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ESTIMATES FOR THE PROBABILITY THAT A SYSTEM

OF RANDOM EQUATIONS IS SOLVABLE IN A GIVEN SET

OF VECTORS OVER THE FIELD GF(3)

UDC 519.21

V. I. MASOL AND L. O. ROMASHOVA

Abstract. Let Pn be the probability that a second order system of nonlinear random
equations over the field GF(3) has a solution in a given set of vectors, where n is
the number of unknowns in the system. A necessary and sufficient condition is found
for Pn → 0 as n → ∞. Some rates of convergence to zero are found and some
applications are described.

1. Setting of the problem. Statement of main results

Let

(1)
∑

3
1≤j1<j2≤n

a
(μ)
j1j2

xj1xj2 = 0, μ ∈ J,

be a system of nonlinear random equations of the second order considered over the field
GF(3), where

∑
3 denotes the summation in the field GF(3) and where J = {1, . . . , T}

and T = T (n). Recall that GF(3) contains only three elements.
We assume that system (1) satisfies the following condition:

(A) the coefficients a
(μ)
j1j2

, 1 ≤ j1 < j2 ≤ n, μ ∈ J , are independent random variables

assuming values in the field GF(3) according to the distribution

P
{
a
(μ)
j1j2

= 1
}
= P

{
a
(μ)
j1j2

= 2
}
= pμ, P

{
a
(μ)
j1j2

= 0
}
= 1− 2pμ.

Let Vn be the family of all n-dimensional vectors x̄, x̄ = (x1, x2, . . . , xn) whose coor-
dinates belong to the field GF(3), and let V ′

n = Vn \ {x̄ : |x̄| ≤ 1}, where |x̄| denotes the
number of nonzero coordinates of the vector x̄.

Let x̄(1) and x̄(2) be two arbitrary vectors, where x̄(q) ∈ Vn, x̄
(q) =

(
x
(q)
1 , . . . , x

(q)
n

)
,

q = 1, 2. Let ic1c2 , c1, c2 ∈ GF(3), denote the number of pairs (c1, c2) among n possible
pairs

(
xj

(1), xj
(2)

)
, 1 ≤ j ≤ n.

Let i = i01 + i02 and l = i10 + i20.
By Mn, we denote the maximal subset of the set V ′

n (with respect to the inclusion)
with the property that arbitrary vectors x̄(1), x̄(2) ∈ V ′

n belong to Mn if and only if

(2) i+ l ≥ 1.

For example, if n = 3, then

M3 = {(1,1,0) , (1,0,2) , (0,2,2) , (1,2,1)} .

Key words and phrases. System of nonlinear random equations, probability that a system is solvable,
rate of convergence, a field containing three elements.
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Let θn be a random variable equal to the number of solutions of system (1) that belong
to the set Mn.

In what follows we assume that the probability pμ varies in such a way that

(3)
c lnn

n
≤ pμ ≤ 1

2
− c lnn

n
,

where ln 3/ln 2 < a1 ≤ c = c(n) ≤ a2 < ∞ and where {ar : r = 1, 2, . . . } is a sequence of
bounded positive constants.

Theorem 1.1. Assume that conditions (A) and (3) hold. Then

(4) P {θn > 0} = o(1), n → ∞,

if and only if

(5) T = n
ln 2

ln 3
+An,

where An → ∞ as n → ∞.

Remark 1.1. The existence of solutions belonging to a given set of vectors for a system
of equations is considered in [2] for different right hand sides. In [1], special solutions of
a homogeneous system of linear random equations over a finite field are studied and the
study of special solutions for the random linear inclusion is considered.

Theorem 1.2. Let conditions (A), (3), and (5) hold. Assume that the parameters ε1,
ε1 ∈ (0, 1), and c vary in such a way that

0 < γ1 ≤ ε1c ≤ γ0 <
4

3

(
1− ln 3

c ln 2

)
,

where γ0 and γ1 are fixed numbers.
Then there exist a real number ε2 ∈ (0, 1) and natural number n0 = n0(ε1, ε2, c) such

that P {θn > 0} ≤ Z1 for n ≥ n0, where

Z1 =

[√
ε1n
ln n

]∑
t=2

1

t!

(
1

nc ln 2
ln 3 (1−

ln 3
c ln 2−

3
4γ0)

)t
⎛
⎝ 1

n
cAn

n

(
1− 3

4γ0+
3
4 c

√
ε1 lnn

n + 3
4 c

ln 2
ln 3

√
ε1n lnn

An

)
⎞
⎠

t

+ 2nσ(ε2)

(
1

3
+

2

3e
3
2γ1

(
1+

√
lnn
ε1n

)
)n ln 2

ln 3+An

+

⎛
⎜⎜⎝
exp

{
2

n
3
2
ncε22(1+ 1

ε2n )

}
3

⎞
⎟⎟⎠

An

exp

{
2 ln 2

n
3
2ncε

2
2

(
1+ 1

ε2n

)
−1

ln 3

}

and where σ(ε2) = −ε2 log2 ε2 − (1− ε2) log2(1− ε2).

Theorem 1.3. Let conditions (A), (3), and (5) hold. Assume that the parameters ε1
and c vary in such a way that

0 < β1 ≤ ε1c ≤ β0 <
4

3

(
1− (1 + α) ln 3

c ln 2

)
,

where α, β0, and β1 are fixed numbers such that α > 0 and

α+
3

4
β0 < 1− ln 3

a1 ln 2
.
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Then, given an arbitrary fixed real number ε2, ε2 ∈ (0, 1), there exists a positive integer
number n0, n0 = n0 (ε1, ε2, c), such that P {θn > 0} ≤ Z2 for n ≥ n0, where

Z2 =
e

n2α
+ 2nσ(ε2)

(
1

3
+

2

3e
3
2β1

)n ln 2
ln 3

+

⎛
⎝exp

{
2

n
3
2
ncε22

}
3

⎞
⎠

An

exp

{
2 ln 2

n
3
2ncε

2
2−1 ln 3

}
.

