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FILTRATION OF LINEAR FUNCTIONALS

OF PERIODICALLY CORRELATED SEQUENCES

UDC 519.21

I. I. DUBOVETS′KA AND M. P. MOKLYACHUK

Abstract. The problem of the optimal estimation is considered for the linear func-
tional

Aζ =
∞∑

j=0

a(j)ζ(−j)

that depends on unknown values of a periodically correlated stochastic sequence ζ(j);
the estimator is constructed from observations of the sequence ζ(j) + θ(j), j ≤ 0,
where θ(j) is a periodically correlated noise. We obtain the mean square error and
spectral characteristic of the optimal linear estimate of the functional Aζ in the case
where the spectral densities of the sequences that generate ζ(j) and θ(j) are known.
For the case where these spectral densities are unknown but a set of admissible
spectral densities is given, we find the least favorable spectral density and minimax
spectral characteristic for the optimal estimate of the functional Aζ.

1. Introduction

Gladyshev [5] studied spectral properties and representations of periodically corre-
lated sequences by using a relationship between periodically correlated and stationary
vector sequences. According to Gladyshev’s results, the problem of estimation of pe-
riodically correlated sequences is reduced to the corresponding problem for stationary
vector sequences. Basic results concerning the representations of periodically correlated
sequences in terms of simpler random sequences can be found in the book by Hurd and
Miamee [7] and in the papers by Makagon [9, 10].

The classical methods for solving the problems of extrapolation, interpolation, and
filtration for stationary processes are developed by Kolmogorov [8], Wiener [18], and
Yaglom [19, 20] for the case where the spectral densities are known. The problem of
prediction of stationary vector sequences is studied by Rozanov [17]. If the spectral den-
sities are not known but a set of admissible spectral densities is given, then the minimax
method is used for the problems of estimation. The minimax method is to minimize
the error of estimation for all densities of the given class. Grenander [6] is the first who
applied the minimax method to the problems of extrapolation for stationary processes.
Franke [2, 3], and Franke and Poor [4] considered the problem of minimax extrapola-
tion and filtration for stationary sequences by using the methods of convex optimization.
Moklyachuk [11]–[14] and Moklyachuk and Masyutka [15] studied the problems of ex-
trapolation, interpolation, and filtration for stationary processes and sequences.
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In this paper, we study the problem of optimal linear estimation of the linear functional

(1) Aζ =

∞∑
j=0

a(j)ζ(−j)

that depends on unknown values of a periodically correlated sequence ζ(j). Known are
the observations of the sequence ζ(j) + θ(j) with j ≤ 0, where θ(j) is a periodically
correlated sequence that is uncorrelated with ζ(j). We derive formulas for the spectral
characteristic and mean square error of the estimate for the functional (1) in the case
where the spectral densities of the sequence ζ(j) and noise θ(j) are known. If the densities
are unknown but a set of admissible densities is given, then we present formulas for
the calculation of the least favorable density and minimax spectral characteristic of the
optimal linear estimate of functional (1).

2. Periodically correlated sequences

generated by stationary vector sequences

Periodically correlated sequences are examples of the so-called stochastic sequences
with periodic structure introduced in [7].

Definition 2.1. A sequence of complex-valued random variables ζ(n), n ∈ Z, with finite
second moment, E |ζ(n)|2 < +∞, is called periodically correlated with period T if

E ζ(n+ T ) = E ζ(n),(2)

E ζ(n+ T )ζ(m+ T ) = R(n+ T,m+ T ) = R(n,m),(3)

and if there is no number T ′ smaller than T > 0 for which equalities (2) and (3) with T ′

instead T .

The notion of periodically correlated sequences is introduced by Gladyshev in the
paper [5]. Bennet [1] uses the term cyclostationary for random periodic processes.

Definition 2.2. A complex-valued T -dimensional random sequence

�ξ(n) = {ξk(n)}T−1
k=0 , n ∈ Z,

with finite second moment E ‖�ξ(n)‖2 < ∞, is called stationary if

E ξk(n) = mk,

E ξk(n)ξj(m) = Rkj(n,m) = Rkj(n−m)

for all n,m ∈ Z and all j, k ∈ {0, 1, . . . , T − 1}.

In this case, the matrix

R(n) = {Rkj(n)}T−1
k,j=0

is called the correlation matrix of the stationary T -dimensional sequence �ξ(n).

Theorem 2.1 (Gladyshev [5]). A sequence ζ(n) is periodically correlated with period T

if and only if there exists a T -dimensional stationary sequence �ξ(n) = {ξk(n)}T−1
k=0 such

that ζ(n) admits the representation

(4) ζ(n) =

T−1∑
k=0

e2πink/T ξk(n), n ∈ Z.
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We say that the sequence �ξ(n) generates the sequence ζ(n) or, in other words, ζ(n) is

generated by �ξ(n).

