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ARBITRAGE IN A DISCRETE TIME MODEL

OF A FINANCIAL MARKET WITH A TAXATION

PROPORTIONAL TO THE PORTFOLIO SIZE

UDC 519.21

G. M. SHEVCHENKO

Abstract. We introduce the notion of V ε-arbitrage (in other words, an arbitrage
under the taxation proportional to the portfolio size) for a multiperiod discrete time
model of a financial market. For a V ε-arbitrage, we prove a result analogous to the
classical fundamental asset pricing theorem. Differences between a V ε-arbitrage and
some other notions of arbitrage are analyzed.

Introduction

A fundamental question arising in every mathematical model of a financial market is
whether or not an arbitrage strategy exists for this model. The most important result
on a relationship between the nonexistence of an arbitrage strategy and the existence of
an equivalent martingale measure is proved in [1]. Other proofs of this result as well as
other equivalent statements are given in [2, 6].

Why is this notion so important and why do we always assume that models are
arbitrage-free? The most popular explanation is that if arbitrage strategies exist, then
the demand for arbitrage securities increases; that is, investors could attain infinite wealth
by taking unlimited positions in those securities. Thus an arbitrage strategy leads to
an increasing demand for some assets and a decreasing demand for some others, which
should finally balance the prices at a reasonable level. The modern studies of the arbitrage
problem show, however, that the existence of an arbitrage does not necessarily mean that
the demand for it will be sufficiently high. This conclusion seems to be absurd at first
glance. Below we try to clarify it.

Arbitrage strategies often lead to unlimited positions, which create a problem, espe-
cially when they are negative. The simplest illustration here is a martingale betting
(double the bet each time you loose when flipping a coin). This strategy, being in fact
an arbitrage one, leads to the quick increase of bets. After several applications, this
martingale strategy leads to the ruin, since a next bet could be out of money.

Liu and Longstaff [7] consider an arbitrage model of a financial market and impose con-
straints on risky positions in a portfolio. It turns out that the textbook strategy (invest
all the money in the arbitrage) becomes wrong and nonprofitable. Another conclusion
made in [7] is that the Sharp ratio (profit/risk ratio) is rather small for the arbitrage
strategy, and an optimal strategy is to invest a considerably less amount of money to
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the arbitrage as compared to the portfolio constraints. It is sometimes the case that
investors should even avoid the arbitrage strategy at all.

The problems described above increase interest in the models containing portfolio
constraints as well as transaction costs (which means that investors are forced to avoid big
positions in their portfolio). The literature concerning the markets with transaction costs
is rather extensive; see, for example, the paper [6], which contains the most important
results and a survey of the relevant literature on the topic.

We consider another model involving a taxation proportional to the portfolio size
instead of a model with transaction costs. The taxation is also a natural limiting factor
that urges investors to decrease the portfolio size. We continue investigations initiated
in [9]. Our approach differs from that in [10], where the portfolio constraints are fixed in
advance and are not related to tax regulations.

The paper is organized as follows. In Section 1, we provide necessary definitions. One-
period models are studied in Section 2, where we recall some results of the paper [10] and
state their counterparts for models with proportional taxation. The main result on the
relationship between the nonexistence of an arbitrage and the existence of an equivalent
martingale measure (which is an “almost” martingale measure) is given in Section 3. An
important auxiliary result on the joint measurability of the regular expectation is stated
and proved in Section 4; this result is of its own interest.

1. Main notation

Let (Ω,F ,P) be a complete probability space equipped with a filtration

(Ft)t=0,1,...,T , FT = F .

We assume that, for any t = 1, 2, . . . , T , the measure P is complete on Ft. Let S =
{St, t = 0, 1, . . . , T} be an Ft-adapted and (d + 1)-measurable process (a price vector).
Let S0

0 = 1 and S0
t = (1 + r)t, where r > 0 is a nonrandom interest rate.

Throughout this paper, except for Section 2, where we consider one-periodic models
with random initial data, we assume that F0 = {∅,Ω}.

A (d+ 1)-dimensional process

ξ = (ξ0, ξ) =
{(

ξ0t , ξ
1
t , . . . , ξ

d
t

)
, t = 1, . . . , T

}

is called a strategy if it is Ft-predictable, which means that the vector ξt is Ft−1-
measurable for all t.

