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OVERSHOOT FUNCTIONALS FOR ALMOST SEMICONTINUOUS

PROCESSES DEFINED ON A MARKOV CHAIN
UDC 519.21

E. V. KARNAUKH

ABSTRACT. The distributions of overshoot functionals are considered in the paper
for almost semicontinuous processes defined on a finite irreducible Markov chain.

1. INTRODUCTION

The distributions of extremal values and overshoot functionals for semicontinuous
processes (that is, for those processes that cross either a positive or a negative barrier in
a continuous way) defined on a Markov chain are considered by many authors (see, for
example, [I]—[3]). The distributions of extremal values are considered in the paper [4] for
almost semicontinuous processes (that is, for those processes that cross either a positive
or a negative barrier by means of exponential jumps only). Under some assumptions,
these processes can be viewed as surplus risk processes with random premiums in a
Markov environment. The distributions of some overshoot functionals are studied in this
paper for lower almost semicontinuous processes defined on a Markov chain.

2. MAIN PART

Consider a two dimensional Markov process

Z(t) ={¢(), =(t)},  t=0,
where z(t) is a finite irreducible aperiodic Markov chain whose phase space is
E'={1,...,m}
and whose matrix of transient probabilities is given by
P(t)=¢Q, t>0, Q=N(P-I).
Here
N = [|6krvillitr=1
v are the parameters of the exponential random variables (; (meaning the sojourn
times of x(t) at states k), P = ||pkr|| is the matrix of transient probabilities of the
embedded chain, and 7 = (71,...,7,,) is the stationary distribution. The process £(t)
is homogeneous with conditionally independent increments given that the values of x(t)

are fixed (see [1]).
The evolution of the process Z(t) is described by the matrix characteristic function

P, (a) = HE [em<5(t+“)_f(“)),x(t +u)=r / x(u) = k}

; u =0,
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which can be represented in the following form:
@i () =Ee ) =@ ¥(0) = Q.
In what follows we study the processes with the cumulant
o0
(1) W(a) = / (€7 1) dKy(x) + AFo(0) (C(C+0l) ' ~1) +Q
0
where dKo(z) = N dF(z) + II(dx),

) = [|P{xnr < 252(G) =7 / (0

Xkr are the heights of jumps of £(t) at the moments when z(t) jumps from the state k
to the state r,

H(d$) = AdFQ($), FO = ||5k7Fk )H s

F(z) are the distribution functions of the helghts of jumps of £(t) given x(t) = k,
A = ||0kr k||, and where Ay are the parameters of the exponential random variables ¢,
(meaning the time between two successive jumps of £(t) given () = k). Let C = ||0g,-ck ||,
where ¢;, are the parameters of the exponential negative jumps of £(¢) given z(t) = k. A
process Z(t) with a cumulant of this kind is called a lower almost semicontinuous process
(this definition is introduced in [4]).

Denote by 65 an exponential random variable whose parameter is s > 0 (that is,
P{fs > t} = e 5t for t > 0) and assume that 6, is independent of Z(t). Then the
characteristic function of £(65) can be written as follows:

(2) B(s,0) = Ee€0) — g /000 e '@, (a)dt = s (s — ¥(a)) ",

We introduce the main functionals of interest:

£i<t>=0§ugt<inf>£<u>, ¢ = sup (inf)é(u);

0<u<oo

)y =¢) —¢t@), &

7T (x) = inf{t: £(t) > x}, v (x) .
(@) =z —E&(rH(2) = 0), A =" (2) + 4 (2), B

The distributions of the functionals £*(6;), £(6s), and £(6,) are obtained in [4]. The
aim of this paper is to obtain explicitly the joint moment generating functions of overshoot
functionals for lower almost semicontinuous processes and moment generating functions
of the random vectors {77 (), (z)}, {77 (z),v4(x)}, and {7+ (z),~v]}.