Denote by f
�ξ(λ) the matrix of spectral density of a T -dimensional stationary sequence

�ξ(n) = {ξk(n)}T−1
k=0 . Let f

�ζ(λ) be the matrix of spectral densities of a T -dimensional

stationary sequence �ζ(n) constructed from the periodically correlated sequence ζ(n) by

splitting in the blocks of length T . This means that a coordinate p of the vector �ζ(n) is
equal to

[�ζ(n)]p = ζ(nT + p), n ∈ Z, p = 0, 1, . . . , T − 1.

If the spectral density f
�ξ(λ) exists, then the spectral density f

�ζ(λ) exists, too, and
moreover

(5) f
�ζ(λ) = T · V (λ)f

�ξ(λ/T )V −1(λ),

where V (λ) is the unitary matrix whose entry (k, j) equals

vkj(λ) =
1√
T
e2πijk/T+ikλ/T , k, j = 0, 1, . . . , T − 1.

Since V (λ) is continuous for λ ∈ [−π, π) and the inverse matrix to V (λ) exists, we can
rewrite relation (5) as

(6) f
�ξ(λ) = T−1 · V −1(Tλ)f

�ζ(Tλ)V (Tλ).

3. The problem of filtration. The classical solution

Let ζ(n) and θ(n) be two uncorrelated periodically correlated random sequences with
period T . Consider the problem of the optimal linear estimation of the functional

Aζ =

∞∑
j=0

a(j)ζ(−j)

that depends on unknown values ζ(n). We estimate Aζ from observations ζ(j)+ θ(j) for
j ≤ 0. This problem is called the problem of linear filtration.

Let �ξ(n) = {ξk(n)}T−1
k=0 and �η(n) = {ηk(n)}T−1

k=0 be two uncorrelated T -dimensional
stationary random sequences with period T generating the periodically correlated ran-

dom sequences ζ(n) and θ(n), respectively. The T -dimensional stationary sequences �ζ(n)

and �θ(n) are random sequences obtained by splitting the periodically correlated se-
quences ζ(n) and θ(n) in the blocks of length T .

The relationships between the matrices of spectral densities

f
�ξ(λ) =

{
f
�ξ
kj(λ)

}T−1

k,j=0
, f�η(λ) =

{
f�η
kj(λ)

}T−1

k,j=0

of T -dimensional stationary sequences �ξ(n) and �η(n) and matrices of spectral densi-

ties f
�ζ(λ) and f

�θ(λ) of the stationary vector sequences �ζ(n) and �θ(n) are given by
equalities (5) and (6), respectively.

Using relationship (4) between the periodically correlated sequences and stationary
vector sequences, we rewrite the functional Aζ as

Aζ =

∞∑
j=0

a(j)ζ(−j) =

∞∑
j=0

a(j)

T−1∑
k=0

e−2πijk/T ξk(−j) =

∞∑
j=0

T−1∑
k=0

a(j)e−2πijk/T ξk(−j)

=
∞∑
j=0

�a�(j)�ξ(−j) = A�ξ,

where �a(j) = (a0(j), . . . , aT−1(j))
� and ak(j) = a(j)e−2πijk/T for k = 0, 1, . . . , T − 1.
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Consider the problem of the optimal linear estimation of the functional

A�ξ =

∞∑
j=0

�a�(j)�ξ(−j)

that depends on unknown values �ξ(j). We estimate the functional A�ξ from observations
�ξ(j) + �η(j) for j ≤ 0.

Assume that the sequence of coefficients

�a(j) = {ak(j)}T−1
k=0 =

{
a(j)e−2πijk/T

}T−1

k=0
, j ≥ 0,

defining the functional A�ξ = Aζ is such that

(7)
∞∑
j=0

T−1∑
k=0

|ak(j)| = T
∞∑
j=0

|a(j)| < ∞,
∞∑
j=0

(j+1)‖�a(j)‖2 = T
∞∑
j=0

(j+1)|a(j)|2 < ∞.

Note that the second moment of the functional A�ξ = Aζ is finite under condition (7).

Let a stationary sequence �ξ(j) + �η(j) admit the canonical moving average representa-
tion given by

�ξ(j) + �η(j) =

j∑
u=−∞

d(j − u)�ε(u),

where d(k) = {dij(k)}j=0,...,m−1
i=0,...,T−1 and where �ε(u) = {εk(u)}m−1

k=0 is a stationary vector

white noise sequence, that is,

E εk(n)εj(m) = δkjδnm.