Remark 1.2. The upper bound Z1 (Z2) approaches 0 as n → ∞ under the assumptions
of Theorem 1.2 (Theorem 1.3).

2. The first two factorial moments of the random variable θn

Lemma 2.1. If condition (A) holds, then

(6) E θn = 3−T
n∑

t=2

(
n

t

)
Qt,

where

(7) Qt =
T∏

μ=1

(
1 + 2(1− 3pμ)

(t2)
)
.

Proof. Let the symbol ξ(x̄) stand for the indicator of the random event that the vector x̄,
x̄ ∈ Mn, is a solution of system (1). Condition (A) implies that

E θn =
∑

x̄:x̄∈Mn

E ξ(x̄) =
∑

x̄:x̄∈Mn

T∏
μ=1

P

⎛
⎝ ∑

3
1≤j1<j2≤n

a
(μ)
j1j2

xj1xj2 = 0

⎞
⎠ .(8)

Denote by t the number of nonzero coordinates of an arbitrary fixed vector x̄ ∈ Mn. We
will need the following relation:

(9) P {ξ = a} =
1

3
− 1

3
(1− 3p∗)k, a ∈ GF(3), a �= 0,

where ξ = ξ1 +3 · · · +3 ξk (see [2]). Here ξ1, . . . , ξk, 1 ≤ k < ∞, are independent
identically distributed random variables such that P {ξs = a} = p∗, a ∈ GF(3), a �= 0,
and P {ξs = 0} = 1 − 2p∗, s = 1, . . . , k. The symbol +3 denotes the summation in the
field GF(3).

Using relation (9), we obtain

(10)

T∏
μ=1

P

⎛
⎝ ∑

3
1≤j1<j2≤n

a
(μ)
j1j2

xj1xj2 = 0

⎞
⎠ = 3−TQt.

The total number of vectors of the set Mn that have t nonzero coordinates is equal to
the binomial coefficient

(
n
t

)
. Thus, with the help of relation (10), equality (8) can be

rewritten in the form of (6). �

Let I = {i01, i02, i10, i20, i11, i22, i12, i21}.

Lemma 2.2. If condition (A) holds, then

(11) E θ[2]n = 9−T
n∑

t=3

(
n

t

) ∑
i+l+h=t

t!

h! i! l!
Q∗

t ,

where

(12) Q∗
t =

T∏
μ=1

(
1 + 2

(
4∑

r=1

(1− 3pμ)
Γ(r)

))
.
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The summation
∑

above is considered with respect to all indices i, l, and h such that
i + l + h = t, t − i ≥ 2, t − l ≥ 2, and i + l ≥ 1; the parameters Γ(r), r = 1, . . . , 4, are
defined by the equalities

Γ(1) =

(
l

2

)
+

(
i

2

)
+ (i+ l)(t− l − i),(13)

Γ(2) =

(
t− l

2

)
,(14)

Γ(3) =

(
t− i

2

)
,(15)

Γ(4) =

(
l

2

)
+

(
i

2

)
+

(
t− l − i

2

)
+ (i+ l)(t− l − i),(16)

respectively.

Proof. Condition (A) together with the equality E θ
[2]
n = E θn(θn − 1) and representation

θn =
∑

x̄:x̄∈Mn
ξ (x̄) implies that

(17) E θ[2]n =
∑

1
E ξ(x̄(1))ξ(x̄(2)),

where the summation
∑

1 is considered with respect to all pairs of vectors
(
x̄(1), x̄(2)

)
such that x̄(q) ∈ Mn, q = 1, 2, and x̄(1) �= x̄(2). With the help of equality (17) we find
that

(18)

E θ[2]n =
∑

1

T∏
μ=1

P
{⋃{

A(μ)
(
x̄(k)

)
= yk, A

(μ)
(
x̄(1), x̄(2)

)
= y12, k = 1, 2

}}

=
∑

1

T∏
μ=1

∑
2
P
{
A(μ)

(
x̄(1), x̄(2)

)
= y12

} ∏
k=1,2

P
{
A(μ)

(
x̄(k)

)
= yk

}
,

where the symbol
⋃

(
∑

2) means the union (summation) corresponding to all solutions
of the following system of the two equations y1 +3 y12 = 0 and y2 +3 y12 = 0 over the
field GF(3), where

A(μ)
(
x̄(1), x̄(2)

)
=

∑
3

ω∈E(12)

a(μ)ω , A(μ)
(
x̄(q)

)
=

∑
3

ω∈E(q)

a(μ)ω , q = 1, 2,

for μ ∈ J , and where

E(12) =
{
(j1, j2), 1 ≤ j1 < j2 ≤ n : x

(q)
j1

x
(q)
j2

�= 0, q = 1, 2
}
,

E(q) =
{
(j1, j2), 1 ≤ j1 < j2 ≤ n : x

(q)
j1

x
(q)
j2

�= 0, x
(q∗)
j1

x
(q∗)
j2

= 0
}
,

q ∈ {1, 2}, q∗ ∈ {1, 2}, q∗ �= q.
Let γ(1), γ(2), and γ(3) be the number of elements of the sets E(1), E(2), and E(12),

respectively.
Put

Γ(1) = γ(1) + γ(2), Γ(2) = γ(2) + γ(3),(19)

Γ(3) = γ(1) + γ(3), Γ(4) = γ(1) + γ(2) + γ(3).(20)

Considering condition (A) and using equality (9), relation (18) can be rewritten as
follows:

(21) E θ[2]n = 9−T
∑

1

T∏
μ=1

(
1 + 2

(
4∑

r=1

(1− 3pμ)
Γ(r)

))
.
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For arbitrary vectors x̄(1), x̄(2) ∈ Mn, denote by t the total number of pairs (c1, c2),
(c3,0), (0, c4) among n possible pairs

(
xj

(1), xj
(2)

)
, 1 ≤ j ≤ n, with the property that

c1c2c3c4 �= 0 for all c1, c2, c3, c4 ∈ GF(3). Then t = i + l + h and the total number
of pairs of vectors

(
x̄(1), x̄(2)

)
for which equality (21) holds is found from the following

equation: ∑
i+l+h=t

n!

h! i! l!(n− t)!
=

(
n

t

) ∑
i+l+h=t

t!

h! i! l!
.