Put

V(S,Z,U,'U,/L) =E |:€*ST+(‘T)7U’V+(‘T)*U’Y+(93)*#7;’ 7'+(l') < OO:| 3
W (z, u, 0, p) = / etme= iz 4Ky (2),  Ko(x) = W(x,0,0,0),
P, = s/ e P(t)dt =s(sI—Q) ",
0
P, (s,z)=P{c"(0,) <z}, >0, P (s,2) =P{{(6;) <z}, z<0,

P'(s) =P {£(0,) =0}, pu(s) =P {c¥(0,) =0}, R_(s)=P;'p_(s),
:P{E(QS):O} q ( ) P, —p- ( ) RC(S):R_(S)C,

G+(S,.’IJ,U7’U,M / (x_yauava:u’)'
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Lemma 1. Consider a process Z(t) with the cumulant of the form (). Then

x
(3) sV (s,z,u,v, 1) = / dP(s,y) PS_1 Gi(s,x—y,u,v,p), x>0,
0

where

(P b (5)C + (u+ 0)T) e (P2 -0 )]
x P q_(s)Ko(z + 2) dz
foru—v ¢ o(P;'p_(s)C). Here the symbol o(A) stands for the spectrum of a matriz A.

Proof. Since we assume the almost semicontinuity, relation (3] follows from [1, Corol-
lary 3.4]. According to [4] (see Remark 1 therein) the distribution of £(65) is given
by

P (s,z) = P{{(6;) <z} = eP- ()Cps_lwq_(s), x < 0.
Then
0
G.i(s,x,u,v,pu) = / AP~ (s,y)W(z — y,u,v, )
(5) = (W)
po()C [P PO P T ()W ly v, p)

By the definition of the function W (y, u, v, u),
oo
/ P P-(ICED Pl g ()W (y, u,v, ) dy
x
=—(P;'p_(s)C— (u— 11)1)71 e~ vtz

% |:(PS—1 f),(S)C + (/J/ + ’U)I) /0 e—(P;1 15—(3)0+(U+M)I)z Ps—l (V],(S)Ko(.’lf + Z) dz

o0
) [ R g ()Rl + ) s
0

Now equality (@) follows from (&). O
Note that
lim P~ (s,2) = P {£(6,) < —o0} = 0.

Thus the representation
P (s,z) = eP-()CP.! fq(s) = PSPS_lef’*(S)CPsflPS P.;'q (s)
=P eRe() (I-R_(s))

implies that the spectrum o (f{c(s)) of the matrix R.(s) consists of positive elements.
Let

n(z) =~ (x),  yel@) =vi(z), @)=~



52 E. V. KARNAUKH

Substituting v = u = 0, u ¢ o(Re(s)), u = p = 0, and v = u = 0 we derive from
equality (3) that

E [e_STJr(x)_“'”(x),TJF(I) < oo} = 3_1/ dP, (5,y) P; 1 Gi(s, x — y,u), 1=1,2,3,
0

Galsvr ) =po(s) [ et (o)
= P-(5)C (Re(e) - ul) "
y /O fue=s - Rc(s)ejC(s)Z} Pla (s)Ko(x + 2) dz,
Go(s,,0) = p_(5)e—""Ko(z) + p_(5)Ce—"" /O e~ (R D) p1 g (Ko (z + 2) de,
Galsvrp) =p-(s) [ e ko)
—eh / " [ = (Ruls) + 1) e 0] P g (R + 2) d

Inverting with respect to u we obtain

E|e 7 @) vi(x) € dz, 7T (2) < oo} 1/ dP, (s,y)R_(s)d.g} (s, —y, 2),
0

8

d.g} (s,x,2) = d.wj (z,2) +C/ Re()(@=9) (I~ R_(s)) d.w}(y, 2) dy,

d,wi(z,z) =d, Koz + 2), d.wi(x,2) =d. I{z> 2} Ko(x),
d.wj(z,2z) =I{z > 2} dKo(2).

The case of z = 0 is treated in the following result.

Theorem 1. Consider a process Z(t) with the cumulant of the form ). If z > 0, then
E [e*”ﬂo),'y*(()) > 2, 77(0) < oo}

=5 B (RKafe) 4 [ IO R G (R ).

E o7 0,9,(0) > 2,74(0) < 0o| = s7P"(s C/ e VR P g (s)Ko(y) dy,
E{e‘” (0) 'y >z, 7T }
© =57 1P%(s) (Ko(z) +C (RC(S))i1 /:O (I — e YRe (S)) Yq_(s) dKo(y))-

Proof. Relation (B]) implies that

x
) V(s,z,u,v, 1) =Py (s,2) P 457! / AP (s,y) P ' G (s, —y,u,v,p),
0

x>0,

where

G(s,z,u,v,u) = Gy(s,x,u,v,u) — G4(s,2,0,0,0).
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Since
Vi(s,z,u) =E {6757+(m)7“7’“(m),7+(x) < oo]
=P (s,2)P;' —u /0OO e E [6_87+(x),'yk(x) > 2,7 (x) < oo} dz
for k =1,2,3, equality (1) yields
/000 e E [6_8T+(x),’7k(l‘) >z, 7 () < oo} dz

(5) L

——— | dP(s,y) P Gp(s,z — y,u),
SUu

o 0—
(9) (s, 2,u) = B (5) Wi () +/ AP~ (s, y) Wi (2 — 1),

o0

(10)  Wi(z,u) = /;(W 9 1) dKo(2),  Walwu) = (e~ 1) Ko(a),

Ws(z,u) = / (e7* — 1) dKo(2).