Here and in what follows δkl denotes the Kronecker symbol, namely δkk = 1 and δkl = 0
for k �= l.

Then the matrix of spectral densities of the sequence �ξ(j) + �η(j) is of the form

f
�ξ(λ) + f�η(λ) = T−1V −1(Tλ)

(
f
�ζ(Tλ) + f

�θ(Tλ)
)
V (Tλ)

according to relation (6). Moreover the matrix admits the canonical factorization

(8) T−1V −1(Tλ)
(
f
�ζ(Tλ) + f

�θ(Tλ)
)
V (Tλ) = d(λ)d∗(λ), d(λ) =

∞∑
k=0

d(k)e−ikλ,

where d∗(λ) = d(λ)
�

is the matrix conjugate to d(λ).

Let either the spectral density T−1V −1(Tλ)f
�ζ(Tλ)V (Tλ) admit the canonical factor-

ization

(9) T−1V −1(Tλ)f
�ζ(Tλ)V (Tλ) = ϕ(λ)ϕ∗(λ), ϕ(λ) =

∞∑
k=0

ϕ(k)e−ikλ,

where ϕ(k) = {ϕij(k)}j=0,...,m−1
i=0,...,T−1 , or the spectral density T−1V −1(Tλ)f

�θ(Tλ)V (Tλ)

admit the canonical factorization

(10) T−1V −1(Tλ)f
�θ(Tλ)V (Tλ) = ψ(λ)ψ∗(λ), ψ(λ) =

∞∑
k=0

ψ(k)e−ikλ,

where ψ(k) = {ψij(k)}j=0,...,m−1
i=0,...,T−1 . Then the factorization (8) of the density

T−1V −1(Tλ)
(
f
�ζ(Tλ) + f

�θ(Tλ)
)
V (Tλ)

follows if one of the densities given by (9) or (10) is regular.
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Denote by L2(f) the Hilbert space of vector functions b(λ) = {bk(λ)}T−1
k=0 that are

integrable with respect to the measure with density f(λ) = {fkj(λ)}T−1
k,j=0, namely b ∈

L2(f) if and only if

∫ π

−π

b�(λ)f(λ)b(λ)dλ =

∫ π

−π

T−1∑
k,l=0

bk(λ)bl(λ)fkl(λ) dλ < +∞.

Denote by L−
2 (f) the subspace of L2(f) generated by functions of the form

eijλδk, δk = {δkl}T−1
l=0 , k = 0, 1, . . . , T − 1, j ≤ 0.

A linear estimate Âζ of the functional Aζ constructed from observations ζ(j) + θ(j)
for j ≤ 0 is determined by the spectral characteristic

h
(
eiλ
)
∈ L−

2

(
f
�ζ + f

�θ
)

and can be written as

(11) Âζ =

∫ π

−π

h� (eiλ) (Zξ+η(dλ)
)
=

∫ π

−π

T−1∑
k=0

hk

(
eiλ
) (

Zξ+η
k (dλ)

)
,

where

Zξ+η(Δ) =
{
Zξ+η
k (Δ)

}T−1

k=0

is the orthogonal random measure of the sum of the sequences �ξ(j) and �η(j) that generate
the sequences ζ(j) and θ(j), respectively.

The mean square error of the linear estimate Âζ with the spectral characteristic

h
(
eiλ
)
=

∞∑
k=0

�h(k)e−ikλ

is calculated as

Δ
(
h; f

�ζ , f
�θ
)
= E

∣∣∣A�ζ − Â�ζ
∣∣∣2

=
1

2πT

∫ π

−π

A� (eiλ)V −1(Tλ)f
�θ(Tλ)V (Tλ)A(eiλ) dλ

+
1

2πT

∫ π

−π

[
A
(
eiλ
)
− h

(
eiλ
)]�

× V −1(Tλ)
(
f
�ζ(Tλ) + f

�θ(Tλ)
)
V (Tλ)[A(eiλ)− h(eiλ)] dλ

− 1

2πT

∫ π

−π

[
A
(
eiλ
)
− h

(
eiλ
)]�

V −1(Tλ)f
�θ(Tλ)V (Tλ)A(eiλ) dλ

− 1

2πT

∫ π

−π

A� (eiλ)V −1(Tλ)f
�θ(Tλ)V (Tλ)[A(eiλ)− h(eiλ)] dλ

= ‖Ψa‖2 + ‖D(a− h)‖2 − 〈Ψ(a− h),Ψa〉 − 〈Ψa,Ψ(a− h)〉,
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where

A
(
eiλ
)
=

∞∑
j=0

�a(j)e−ijλ, ‖Ψa‖2 =
∞∑
k=0

‖(Ψa)k‖2, (Ψa)k =
k∑

l=0

ψ�(k − l)�a(l),

‖D(a− h)‖2 =

∞∑
k=0

‖(D(a− h))k‖2, (D(a− h))k =

k∑
l=0

d�(k − l)
(
�a(l)− �h(l)

)
,

〈Ψ(a− h),Ψa〉 = 〈Ψa,Ψ(a− h)〉 =
∞∑
k=0

〈(Ψ(a− h))k, (Ψa)k〉.