The summation
∑

1 on the right hand side of (21) means the summation over all pairs

of vectors
(
x̄(1), x̄(2)

)
such that x̄(1) �= x̄(2), x̄(q) ∈ Mn, q = 1, 2, and is equivalent to

the summation with respect to all parameters i, l, and h written on the right hand side
of (11). Note that the inequalities t− i ≥ 3, t− l ≥ 3, and i+ l ≥ 1 imply that

∣∣x̄(1)
∣∣ ≥ 1,∣∣x̄(2)

∣∣ ≥ 1, and x̄(1) �= x̄(2), respectively.
Next we check equality (13). First, we find some explicit expressions for the parame-

ters γ(1) and γ(2).
Our current goal is to show that

(22) γ(1) =
∣∣∣E(1)

∣∣∣ = (
l

2

)
+ l (t− l − i) .

Indeed, we represent γ(1) as a sum of two terms, namely

(23) γ(1) =
∣∣∣E(1)

1

∣∣∣+ ∣∣∣E(1)
2

∣∣∣ ,
where

E
(1)
1 =

{
(j1, j2), 1 ≤ j1 < j2 ≤ n : x

(1)
j1

, x
(1)
j2

�= 0;x
(2)
j1

= x
(2)
j2

= 0
}
,

E
(1)
2 =

{
(j1, j2), 1 ≤ j1 < j2 ≤ n : x

(1)
j1

, x
(1)
j2

�= 0;x
(2)
j = 0, x

(2)
j∗ �= 0

}
,

j ∈ {j1, j2}, j∗ ∈ {j1, j2}, j �= j∗.
Since the sum i10+i20 means the total number of nonzero coordinates of the vector x̄(1)

corresponding to the nonzero coordinates of the vector x̄(2) and since i11+ i22+ i12+ i21
means the number of the nonzero coordinates in the vector x̄(1) corresponding to the
nonzero coordinates of the vector x̄(2), we find

(24)
∣∣∣E(1)

1

∣∣∣ = (
l

2

)
,

(25)
∣∣∣E(1)

2

∣∣∣ = l (t− l − i) .

Taking into account equalities (23)–(25) we obtain (22).
Similarly we have

(26) γ(2) =
∣∣∣E(2)

∣∣∣ = (
i

2

)
+ i (t− l − i) .

Thus (19), (22), and (26) imply relation (13). Finally, the definition of the set E(12)

proves that

(27) γ(3) =
∣∣∣E(12)

∣∣∣ = (
t− i− l

2

)
.

Now (19), (26), and (27) imply equality (14). Then we derive (15) from (20), (23),
and (27). Using (20), (23), (26), and (27) we get equality (16). �
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Remark 2.1. We see from the proof of Lemma 2.2 that the number i+ l + h (see equal-
ity (11)) is equal to the sum of elements of the set I. In particular, h = i11+i22+i12+i21
and l = i10 + i20.

3. Auxiliary results

Lemma 3.1. If condition (A) holds and

(28) pμ ≤ 1

2
− υ,

where 0 < υ ≤ 1
2 and μ ∈ J , then

(29) E θn > 0

for an arbitrary n ≥ 2.

Proof. In view of (6) and (7), relation (29) follows if

(30) Qt > 0, n ≥ 2.

To prove inequality (30) we represent the product Qt defined by equality (7) as follows:

(31) Qt =

3∏
r=1

Qt;r,

where Qt;r means the product of all factors on the right hand side of equality (7) for
which the parameter μ belongs to the set Wr, r = 1, 2, 3. Here

W1 =

{
μ, 1 ≤ μ ≤ T : pμ ≤ 1

3

}
,

W2 =

{
μ, 1 ≤ μ ≤ T :

1

3
< pμ ≤ 1

2
− υ,

(
t

2

)
is even, t ≥ 2

}
,

W3 =

{
μ, 1 ≤ μ ≤ T :

1

3
< pμ ≤ 1

2
− υ,

(
t

2

)
is odd, t ≥ 2

}
.

Denote by ηr the number of elements of the set Wr, that is, ηr = |Wr|, r = 1, 2, 3.
Then

(32)

3∑
r=1

ηr = T.

The definition of the products Qt;1 and Qt;2 implies that

(33) Qt;1 ≥ 1, Qt;2 ≥ 1.

Considering condition (28), we find

(34) Qt;3 ≥ (6υ)η3 .

It follows from (31)–(34) that Qt ≥ (6υ)η3 , whence we obtain inequality (30) and
hence (29) is proved. �
Lemma 3.2. Assume that conditions (A) and (3) hold. If

(35) T ≤ n
ln 2

ln 3
+m0

as n → ∞, where m0 is a constant, then

(36) Qt ≥ a3, n → ∞,

for an arbitrary t ∈ F , where

F =
[[n

2

]
−

[ n

lnn

]
;n

]
.
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Proof. Taking into account representation (31) we see that relation (36) follows if, for
t ∈ F and as n → ∞, there exists a constant a4 such that

(37) Qt;r ≥ a4, r = 1, 2, 3.

Similarly to the proof of inequality (33) we obtain Qt;1 ≥ 1 and Qt;2 ≥ 1 for t ∈ F ,
μ ∈ W1, and μ ∈ W2 if n > 1.

Now we check representation (37) for r = 3. Indeed, taking into account (3) and the
inclusion μ ∈ W3, we prove that, for t ∈ F ,

(38) (1− 3pμ)
(t2) ≥ −2−

n2

8 (1+o(1)) exp

{
−3

4
cn (1 + o(1)) lnn

}

as n → ∞, where c > ln 3/ln 2.
Using (7), (35), and (38) we get

Qt;3 ≥ a5

(
1− a62

−n2

8 (1+o(1)) exp

{
−3

4
cn (1 + o(1)) lnn

})n ln 2
ln 3

, n → ∞.

