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OPTIMAL STOPPING TIME PROBLEM FOR RANDOM WALKS

WITH POLYNOMIAL REWARD FUNCTIONS
UDC 519.21

YU. S. MISHURA AND V. V. TOMASHYK

Abstract. The optimal stopping time problem for random walks with a drift to the
left and with a polynomial reward function is studied by using the Appel polynomials.
An explicit form of optimal stopping times is obtained.

1. Introduction

The stopping time problem for stochastic processes has several important applications
for the modelling of the optimal behavior of brokers and dealers trading securities in
financial markets.

The classical approach to solving the optimal stopping time problem is based on the
excessive functions needed to determine the so-called reference set that defines explicitly
the optimal stopping time [1–3].

An entirely different approach to the solution of the optimal stopping time problem
is used in this paper. Namely, our method is based on an application of the Appel
polynomials (see [4, 5]). This paper is a continuation of studies initiated in [6] and is
devoted to a generalization of some results obtained in [4].

Let ξ, ξ1, ξ2, . . . be a sequence of independent identically distributed random variables
defined on a probability space (Ω,�,P) and such that E ξ < 0. Consider a homogeneous
Markov chain X = (X1, X2, X3, . . .) related to the sequence {ξi} as follows:

X0 = x ∈ R, Xk = x+ Sk, S0 = 0, Sk =

k∑
i=1

ξi, k ≥ 1.

We denote by Px the probability distribution generated by the process X. Thus, Px,
x ∈ R, together with X defines a Markov family with respect to the filtration (�k)k≥0,
where �0 = {∅,Ω} and �k = σ{ξ1, . . . , ξk}, k ≥ 1.

The optimal stopping problem is to determine a reward function

V (x) = sup
τ∈M̄∞

0

Ex g(Xτ )I{τ < ∞}, x ∈ R,

where g(x) is a given measurable function, I{·} is an indicator function, and M̄∞
0 is the

class of all Markov times τ assuming values in [0,∞].
The random variable

τ∗ = argmax
τ∈M̄∞

0

Ex g(Xτ )I{τ < ∞}

is called the optimal stopping time.
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The power reward function g(x) = (x+)k is considered in the paper [4]. In the current
paper, we consider polynomial reward functions g(x) of the following form:

g(x) =

N∑
k=1

Ck(x
+)k, Ck ∈ R.

The optimal stopping time problem for a random walk X is considered in the paper [6]
for the case of polynomial reward functions of an arbitrary order and with nonnegative
coefficients; an explicit expression for the optimal stopping time and that for the price
function are also found in [6] for this case. The aim of this paper is to determine the
optimal stopping time for a random walk X = (X1, X2, X3, . . .), where both a reward
function and a price function are polynomial. Since the solution of the optimal stopping
time problem is cumbersome for general coefficients of the polynomial reward and price
functions, we state the result below for the general case and provide the detailed proof for
a particular case where the order of the polynomial reward function does not exceed 3.

2. Auxiliary results and definitions

We need several auxiliary results and definitions for the proof of the main result of
this paper.

Definition 1. Let η be a random variable such that E exp(λ|η|) < ∞ for some λ > 0.
The polynomials defined by

exp(uy)

E exp(uη)
=

∞∑
k=0

uk

k!
Qk(y)

are called the Appel (or Sheffer; see [5]) polynomials, Qk(y) = Qk(y, η), k = 0, 1, 2, . . . .

The polynomials Qk(y) are expressed in terms of the cumulants χ1, χ2, . . . of the
random variable η as follows:

Q0(y) = 1, Q1(y) = y − χ1, Q2(y) = (y − χ1)
2 − χ2,

Q3(y) = (y − χ1)
3 − 3χ2(y − χ1)− χ3,

where χ1 = μ1, χ2 = −μ2
1 + μ2, and χ3 = 2μ3

1 − 3μ1μ2 + μ3; here μk = E ηk.
Note that the polynomials Qk(y), k = 1, . . . , n, are uniquely defined if one assumes

that E |η|n < ∞. Moreover,

(1)
d

dy
Qk(y) = kQk−1(y), k ≤ n,

in this case. This equality is sometimes used to define the Appel polynomials recursively
[4].

Note that Qk(y) is a polynomial whose order equals k; see [5]. In particular, this
means that every set of n Appel polynomials Q1(y), Q2(y), . . . , Qn(y) is a system of
linearly independent functions.

Throughout in this paper we deal with Appel polynomials generated by the random
variable M = supk≥0 Sk, that is, Qk(y) = Qk(y,M), k = 0, 1, 2, . . . . The cases where the
distribution of the random variable M can be written explicitly are considered in [7–10].