For given densities f
�ζ(λ) and f

�θ(λ), the spectral characteristic h(f
�ζ , f

�θ) of the optimal

linear estimate Âζ minimizes the mean square error

(12)

Δ
(
f
�ζ , f

�θ
)
= Δ

(
h
(
f
�ζ , f

�θ
)
; f

�ζ , f
�θ
)
= min

h∈L−
2 (f

�ζ+f�θ)
Δ
(
h; f

�ζ , f
�θ
)

= min
Â�ζ

E
∣∣∣A�ζ − Â�ζ

∣∣∣2 .
Let the density of an observable stationary sequence and that of the estimated sequence

admit factorizations (8) and (9), respectively. Then the spectral characteristic h(f
�ζ , f

�θ),

which is a solution of problem (12), and the mean square error Δ(f
�ζ , f

�θ) of the optimal

estimate Âζ, are calculated as

h
(
f
�ζ , f

�θ
)
= b�(λ)r

�ζ
(
eiλ
)
,(13)

Δ
(
f
�ζ , f

�θ
)
= 〈c�ζ , a〉 −

∥∥∥C�ζb
∥∥∥2 ,(14)

where

b(λ) =

∞∑
k=0

b(k)e−ikλ, b(λ)d(λ) = Im,

r
�ζ
(
eiλ
)
=

∞∑
k=0

(
C

�ζb
)
k
e−ikλ,

(
C

�ζb
)
k
=

∞∑
l=0

b(l)c
�ζ(l + k),

c
�ζ(k) =

∞∑
l=0

ϕ(l)(Φa)l+k,

(15)

(Φa)k =
k∑

l=0

ϕ�(k − l)�a(l),
〈
c
�ζ , a

〉
=

∞∑
k=0

〈
c
�ζ(k),�a(k)

〉
,

∥∥∥C�ζb
∥∥∥2 =

∞∑
k=0

∥∥∥(C�ζb
)
k

∥∥∥2 .
If the density of the observable sequence and that of the noise admit factorizations (8)

and (10), respectively, then spectral characteristic h
(
f
�ζ , f

�θ
)
and the mean square error

Δ
(
f
�ζ , f

�θ
)
of the optimal estimate Âζ are given by

h
(
f
�ζ , f

�θ
)
= A

(
eiλ
)
− b� (λ) r

�θ
(
eiλ
)
,(16)

Δ
(
f
�ζ , f

�θ
)
=
〈
c
�θ, a

〉
−
∥∥∥C�θb

∥∥∥2 ,(17)
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respectively, where

r
�θ
(
eiλ
)
=

∞∑
k=0

(
C

�θb
)
k
e−ikλ,

(
C

�θb
)
k
=

∞∑
l=0

b(l)c
�θ(l + k),

c
�θ(k) =

∞∑
l=0

ψ(l)(Ψa)l+k,

(18)

(Ψa)k =

k∑
l=0

ψ�(k − l)�a(l),
〈
c
�θ, a

〉
=

∞∑
k=0

〈
c
�θ(k),�a(k)

〉
,

‖C�θb‖2 =
∞∑
k=0

∥∥∥(C�θb
)
k

∥∥∥2 .
Therefore the following result holds.

Theorem 3.1. Let ζ(j) and θ(j) be two uncorrelated periodically correlated random

sequences with period T . Assume that f
�ζ(λ) and f

�θ(λ) are the spectral density matri-

ces of T -dimensional stationary sequences �ζ(j) and �θ(j) obtained by splitting the one-
dimensional periodically correlated sequences ζ(j) and θ(j) in the blocks of length T , re-
spectively. Assume further that the spectral densities admit canonical factorizations (8)
and (9) or (8) and (10). Then the linear optimal estimate of the functional Aζ con-
structed from observations ζ(j) + θ(j) for j ≤ 0 is defined by equality (11). The spectral

characteristic h
(
f
�ζ , f

�θ
)
of this estimate is calculated by formula (13) or (16), respectively.

The mean square error Δ
(
f
�ζ , f

�θ
)
is calculated by formula (14) or (17), respectively.