A strategy ξ = {ξt, t = 1, 2, . . . , T} is called self-financing if

ξt · St = ξt+1 · St, t = 1, . . . , T − 1.

Here and in what follows the symbol x · y stands for the scalar product of two vectors x
and y.

We define the discounted price process for the asset S0:

Xi
t :=

Si
t

S0
t

, t = 0, . . . , T, i = 0, . . . , d.

Put Xt := (X0
t , Xt) = (X0

t , X
1
t , . . . , X

d
t ). A process

V0 := ξ1 ·X0, Vt := ξt ·Xt, t = 1, . . . , T,

is called the discounted capital process for the strategy ξ.
It is well known that

Vt = V0 +
t∑

k=1

ξk ·ΔXk

for a self-financing strategy ξ, where ΔXk = Xk −Xk−1.
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The following definition is equivalent to the one introduced in [10].

Definition 1.1. A multiperiod model of a financial market admits an ε-arbitrage if there
exists a self-financing strategy ξ = (ξt) that is bounded in the sense that

(1)
T−1∑

t=0

‖ξt‖1 =
T−1∑

t=0

d∑

i=1

∣
∣ξit

∣
∣ ≤ 1 almost surely

and whose capital is such that

V0 ≤ 0, P{VT ≥ ε} = 1, P{VT > ε} > 0.

Remark 1.2. It is easy to see that an ε-arbitrage is an arbitrage in a common sense,
but the converse is not true. Thus an ε-arbitrage requires more from a process than
a usual arbitrage. This feature distinguishes the notion of an ε-arbitrage from other
generalizations (from an asymptotic arbitrage, for example, considered in [4, 3]).

We introduce a different but related definition. First we define the ε-capital of a
self-financing strategy.

Definition 1.3. The process

(2) V ε
t = V0 +

t∑

k=1

ξk ·ΔXk − ε
t∑

k=1

‖ξk‖1

is called the discounted ε-capital of a self-financing strategy ξ = (ξt).

Remark 1.4. Definition 1.3 has a clear applied meaning. Frictionless models of a financial
market considered in [1] allow investors to handle securities without restrictions, and this
does not influence the prices in the market. The models with proportional transaction
costs became popular recently (see, for example, [5]). In contrast to these models, the
taxation in our model is proportional to the portfolio size and not to the costs of a
transaction. If one speaks physics language, the friction in our model is caused by the
weight (not by the movement).

Definition 1.5. A self-financing strategy ξ = {ξt, t = 1, 2, . . . , T} is called a V ε-arbitrage
if P(V ε

T ≥ 0) = 1 and P(V ε
T > 0) > 0.

Remark 1.6. At first glance, the notion of V ε-arbitrage does not differ from that of ε-
arbitrage (for a single period model, at least), since one can discount a strategy with
its norm. Here is the problem though, since the norm may equal zero. In such a case,
these notions are different, indeed. We demonstrate this feature by the following simple
example.

Let T = 2, d = 1, Ω = {ω1, ω2}, F1 = F2 = 2Ω, P({ω1}) = P({ω2}) = 1/2, r = 0,
S1
0 = S1

1(ω1) = S1
1(ω2) = S1

2(ω1) = 1, and S1
2(ω2) = 1 + 2ε. Then X1 = (0, 0) and

X2 = (0, 1 + 2ε). It is obvious that an ε-arbitrage does not exist, since V2(ω2) = 0 for
all strategies. On the other hand, the strategy ξ1 = ξ2(ω1) = 0, ξ2(ω2) = 1 obviously is
a V ε-arbitrage.

We prove in Section 3 that the above definition of V ε-arbitrage is equivalent to the
following one.

Definition 1.7. A strategy {ξt, t = 1, . . . , T} is called ε-self-financing if

ξt+1St = ξt − (1 + r) ‖ξt‖1 .
Such a strategy is called a Kε-arbitrage if

P(KT ≥ 0) = 1, P(KT > 0) > 0,
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where

Kt = ξt · St

is the capital related to the strategy ξ.

