{2}-51 r-8, g_{11}(r)=3(r+2)^{2}\left(6 r^{3}+10 r^{2}-1\right)$, $g_{12}(r)=2(r+1)^{2}(r+2)^{2}(3 r-1), g_{21}(r)=3(r+1)^{2}(r+2)^{2}(2 r-1)$, and

$$
g_{22}(r)=2(r+1)^{2}\left(9 r^{3}+34 r^{2}+16 r-4\right)
$$

Since $D(r)$ has four negative roots,

$$
-\rho_{1}=-3.25672, \quad-\rho_{2}=-1.59682, \quad-\rho_{3}=-0.794382, \quad-\rho_{4}=-0.133485
$$

and one positive root $r_{0}=0.30224$, the entries of the matrix $\mathbf{G}(r)$ are such that

$$
G_{i j}(r)=C_{i j}^{0}+\frac{C_{i j}^{1}}{r+\rho_{1}}+\frac{C_{i j}^{2}}{r+\rho_{2}}+\frac{C_{i j}^{3}}{r+\rho_{3}}+\frac{C_{i j}^{4}}{r+\rho_{4}}+\frac{C_{i j}^{5}}{r-r_{0}}
$$

The projection for functions of the form

$$
\mathbf{G}(r)=\mathbf{C}_{0}+\int_{-\infty}^{\infty} e^{r x} \mathbf{g}(x) d x
$$

is defined by

$$
[\mathbf{G}(r)]^{-}=\int_{-\infty}^{0} e^{r x} \mathbf{g}(x) d x
$$

Considering the projection we get

$$
G_{i j}^{-}(r)=\left[G_{i j}(r)\right]^{-}=\frac{C_{i j}^{1}}{r+\rho_{1}}+\frac{C_{i j}^{2}}{r+\rho_{2}}+\frac{C_{i j}^{3}}{r+\rho_{3}}+\frac{C_{i j}^{4}}{r+\rho_{4}}
$$

Since

$$
\check{\mathbf{R}}_{+}=\left(\mathbf{G}^{-}(0)+(\boldsymbol{\Lambda}-\mathbf{Q})^{-1}\right)^{-1} \mathbf{P}_{0}=\left(\begin{array}{cc}
0.22 & 0.22 \\
0.17 & 0.17
\end{array}\right)
$$

Theorem 3 of [4] implies that

$$
\begin{aligned}
\mathrm{E}_{i}\left[e^{r \xi_{1}^{-}}, \xi_{1}^{-}<0\right] & =\mathbf{E}\left[e^{r \xi_{1}^{-}}, \xi_{1}^{-}<0\right] \cdot \mathbf{e}=[\mathbf{G}(r)]^{-} \check{\mathbf{R}}_{+} \cdot \mathbf{e} \\
& =\frac{A_{i}^{1}}{r+\rho_{1}}+\frac{A_{i}^{2}}{r+\rho_{2}}+\frac{A_{i}^{3}}{r+\rho_{3}}+\frac{A_{i}^{4}}{r+\rho_{4}}, \quad i=1,2
\end{aligned}
$$

where $\mathbf{e}=(1,1)^{\prime}$. Inverting with respect to r we evaluate the distribution of ξ_{1}^{-}as follows:

$$
\mathrm{P}_{i}\left\{\xi_{1}^{-}<x\right\}=\sum_{k \leq 4} \frac{A_{i}^{k}}{\rho_{k}} e^{\rho_{k} x}, \quad x<0
$$

Therefore

$$
\begin{aligned}
\psi_{1}(u) & =\mathrm{P}_{1}\left\{\xi^{+}>u\right\}=\mathrm{P}_{1}\left\{\xi_{1}^{-}<-u\right\} \\
& \approx-0.04 e^{-3.26 u}+0.001 e^{-1.6 u}+0.079 e^{-0.79 u}+0.75 e^{-0.13 u} \\
\psi_{2}(u) & =\mathrm{P}_{2}\left\{\xi^{+}>u\right\}=\mathrm{P}_{2}\left\{\xi_{1}^{-}<-u\right\} \\
& \approx-0.01 e^{-3.26 u}-0.016 e^{-1.6 u}+0.004 e^{-0.79 u}+0.85 e^{-0.13 u}
\end{aligned}
$$