The following result is proved in [4]. Lemma 1 provides us with sufficient conditions
for the Appel polynomials generated by the random variable M to be well defined.

Lemma 1. a) Let E eλξ < 1 for some λ > 0. Then

E euM < ∞
for all u ≤ λ.
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b) For an arbitrary p > 0,

E(ξ+)p+1 < ∞ =⇒ EMp < ∞.

Remark 1. It is proved in [4] that

M ≥ 0, P{M < ∞} = 1, P{M = 0} > 0, and M
law
= (M + ξ)+.

The proof of the following result is also given in [4].

Lemma 2. 1) Let E(ξ+)n+1 < ∞. Then
a) EQn(M + x) = xn;
b) if τa = inf{k ≥ 0: Xk ≥ a}, then

Ex I{τa < ∞}Xn
τa = E I{M + x ≥ a}Qn(M + x)

for all a ≥ 0.
2) The polynomial Qn(y), n ≥ 1, has a unique positive root a∗n; moreover Qn(y) ≤ 0 for

0 ≤ y < a∗n, and Qn(y) increases for y ≥ a∗n.
3) Let f(x) = E I{M + x ≥ a∗}G(M + x) < ∞, where the function G(x) is such that

G(y) ≥ G(x) ≥ G(a∗) = 0 for all y ≥ x ≥ a∗ ≥ 0. Then f(x) ≥ E f(ξ + x) for all x.
4) Let f(x) and g(x) be two nonnegative functions such that

(2) f(x) ≥ g(x)

and f(x) ≥ E f(ξ + x) for all x. Then

f(x) ≥ sup
τ∈M̄∞

0

E I{τ < ∞}g(Sτ + x)

for all x.

It is proved in [4] that the roots a∗n of the Appel polynomials Qn(y) are increasing,
namely 0 < a∗1 < a∗2 < a∗3 < . . . .

The representation of the Appel polynomials in terms of the cumulants and property 2)
of Lemma 2 imply that

χ1 ≥ 0, χ2 ≥ 0, χ3 ≥ 0, χ2 ≥ χ2
1, χ3

1 − 3χ2χ1 + χ3 ≥ 0.

The case of χ1 = 0 is degenerate in the sense that the random walk moves to the left in
this case and hence η = 0. This implies that the Appel polynomials are power functions
in the case of χ1 = 0. Thus throughout below we assume that χ1 > 0.

Definition 2. We say that P (y) is a function of type A(a) if there exists a number a > 0
such that

(3)

{
P (a) = 0, P (y) ≤ 0 in [0, a),

P (y) increases in [a,∞).

The following result contains a simple criteria for a function

P2(y) = −C1Q1(y) + C2Q2(y), C1, C2 > 0,

to be of type A(a).

Lemma 3. Let χ2 > χ2
1. The polynomial

P2(y) = −C1Q1(y) + C2Q2(y), C1, C2 > 0,

is a function of type A(a) if and only if the coefficients C1 and C2 are such that

C1

C2
≤ χ2

χ1
− χ1.
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In this case, the number a for which the polynomial P2(y) satisfies property (3) is given
by

a = a∗2 =
1

2

C1

C2
+

√
1

4

C2
1

C2
2

+ χ2 + χ1.

Proof. We represent the polynomial P2(y) in terms of the cumulants

P2(y) = C2(y − χ1)
2 − C1(y − χ1)− C2χ2.

Then the roots of the polynomial P2(y) are given by

a∗1,2 = χ1 +
1

2

C1

C2
±

√
1

4

C2
1

C2
2

+ χ2.

Since the maximal root of this polynomial is positive and P2(y) is increasing in the
semiaxis on the right of the maximal root, the system of conditions (3) is equivalent to
the inequality a∗1 ≤ 0. We write the latter condition explicitely as

χ1 +
1

2

C1

C2
−

√
1

4

C2
1

C2
2

+ χ2 ≤ 0,

or, equivalently,

(4) C2(χ2 − χ2
1) ≥ C1χ1.

The left hand side of inequality (4) is positive by the assumptions of the lemma. This
implies the following restrictions on the coefficients C1 and C2:

C1

C2
≤ χ2

χ1
− χ1.

Lemma 3 is proved. �

Theorem 1. Let E ξ < 0 and E(ξ+)k < ∞ for k ∈ {1, 2}. Assume that χ2 > χ2
1 and

that the coefficients C1 and C2 satisfy the assumptions of Lemma 3. Then the stopping
time τ∗2 = inf{k ≥ 0 | Xk ≥ a∗2} is optimal for the random walk X = (X0, X1, X2, . . .)
with the reward function g(x) = −C1x

+ + C2(x
+)2.

The proof of this result is given in [6].