There are two reasons for introducing this definition of ε-self-financing strategy. First,
a tax applies immediately after a portfolio is closed (this explains the factor 1 + r with
the tax). Second, the tax is due to the risky assets, while the operations with nonrisky
assets are nontaxable.

2. One-period model with random initial data

Let T = 1, that is, we deal with a one-period model of a financial market. We do
not assume that F0 is trivial, and this allows us to consider random initial data. Put
ΔX = X1 −X0 and ‖x‖∞ = maxi

∣
∣xi

∣
∣.

For the sake of completeness, we first provide a result from [9, 10] for a one-period
model of a financial market.

Lemma 2.1 ([9]). The following conditions are equivalent:

1) a one-period financial market admits an ε-arbitrage;
2) there exists an F0-measurable process ξ such that ‖ξ‖1 ≤ 1 almost surely and

ξ ·ΔX ≥ ε almost surely with respect to P. Moreover P{ξ ·ΔX > ε} > 0.

Theorem 2.2 ([10]). The following conditions are equivalent for a one-period financial
market:

1) the market is ε-arbitrage-free;
2) there exists a probability measure P∗ equivalent to P and such that dP∗/dP ≤ C

for some constant C < ∞ and

EP∗ [‖EP∗ [ΔX/F0]‖∞] ≤ ε.

A natural question arises on whether this result can be generalized to a norm in the
space R

d that is different from ‖·‖1. More precisely, let ‖·‖∼ be a norm in R
d and let

‖·‖∗∼ be its conjugate norm. An F0-measurable strategy ξ ∈ R
d is called an ε∼-arbitrage

strategy for the vector X ∈ R
d in a one-period model if ‖ξ‖∼ ≤ 1, ξ ·X ≥ ε almost surely,

and P(ξ ·X > ε) > 0. A partial generalization of Theorem 2.2 can be found in [10].

Theorem 2.3 ([10]). For all δ > 0,

1) a one-period model is (ε+ δ)∼-arbitrage-free;
2) there exists a measure P∗ ∼ P with a bounded density and such that

EP∗
[
‖EP∗ [ΔX/F0]‖∗∼

]
≤ ε+ δ.

Is it possible to drop δ in Theorem 2.3? It is clear that the existence of an equivalent
measure P∗ ∼ P such that EP∗ [‖EP∗ [ΔX/F0]‖∼] ≤ ε implies the nonexistence of an ε∼-
arbitrage. Unfortunately, the converse statement is not true in general. We demonstrate
this in the following example.

Example 2.4. Let d = 2 and let ‖ξ‖∼ = |ξ| =
(
(ξ1)2+(ξ2)2

)1/2
be the usual Euclidean

norm. Define the probability space by Ω = {ω1, ω2}, F0 = {∅,Ω}, F1 = 2Ω, and

P({ω1}) = P({ω2}) =
1

2
.

Let the discounted price vector be given by X0 = (0, 0), X1(ω1) = (1, 0), and X1(ω2) =
(1, 2). Then this model is 1-arbitrage-free. Indeed, if |ξ| = 1 and ξ · ΔX ≥ 1 almost
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surely, then ξ1 ≥ 1 (for ω = ω1), since ξ = (1, 0). Then ξ · X(ω2) = 1, whence the
nonexistence of an ε∼-arbitrage follows. On the other hand,

EP∗ [|EP∗ [ΔX|F0]|] = |EP∗ [ΔX]| = |(1, 2p∗)| > 1

for P∗ ∼ P such that p∗ = P∗({ω2}) ∈ (0, 1).

One can prove similarly that the implication 2) ⇒ 1) of Theorem 2.2 does not hold
for the norms ‖·‖p and, in general, for any norms whose balls are convex at a certain
point a in the following sense: there exists a unique hyperplane whose intersection with
that ball contains a single point a. This consideration leads to the conjecture below.
Unfortunately, the author is not aware of a proof of it or of a counterexample to it.

Conjecture 2.5. Suppose a ball of a norm ‖·‖∼ is not convex at any point. Then the
following conditions are equivalent:

1) the one-period model is ε∼-arbitrage-free;
2) there exists a measure P∗ ∼ P with bounded density and such that

EP∗
[
EP∗ ‖[ΔX/F0]‖∗∼

]
≤ ε.