Passing to the limit as 2 — 0 we obtain from equality (8) that

oo 1 _
(11) / e E [675#(0),%(0) > 2,77(0) < oo} dz = prJr(s) P Gi(s,0,u).
0

Considering relation (@) for z = 0 and taking into account equality ([I0) we get

@00 = up- () [ e Kol a
o [Te [T O R g (Rl dyd ).
Galo0.0) = —up(9)C [ e [T ORI g (9 Ro(y) dy
G3(s,0,u) = —up_(s) (/000 e "*Ko(z) dz
R.(s))

/ (e ) P ) dKo(y) d: ).

Substituting the above expressions for Gy (s,0,u) into (II) and inverting with respect
to u we prove ([@)). O

Consider some corollaries of Theorem 2.3. We also apply some of results of [2]; namely,
we need an analog of the Pollachek—Khinchine formula and two-sided Lundberg inequal-
ity. Assume that xx- = 0, k,r = 1,...,m. Almost semicontinuous processes satisfying
these assumptions can be treated as surplus risk processes with random premiums in a
Markov environment.

Let ¢* be the moment of the first jump of the process £(¢). Then

= G+ G > Gy 2(Ck) = 3,
G Ch < G
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(see [1, p. 42]), where the indices kr mean that z({*) = r, 2(0) = k, k,r = 1,...,m
Taking into account the definition of the process Z(t), the latter relations imply that

EesCir — E [6—54*,93(@) =1 [ 2(0) = k}

—E[e7%, ¢ < ] o + fj E e G > G w(G) = ]

Jj=1

o) m oo
= / e Ve MWYeTVRY dys 4 Z/ e Wype e MY E ey dy
0 —1J0

m

:)\k(s—i—)\k—l—uk)_l(SkT—l—Zl/k(s—l—yk—i—)\k) pr; Ee” Gr
j=1

(see [1l p. 64]). The latter equality can be rewritten in the matrix form as follows:
Ee ™ = A(SI+A+N)"'+(sI+A+N) "'NPEe .

This implies the following representation for the moment generating function of the first
jump moment:

Ee ¢ =(sI+A—-Q) 'A
Since P(s) = (I-Ee*¢") Py, we obtain

lim s 'P%(s) = (A — Q)" = ||P{a(¢*) =7 / 2(0) = k}|| A"

s—0

Let

Corollary 1. If m{ < 0, then
(12) 1—pi(u) =P {7 <u) =e] ZG*" I— |G| e,

where
G (y,00) = P {y7(0) > y,77(0) < o0}

(13) —(A- Q)fl (Afo(y) L /_0 oR-(0)Ca (I _ R,(O)) AFo(y — ) dx) ,

o0 .
||GH:/ Gi(dz), e=(1,...,1), egz(o,...&,...?o).
0

Proof. In fact, equality ([I2]) is known (see the proof of Proposition 2.2 in [2]). Equal-
ity ([I3) follows from the first equality in (@) by passing to the limit as s — 0. O

Let k(r) be the real eigenvalue whose real part is maximal among eigenvalues of the
matrix K(r) = ®(—ur) (that is, k(r) is the Perron root of the matrix K). Let v > 0 be a
solution of the equation k(r) = 0 and let v = (v4,...,v,,) and h = (hy,..., h,;,)" be the
left and right eigenvectors of the matrix K(v) such that their coordinates are positive
and vh =1. Put

1 F(x) 1 F 0( )

C, = max — su , C_ = min — inf
+ JEE' h] :c>13 e’Y(y*QJ)FJO(dy) jeE h j ©>0 f ev(y—= Fo(dy)
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Corollary 2. If m{ < 0, then

(14) C_hie 7 <;(u) < Cyphie 7™

foralli € E' and u > 0.