3. Main result

Consider the reward function

g(x) = C1x
+ + C2(x

+)2 + . . .+ Cn(x
+)n, Cn > 0.

This function is related to a linear combination of the Appel polynomials

Pn(y) = C1Q1(y) + C2Q2(y) + . . .+ CnQn(y), Cn > 0.

We choose the coefficient Cn to be positive, since we will assume throughout that the
polynomial Pn(y) is a function of type A(a) and this is not the case if the coefficient is
negative.

We want to establish the restrictions imposed on the coefficients C1, C2, . . . , Cn of
the polynomial Pn(y) under which Pn(y) is a function of type A(a). Another aim is to
find an explicit expression for the price function and the optimal stopping time for the
random walk X = (X1, X2, X3, . . .) with the reward function g(x).

The following result contains necessary and sufficient conditions to be imposed on the
coefficients in order that the polynomial Pn(y) is a function of type A(a). We omit the
proof of this result.
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Theorem 2. The polynomial Pn(y) is a function of type A(a) if and only if one of the
following conditions holds:

a) The derivative of the polynomial Pn(y) does not have roots in the semiaxis [0,∞),
and Pn(0) < 0.

b) The derivative of the polynomial Pn(y) does have roots in the semiaxis [0,∞) but
these points are not local extremums of the polynomial Pn(y), and Pn(0) < 0.

c) The derivative of the polynomial Pn(y) does have roots in the semiaxis [0,∞)
and some of them are local extremums of the polynomial Pn(y); the first of the
local extremums in [0,∞) is a point of minimum; the function Pn(y) is negative
at each of the local maximums y ∈ [0,∞) if they exist; and Pn(0) ≤ 0.

d) The derivative of the polynomial Pn(y) does have roots in the semiaxis [0,∞) and
some of them are local extremums of the polynomial Pn(y); the first of the local
extremums in [0,∞) is a point of maximum of the function Pn(y) and Pn(y) is
negative at each of the local maximums y ∈ [0,∞).

The assumptions of Theorem 2 imposed on the coefficients C1, C2, . . . , Cn of the
polynomial Pn(y) look cumbersome if n > 3. Thus we restrict the consideration to the
case of n = 3. The following result provides necessary and sufficient conditions on the
coefficients C1, C2, and C3 for the case of n = 3 under which the polynomial P3(y) is a
function of type A(a).

Theorem 3. A polynomial P3(y) = C1Q1(y)+C2Q2(y)+C3Q3(y), C3 > 0, is a function
of type A(a) with some a > 0 if and only if one of the following four conditions holds:⎧⎪⎨⎪⎩

C2
2

C2
3
− 3C1

C3
+ 9χ2 ≤ 0,

C2

C3
[χ2

1 − χ2]− C1

C3
χ1

< χ3
1 − 3χ2χ1 + χ3,

⎧⎪⎪⎨⎪⎪⎩
C2

2

C2
3
− 3C1

C3
+ 9χ2 > 0,√

C2
2

C2
3
− 3C1

C3
+ 9χ2 < C2

C3
− 3χ1,

C2

C3
[χ2

1 − χ2]− C1

C3
χ1 < χ3

1 − 3χ2χ1 + χ3,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C2
2

C2
3
− 3C1

C3
+ 9χ2 > 0,√

C2
2

C2
3
− 3C1

C3
+ 9χ2 > 3χ1 − C2

C3
,√

C2
2

C2
3
− 3C1

C3
+ 9χ2 ≥ C2

C3
− 3χ1,

C2

C3
[χ2

1 − χ2]− C1

C3
χ1 ≤ χ3

1 − 3χ2χ1 + χ3,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C2
2

C2
3
− 3C1

C3
+ 9χ2 > 0,√

C2
2

C2
3
− 3C1

C3
+ 9χ2 ≤ 3χ1 − C2

C3
,

2
(

C2
2

C2
3
− 3C1

C3
+ 9χ2

) 3
2

< 9C1

C3

C2

C3
− 2

C3
2

C3
3
+ 27χ3.

Proof. We use property (1) of Appel polynomials and the representation of the Appel
polynomials in terms of cumulants to write the derivative of the function P3(y) in an
explicit form. We have

dP3(y)

dy
= C1 + 2C2Q1(y) + 3C3Q2(y) = 3C3(y − χ1)

2 + 2C2(y − χ1) + C1 − 3C3χ2.

Since C3 > 0, the graph of the derivative as a function of the argument (y − χ1) is a
parabola going to infinity with its argument. The roots of the derivative are given by

y1,2 = χ1 +
−C2 ±

√
C2

2 − 3C1C3 + 9C2
3χ2

3C3
.