This implies inequality (37) for r = 1, 2, 3. Now relations (31) and (37) prove (36). �

Lemma 3.3. Let b and c be fixed integer numbers such that 0 < b < c and let ψn be a
sequence of integer numbers such that ψn/n → 0 as n → ∞. Then

(39)

(
n[

b
cn

]
− ψn

)
<

cn exp
{
−ψ2

n

n

(
c2

2b(c−b) +O
(

ψn

n

))}
b

b
cn−ψn (c− b)

c−b
c n+ψn

, n → ∞.

Proof. Relation (39) follows from the Stirling formula [4]. �

Lemma 3.4. Let condition (A) hold and let t ≥ 4 be an arbitrary number. Then, among
the four parameters Γ(l0), l0 = 1, . . . , 4, defined by relations (13)–(16), there are at least
three parameters Γ(l1), Γ(l2), Γ(l3), l1, l2, l3 ∈ {1, 2, 3, 4}, l1 �= l2, l2 �= l3, l1 �= l3, such
that

Γ(lr) ≥ t

2
− 1, r = 1, 2, 3.

Moreover, among these three parameters, there exists at least one parameter

Γ(l∗), l∗ ∈ {l1, l2, l3} ,
such that

Γ(l∗) ≥
( t

2

2

)
.

Proof. Let i ≥ t
2 . Then, applying relations (13)–(16), we prove that there are at least

three parameters Γ(l1), Γ(l2), Γ(l3), l1, l2, l3 ∈ {1, 2, 3, 4}, l1 �= l2, l2 �= l3, l1 �= l3, such

that Γ(lr) ≥
( t

2
2

)
, t ≥ 4, r = 1, 2, 3.

Now let

(40) i <
t

2
.

Consider separately all possible cases.
1) If inequality (40) holds and l ≥ t

2 , then

Γ(1) ≥
(
l

2

)
≥

( t
2

2

)
, Γ(3) ≥

(
l

2

)
≥

( t
2

2

)
, Γ(4) ≥ Γ(1) ≥

( t
2

2

)

by (13), (15), and (16);
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2) if inequality (40) holds and h ≥ t
2 , where t = i+ l+h and h = i11+ i22+ i12+ i21,

then we use relations (14), (15), and (16) and obtain the bounds

Γ(2) ≥
(
h

2

)
≥

( t
2

2

)
, Γ(3) ≥

(
h

2

)
≥

( t
2

2

)
, Γ(4) ≥

(
t− l − i

2

)
=

(
h

2

)
≥

( t
2

2

)
;

3) if inequality (40) holds and l+ h ≥ t
2 , l ≥ 1, and h ≥ 1 (the cases where l ≥ t

2 and

h = 0 or l = 0 and h ≥ t
2 are considered in cases 1) and 2) above), then lh ≥ t

2 − 1.

Indeed, let l + h = β, where β ≥ t
2 . Then lh = l(β − l) ≥ β − 1 ≥ t

2 − 1. The
inequality l(β − l) ≥ β − 1 holds, since the function f(x) = x(β − x) increases in the
interval [1; β/2], decreases in the interval [β/2;β − 1], and attains its minimal value at
x = 1 or at x = β − 1 (without loss of generality we assume that 1 ≤ x ≤ β − 1).

Therefore (13), (15), (16) and the inequality lh ≥ t
2 − 1, l + h ≥ t

2 imply that

Γ(1) ≥ (i+ l)(t− l − i) = (i+ l)h ≥ lh ≥ t

2
− 1,

Γ(3) =

(
h+ l

2

)
≥

( t
2

2

)
, Γ(4) ≥ Γ(1) ≥ t

2
− 1. �

Let pmin = min
1≤μ≤T

pμ. In what follows the symbol εq stands for a positive fixed number

whose precise value is specified for each appearance of q, q ≥ 1.
Consider the sums

Dz = 3−T
∑
t∈Rz

(
n

t

)
Qt,

where z = 1, 2, 3,

R1 =

[
2;

[√
ε1n

lnn

]]
, R2 =

[[√
ε1n

lnn

]
+ 1; [ε2n]

]
, R3 = [[ε2n] + 1;n] .

Lemma 3.5. Let conditions (A), (3), and (5) hold. Assume that the parameters ε1 and
c are varying in such a way that

ε1c ≤ γ0 <
4

3

(
1− ln 3

c ln 2

)
.

Then

(41)

D1 ≤

[√
ε1n
lnn

]∑
t=2

1

t!

(
1

nc ln 2
ln 3 (1−

ln 3
c ln 2−

3
4γ0)

)t

×

⎛
⎝ 1

n
cAn

n

(
1− 3

4γ0+
3
4 c

√
ε1 lnn

n + 3
4 c

ln 2
ln 3

√
ε1n lnn

An

)
⎞
⎠

t

.

Proof. Taking into account (3) and (7) we obtain

(42) Qt ≤ 3T

(
1− 2pmin

(
t

2

)
+ 3

(
pmin

(
t

2

))2
)T

for t ∈
[
2;

[√
ε1n
lnn

]]
. It follows from (42) that

(43) D1 ≤

[√
ε1n
lnn

]∑
t=2

nt

t!
exp

{
−Ttpmin

(
1− 3

4

ε1n

lnn

(
1−

√
lnn

ε1n

)
pmin

)}

for all t ∈
[
2;

[√
ε1n
lnn

]]
.

Now conditions (3) and (5) together with inequality (43) imply bound (41). �
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Lemma 3.6. Let conditions (A), (3), and (5) hold. Assume that the parameters ε1 and c
are varying in such a way that ε1c ≥ γ1 > 0. Then there exists a number ε2, 0 < ε2 < 1,
such that

(44) D2 ≤ 2nσ(ε2)

(
1

3
+

2

3e
3
2γ1

(
1+

√
lnn
ε1n

)
)n ln 2

ln 3+An

,

where σ(ε2) = −ε2 log2 ε2 − (1− ε2) log2(1− ε2).