Proof. The proof of the corollary is similar to that of Theorem 3.11 in [2]. (]

Example. Let Z(t) = {£(¢), ( } be a process defined on the Markov chain z(¢) whose
infinitesimal matrix is Q = (3 _1)

Assume that xx. = 0, k,7 = 1,2. We also assume that the component £(t) given
z(t) = is represented as follows:

&i(t) = Si(t) Z m- Y G i=12

k<vl( k<v;(t)

where S;(t) and S.(t) are generalized Poisson processes with positive jumps &} > 0 and
ni > 0 and parameters \; and A\, = 1, respectively. Furthermore let

P{& >a} =e 7, 2 Pln, <z} = 6i%re %", x>0,i=1,2.
Consider an auxiliary process Z; (t) = {&1(t), z(t)} = {—£(¢), (t)} whose cumulant is
given by

73T3+(261 7661)7‘24*(401 51 726%)7‘4’6151
Wy (—wr) = (r—c1)(r+61)
1

1
—3r34(2c2—682) 7%+ (40252 —26§)r+0252
(r—ca2)(r+462)2

%) IfCl_l _161:2 and52:1
[4], &, has a nondegenerate distribution.

Then the stationary distribution is 7w = (
then m? = 1 > 0. According to Theorem 3
Consider the matrix

G(r):=r®7 (=) (C—rI) " = D}r) (Z’;E:g Z;EE;D ,

where D(r) = 4875 +263r% + 38773 + 11472 — 517 — 8, g11(r) = 3(r +2)%(673 + 1072 — 1),
g12(r) =2(r + 1)%(r + 2)2(3r — 1), go1(r) = 3(r + 1)%(r +2)?(2r — 1), and

g22(r) =2(r +1)* (9r® + 34r° + 16r — 4) .

Since D(r) has four negative roots,

1
2’
of

—p1 = —3.25672, —p2 = —1.59682, —ps = —0.794382, —pg = —0.133485,
and one positive root 7o = 0.30224, the entries of the matrix G(r) are such that
C} C? c3. c4 5.
Gij(r) =C+ —~ s s B

T+ p1 r+p2 r4+p3 T+ ps r—rg
The projection for functions of the form

o0

G(r)=Cy +/ e"g(x) dr

— 00

is defined by
0
G = / g (x) dx.

—00

Considering the projection we get

1 2 3 4
Chy Gy, Gy, Ch

G;(r) = [Gi;(r)] Tt rpr THps THpa

ij
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Since

. —-1
Ro= (0 (- )7) Ro= (07 (7).

Theorem 3 of [4] implies that

E; {e’fl_,gf <O} :E[ergl_,ﬁf <O} e=[G(r)] Ry-e
Al A2 A3 Af
=t 4 4 i 4 e i=1,2,
r+p1 THp2 THp3 THps

where e = (1,1)’. Inverting with respect to r we evaluate the distribution of £ as
follows:

P {¢& <a} :ZA—fep”, z < 0.
f<d Pk
Therefore
Yi(u) =P {&r > up =Py {&§ < —u}
~ —0.04e732% 4+ 0.001e 6% 4 0.079e 7270 4 0.75e 7013w,
PYo(u) =Py {7 > u} =Py {& < —u}
~ —0.01e7326% — 0.016e 16 4+ 0.004e 7% 4+ 0.85¢~0-13v,

On the other hand, one can use bounds (I4):

0.665¢ 0 13% < 4y (u) < 0.935¢0-13v,
0.757e013% < 4y (u) < 1.064e0-13%,

Passing to the limit in (@) as s — 0 we deduce that
—2z —z

+ n _ (e77%(0.48 4+ 0.86z) e #(0.31 + 0.22z)

P {77(0) > 2,7(0) < oo} ~ <e‘2z(0.21 +0.342) e %(0.61+0.492) )

0.le2*(1+2) e *(0.2+0.12)
+ ~
P {71(0) > 2,77(0) < o0} ~ (0.09622(1 +2) e #(0.18+0.09z)

. €~232(0.0016 + 0.002z) —e~132(0.02 + 0.0132)
—e7232(0.004 4+ 0.0042) e 13(0.05 4 0.032) )°

—2z 2 —z 2
n I _(e7%%(0.4940.972 4+ 0.22°) e #(0.3(1 4+ 2) + 0.12%)
P iy > 277(0) <o}~ ( €727(0.2 + 0.4z + 0.1822) ¢ 7(0.7(1 4 2) + 0.0922)

N —e7232(0.005 + 0.012) e~ 13%(0.03 + 0.042)
e 2%(0.01 +0.032)  —e”195(0.075 +0.12) )
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