Denote by D = C2
2 − 3C1C2 + 9C2

3χ2 the discriminant of the derivative dP3(y)/dy.
Now we rewrite the assumptions of Theorem 2 for the case of a polynomial P3(y) of

the third order.
Assumption a) holds if and only if one of the following conditions holds:

1) either the discriminant D of the derivative dP3(y)/dy is negative and P3(0) < 0;
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2) or the discriminant D of the derivative dP3(y)/dy equals zero, y1 < 0, and
P3(0) < 0;

3) or the discriminant D of the derivative dP3(y)/dy is positive, y2 < 0, and
P3(0) < 0.

Assumption b) is equivalent to the following one:

4) the discriminantD of the derivative dP3(y)/dy equals zero, y1 ≥ 0, and P3(0) < 0.

Assumption c) is equivalent to the following one:

5) the discriminant D of the derivative dP3(y)/dy is positive, y1 < 0, y2 ≥ 0, and
P3(0) ≤ 0.

Finally, assumption d) holds if and only if

6) the discriminantD of the derivative dP3(y)/dy is positive, y1 ≥ 0, and P3(y1) < 0.

Merging conditions 1), 2), and 4), we obtain the system{
D ≤ 0,

P3(0) < 0,

which is equivalent to the first system in the statement of Theorem 2.
Transforming conditions 3), 5), and 6), we see that they coincide with the second,

third, and fourth systems in the statement of Theorem 2, respectively.
Therefore all the possible cases are considered and Theorem 2 is proved. �

Now we are going to investigate the solvability of the system in Theorem 3 for different
cases.

Remark 2. a) Let χ2 − χ2
1 = 0 and χ3

1 − 3χ1χ2 + χ3 = 0. The domains where the
systems of inequalities in Theorem 3 have solutions are depicted in Figure 1(a).
Our current aim is to show that there are no polynomials P3(y) of type A(a)
with C1 < 0. Indeed, the last inequalities of the first and second systems in
Theorem 3 reduce to C1/C3 > 0, while the last inequality of the third system is
given by C1/C3 ≥ 0. We have shown numerically that the last inequality of the
fourth system does not hold if C1 and C3 are such that C1/C3 < 0.

b) Let χ2 − χ2
1 > 0 and χ3

1 − 3χ1χ2 + χ3 = 0. The domains where a solution of
the systems of inequalities in Theorem 3 exists are depicted in Figure 1(b). Note
that there are no polynomials P3(y) of type A(a) with two restrictions C1 < 0
and C2 < 0 in this case. This result follows, since the last inequalities of the
first and second systems in Theorem 3 reduce to C2 > χ1/(χ

2
1 − χ2)C2. The

last inequality of the third system transforms to C2 ≥ χ1/(χ
2
1 −χ2)C2. We have

shown numerically that the last inequality of the fourth system also does not
hold if C1 < 0 and C2 < 0.

c) Let χ2 − χ2
1 = 0 and χ3

1 − 3χ1χ2 + χ3 > 0. The domains where solutions of the
systems of inequalities in Theorem 3 exist are depicted in Figure 1(c). Note that
there are polynomials P3(y) of type A(a) in this case whose coefficients C1 and
C2 both are positive or both are negative or such that C1 · C2 < 0. This follows
from the first and third system in Theorem 3.

d) Let χ2 − χ2
1 > 0 and χ3

1 − 3χ1χ2 + χ3 > 0. The domains where the systems
of inequalities in Theorem 3 have solutions are depicted in Figure 1(d) for this
case. Similarly to the preceding case, there are polynomials P3(y) of type A(a)
whose coefficients C1 and C2 both are positive or both are negative or such that
C1 · C2 < 0.

Note that domains I, II, and III are depicted in Figure 1 with the help of precise
restrictions, while approximate restrictions are used for domain IV.
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The domains whose points satisfy the systems of inequalities in Theorem 3 are depicted
in Figure 1 for the cases discussed in Remark 2.

By the roman numbers I, II, III, and IV we denote the numbers of the appropriate
systems corresponding to the domains in Figure 1.

We have used the following data to depict Figure 1.

a) χ2 − χ2
1 = 0, χ3

1 − 3χ1χ2 + χ3 = 0, (χ1 = 1, χ2 = 1, χ2 = 2).
b) χ2 − χ2

1 > 0, χ3
1 − 3χ1χ2 + χ3 = 0, (χ1 = 1, χ2 = 2, χ2 = 5).

c) χ2 − χ2
1 = 0, χ3

1 − 3χ1χ2 + χ3 > 0, (χ1 = 1, χ2 = 1, χ2 = 3).
d) χ2 − χ2

1 > 0, χ3
1 − 3χ1χ2 + χ3 > 0, (χ1 = 1, χ2 = 2, χ2 = 6).

