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APPROXIMATION OF RANDOM VARIABLES BY FUNCTIONALS

OF THE INCREMENTS OF A FRACTIONAL BROWNIAN MOTION
UDC 519.21

G. M. SHEVCHENKO AND T. O. SHALAIKO

Abstract. A lower estimate is given for the accuracy of approximation of random
variables by functionals of the increments of a fractional Brownian motion with Hurst
index H > 1

2
.

1. Introduction

A centered Gaussian stochastic process with the covariance function

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
is called a fractional Brownian motion with Hurst index H > 1

2 and is denoted by

BH =
{
BH

t , t ≥ 0
}
.

The fractional Brownian motion BH with H > 1
2 possesses the properterty of strong

dependence. Because of this property, the fractional Brownian motion is a popular model
for the long range dependence phenomena in financial mathematics.

When numerically solving the stochastic differential equations driven by the fractional
Brownian motion with the help of the time discretization schemes (Euler or Milstein
schemes, etc.), a natural question arises on the accuracy of approximation of functionals of
a solution of the stochastic differential equation (that is, the functionals of the fractional
Brownian motion) by appropriate functions of the increments of the fractional Brownian
motion.

It is known in the theory of the approximation of solutions of stochastic differential
equations driven by the fractional Brownian motion that the precise rate of approxi-
mation of a solution of the equation in the Euler scheme is δ2H−1, where δ denotes the
diameter of a partition (see, for example, [3, 6, 7]). It is also proved in [3] that the precise
rate of approximation in the Milstein scheme is |log δ|

(
δH + δ2H−1/2

)
. Since the approx-

imations for both schemes are constructed from the increments of a fractional Brownian
motion in the one-dimensional case, the results mentioned above provide upper bounds
for the accuracy of the approximation of solutions of stochastic differential equations by
functionals of the increments of a fractional Brownian motion.

The aim of this paper is to prove lower bounds for the accuracy of approximation of
an arbitrary random variable by the functionals of the increments of fractional Brownian
motion. It is clear that an assumption about the sufficient nondegeneracy should be
imposed on the functional in this case. A similar problem is considered by Neuenkirch [8]
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for the functional being equal to the value of a solution {Xt, t ∈ [0, 1]} of the stochastic
differential equation

dXt = a(Xt) + b(Xt) dB
H
t

at the point t = 1 under some restrictions on the coefficients of the stochastic differential
equation.

Theorem 1.1. Let a centered, square integrable, and σ{BH
t , t ≤ T}-measurable random

variable ξ be such that the derivative of f1 in the Itô–Wiener decomposition is bounded
and nonvanishing in a set of positive Lebesgue measure. If the diameter δ = T/n of an
equidistant partition π = {iT/n}ni=0 of the interval is sufficiently small, then

E[(ξ − F )2] ≥ Cδ4H

for an arbitrary functional F of the increments of a fractional Brownian motion, where
C = C(ξ) is a positive constant that depends on ξ.

2. Preliminaries

We briefly discuss some basic notions and results concerning the white noise space for
the fractional Brownian motion; see [1] for details.

Let S(R) be the Schwartz space of rapidly decreasing functions and let S ′(R) be

the dual space. On the white noise space (S ′(R),BS′(R)), consider the measure PH ,
H ∈ (1/2, 1), defined by ∫

S′(R)

ei〈ω,f〉 dPH(ω) = e−‖f‖2
H/2,(1)

where

‖f‖2H = H(2H − 1)

∫∫
R2

f(t)f(s)|t− s|2H−2 dt ds.

Such a measure exists in view of the Minlos–Sazonov theorem. On this space, we define
a fractional Brownian motion BH =

{
BH

t , t ∈ [0, T ]
}
by letting BH

t = 〈ω, I[0,t](·)〉. Here

and in what follows we assume that H > 1
2 . One can prove that BH is a centered

Gaussian stochastic process with the covariance function

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
.

By F = {Ft, t ∈ [0, T ]}, we denote the filtration generated by the fractional Brownian
motion BH , that is, Ft = σ

{
BH

s , s ≤ t
}
. For brevity, we let FT = F .