On the other hand, one can use bounds (14):

$$
\begin{aligned}
& 0.665 e^{-0.13 u} \leq \psi_{1}(u) \leq 0.935 e^{-0.13 u} \\
& 0.757 e^{-0.13 u} \leq \psi_{2}(u) \leq 1.064 e^{-0.13 u}
\end{aligned}
$$

Passing to the limit in (6) as $s \rightarrow 0$ we deduce that

$$
\begin{aligned}
& \mathbf{P}\left\{\gamma^{+}(0)>z, \tau^{+}(0)<\infty\right\} \approx\left(\begin{array}{cc}
e^{-2 z}(0.48+0.86 z) & e^{-z}(0.31+0.22 z) \\
e^{-2 z}(0.21+0.34 z) & e^{-z}(0.61+0.49 z)
\end{array}\right), \\
& \mathbf{P}\left\{\gamma_{+}(0)>z, \tau^{+}(0)<\infty\right\} \approx\left(\begin{array}{cc}
0.1 e^{-2 z}(1+z) & e^{-z}(0.2+0.1 z) \\
0.09 e^{-2 z}(1+z) & e^{-z}(0.18+0.09 z)
\end{array}\right) \\
&+\left(\begin{array}{cc}
e^{-2.3 z}(0.0016+0.002 z) & -e^{-1.3 z}(0.02+0.013 z) \\
-e^{-2.3 z}(0.004+0.004 z) & e^{-1.3 z}(0.05+0.03 z)
\end{array}\right), \\
& \mathbf{P}\left\{\gamma_{0}^{+}>z, \tau^{+}(0)<\infty\right\} \approx\left(\begin{array}{cc}
e^{-2 z}\left(0.49+0.97 z+0.2 z^{2}\right) & e^{-z}\left(0.3(1+z)+0.1 z^{2}\right) \\
e^{-2 z}\left(0.2+0.4 z+0.18 z^{2}\right) & e^{-z}\left(0.7(1+z)+0.09 z^{2}\right)
\end{array}\right) \\
&+\left(\begin{array}{cc}
-e^{-2.3 z}(0.005+0.01 z) & e^{-1.3 z}(0.03+0.04 z) \\
e^{-2.3 z}(0.01+0.03 z) & -e^{-1.3 z}(0.075+0.1 z)
\end{array}\right) .
\end{aligned}
$$

Bibliography

1. D. V. Gusak, Boundary Problems for Processes with Independent Increments on Finite Markov Chains and for Semi-Markov Processes, Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, 1998. (Ukrainian) MR1710395 (2000m:60050)
2. S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000. MR 1794582 (2001m:62119)
3. D. V. Gusak, The distribution of extrema for risk processes on a finite Markov chain, Theory Stoch. Process. 7(23) (2001), no. 1-2, 109-120.
4. D. V. Gusak and E. V. Karnaukh, Matrix factorization identity for almost semi-continuous processes on a Markov chain, Theory Stoch. Process. 11(27) (2005), no. 1-2, 40-47. MR2327445 (2008e:60314)
5. V. S. Korolyuk and A. F. Turbin, Semi-Markov Processes and their Applications, "Naukova dumka", Kiev, 1976. (Russian) MR.0420902 (54:8913)

Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine

E-mail address: kveugene@univ.kiev.ua
Received 31/OCT/2005
Translated by N. SEMENOV

[^0]: 2000 Mathematics Subject Classification. Primary 60G50, 60J70; Secondary 60K10, 60K15.
 Key words and phrases. Overshoot functionals, almost semicontinuous processes, ruin probability.