Figure 1. Domains of solutions of systems in Theorem 3 for different cases

Remark 3. It is proved in the paper [6] that if C1 > 0, C2 > 0, and C3 > 0, then the
polynomial P3(y) = C1Q1(y)+C2Q2(y)+C3Q3(y) is a function of type A(a). This result
is compatible with that of Theorem 3. In particular, it is seen from Figure 1 that the
domain of solutions of the systems of inequalities in Theorem 3 covers the right upper
quadrant in all the cases a)–d).

The following result provides an explicit form of the optimal stopping times and price
function for the random walk X = (X1, X2, X3, . . .) with a polynomial reward function
of order n.

Theorem 4. Let E ξ < 0 and E(ξ+)k+1 < ∞ for k ∈ {1, 2, . . . , n}. Assume that the
coefficients C1, C2, . . . , Cn of the polynomial g(x) = C1x

++C2(x
+)2+ . . .+Cn(x

+)n are
such that Cn > 0 and that the polynomial Pn(y) = C1Q1(y) + C2Q2(y) + . . .+ CnQn(y)
is a function of type A(a). Let a∗n be a positive root of the polynomial Pn(y).
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Then the stopping time τ∗n = inf{k ≥ 0 | Xk ≥ a∗n} is optimal for the random walk
X = (X0, X1, X2, . . . ) and the reward function g(x). Moreover

Vn(x) := sup
τ∈M̄∞

0

Ex g(Xτ )I{τ < ∞} = Ex g(Xτ∗
n
)I{τ∗n < ∞}

and

Vn(x) = EPn(M + x)I{M + x ≥ a∗n}.

Proof. Consider the functions ĝ(x) = C1x+ C2x
2 + . . .+ Cnx

n with Cn > 0 and

V̂n(x) := sup
τ∈M̂∞

0

Ex ĝ(Xτ )I{τ < ∞},

where M̂∞
0 is the class of stopping times of a special form, namely τ̂ = τa, a ≥ 0. Here

τa = inf{k ≥ 0|Xk ≥ a}.
It is clear that ĝ(Xτa) = g(Xτa) in the set {τa < ∞}, whence V̂n(x) ≤ Vn(x), since

Vn(x) is defined with respect to a wider class of stopping times M̄∞
0 .

Now we show that

(5) V̂n(x) = EPn(M + x)I{M + x ≥ a∗n}.
Indeed, the case 1), b) of Lemma 2 implies that

Ex I{τa < ∞}Xk
τa = E I{M + x ≥ a}Qk(M + x), k ∈ {1, 2, . . . , n}.

Multiplying the preceding equality for the corresponding Appel polynomials by the co-
efficients C1, C2, . . . , Cn and summing up these results, we obtain

Ex I{τa < ∞}ĝ(Xτa) = E I{M + x ≥ a}Pn(M + x),

where Pn(M + x) ≥ 0 in the set {M + x ≥ a} for all a ∈ [a∗n,∞). Thus

EPn(M + x)I{M + x ≥ a}
is a decreasing function in [a∗n,∞).

Now let a ∈ [0, a∗n]. Then

EPn(M + x)I{M + x ≥ a} = EPn(M + x)− EPn(M + x)I{M + x < 0}
− EPn(M + x)I{0 ≤ M + x < a}.

The case 1), a) of Lemma 2 implies that

EPn(M + x) = E(C1Q1(M + x) + C2Q2(M + x) + . . .+ CnQn(M + x))

= C1x+ C2x
2 + . . .+ Cnx

n.

It follows from Theorem 2 that Pn(M + x)I{0 ≤ M + x < a} ≤ 0, whence we deduce
that

Pn(M + x)I{0 ≤ M + x < a}
is a decreasing function and thus the function Pn(M + x)I{M + x ≥ a} increases in
[0, a∗n]. Since the Pn(M + x)I{0 ≤ M + x < a} is continuous and decreases in [a∗n,∞), it
attains the maximal value at the point a = a∗n. Therefore equality (5) is proved and the

stopping time τ̂n = τa∗
n
is optimal in the class M̂∞

0 for the reward function ĝ(x).

It remains to show that V̂n ≥ Vn(x) to complete the proof. Consider the function

f(x) = V̂n(x) = EPn(M + x)I{M + x ≥ a∗n} and apply statement 40 of Lemma 2 with
g(x) = C1x

+ + C2(x
+)2 + . . . + Cn(x

+)n. First we check condition (2) for x ∈ (0, a∗n).
Observe that

I{M + x ≥ a∗n}Pn(M + x) = (Pn(M + x))+

by Theorem 3 for x ∈ (0, a∗n).
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The Jensen inequality together with the case 1), a) of Lemma 2 imply that

f(x) = E(Pn(M + x))+ ≥ (EPn(M + x))+ = C1x
+ + C2(x

+)2 + . . .+ Cn(x
+)n = g(x).