The completion of the space S(R) with respect to the norm ‖ · ‖H is denoted by L2
H(R).

Note that this space contains the usual functions as well as distributions. Since S(R) is
obviously a separable space with respect to the norm ‖ · ‖H , we conclude that the space
L2
H(R) possesses the same property. Further, let {en, n ≥ 1} be an orthonormal basis in

the space L2
H(R).

The nth Hermite polynomial is defined by

hn(x) := (−1)n · ex2/2 dn

dxn

(
e−x2/2

)
.

Let the symbol I stand for the set of finite multiindices, that is, for the set of sequences
α = (α1, α2, . . . ) containing only a finite number of nonzero terms. Let

Kα(ω) := hα1
(〈ω, e1〉)hα2

(〈ω, e2〉) . . .

for α ∈ I.
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Definition 2.1. The set of all ψ(ω) =
∑

α∈I aαKα(ω) ∈ L2
(
PH

)
such that the norm

‖ψ‖2H,k :=
∑
α∈I

α! a2α(2N)
kα

is finite for all k ∈ N is called the Hida space of test functions (S)H , where

γ! =

∞∏
j=1

γj !, (2N)γ =

∞∏
j=1

(2j)γj

for γ ∈ I .

We introduce the Wick product in the space (S)H for two elements

φ(ω) =
∑
α∈I

aαKα(ω) and ψ(ω) =
∑
β∈I

bβKβ(ω)

belonging to (S)H as follows:

(φ � ψ)(ω) =
∑

α,β∈I

aαbβKα+β(ω).

Now we define L̂2
H([0, T ]n) as the symmetric tensor product of n copies of the space

L2
H([0, T ]). By Ln, we denote the set of all functions of L̃2

H([0, T ]n that are of the
following form:

f(s1, . . . , sn) =
∑

1≤k1,...,kn≤k

ak1,...,kn
ek1

(s1)ek2
(s2) · · · ekn

(sn).

For such an element, the n-tuple integral is defined by

In(f) =
∑

1≤k1,...,kn≤k

ak1,...,kn

∫ T

0

ek1
(s1) dB

H
s1 �

∫ T

0

ek2
(s2) dB

H
s2 � · · · �

∫ T

0

ekn
(sn) dB

H
sn .

Each element of the space L̂2
H([0, T ]n) is the limit of a sequence of elements of Ln. For

an arbitrary element

f ∈ L̂2
H([0, T ]n),

the integral In(f) is introduced as the limit of the integrals of a corresponding approxi-
mating sequence of functions belonging to Ln with the help of the following isometry:

E |In(f)|2 = n! ‖f‖2H .

Moreover, multiple integrals of different orders are orthogonal, that is,

E[In(f)Im(g)] = n! 〈f, g〉HI(n = m).

This property allows one to expand random variables with respect to orthogonal multiple
integrals.

Theorem 2.1 (Itô–Wiener expansion). Let F ∈ L2(PH). Then there are elements

fn ∈ L̂2
H([0, T ]n), n ≥ 0,

such that

F (ω) =

∞∑
n=0

In(fn),(2)

where I0(f0) := E[F ].
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3. Main results

Let ξ ∈ L2
(
PH

)
. How precisely can ξ be approximated by the increments of a frac-

tional Brownian motion? Especially, what is the lower bound for the accuracy of such
an approximation?

More precisely, given a partition π = {0 = t0 < t1 < · · · < tn = T}, put
ΔπB

H
k = BH

tk
− BH

tk−1
.

We consider approximations of ξ by the following functionals:

F = F
(
ΔπB

H
1 ,ΔπB

H
2 , . . . ,ΔπB

H
n

)
.

Without loss of generality, one can assume that E ξ = 0 and T = 1. To find a lower
bound for the accuracy of approximation of ξ by stochastic integrals one can restrict the
consideration to the approximation of a stochastic integral of a nonrandom function by
linear combinations of the increments

n−1∑
k=0

akΔπB
H
k .

More specifically, the following result holds.