Proof. For t ∈
[[√

ε1n
lnn

]
+ 1, [ε2n]

]
, we get

(45) Qt ≤
(
1 + 2 exp

{
−3pmin

([√
ε1n
lnn

]
+ 1

2

)})T

.

Now relations (3), (5), and (45) yield

(46) D2 ≤
(
1

3
+

2

3e
3
2 cε1

(
1+

√
lnn
ε1n

)
)n ln 2

ln 3+An [ε2n]∑
t=

[√
ε1n
ln n

]
+1

(
n

t

)
.

The inequality
[ε2n]∑
t=0

(
n

t

)
≤ 2nσ(ε2)

implies bound (44) in view of inequality (46), where

σ(ε2) = −ε2 log2 ε2 − (1− ε2) log2(1− ε2)

(see [3]). �

Lemma 3.7. Let conditions (A), (3), and (5) hold. Then

(47) D3 ≤

⎛
⎜⎜⎝
exp

{
2

n
3
2
ncε22(1+ 1

ε2n )

}
3

⎞
⎟⎟⎠

An

exp

{
2 ln 2

n
3
2ncε

2
2

(
1+ 1

ε2n

)
−1

ln 3

}

for ε2 > 0.

Proof. For t ∈ [[ε2n] + 1, n], we have

(48) Qt ≤
(
1 + 2 exp

{
−3pmin

(
[ε2n] + 1

2

)})T

.

Using (3) and (48), we obtain

(49) D3 ≤ 2n

3T
exp

⎧⎨
⎩ 2T

exp
{

3
2cε

2
2n (lnn)

(
1 + 1

ε2n

)}
⎫⎬
⎭ .

Now we derive

D3 ≤ 2n

3
ln 2
ln 3n+An

exp

{
2n ln 2

ln 3 + 2An

n
3
2ncε

2
2

(
1+ 1

ε2n

)
}

from (5) and (49), whence inequality (47) follows. �
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4. Proof of Theorem 1.1

Proof. Sufficiency. We show that (5) implies

(50) E θn = o(1), n → ∞.

Considering (6) and (7), the expectation E θn can be written as follows:

(51) E θn =
3∑

h=1

Dh,

where D1, D2, and D3 are defined above.
Taking into account representation (51), relation (50) follows from

(52) Dh = o(1), n → ∞,

for h = 1, 2, 3. Using (41), (44), and (47), one easily checks relation (52) for h = 1, h = 2,
and h = 3, respectively.

Now relation (50) follows from (51) and (52). Using (50) and Chebyshev’s inequality,
we prove (4).

Necessity. Let P {θn > 0} → 0 as n → ∞. We show that (5) holds. If equality (5)
does not hold, then equality (35) holds. Our current goal is to show that there exists a
positive constant C such that

(53) P {θn > 0} ≥ C > 0, n → ∞.

In other words, relation (53) means that, with a positive probability, there exists a
solution that belongs to the set Mn. First we prove the following upper bounds:

(E θn)
−1 ≤ a5,(54)

E θ[2]n (E θn)
−2 ≤ a6(55)

and use them further in the inequality

(56) P {θn > 0} ≥
(
(E θn)

−1
+ E θ[2]n (E θn)

−2
)−1

(see [5]).
Then relations (6) and (29) together with Lemma 3.2 imply that

(57) (E θn)
−1 ≤ 3T 2−nδn,

where

(58) δn ≤ a−1
3

(
2−n

∑
t∈F

(
n

t

))−1

, n → ∞.

Lemma 3.3 with b = 1, c = 2, and ψn = [n/lnn] allows one to conclude that

2−n
∑
t∈F

(
n

t

)
→ 1, n → ∞,

which together with (35), (57), and (58) proves (54).
Similarly to the proof of (54), we make sure that

(59)
(
3T 2−n E θn

)−1 ≤ a7, n → ∞.

Next, relation (59) implies that inequality (55) follows from

(60) 9T 4−n E θ[2]n ≤ a8, n → ∞.

Considering (11), the left hand side of (60) can be rewritten as follows:

(61) 9T 4−n E θ[2]n = 4−nS (n;Q∗
t ) ,
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where

(62) S (n;Q∗
t ) =

n∑
t=3

(
n

t

) ∑
i+l+h=t

t!

i! l!h!
Q∗

t .

We represent S (n;Q∗
t ) as a sum of two terms S1 (n;Q

∗
t ) and S2 (n;Q

∗
t ), namely

(63) S (n;Q∗
t ) = S1 (n;Q

∗
t ) + S2 (n;Q

∗
t ) ,

where S1 (n;Q
∗
t ) differs from S (n;Q∗

t ) by the set of summation on the right hand side
of (62) where the indices i, l, and h are such that

(64) Γ(r) ≥
(
εn

2

)
,

where ε is a constant such that 0 < ε < 1, and where Γ(r), r = 1, . . . , 4, are defined by
equalities (13)–(16). Here S2 (n;Q

∗
t ) is the sum of the rest of the terms in S (n;Q∗

t ).
Relations (3), (12), (35), and (64) imply that

(65) S1 (n;Q
∗
t ) ≤ a9S1 (n; 1) , n → ∞.

The inequality S1 (n; 1) ≤ 4n together with relation (65) yields

(66) S1 (n;Q
∗
t ) ≤ a94

n

as n → ∞.
Next we represent the sum S2 (n;Q

∗
t ) as follows:

(67) S2 (n;Q
∗
t ) =

4∑
k=1

S2;k (n;Q
∗
t ) ,

where S2;k (n;Q
∗
t ) differs from S2 (n;Q

∗
t ) by the set of summation on the right hand side

of (62). Namely, the summation on the right hand side of (62) is considered with respect
to all those elements of the set I such that there exist l1, . . . , lk ∈ {1, 2, 3, 4} for which
Γ(ls) <

(
εn
2

)
and Γ(r) ≥

(
εn
2

)
, where r ∈ {1, 2, 3, 4}\{l1, . . . , lk}, s = 1, . . . , k, k = 1, . . . , 4.