Now we consider a V ε-arbitrage.
Note that a V ε-arbitrage is equivalent to an ε-arbitrage for a one-period model with

nonrandom initial data. In view of this remark, the following result claims the same as
Lemma 3.6 does in [10]. We denote by R

d a single point compactification of the space Rd.
We treat C(Rd) as a normed space equipped with the norm ‖g‖sup = max

Rd |g|.

Lemma 2.6. Assume that there is no V ε-arbitrage for a random vector Y ∈ R
d with a

distribution PY (dx). This means that if ξ · Y ≥ ε ‖ξ‖1 almost surely for ξ ∈ R
d, then

ξ · Y = ε ‖ξ‖1 almost surely. Then there exists a positive function g ∈ C(Rd) such that
∫

Rd

g(y)PY (dy) = 1,

∥∥
∥∥

∫

Rd

yg(y)PY (dy)

∥∥
∥∥
∞

≤ ε.

This result is used for the proof of the existence of an equivalent “martingale” measure
in the case of random initial data in a way similar to that in the proof in [1].

Theorem 2.7. The following conditions are equivalent:

1) a financial market is V ε-arbitrage-free;
2) there exists a measure P∗ equivalent to P and such that dP∗ /

dP ≤ C for some
C > 0 and ‖EP∗ [ΔX/F0]‖∞ ≤ ε almost surely.

Proof. [2) ⇒ 1)] Let ξ ∈ R
d be an F0-measurable vector such that

P(ξ ·ΔX ≥ ε ‖ξ‖1) = 1.

Then

EP∗ [ξ ·ΔX − ε ‖ξ‖1] = EP∗ [EP∗ [ξ ·ΔX − ε ‖ξ‖1 /F0]]

≤ EP∗ [EP∗ [‖ξ‖∞ ‖ΔX‖1 /F0]− ε ‖ξ‖1]
≤ EP∗ [‖ξ‖1(E[‖ΔX‖∞ /F0]− ε)] ≤ 0.

Thus ξ · ΔX = ε ‖ξ‖1 almost surely with respect to both P∗ and P. Therefore a V ε-
arbitrage does not exist.

[1) ⇒ 2)] We introduce an equivalent measure P′ ∼ P with a bounded density by
putting dP′ /dP = C/(1 + ‖ΔX‖1), where C is a normalizing constant. The vector ΔX
is integrable with respect to P′. Moreover, there is no V ε-arbitrage with respect to P′,
and every measure that is equivalent to P′ and has a bounded density with respect to P′
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is also equivalent to P and has a bounded density with respect to P. Without loss of
generality we assume that E[‖ΔX‖1] < ∞.

Denote by P(ω, dx) the regular conditional distribution of ΔX given F0. For vec-
tors α ∈ R

d, we put Hε
α� = {x : α · x� ε ‖x‖1}, where � means one of the signs

{≤, <,=, >,≥}.
We consider the set A where the V ε-arbitrage is attained, namely

A =
{
(ω, x) ∈ Ω× R

d : P
(
ω,Hε

x≥
)
= 1,P (ω,Hε

x>) > 0
}
.

This set belongs to F0 ⊗B(Rd), since the functions P(ω,Hε
x≥) and P(ω,Hε

x>) > 0 are

F0 ⊗B(Rd)-measurable (see Lemma 4.1).
Then the projection of A,

A = PrΩA =
{
ω : there exists x ∈ R

d such that P
(
ω,Hε

x≥
)
= 1 and P(ω,Hε

x>) > 0
}
,

belongs to F0 by the projection theorem [8].
In view of the measurable choice theorem, there exists an F0-measurable random

vector ζ ∈ R
d such that (ω, ξ) ∈ A for almost all ω ∈ A. The vector ζ = ξ�A is

F0-measurable and

P(ζ ·ΔX ≥ ε ‖ζ‖) = E [E [�ζ ·ΔX ≥ ε ‖ζ‖/F0]] = E
[
P

(
ω,Hε

ζ≥
)]

= E
[�AP

(
ω,Hε

ξ≥
)
+ �Ac P

(
ω,Hε

0≥
)]

= 1.

Analogously,

P(ζ ·ΔX ≥ ε ‖ζ‖) = E
[�AP

(
ω,Hε

ξ>

)]
.