Lemma 3.1. Let ξ ∈ L2
(
PH

)
admit the Itô–Wiener expansion

ξ =
∞∑

n=1

In(fn),

and let G = G
(
ΔπB

H
1 , . . . ,ΔπB

H
n

)
be an arbitrary functional of the increments. Then

there are a0, a1, . . . , an−1 ∈ R such that

Var(ξ −G) ≥ Var

(
I1(f1)−

n−1∑
k=0

akΔπB
H
k

)
.

Proof. Let

G =

∞∑
n=0

In(gn)

be the Itô–Wiener expansion of G. The members of the Itô–Wiener expansion are or-
thogonal and, moreover,

Var(ξ −G) =
∑
n≥1

n! ‖fn − gn‖2
̂L2
H([0,T ]n)

≥ ‖f1 − g1‖2
̂L2
H([0,T ])

= Var(I1(f1)− I1(g1)).
Now we show that I1(g1) is a linear combination of increments. Note that I1(g1) is

an orthogonal projection of G onto the space V1 of stochastic integrals of nonrandom
functions. Let

S =
n−1∑
k=0

akΔπB
H
k

be the orthogonal projection of G onto the linear span V of the increments ΔπB
H
k ,

k = 0, . . . , n − 1, which is a subspace of V1. By the three perpendiculars theorem,
S also is the orthogonal projection of I(g1) onto V . Thus the difference I(g1) − S is
orthogonal to V , that is, it is orthogonal to all increments ΔπB

H
k , k = 0, . . . , n−1. Since

these random variables are Gaussian, the difference I(g1) − S does not depend on the
increments. In particular, I(g1)− S does not depend on G. This obviously implies that
I(g1)− S = 0. �
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In what follows we need the following property of the fractional Brownian motion that
is called the property of asymptotically independent increments.

Theorem 3.1. Let H > 1
2 and let BH = {BH , t ∈ [0, T ]} be the fractional Brownian

motion with Hurst index H. Then

(3) Var

[ n∑
j=1

ujΔπB
H
j

]
≥ C

n∑
j=1

u2
j Var

[
ΔπB

H
j

]
,

where uj ∈ R, j = 1, . . . , n, are arbitrary real numbers and where C is a certain constant
that does not depend on n and on uj, j = 1, . . . , n.

Proof. First we recall that the increments of the fractional Brownian motion are sta-
tionary, and thus the covariance matrix of the increments of this stochastic process is
a Töplitz matrix. Further, it is known that the spectral density of increments of the
fractional Brownian motion is separated from zero in the case where the Hurst index
is larger than 1

2 (see [4]). Applying [5, Proposition 5.2.b)] we complete the proof of
inequality (3). �

First we obtain an upper bound for the distance between the integral
∫ 1

0
f(s) dBH

s

and the following smoothed version of an integral sum,

Sπζ
(f) :=

l−1∑
k=0

1

ζ

∫ tk+1

tk

f(s) ds ·
(
BH

tk+1
−BH

tk

)
,

that corresponds to the uniform partition πζ = {0 = t0 < t1 < · · · < tl = 1} of the
diameter ζ = 1/l.

Lemma 3.2. Let H > 1
2 and let f : [0, 1] → R be a function for which the absolute values

of the derivative are bounded from above by a number M > 0. Then

(4) E

∣∣∣∣∫ 1

0

f(s) dBH
s − Sπζ

(f)

∣∣∣∣2 ≤ M2ζ2.

Proof. In view of the isometry between L2
(
PH

)
for L2

H for integrals with respect to the
fractional Brownian motion, the left hand side of inequality (4) equals

H(2H − 1) · 1

ζ2

l−1∑
k=0

l−1∑
j=0

∫ tk+1

tk

∫ tj+1

tj

∫ tk+1

tk

∫ tj+1

tj

|f(z)− f(t)|

× |f(u)− f(v)| · |u− z|2H−2 dv dt du dz.