The second condition in statement 4) of Lemma 2 holds with the function G(y) = Pn(y)
in view of statement 3) of Lemma 2.

Therefore, the function f(x) is an excessive majorant for

g(x) = C1x
+ + C2(x

+)2 + . . .+ Cn(x
+)n,

whence we conclude that f(x) ≥ Vn(x). Since f(x) = V̂n(x), we prove that V̂n ≥ Vn(x).

Therefore, V̂n = Vn(x) and hence the stopping time τ̂n = τa∗
n
is optimal in the class M̄∞

0

for the reward function g(x).
Theorem 4 is proved. �

4. Examples

The conditions χ2−χ2
1 > 0, χ3

1−3χ1χ2+χ3 > 0 and χ2−χ2
1 = 0, χ3

1−3χ1χ2+χ3 = 0
imposed on the cumulants χ1, χ2, and χ3 of the supremum of the random walk M =

supk≥0 Sk, where S0 = 0, Sk =
∑k

i=1 ξi, k ≥ 1, appear in Lemma 3 and also in the
investigation of the solvability of the systems of inequalities in Theorem 3 (see Remark 2).

The main attention in the papers that are devoted to the studies of the distributions
of supremums of random walks is paid to the tail behavior of distributions [11] or to
the asymptotic behavior of distributions [12–14]. Only a few results are known where
the distributions of maximums of random walks [7–10] can be written in a closed form.
Examples of random walks possessing the properties needed for the purposes of this
paper are constructed in [10] by using the distribution of the maximum of an integer-
valued random walk with the exponential distribution that is widely used in the queueing
theory [7].

Let ν1, ν2, ν3 . . . be independent identically distributed random variables assuming two
values 2 and 0 with probabilities p and 1− p, respectively, where p ∈ [0, 1

2 ).

Consider the random walks Nr =
∑r

i=1 νi and Sr = Nr − r =
∑r

i=1(νi − 1), S0 = 0.
The increments of the random walk Sr are equal to 1 and −1 with probabilities p and
1 − p, respectively. The expectation of the jump is equal to E[νi − 1] = 2p − 1 and is
negative if p ∈ [0, 1

2 ). This means that the random walk has a drift to the left.
The distribution of the random walk Nr, r ≥ 1, is given by

P(Nr = k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k < 0 or if k is odd,

(1− p)r if k = 0,

0 if k is even and if r < k
2 ,

p
k
2 (1− p)r−

k
2 if k is even and if r ≥ k

2 .

It is proved in the paper [10] that the distribution of the random variable M =
supk≥1 Sk is given by

(6) P(M < k) =

{
1− (1− 2p)

∑∞
j=1 P(Nj = j + k) if k > 0,

0 otherwise.

Since the probabilistic characteristics of the maximum M of the random walk depend
on the probability p, we denote the cumulants and moments of this maximum by χi(p),
i ≥ 1, and μi(p), i ≥ 1, respectively.

Theorem 5. There exists p0 ∈ (0, 12 ) such that the cumulants χ1(p), χ2(p), and χ3(p)
of the supremum M = supk≥0 Sk of the random walk {Sk} are such that

χ2(p)− χ2
1(p) > 0, χ3

1(p)− 3χ1(p)χ2(p) + χ3(p) > 0
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for all p ∈ (0, p0].

Proof. It is easy to check that

μ1(p) =
∞∑
k=1

k P(M = k) =
∞∑
k=1

P(M ≥ k),

μ2(p) =
∞∑
k=1

k2 P(M = k) = 2
∞∑
k=1

∞∑
j=k

P(M ≥ j),

μ3(p) =

∞∑
k=1

k3 P(M = k) = 6

∞∑
k=1

∞∑
j=k

∞∑
l=j

P(M ≥ l).

If p = 0, then the supremum M of the random walk Sk equals zero, whence we derive
that all the moments and cumulants of this supremum are zero.

Consider the function f1(p) = χ2(p) − χ2
1(p) = μ2(p) − 2μ2

1(p). Its derivative at the
point p = 0 is given by

(7)
df1(p)

dp
=

dμ2(p)

dp
− 4μ1(p) ·

dμ1(p)

dp
.

The second term of the right hand side of (7) equals zero at the point p = 0, since
μ1(0) = 0 in this case.

Then we consider the first term. Using formula (6),

(8)
dμ2(p)

dp
=

(
2

∞∑
k=1

∞∑
j=k

P(M ≥ j)

)′

p

= 2

( ∞∑
k=1

∞∑
j=k

∞∑
l=1

(1− 2p)P(Nl = l + j)

)′

p

.