For each k = 1, . . . , 4, we represent S2;k (n;Q
∗
t ) in the following form:

(68) S2;k (n;Q
∗
t ) =

∑
1≤t1<···<tk≤4

S2;k;t1,...,tk (n;Q
∗
t ) ,

where S2;k;t1,...,tk (n;Q
∗
t ) denotes the sum of all terms of S2;k (n;Q

∗
t ) for which

Γ(tl) <

(
εn

2

)
, l = 1, . . . , k, Γ(t′) ≥

(
εn

2

)
, t′ ∈ {1, 2, 3, 4} \ {t1, . . . , tk}.

We show that, for all k = 1,

S2;k (n;Q
∗
t ) ≤ a104

n (1 + o(1))(69)

as n → ∞.
Using (3), (12), and (35) and recalling the definition of the sum

S2;1;1(n;Q
∗
t )

(S2;1;4(n;Q
∗
t )),

we obtain

S2;1;1 (n;Q
∗
t ) ≤ a112

nS2;1;1 (n; 1)(70)

(S2;1;4 (n;Q
∗
t ) ≤ a112

nS2;1;4 (n; 1)).(71)



146 V. I. MASOL AND L. O. ROMASHOVA

The inequality Γ(1) <
(
εn
2

)
(Γ(4) <

(
εn
2

)
) and relation (13) ((16)) imply that all

parameters i, l, and h involved in forming the sum S (n;Q∗
t ) (see (62)) do not exceed εn.

Then the polynomial theorem implies that, for k = 1,

S2;k;1 (n; 1) ≤ exp {σ1 (ε)n}(72)

(S2;k;4 (n; 1) ≤ exp {σ2 (ε)n})(73)

as n → ∞, where σr (ε0) → 0 as ε0 → 0 for r = 1, 2, . . . .
Taking into account (70) and (72) ((71) and (73)), we prove the following bound:

S2;1;1 (n;Q
∗
t ) ≤ a112

n exp {σ1 (ε)n}(74)

(S2;1;4 (n;Q
∗
t ) ≤ a112

n exp {σ2 (ε)n}).(75)

Further, the inequalities Γ(2) <
(
εn
2

)
and t− l = i+h ≥ 2 (see Lemma 2.2) and relation

(14) allow one to rewrite the sum S2;1;2 (n;Q
∗
t ) as follows:

(76) S2;1;2 (n;Q
∗
t ) =

3∑
l=1

S
(l)
2;1;2 (n;Q

∗
t ) ,

where

S
(l)
2;1;2 (n;Q

∗
t ) =

n∑
t=3

(
n

t

) ∑
q∈Rl

(
t

q

) ∑
i+h=q

q!

i!h!
Q∗

t , l = 1, 2, 3.

The closed intervals Rl, l = 1, 2, 3, with integer end points are given by

R1 =

[
2;

[√
ε′n

lnn

]]
, R2 =

[[√
ε′n

lnn

]
+ 1; [ε′′n]

]
, R3 = [[ε′′n] + 1; t] ,

where ε′ and ε′′ are fixed positive numbers such that 0 < ε′, ε′′ < 1.
Taking into account (12), we have for q ∈ R1

Q∗
t ≤ 3T

(
1− 2pmin

(
q

2

)(
1 +O

(
pmin

(
q

2

)))
+ 2 exp

{
−3pmin

(
εn

2

)})T

(77)

as n → ∞. Bound (77) together with relations (3) and (35) implies

Q∗
t ≤ a123

ln 2
ln 3n

(
1− qc lnn

n
(1 +O (ε′)) + 2n− 3

2 cε
2n(1+o(1))

) ln 2
ln 3n

as n → ∞.
Thus, if q ∈ R1, then

Q∗
t ≤ a132

n exp

{
2 ln 2 (1 + o(1))

n
3
2 cε

2n(1+o(1))−1 ln 3

}(
1

nc ln 2
ln 3 (1+o(1)+O(ε′))

)q

(78)

as n → ∞. The definition of the sum S
(1)
2;1;2 (n;Q

∗
t ) and relation (78) imply

S
(1)
2;1;2 (n;Q

∗
t ) ≤ a144

n
∞∑
q=0

1

q!

(
2

nc ln 2
ln 3 (1+O(ε′))−1

)q

(79)

as n → ∞. Using equality (12), we get for q ∈ R2

Q∗
t ≤

⎛
⎝1 + 2 exp

⎧⎨
⎩−3pmin

([√
ε′n
lnn

]
+ 1

2

)⎫⎬
⎭+ 6 exp

{
−3pmin

(
εn

2

)}⎞
⎠

T

.(80)
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Now we apply (3), (35), and (80) to prove that

Q∗
t ≤

(
1 +

2

e
3
2 cε

′(1+o(1))
+

6

n
3
2 cε

2n(1+o(1))

) ln 2
ln 3n+m0

(81)

as n → ∞ for q ∈ R2.