By the assumption, f : |f(u) − f(v)| ≤ M |u − v|, and thus the latter double integral is
bounded from above by

ζ2 ·M2 ·H(2H − 1)

∫ 1

0

∫ 1

0

|s− t|2H−2 ds dt = M2ζ2,

which had to be proved. �

In what follows we consider partitions πδ = {s′k = k/n}nk=0 of diameter δ = 1/n

and sub-partitions πη ⊆ πδ, πη = {si = i/nm}n
m

i=0, of diameter η = 1/nm, where n is
a sufficiently large number and m is a certain positive integer number which will be
specified later.

The following result provides a lower bound for the distance between the smoothed
integral sums evaluated for a partition and for its sub-partition.
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Theorem 3.2. Let a function f : [0, 1] → R be such that |f ′(x)| ≤ M and

λ{x : f ′(x) �= 0} > 0

for all x ∈ [0, 1]. Then

n−1∑
i=0

i+nm−1−1∑
k=i

(
1

η

∫ sk+1

sk

f(s) ds− 1

δ

∫ s′i+1

s′i

f(t) dt

)2

≥ Kδ2−m,(5)

where the constant K does not depend on n and on m.

Proof. Without loss of generality, we may assume that λ{x : f ′(x) > 0} > 0. Hence there
exists a number ε > 0 such that λ{x : f ′(x) > ε} > 0. By the mean value theorem,

1

η

∫ sk+1

sk

f(s) ds− 1

δ

∫ s′i+1

s′i

f(t) dt =

∫
[θi,θi

k]

f ′(x) dx,

where θi ∈ [s′i, s
′
i+1] and θik ∈ [sk, sk+1]. Further, we denote the left hand side of (5)

by S and put A := {x : f ′(x) > ε}. For a given α ∈ (0, 1/4), there exists an interval
[a, b] ⊂ [0, 1] such that λ(A ∩ [a, b]) > (b − a)(1 − α) by the Lebesgue density theorem.
At least half of the intervals [s′i, s

′
i+1] that belong to [a, b] are such that

λ(A ∩ [s′i, s
′
i+1]) > λ([s′i, s

′
i+1])(1− 2α).(6)

Indeed, let k1 be the total number of intervals for which inequality (6) holds, while k2 is
the total number of intervals for which inequality (6) fails. Then

λ(A ∩ [a, b]) ≤ k1δ + k2δ(1− 2α)

or

(b− a)(1− α) ≤ k1δ +

(
b− a

δ
− k1

)
δ(1− 2α),

which is equivalent to (b − a)α ≤ 2αδk1. This implies that k1 ≥ (b − a)/(2δ) and thus
completes the proof.

Further,

S ≥
∑′ i+nm−1−1∑

k=i

(∫
[θi,θi

k]

f ′(s) ds

)2

≥
∑′ i+nm−1∑

k=i

1

2

(∫
[θi,θi

k]∩A

f ′(x) dx

)2

−
(∫

[θi,θi
k]∩Ac

f ′(x) dx

)2

,

where the symbol
∑′

means the summation for those i = 0, . . . , n−1 for which (6) holds.
Now we estimate

i+nm−1∑
k=i

(∫
[θi,θi

k]∩A

f ′(x) dx

)2

and
i+nm−1∑

k=i

(∫
[θi,θi

k]∩Ac

f ′(x) dx

)2

separately.
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For the first sum, we denote by κ := δ/η the total number of the intervals of the
partition πη belonging to each interval of the partition πδ. Then

i+nm−1∑
k=i

(∫
[θi,θi

k]∩A

f ′(x) dx

)2

≥
i+κ−1∑
k=i

ε2λ2
([
θi, θik

]
∩ A

)
≥ ε2

1

κ

(
i+κ∑
k=i

λ
([
θi, θik

]
∩ A

))2

.

Let θi ∈ [sm, sm+1]. Then the latter expression is not less than

1

κ

(
i+m−1∑
k=i

λ([sk+1, sm] ∩ A) +

κ∑
k=i+m

λ([sm+1, sk] ∩ A)

)2

=
1

κ

(
m−1∑
k=1

kλ([sk, sk+1] ∩A) +
κ−2∑
k=m

(κ− k + 1)λ([sk, sk+1] ∩ A)

)2

≥ C1
1

κ
(1− 4α)2η2κ4.