The expression on the right hand side of (8) is a power series with respect to p. The
theorem on the differentiation of power series allows one to exchange the summation and
the differentiation in the domain of convergence.

To evaluate the derivative dμ2(p)/dp at the point p = 0, we write

dμ2(p)

dp
= 2

∞∑
k=1

∞∑
j=k

(
(1− 2p)

∞∑
l=1

P(Nl = l + j)

)′

p

= 2

∞∑
k=1

∞∑
j=k

(1− 2p)

∞∑
l=1

(P(Nl = l + j))
′
p − 4

∞∑
k=1

∞∑
j=k

∞∑
l=1

P(Nl = l + j).

Using the explicit form of the distribution of Nr, r ≥ 1, we prove that the second term
on the right hand side of the latter equality equals zero at p = 0.

Except for one occasion, all the terms of the first sum on the right hand side equal zero
at p = 0. The nonzero term (being equal to one) corresponds to the case of k = l = j = 1.
Thus f ′

1(p)
∣∣
p=0

= 2.

Therefore the function f1(p) = χ2(p)− χ2
1(p) equals zero at p = 0. Since

f ′
1(p)

∣∣
p=0

= 2 > 0,

the function f1(p) increases in a neighborhood of zero. Hence there exists a number
p10 ∈ (0, 12 ) such that f1(p) > 0 for all p ∈ (0, p10].

Now we consider the function

f2(p) = χ3
1(p)− 3χ1(p)χ2(p) + χ3(p).

Note that f2(0) = 0. Next we evaluate the derivative of the function f2(p) at zero:

df2(p)

dp
= 3χ2

1(p)
dχ1(p)

dp
− 3

(
χ1(p)

dχ2(p)

dp
+ χ2(p)

dχ1(p)

dp

)
+

dχ3(p)

dp
.
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The first two terms equal zero at p = 0, since all the moments of the random variable
M equal zero. The third term is rewritten as

dχ3(p)

dp
=

(
2μ3

1(p)− 3μ1(p)μ2(p) + μ3(p)
)′
p

= 6μ2
1(p)

dμ1(p)

dp
− 3

μ1(p)

dp
μ2(p)− 3

μ2(p)

dp
μ1(p) +

dμ3(p)

dp
.

All the terms on the right hand side, except the last one, equal zero at the point p = 0.
We rewrite the last term dμ3(p)/dp as

dμ3(p)

dp
=

⎛⎝6

∞∑
k=1

∞∑
j=k

∞∑
l=j

P(M ≥ l)

⎞⎠′

p

= 6

⎛⎝ ∞∑
k=1

∞∑
j=k

∞∑
l=j

∞∑
h=1

(1− 2p)P(Nh = l + h)

⎞⎠′

p

.

Again using the theorem on the differentiation of power series, we justify the interchange
of the summation and differentiation. Thus

dμ3(p)

dp
= 6

∞∑
k=1

∞∑
j=k

∞∑
l=j

∞∑
h=1

((1− 2p)P(Nh = l + h))′p

= 6

∞∑
k=1

∞∑
j=k

∞∑
l=j

∞∑
h=1

(1− 2p) (P(Nh = l + h))
′
p − 12

∞∑
k=1

∞∑
j=k

∞∑
l=j

∞∑
h=1

P(Nh = l + h).

The last term on the right hand side of the latter equality equals zero at p = 0. All the
terms of the first sum on the right hand side, except one term, equal zero at the point
p = 0. The nonzero term equals one and corresponds to the case of k = j = l = h = 1.

Thus we conclude that the function

f2(p) = χ3
1(p)− 3χ1(p)χ2(p) + χ3(p)

equals zero at p = 0 and f ′
2(p)

∣∣
p=0

> 0. Hence this function increases in a neighborhood

of zero and there exists a number p20 ∈ (0, 12 ) such that f2(p) > 0 for all p ∈ (0, p20].

Finally we put p0 = min{p10, p20}. The proof of Theorem 5 is complete. �

One of the cases discussed in Remark 2 involves the condition

χ2 − χ2
1 = 0, χ3

1 − 3χ1χ2 + χ3 = 0

imposed on the cumulants of the maximum M of a random walk.

Remark 4. It is proved in the monograph [7] that if the increments ξ of a random walk Sk

can be written as ξ = ξ+ − ξ− and if the distribution of ξ+ is exponential, that is,

P(ξ+ > x) = c · exp(−αx), α > 0, x > 0,

then the distribution of the supremum M = supk≥0 Sk of a random walk is also ex-

ponential, namely P(M > x) = Const · exp(−λ1x). In this case, χ2 − χ2
1 = 0 and

χ3
1 − 3χ1χ2 + χ3 = 0. These equalities are seen from the graphs of the Appel polyno-

mials Q2 and Q3. The cumulants of the maximum of a random walk in the case of the
exponential distribution are given by

χ1 =
1

λ1
, χ2 =

1

λ2
1

, χ3 =
2

λ3
1

.