Corollary 3.1. Let ζ(j) and θ(j) be two uncorrelated periodically correlated random

sequences with period T . Further let �ζ(j) and �θ(j) be T -dimensional stationary sequences
obtained by splitting the one-dimensional periodically correlated sequences ζ(j) and θ(j)

in blocks of length T , respectively. Assume that one of the sequences �ζ(j) or �θ(j) is a
vector white noise sequence whose coordinates have the variance σ2. Then the spectral

characteristic h
(
f
�ζ , f

�θ
)
of the optimal linear estimate of the functional Aζ is calculated

by formula (13) or (16). The mean square error of the prediction is equal to

Δ
(
f
�ζ , f

�θ
)
= σ2‖�a‖2 − σ4

T 2
‖ba‖2,

where

�a = (a(0), a(1), . . . ), ‖�a‖2 =
∞∑
k=0

|a(k)|2, ‖ba‖2 =
∞∑
k=0

‖(ba)k‖2,

(ba)k =
∞∑
l=0

b(l)�a(l + k).

Corollary 3.2. If the assumptions of Corollary 3.1 hold, then the mean square error of
the optimal linear estimate a(N)ζ(−N) constructed from the observations ζ(j)+θ(j) for
j ≤ 0 is given by

Δ
(
f
�ζ , f

�θ
)
= σ2|a(N)|2 − σ4

T 2

N∑
k=0

∥∥b(k)�a(N)
∥∥2.

Example 3.1. Consider two uncorrelated two-dimensional stationary sequences

�ξ(n) =

(
ξ0(n)
ξ1(n)

)
and �η(n) =

(
η0(n)
η1(n)

)
,
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n ∈ Z, such that ξ0(n) is a one-dimensional stationary Ornstein–Uhlenbeck sequence
with spectral density

f0(λ) =
5/4

2π|1− 1/2 · e−iλ|2 ,

ξ1(n) is a one-dimensional stationary sequence that is uncorrelated with ξ0(n) whose
density is f1(λ) = 3

2π |1 + eiλ|2, η0(n) is a white noise sequence with spectral density

g0(λ) =
3
2π , and η1(n) is a white noise sequence that is uncorrelated with η0(n) whose

density is g1(λ) = 2
π . According to Gladyshev’s Theorem 2.1, one can construct two

periodically correlated sequences with period T = 2 such that

ζ(n) = ξ0(n) + eπinξ1(n) and θ(n) = η0(n) + eπinη1(n).

We estimate the linear functional

Aζ = αζ(0) = αξ0(0) + αξ1(0)

with a(0) = α, α ∈ R, and a(k) = 0, k � 1.

Evaluating the spectral characteristic h(f
�ζ , f

�θ) by using formula (13), we obtain the
estimate

Âζ = α

(
3

2

)3/2

(ξ0(0) + η0(0)) +
α

3
(ξ1(0) + η1(0))− α

√
3

2

1367

3456
(ξ0(−1) + η0(−1))

+ α
2

9
(ξ1(−1) + η1(−1)) + α

√
3

2

1367

6912
(ξ0(−2) + η0(−2))− α

2

9
(ξ1(−2) + η1(−2))

+ 2α

∞∑
k=3

(−1)k−1

3k+1
(ξ1(−k) + η1(−k))

according to equality (11). The mean square error of this estimate is evaluated from
formula (14) as

Δ
(
f
�ζ , f

�θ
)
= α2 · 0.596.

The spectral density of the two-dimensional stationary sequence �ζ(n) is given by (5) and
equals

f
�ζ(λ) =

1

2π

⎛
⎝ 5

|2−e−iλ/2|2 + 3
∣∣1 + e−iλ/2

∣∣2 5e−iλ/2

|2−e−iλ/2|2 − 3e−iλ/2
∣∣1 + e−iλ/2

∣∣2
5eiλ/2

|2−e−iλ/2|2 − 3eiλ/2
∣∣1 + e−iλ/2

∣∣2 5

|2−e−iλ/2|2 + 3
∣∣1 + e−iλ/2

∣∣2
⎞
⎠ .

Analogously, the matrix of spectral densities of the two-dimensional stationary sequence
�θ(n) is equal to

f
�θ(λ) =

1

2π

(
7 3e−iλ/2 − 4e−iλ/2

3eiλ/2 − 4eiλ/2 7

)
.