Since there is no V ε-arbitrage and since the probability P(ω,Hε
ξ>) is positive for ω ∈ A,

we have P(A) = 0.
Now we consider the set

H =

{
(ω, g) ∈ Ω× C

(
R

d
)
: g ≥ 0,

∫

Rd

g(x)P(ω, dx) = 1,

∫

Rd

xg(x)P(ω, dx) ∈ [−ε, ε]d
}
.

It belongs to F0 ⊗B
(
C(Rd)

)
. Since P(A) = 0 and there is no V ε-arbitrage, we get, for

almost all ω, that an V ε-arbitrage does not exist for a random vector with the distribution
P(ω, dx). By Lemma 2.6, a function gω ∈ C

(
R

d
)
exists for almost all ω and is such that

(ω, gω) ∈ H. In other words, the projection of H on Ω is of full probability. Since C(Rd)
is a complete separable space, the measurable choice theorem implies that there exists
an F0-measurable function G : Ω → C

(
R

d
)
such that (ω,G(ω)) ∈ H almost surely. The

mapping (ω, x) → G(ω, x) := G(ω)(x) is F0 ⊗B(Rd)-measurable as a composition of
measurable mappings. Thus D(ω) := M(ω)G(ω, Y (ω)) is F1-measurable, where

M(ω) = 1/(1 +K(ω)), K(ω) = ‖G(ω, ·)‖sup .
Note that

E[G(ω, Y (ω))] = E[E[G(ω, Y (ω))/F0]] = E

[∫

Rd

g(ω, x) P(ω, dx)

]
= 1

and

M(ω) = E[D(ω)/F0].

Now we define dP∗(ω) = MD(ω) dP(ω), where M = 1/E[D(ω)]. Then

‖EP∗ [Y/F0]‖∞ = ‖E[Y (ω)D(ω)/F0]/E[D(ω)/F0]‖∞
= ‖E[Y (ω)G(ω, Y (ω))/F0]‖∞

= M E

[
D(ω)

∥∥
∥∥

∫

Rd

xG(ω, x) P(ω, dx)

∥∥
∥∥
∞

]
≤ ε. �
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3. Main theorem for a multiperiod model

Put

Rε
T :=

{

V ε
T : V ε

T =

T∑

t=1

ξt ·ΔXt − ε

T∑

t=1

‖ξt‖1

}

,

where ξ is an arbitrary self-financing strategy. This means that Rε
T is the set of all

possible results arising from a zero initial capital under the ε-tax proportional to the
portfolio size.

Put Aε
T := Rε

T − L0
+ =

{
V − V + : V ∈ Rε

T , V
+ ∈ L0

+

}
. Here L0

+ is the set of all finite
nonnegative random variables defined on the probability space (Ω,F ,P).

Theorem 3.1. The following conditions are equivalent:

1) the model is V ε-arbitrage-free, that is, Rε
T ∩ L0

+ = {0};
2) for all t = 1, 2, . . . , T , the one-period model is Vε-arbitrage-free in the interval

[t− 1, t] (this means that if ξ ∈ R
d is an Ft−1-measurable vector and

P (ξ ·ΔXt ≥ ε ‖ξ‖1) = 1,

then ξ ·ΔXt = ε ‖ξ‖1 almost surely);
3) the model is Kε-arbitrage-free;
4) Aε

T ∩ L0
+ = {0};

5) there exists a measure P∗ ∼ P with bounded density such that ‖EP∗ [ΔXt/Ft−1]‖∞
≤ ε for all t = 1, 2, . . . , T .

Remark 3.2. The classical result of Dalang, Morton, and Willinger [1] follows from The-
orem 3.1 with ε = 0.

In contrast to the analogous result for the classical notion of arbitrage (see [6]), we
cannot claim that the set Aε

T is closed if 4) holds. The proof of the classical case is
reduced to the proof of orthogonality of certain vectors and the assumption that ε = 0
plays a crucial role here. An attempt to repeat the classical proof in the general case
gives that the cosine of an angle between certain vectors is equal to ε on a certain set
of positive probability, and one cannot conclude anything from this fact. It would be
interesting to find another proof of the closedness property mentioned above.