Recalling the definition of the sum S
(2)
2;1;2 (n;Q

∗
t ) we deduce from the polynomial for-

mula and bound (81) that

S
(2)
2;1;2 (n;Q

∗
t ) ≤ a152

neσ3(ε
′′)n

(
1 +

2

e
3
2 cε

′(1+o(1))
+

6

n
3
2 cε

2n(1+o(1))

) ln 2
ln 3n

(82)

as n → ∞. For q ∈ R3, we take into account equality (12) and similarly to (82) find that

Q∗
t ≤

(
1 +

2

n
3
2 c(ε

′′)2n(1+o(1))
+

6

n
3
2 cε

2n(1+o(1))

) ln 2
ln 3n+m0

(83)

as n → ∞. Again using the polynomial formula together with bound (83) we obtain

S
(3)
2;1;2 (n;Q

∗
t ) ≤ a164

n(84)

as n → ∞. Combining (76), (79), (82), and (84) we get

S2;1;2 (n;Q
∗
t ) ≤ a174

n (1 + o(1))(85)

as n → ∞. Further, let Γ(3) <
(
εn
2

)
, t− i ≥ 2. Then

S2;1;3 (n;Q
∗
t ) =

3∑
l=1

S
(l)
2;1;3 (n;Q

∗
t ) ,

where

S
(l)
2;1;3 (n;Q

∗
t ) =

n∑
t=3

(
n

t

) ∑
q∈Rl

(
t

q

) ∑
l+h=q

q!

l!h!
Q∗

t , l = 1, 2, 3.

This representation together with (15) allows one to prove similarly to (85) that

S2;1;3 (n;Q
∗
t ) ≤ a184

n (1 + o(1))(86)

as n → ∞. Now we derive inequality (69) with k = 1 from relations (68), (74), (75),
(85), and (86).

Next we show that, for k = 2,

S2;k (n;Q
∗
t ) ≤ a195

ln 2
ln 3neσ4(ε)n(87)

as n → ∞.
Indeed, relations (3), (12), (35), and (68) imply that, for k = 2,

(88) S2;k (n;Q
∗
t ) ≤ a205

ln 2
ln 3n

⎛
⎝ ∑

1≤t1<t2≤4

S2;k;t1,t2 (n; 1)

⎞
⎠

as n → ∞. Then the inequalities Γ(t1) <
(
εn
2

)
and Γ(t2) <

(
εn
2

)
, where 1 ≤ t1 < t2 ≤ 4,

together with (13)–(16) yield that the parameters i, l, and h on the right hand side
of (62) do not exceed εn. This, in turn, implies the bound

max
1≤t1<t2≤4

S2;2;t1,t2 (n; 1) ≤ a21e
σ5(ε)n,
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whence

(89)
∑

1≤t1<t2≤4

S2;2;t1,t2 (n; 1) ≤ a22e
σ5(ε)n.

Now inequality (87) with k = 2 follows from (88) and (89).
Next we prove that

S2;k (n;Q
∗
t ) ≤ a237

ln 2
ln 3neσ6(ε)n(90)

for k = 3 as n → ∞.
Indeed, relations (3), (12), (35), and (68) imply that

(91) S2;k (n;Q
∗
t ) ≤ a247

ln 2
ln 3n

⎛
⎝ ∑

1≤t1<t2<t3≤4

S2;k;t1,t2,t3 (n; 1)

⎞
⎠

for k = 3 as n → ∞.
The bound ∑

1≤t1<t2<t3≤4

S2;3;t1,t2,t3 (n; 1) ≤ a25e
σ7(ε)n(92)

is proved analogously to (89). Then (91) and (92) prove inequality (90) for k = 3.
Finally, we show that

(93) S2;k (n;Q
∗
t ) ≤ a264

n (1 + o(1))

for k = 4 as n → ∞. Note that the parameters i, l, and h on the right hand side of (62)
are such that

(94) max (i, l, h) < εn.

Inequality (94) follows from Γ(r) <
(
εn
2

)
, r = 1, . . . , 4, in view of (13)–(16).

In particular, inequality (94) allows one to represent S2;4 (n;Q
∗
t ) in the following form:

(95) S2;4 (n;Q
∗
t ) =

4∑
p=1

S
(p)
2;4 (n;Q

∗
t ) ,

where

S
(p)
2;4 (n;Q

∗
t ) =

∑
t∈Rp

(
n

t

) ∑
i+l+h=t

t!

i! l!h!
Q∗

t , p = 1, . . . , 4.(96)

The closed intervals Rp, p = 1, . . . , 4, whose end points are integers, are equal to

R1 = [3; 7] , R2 =

[
8;

[
n

ln2 n

]]
, R3 =

[[
n

ln2 n

]
+ 1;

[
δn

lnn

]]
,

R4 =

[[
δn

lnn

]
+ 1; [εn]

]
,

where δ is a constant such that 0 < δ < 2
3a2

.
We show that

(97) S
(1)
2;4 (n;Q

∗
t ) ≤ a274

n (1 + o(1))

as n → ∞. If t = 3, the inequalities i + l ≥ 1, t − i ≥ 2, and t− l ≥ 2 (see Lemma 2.2)
imply that i ∈ {0, 1}, l ∈ {0, 1}, and i+l �= 0. Further, we consider separately all possible
combinations of the parameters i and l.
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1. If i = 1 and l = 0 or i = 0 and l = 1, then we derive from (12)—(16) that

(98)

(
n

3

) ∑
i+l+h=3

3!

i! l!h!

T∏
μ=1

(
1 + 2

(
4∑

r=1

(1− 3pμ)
Γ(r)

))

=

(
n

3

) T∏
μ=1

(
1 + 4 (1− 3pμ)

3
+ 2 (1− 3pμ)

2
+ 2 (1− 3pμ)

)
.

In view of (3), (35), and (98) we deduce that

(99)

(
n

3

) ∑
i+l+h=3

3!

i! l!h!

T∏
μ=1

(
1 + 2

(
4∑

r=1

(1− 3pμ)
Γ(r)

))
≤ a284

n

n
6c ln 2
ln 3 (1+o(1))−3

as n → ∞.
2. If i = 1 and l = 1, then similarly to the proof of (99) we obtain

(100)

(
n

3

) ∑
i+l+h=3

3!

i! l!h!

T∏
μ=1

(
1 + 2

(
4∑

r=1

(1− 3pμ)
Γ(r)

))
≤ a294

n

n
4c ln 2
ln 3 (1+o(1))−3

as n → ∞.
With the help of relations (99) and (100) we obtain that, for t = 3,

(101)

(
n

t

) ∑
i+l+h=t

t!

i! l!h!