4. The minimax (robust) method of filtration

If the matrices of spectral densities f(λ) and g(λ) are known for two T -dimensional

stationary sequences �ζ(j) and �θ(j) obtained by splitting the one-dimensional periodically
correlated sequences ζ(j) and θ(j) in blocks of length T , respectively, then one can use
formulas (13)–(17) to evaluate the spectral characteristic and mean square error of the
optimal linear estimate of the functional Aζ. If the matrices of densities are not known
but a set D = Df × Dg of admissible spectral densities is given, then one can follow
the minimax approach to estimate the functional that depends on periodically correlated
sequences. We search an estimate that minimizes the mean square error simultaneously
for all spectral densities belonging to the class D.
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Definition 4.1. Given a set of pairs of spectral densities D = Df ×Dg, the matrices of
spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg are called the least favorable in the class D
for the problem of the optimal linear filtration of the functional Aζ if

Δ
(
f0, g0

)
= Δ

(
h
(
f0, g0

)
; f0, g0

)
= max

(f,g)∈D
Δ(h(f, g); f, g).

Definition 4.2. Given a set of pairs of spectral densities D = Df × Dg, the spectral
characteristic h0(λ) of the optimal linear interpolation of the functional Aζ is called
minimax or robust if

h0(λ) ∈ HD =
⋂

(f,g)∈D

L−
2 (f + g), min

h∈HD

max
(f,g)∈D

Δ(h; f, g) = max
(f,g)∈D

Δ
(
h0; f, g

)
.

The following results can be checked explicitly by using relations (8)–(17) obtained
above (see [15]).

Lemma 4.1. The matrices of spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg that admit
the canonical factorizations (8)–(10) are the least favorable in the class D for the problem
of the optimal linear filtration of the functional Aζ if the coefficients in factorizations
(8)–(10) determine the solution of the conditional extremum problem

Δ(f, g) =
〈
c
�ζ , a

〉
−
∥∥∥C�ζb∗

∥∥∥2 → sup,

f(λ) = TV (λ)ϕ (λ/T ) (V (λ)ϕ (λ/T ))∗ ∈ Df ,(19)

g(λ) = TV (λ)
(
d (λ/T ) d∗ (λ/T )− ϕ (λ/T )ϕ∗ (λ/T )

)
V ∗(λ) ∈ Dg,

or the conditional extremum problem

Δ(f, g) =
〈
c
�θ, a

〉
−
∥∥∥C�θb∗

∥∥∥2 → sup,

g(λ) = TV (λ)ψ (λ/T ) (V (λ)ψ (λ/T ))
∗ ∈ Dg,(20)

f(λ) = TV (λ)
(
d (λ/T ) d∗ (λ/T )− ψ (λ/T )ψ∗ (λ/T )

)
V ∗(λ) ∈ Df .

If one of the densities, either (9) or (10), is known, then problems (19) and (20)
become conditional extremum problems with respect to the sequence of the coefficients
{b(k), k ≥ 0} of the matrix function b(λ) =

∑∞
k=0 b(k)e

−ikλ.

Lemma 4.2. Let the spectral density f(λ) be known and admit canonical factoriza-
tion (9). Then the spectral density g0(λ) also admits canonical factorizations (8), (10)
and is the least favorable density for the optimal linear filtration of the functional Aζ if

f(λ) + g0(λ) = TV (λ)d0 (λ/T )
(
V (λ)d0 (λ/T )

)∗
,

where

d0(λ) =

∞∑
k=0

d0(k)e−ikλ

and where the matrix coefficients {d0(k), k ≥ 0} are determined by the solution

{b0(k), k ≥ 0}

of the conditional extremum problem

(21)
∥∥∥C�ζb

∥∥∥2 → inf, g(λ) = TV (λ)d (λ/T ) (V (λ)d (λ/T ))∗ − f(λ) ∈ Dg.
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Lemma 4.3. Let the spectral density g(λ) be known and admit canonical factoriza-
tion (10). Then the spectral density f0(λ) also admits canonical factorizations (8)
and (9) and is the least favorable density for the optimal linear filtration of the func-
tional Aζ if

f0(λ) + g(λ) = TV (λ)d0 (λ/T )
(
V (λ)d0 (λ/T )

)∗
,

where

d0(λ) =

∞∑
k=0

d0(k)e−ikλ

and where the matrix coefficients {d0(k), k ≥ 0} are determined by the solution

{b0(k), k ≥ 0}

of the conditional extremum problem

(22)
∥∥∥C�θb

∥∥∥2 → inf, f(λ) = TV (λ)d (λ/T ) (V (λ)d (λ/T ))∗ − g(λ) ∈ Df .