The Appel polynomials Q2 and Q3 are depicted in Figure 2 for the case of λ1 = 10. We
see that Q2(0) = Q3(0) = 0 and this is equivalent to the set of two equalities χ2−χ2

1 = 0
and χ3

1 − 3χ1χ2 + χ3 = 0.
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Figure 2. Appel polynomials for the exponential distribution of the
supremum of a random walk

5. Concluding remarks

The optimal stopping problem for a random walk with a drift to the left is considered
in this paper for a polynomial reward function. Necessary and sufficient conditions are
established under which a linear combination of the Appel polynomials that corresponds
to the reward function has a unique positive root. We found an explicit form for the
optimal stopping time and the price function of a random walk in terms of the maximal
positive root of the linear combination of the Appel polynomials. It turns out that
the optimal stopping time is the moment when the random walk crosses a barrier for
the first time; the latter moment can be evaluated as the maximal positive root of the
corresponding linear combination of the Appel polynomials. Some examples of random
walks are considered for which the results of the current paper are applied.
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[1] Ĭ. Ī. Gı̄hman and A. V. Skorohod, Controlled stochastic processes, Springer-Verlag, New York, 1979.
Translated from the Russian by Samuel Kotz. MR544839 (80h:60081)

[2] Evgenii B. Dynkin and Aleksandr A. Yushkevich, Markov processes: Theorems and problems, Trans-
lated from the Russian by James S. Wood, Plenum Press, New York, 1969. MR0242252 (39 #3585a)

[3] D. A. Darling, T. Liggett, and H. M. Taylor, Optimal stopping for partial sums, Ann. Math. Statist.

43 (1972), 1363–1368. MR0312564 (47 #1121)
[4] A. A. Novikov and A. N. Shiryaev, On an effective case of the solution of the optimal stop-

ping problem for random walks, Teor. Veroyatn. Primen. 49 (2004), no. 2, 373–382, DOI
10.1137/S0040585X97981093 (Russian, with Russian summary); English transl., Theory Probab.
Appl. 49 (2005), no. 2, 344–354. MR2144307 (2005m:60084)

[5] Wim Schoutens, Stochastic processes and orthogonal polynomials, Lecture Notes in Statistics,
vol. 146, Springer-Verlag, New York, 2000. MR1761401 (2001f:60095)
1co done

[6] V. V. Tomashik and Yu. S. Mishura, Optimal stopping times for random walks for polynomial
reward functions, Applied Statistics. Actuarial and Financial Mathematics (2008), no. 1–2, 101–
110. (Ukrainian)

[7] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Izdat. “Nauka”,
Moscow, 1972 (Russian). MR0315800 (47 #4349)

[8] O. V. Viskov, A random walk with an upper-continuous component, and the Lagrange inversion for-
mula, Teor. Veroyatnost. i Primenen. 45 (2000), no. 1, 166–175, DOI 10.1137/S0040585X97978105
(Russian, with Russian summary); English transl., Theory Probab. Appl. 45 (2001), no. 1, 164–172.
MR1810980 (2001j:60089)

http://www.ams.org/mathscinet-getitem?mr=544839
http://www.ams.org/mathscinet-getitem?mr=544839
http://www.ams.org/mathscinet-getitem?mr=0242252
http://www.ams.org/mathscinet-getitem?mr=0242252
http://www.ams.org/mathscinet-getitem?mr=0312564
http://www.ams.org/mathscinet-getitem?mr=0312564
http://www.ams.org/mathscinet-getitem?mr=2144307
http://www.ams.org/mathscinet-getitem?mr=2144307
http://www.ams.org/mathscinet-getitem?mr=1761401
http://www.ams.org/mathscinet-getitem?mr=1761401
http://www.ams.org/mathscinet-getitem?mr=0315800
http://www.ams.org/mathscinet-getitem?mr=0315800
http://www.ams.org/mathscinet-getitem?mr=1810980
http://www.ams.org/mathscinet-getitem?mr=1810980


OPTIMAL STOPPING TIME PROBLEM 167

[9] Wolfgang Stadje, An iterative approximation procedure for the distribution of the maximum of a
random walk, Statist. Probab. Lett. 50 (2000), no. 4, 375–381, DOI 10.1016/S0167-7152(00)00124-3.
MR1802232 (2001m:60105)
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