Proof. The implication [1) ⇒ 2)] is obvious.
The implication [4) ⇒ 1)] follows from Rε

T ⊂ Aε
T .

The implication [5) ⇒ 2)] follows from Theorem 2.7.
Now we prove [2) ⇒ 1)]. We show that the existence of a V ε-arbitrage in such a

model implies the existence of a V ε-arbitrage in one of the periods. Let {ξt} be a
strategy corresponding to the V ε-arbitrage. Put

t0 = min {t : P(V ε
t ≥ 0) = 1, P(V ε

t > 0) > 0} .
This definition is correct because a V ε-arbitrage exists. Since the number t0 is minimal,
we conclude that either V ε

t0−1 = 0 almost surely, and then, obviously, ξt0 corresponds to
a V ε-arbitrage for the period [t0, t0 − 1], or P(V ε

t0−1 = 0) < 1, and then ξt0�V ε
t0−1 < 0 is

a V ε-arbitrage strategy.
Consider the equivalence [1) ⇔ 3)]. We construct a correspondence between the self-

financing strategy (with its ε-capital) and an ε-self-financing strategy (and its capital).
This will mean the equivalence between V ε- and Kε-arbitrages.

It is easy to check by induction that the discounted capital of an ε-self-financing
strategy {ξt = (ξ0t , ξt)} is equal to

Vt = (1 + r)−tKt = V0 +
t∑

k=1

ξk ·ΔXk −
t∑

k=1

‖ξk‖1 .
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This process coincides with the ε-capital of the self-financing strategy that uniquely
corresponds to {ξt}. On the other hand, if a self-financing strategy {ξt = (ξ0t , ξt)} exists,

then we consider another strategy {ζt = (ζ0t , ξt)} with ζ0t = ξ0t −
∑t

k=1 ‖ξt‖1. It is easy
to check that the latter strategy is ε-self-financing and its discounted capital coincides
with the ε-capital of the strategy ξ.

Now we check the implication [1) ⇒ 4)]. Assume that condition 1) holds but condi-
tion 4) does not. In other words, there exists a nonzero z ∈ Aε

T ∩ L0
+. Then there exist

ζ ∈ Rε
T and u ∈ L0

+ such that

z = ζ − u ≥ 0 ⇒ ζ ≥ u ≥ 0 ⇒ ζ ≥ 0 ⇒ ζ = 0,

since condition 1) implies that Rε
T ∩ L0

+ ⊂ {0}, whence we conclude that ζ is equal to
zero. In its turn, the equality ζ = 0 implies that u = 0, whence z = 0. This contradiction
proves the implication [1) ⇒ 4)].

Finally we prove the implication [2) ⇒ 5)]. If condition 2) holds, then there is no
V ε-arbitrage on the interval [t− 1, t] for all t = 1, 2, . . . , T .

We use a backward induction to construct a measure P∗; that is, we construct a
measure Pt ∼ P with bounded density and such that

‖EPt [ΔXs/Fs−1]‖∞ ≤ ε for s = t+ 1, t+ 2, . . . , T .

Put PT = P0. Suppose the measure P∗ is constructed for a certain t. Since there is
no V ε-arbitrage in the interval [t− 1, t] with respect to the measure P, and since Pt ∼ P,
a V ε-arbitrage does not exist with respect to the measure P either. Then Theorem 2.7
implies that there exists a measure Pt−1 ∼ Pt with a bounded and Ft-measurable density
dPt−1 /dPt such that ‖E[ΔXt/Ft−1]‖∞ ≤ ε. Moreover, we have, for s ≥ t+ 1, that

EPt−1
[ΔXs/Fs−1] = EPt

[
dPt−1

dPt
ΔXs

/
Fs−1

] /
E

[
dPt−1

dPt

/
Fs−1

]

=
dPt−1

dPt
EPt

[ΔXs/Fs−1]
/dPt−1

dPt
= EPt

[ΔXs/Fs−1],

where we have used the measurability with respect to Ft which implies the Fs−1-
measurability of dPt−1 /dPt. By the induction assumption, Pt ∼ P and dPt /dP is
bounded; thus Pt−1 ∼ P and

dPt−1

dP
=

dPt−1

dPt

/dPt

dP

is bounded.
Finally, we set P∗ = P0 and obtain a measure for which condition 5) holds, and this

completes the proof of the theorem. �

4. A lemma on joint measurability of the regular expectation

Lemma 4.1. Let a function f(x, y) : Rk ×R
d → R

m be measurable and let B ∈ B(Rm).
Assume that P (ω, dy) is the regular distribution of a random vector ξ ∈ R

d with respect
to the σ-algebra G ⊂ F .