The least favorable spectral densities f0(λ) ∈ Df and g0(λ) ∈ Dg and the minimax
spectral characteristic h0 = h(f0, g0) form a saddle point of the function Δ(h; f, g) in
the set HD ×D. The saddle point inequalities

Δ
(
h0; f, g

)
≤ Δ

(
h0; f0, g0

)
≤ Δ

(
h; f0, g0

)
, ∀h ∈ HD, ∀f ∈ Df , ∀g ∈ Dg,

are satisfied if h0 = h(f0, g0), h(f0, g0) ∈ HD and if (f0, g0) is a solution of the condi-
tional extremum problem

(23) Δ
(
h(f0, g0); f, g

)
→ sup, (f, g) ∈ D,

where the functional

Δ
(
h(f0, g0); f, g

)
=

1

2πT

∫ π

−π

(
r
�θ,0(eiλ)

)�
b0(λ)V −1(Tλ)f(Tλ)V (Tλ)

(
b0(λ)

)∗
r�θ,0(eiλ) dλ

+
1

2πT

∫ π

−π

(
r
�ζ,0(eiλ)

)�
b0(λ)V −1(Tλ)g(Tλ)V (Tλ)

(
b0(λ)

)∗
r�ζ,0(eiλ) dλ

depends linearly on unknown densities f and g belonging to the set of admissible den-

sities D and where the functions r
�ζ,0(eiλ) and r

�θ,0(eiλ) are calculated by relations (15)

and (18), respectively, under the conditions that f
�ζ(λ) = f

�ζ,0(λ) and f
�θ(λ) = f

�θ,0(λ).
The conditional extremum problem (23) is equivalent to the unconditional extremum

problem

ΔD(f, g) = −Δ
(
h(f0, g0); f, g

)
+ δ((f, g) | D) → inf,

where δ((f, g) | D) stands for the indicator function of the set D. The solution (f0, g0)
of the latter extremum problem is determined by the condition

0 ∈ ∂ΔD(f0, g0),

where ∂ΔD(f0, g0) is the subdifferential of the convex functional ΔD(f, g) at the point
(f, g) = (f0, g0) (see [16] for detail).
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5. The least favorable spectral densities in the class DF,G

Consider the problem of the minimax estimation of the functional Aζ that depends
on periodically correlated sequences ζ(j) with period T for the set of spectral densities

of T -dimensional stationary sequences �ζ(j) and �θ(j) obtained by splitting ζ(j) and θ(j)
in the blocks of length T :

(24) DF,G =

{(
f
�ζ(λ), f

�θ(λ)
)
:

1

2πT

∫ π

−π

V −1(Tλ)f
�ζ(Tλ)V (Tλ) dλ = F,

1

2πT

∫ π

−π

V −1(Tλ)f
�θ(Tλ)V (Tλ) dλ = G

}
,

where F and G are specified numerical matrices. Solving the conditional extremum
problem (23) with the help of the Lagrange multipliers method, we find that the least

favorable spectral densities f
�ζ,0(λ) and f

�θ,0(λ) are such that

V (Tλ)
(
b0(λ)

)�
r
�ζ,0(λ)

(
r
�ζ,0(λ)

)∗
b0(λ)V �(Tλ) = �α�α∗,

V (Tλ)
(
b0(λ)

)�
r
�θ,0(λ)

(
r
�θ,0(λ)

)∗
b0(λ)V �(Tλ) = �β�β∗.

Here �α = (α0, . . . , αT−1)
� and �β = (β0, . . . , βT−1)

� denote the Lagrange multipliers.
The latter relations hold if

r
�ζ,0(eiλ) =

(
V (Tλ)d0(λ)

)�
�α,

r
�θ,0(eiλ) =

(
V (Tλ)d0(λ)

)� �β.

Then the least favorable densities are such that

f
�ζ,0(λ) + f

�θ,0(λ) = �γ
(
r
�ζ,0(eiλ/T )

)�
r�ζ,0(eiλ/T )�γ∗,(25)

f
�ζ,0(λ) + f

�θ,0(λ) = �δ
(
r
�θ,0(eiλ/T )

)�
r�θ,0(eiλ/T )�δ∗,(26)

where �γ = (α0, . . . , γT−1)
�, �δ = (δ0, . . . , δT−1)

� and �γ�α� = IT , �δ�β
� = IT .

The Lagrange multipliers �γ and �δ as well as the matrix coefficients {b0(k), k ≥ 0}
are determined from the equations of canonical factorizations (8)–(10) for the matrices

of spectral densities f
�ζ,0(λ) + f

�θ,0(λ), f
�ζ,0(λ), and f

�θ,0(λ) and restrictions defining the
class DF,G.

If one of the spectral densities is known, then one can use one of the relations (25)
or (26) to calculate the least favorable spectral densities for a given class DF,G. If

the matrix of spectral density f
�ζ(λ) is known, then the least favorable spectral density

f
�θ,0(λ) ∈ DG equals

(27) f
�θ,0(λ) =

[
�γ
(
r
�ζ
(
eiλ/T

))�
r�ζ
(
eiλ/T

)
�γ∗ − f

�ζ(λ)

]
+

.