T∏
μ=1

(
1 + 2

(
4∑

r=1

(1− 3pμ)
Γ(r)

))
≤ a304

n

na31(1+o(1))

as n → ∞. Now one can easily check that bound (101) holds for t = 4, . . . , 7, whence we
derive inequality (97).

Then we show that

(102) S
(2)
2;4 (n;Q

∗
t ) ≤ a324

n
∞∑
t=0

1

t!

(
3

nc ln 2
ln 3 (1+o(1))−1

)t

as n → ∞.
Put tp,min = mint∈Rp

t and tp,max = maxt∈Rp
t for p = 2, 3.

Taking into account relation (12) and Lemma 3.4 we get for t ∈ Rp, p = 2, 3, that

(103)

Q∗
t ≤

(
1 + 2

(
1 + (1− 3pmin)

t
4 (

t
2−1) + 2 (1− 3pmin)

( t
2−1)

))T

≤
(
9− 3pmint

(
1− 2

tp,min

)
Ht

)T

,

where

Ht =
tp,min

4
+ 2− 3pmin

(
tp,max

2
− 1

)(
1

2

(
tp,min

4

)2

+ 1

)
.

Using (3), (35), and (103) (for p = 2), we get, for t ∈ R2,

(104) Q∗
t ≤ a334

n

(
1

nc ln 2
ln 3 (1+o(1))

)t

as n → ∞. The definition of S
(2)
2;4 (n;Q

∗
t ) and inequality (104) complete the proof of (102).

Next we prove that

S
(3)
2;4 (n;Q

∗
t ) ≤ a344

n

(
3 ln2 n

nc ln 2
ln 3 (1−

3cδ
2 )(1+o(1))

) n
ln2 n

∞∑
t=0

(
3 ln2 n

nc ln 2
ln 3 (1−

3cδ
2 )(1+o(1))

)t

(105)
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as n → ∞. Taking into account (3), (35), and (103) (for p = 3), we obtain, for t ∈ R3,

(106) Q∗
t ≤ a354

n

(
1

nc ln 2
ln 3 (1−

3cδ
2 )(1+o(1))

)t

as n → ∞. Thus bound (105) follows from (96) and (106).
Then we show that

S
(4)
2;4 (n;Q

∗
t ) ≤ a362

n exp {σ8 (ε)n}
(
1 +

2

exp
{
3
2cδ (1 + o(1))

}
) ln 2

ln 3n

(107)

as n → ∞. Relations (3) and (35) together with Lemma 3.4 imply that

(108) Q∗
t ≤ a372

n

(
1 +

2

exp
{
3
2cδ (1 + o(1))

}
) ln 2

ln 3n

as n → ∞. Relation (94) proves that

(109) S
(4)
2;4 (n; 1) ≤ a38n

1/2 exp {σ8 (ε)n}

in view of the polynomial formula. Considering (96), (109), and (108) we get inequal-
ity (107).

Combining (95), (97), (102), (105), and (107) we obtain (93).
For S2 (n;Q

∗
t ), relations (67), (69), (87), (90), and (93) imply

S2 (n;Q
∗
t ) ≤ a394

n (1 + o(1))(110)

as n → ∞. Now S (n;Q∗
t ) ≤ a404

n (1 + o(1)) as n → ∞ by (63), (66), and (110). Thus
bound (60) holds in view of relation (61). Inequalities (59) and (60) prove (55).

Summarizing, if (35) holds, then (54) and (55) hold as well. This together with (56)
allows us to conclude that relation (53) holds, too. In turn, this contradicts the property
that, with probability approaching zero as n → ∞, there exists a solution of system (1)
that belongs to the set Mn. �

5. Proof of Theorem 1.2

Proof. Theorem 1.2 follows from (41), (44), (47), and (51). �

Examples to Theorem 1.2

1. 2. 3. 4.
ε1 0.1 0.05 0.05 0.01
ε2 0.02 0.01 0.01 0.01
c 5 10 10 100
γ0 0.7 1 1 1
γ1 0.5 0.4 0.4 1
n 500 1000 1000 10000

An lnn lnn ln lnn
√
lnn

Z1 1.1171× 10−3 5.1482× 10−4 1.1217× 10−1 3.5646× 10−2
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Examples to Theorem 1.3

1. 2. 3. 4.
ε1 0.1 0.05 0.05 0.01
ε2 0.02 0.01 0.01 0.01
c 5 10 10 100
β0 0.7 1 1 1
β1 0.5 0.4 0.4 1
n 500 1000 1000 10000

An lnn lnn ln lnn
√
lnn

a1 10 15 50 100
α 0.2 0.1 0.2 0.23
Z2 2.2747× 10−1 6.8333× 10−1 1.1965× 10−1 3.9291× 10−2

6. Proof of Theorem 1.3

The assumptions of Theorem 1.3 imply that the terms D1, D2, and D3 on the right
hand side of relation (51) are such that D1 ≤ D′

1, D2 ≤ D′
2, and D3 ≤ D′

3 (this can
be proved similarly to the proof of inequalities (41), (44), and (47), respectively), where
D′

1 = e/n2α,

D′
2 = 2nσ(ε2)

(
1

3
+

2

3e
3
2β1

)n ln 2
ln 3

, D′
3 =

⎛
⎝exp

{
2

n
3
2
ncε22

}
3

⎞
⎠

An

exp

{
2 ln 2

n
3
2ncε

2
2−1 ln 3

}
.

The above bounds prove Theorem 1.3.

7. Conclusion

A necessary and sufficient condition is found showing the probability of the random
event that a second order system of nonlinear random equations over the field GF(3) has
a solution that belongs to a given set of vectors (Theorem 1.1). The condition is given
in terms of the number of equations and number of unknowns.

Under various assumptions concerning the parameter c, defined by equality (3), several
bounds are found for the above probability (Theorems 1.2 and 1.3). Some examples are
given for Theorems 1.2 and 1.3.
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