Then the function gf (ω, x) = P (ω, {y : f(x, y) ∈ B}) is G ⊗B(Rd)-measurable.

Proof. It suffices to prove, for C ∈ B(Rk × R
d), that the function

gC(ω, x) = P (ω, {y : (x, y) ∈ C})
is G ⊗B(Rd)-measurable.

Let C = {C : gC is G ⊗B(Rd)-measurable}. We prove that C ⊃ B(Rk × R
d).

1. First we check that C is a Dynkin system. If C ′, C ′′ ∈ C and C ′ ⊂ C ′′, then
C ′′ \ C ′ ∈ C. Indeed, gC′′\C′ = gC′′ − gC′ .
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If Cn ∈ C and Cn ⊂ Cn+1 for all n, then
⋃

n≥1 Cn ∈ C. Indeed,
gC = lim

n→∞
gCn

.

2. Note that X × Y ∈ C for all open sets X ⊂ R
k and Y ⊂ R

d. Indeed,

gC(ω, x) = P (ω, Y )�X(x)

is G ⊗B(Rd)-measurable. The class O of all the sets of this form is closed with respect
to finite intersections, and thus it is a π-system.

Therefore C ⊃ σ(O) = B(Rk × R
d) by Dynkin’s theorem, and this is what was to be

proved. �

5. Concluding remarks

The notion of V ε-arbitrage (in other words, of an arbitrage for a model where there is
a taxation on the portfolio size) is considered in this paper. The studies of this and some
related notions require mathematical tools different from the classical ones, since some
of V ε-arbitrage-free financial markets may have an arbitrage in the classical meaning.

The results obtained in [9] provide the main conditions that are equivalent to the
criteria of nonexistence of a bounded arbitrage in a one-period financial market. Those
results are generalized to one-period models with random initial data and to multiperiod
models in the paper [10]. Similar results are proved in the present paper, but for a
different setting. This new setting also has a clear practical interpretation and allows
one to obtain sharper results than those in [10].

The main result of this paper is similar to that of the classical arbitrage theory and
gives a relationship between the existence of a bounded arbitrage and the existence of
a measure with certain properties. In contrast to the classical case, where the measure
is martingale, the measure is ε-martingale in our setting:

∣∣EP∗ [ΔXi
t/Ft−1]

∣∣ ≤ ε for all i

and t (here ΔXi
t is the discounted increment of the price of an ith asset in the interval

[t− 1, t]). This condition becomes the classical arbitrage-free condition if ε = 0.
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11. H. Föllmer and A. Schied, Stochastic Finance. An Introduction in Discrete Time, Walter de
Gruyter & Co., Berlin, 2002. MR1925197 (2004h:91051)

12. A. N. Shiryaev, Essentials of Stochastic Finance. Facts, Models, Theory, Fazis, Moscow, 1998;
English transl., World Scientific, River Edge, NJ, 1999. MR1695318 (2000e:91085)

Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for

Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov

Avenue 2, Kiev 03127, Ukraine

E-mail address: zhora@univ.kiev.ua

Received 28/SEP/2009

Translated by S. KVASKO

http://www.ams.org/mathscinet-getitem?mr=2432777
http://www.ams.org/mathscinet-getitem?mr=2432777
http://www.ams.org/mathscinet-getitem?mr=1925197
http://www.ams.org/mathscinet-getitem?mr=1925197
http://www.ams.org/mathscinet-getitem?mr=1695318
http://www.ams.org/mathscinet-getitem?mr=1695318

	Introduction
	1. Main notation
	2. One-period model with random initial data
	3. Main theorem for a multiperiod model
	4. A lemma on joint measurability of the regular expectation
	5. Concluding remarks
	6. Acknowledgement
	Bibliography