If the matrix of spectral density f
�θ(λ) is known, then the least favorable spectral

density f
�ζ,0(λ) ∈ DF equals

(28) f
�ζ,0(λ) =

[
�δ
(
r
�θ
(
eiλ/T

))�
r�θ
(
eiλ/T

)
�δ∗ − f

�θ(λ)

]
+

.

Therefore the following result holds.
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Theorem 5.1. The least favorable matrices of spectral densities f
�ζ,0(λ) and f

�θ,0(λ) in
the class DF,G for the problem of the optimal filtration of the functional Aζ are determined
from equations (25) and (26), factorizations (8)–(10), relations (19) and (20), and from
restrictions defining the class DF,G.

The minimax spectral characteristic h
(
f
�ζ,0, f

�θ,0
)
of the estimate of Âζ is given by one

of the relations (13) or (16).

The mean square error Δ
(
f
�ζ,0, f

�θ,0
)
of the optimal filtration is given by one of the

relations (14) or (17).

Corollary 5.1. If the matrix of spectral densities f
�ζ(λ) (or f

�θ(λ)) is known and admits

canonical factorization (9) (or (10)), then the least favorable spectral density f
�θ,0(λ) (or

f
�ζ,0(λ)) is determined by relations (27), (21), (8)–(10) (or (28), (22), (8)–(10)) and

restrictions defining the class DF,G.

The minimax spectral characteristic h(f
�ζ,0, f

�θ,0) of the estimate Âζ is given by one of
the relations (13) or (16).

The mean square error Δ(f
�ζ,0, f

�θ,0) of the estimate is given by one of the relations (14)
or (17).

Example 5.1. Let T = 1, f
�θ(λ) =

∣∣1−√
2e−iλ

∣∣2, and F = 5. We estimate the functional
Aζ = κζ(0), κ ∈ R.

We apply formula (28) to evaluate the least favorable spectral density. The coefficients
{b(0), b(1)} are solutions of the conditional extremum problem (22) written as follows in
the case under consideration:{

(3b(0)−
√
2b(1))2 + 2b2(0) → min,

b2(0)− b2(1) = 1
8 .

Then the least favorable spectral density in the class DF is given by

f
�ζ,0(λ) =

⎡
⎣16

3

∣∣∣∣∣1−
√
2

2
e−iλ

∣∣∣∣∣
2

−
∣∣∣1−√

2e−iλ
∣∣∣2
⎤
⎦
+

.

Note that f
�ζ,0(λ) does not depend on the coefficient κ.

The minimax spectral characteristic evaluated by (16) equals

h
(
f
�ζ,0, f

�θ
)
=

κ

2

(
1 +

1

2
e−2iλ

)
.

According to (11) the estimate of the functional Aζ is given by

Âζ =
κ

2
(ζ(0) + θ(0)) +

κ

4
(ζ(−2) + θ(−2)).

The mean square error Âζ attains the maximal value Δ
(
f
�ζ,0, f

�θ
)
= 5

2κ
2.

Example 5.2. Let T = 2, f
�θ(λ) = I2, and F =

(
2 6
6 11

)
. We estimate the functional

Aζ =
7

2
ζ(1)−

√
23

2
ζ(0).

The least favorable spectral density is found from relation (28). In the case of the
minimal rank m = 1, the matrix coefficients {b(0), b(1)} are solutions of conditional
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extremum problem (22)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
b(0)(

√
23/2,

√
23/2)� − b(1)(7/2,−7/2)�

)(
b∗(0)(

√
23/2,

√
23/2)

−b∗(1)(7/2,−7/2)
)
+
(
b(0)(7/2,−7/2)�

)(
b∗(0)(7/2,−7/2)

)
→ min,

I2 + b(1)(I2 + F )b∗(1)− b(0)(I2 + F )b∗(0) =

(
0 0

0 0

)
.

Then the least favorable spectral density of the class DF is given by

f
�ζ,0(λ) =

[(
2 6
6 11

)
− 178

√
23

10569

(
1 2
2 4

)(
e−iλ/2 + eiλ/2

)]
+

.

The minimax spectral characteristic evaluated from formula (16) equals

h
(
f
�ζ,0, f

�θ
)
≈
(

7.14e−iλ − 3.23
−6.74e−iλ − 3.61

)
.

In the calculation above we round decimals to the nearest hundredth. According to (11),
the estimate of the functional Aζ is given by

Âζ ≈ −3.23(ξ0(0) + η0(0))− 3.61(ξ1(0) + η1(0)) + 7.14(ξ0(−1) + η0(−1))

− 6.74(ξ1(−1) + η1(−1)).

The maximal value of the mean square error Âζ is Δ(f
�ζ,0, f

�θ) ≈ 23.37.
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