The latter inequality holds, since

λ([sk, sk+1] ∩ A) ≥ λ([sk, sk+1])(1− 4α)

for at least half of the intervals [sk, sk+1] with k = i, . . . , i+ κ− 1.
In view of inequality (6),

i+κ−1∑
k=i

(∫
[θi,θi

k]∩Ac

f ′(x) dx

)2

≤ M24α2δ2 · δη−1.

Here we have used the property that f ′(x) ≤ |f ′(x)| ≤ M and that the integral of a
positive function over the interval [θi, θik] does not exceed the corresponding integral over
the interval [s′i, s

′
i+1]. It is clear that

C1(1− 4α)2 −M24α2 > C2 > 0

for an appropriate α, whence

S >
b− a

2δ
δ3η−1C2 = C3δ

2η−1 = C3δ
2−m.

The proof is complete. �

Now we are in a position to prove the main result.

Theorem 3.3. Let a random variable ξ be such that ξ ∈ L2
(
PH

)
. If the function f1 in

its Itô–Wiener expansion (2) is differentiable and such that

|f ′(x)| ≤ M, x ∈ [0, 1],

λ{x ∈ [0, 1] : f ′(x) �= 0} > 0,

then there exists a constant C > 0 such that

E
[
(ξ − F )2

]
≥ Cδ4H

for an arbitrary uniform partition π = πδ = {0 = t0 < t1 < · · · < tn = 1} of a
sufficiently small diameter δ and for all functionals F of increments of the fractional
Brownian motion defined on this partition.
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Proof. The Itô–Wiener expansion of the random variable ξ is given by

(7) ξ =

∞∑
n=0

In(fn).

By Lemma 3.1, there exists a sequence of numbers a0, a1, . . . , an−1 ∈ R such that

Var(ξ − F ) ≥ Var

(
I1(f1)−

n−1∑
k=0

akΔπB
H
k

)
.

To simplify the notation, put f = f1. In fact, we need to estimate the deviation between

I1(f) =
∫ 1

0

f(s) dBH
s

and
n−1∑
k=0

ak

(
BH

s′k+1
−BH

s′k

)
.

We split each interval of the partition πδ into δ/η intervals of length η. Further,

E

⎡⎣(∫ 1

0

f(s) dBH
s −

n−1∑
k=0

ak

(
BH

s′k+1
−BH

s′k

))2
⎤⎦

= E

⎡⎣(∫ 1

0

f(s) dBH
s − Sπη

(f) + Sπη
(f)−

n−1∑
k=0

ak

(
BH

s′k+1
−BH

s′k

))2
⎤⎦

≥ 1

2
E

⎡⎣(Sπη
(f)−

n−1∑
k=0

ak

(
BH

s′k+1
−BH

s′k

))2
⎤⎦− E

[(∫ 1

0

f(s) dBH
s − Sπη

(f)

)2
]

=: D1 +D2,

where

Sπη
(f) =

nm−1∑
k=0

1

η

∫ sk+1

sk

f(u) du
(
BH

sk+1
−BH

sk

)
.

First we estimate from below the term D1 that can be rewritten as follows:

D1 = E

∣∣∣∣∣
nm−1∑
k=0

1

η

∫ sk+1

sk

f(s)ds · �BH
sk

−
n−1∑
k=0

ak�BH
s′k

∣∣∣∣∣
2

.

Note that each interval
[s′k, s

′
k+1), k = 0, . . . , n− 1,

contains nm−1 points si, i = k, . . . , k + nm−1 − 1. Hence

Δ = E

∣∣∣∣∣
nm−1∑
k=0

(
1

η

∫ sk+1

sk

f(s) ds− a[ k

nm−1

])�BH
sk

∣∣∣∣∣
2

.

Applying Theorem 3.1 we get

Δ ≥ C · η2H ·
nm−1∑
k=0

(
1

η

∫ sk+1

sk

f(s)ds− a[ k

nm−1

])2

= Cδ2mH
n−1∑
k=0

k+nm−1−1∑
i=k

(
1

η

∫ si+1

si

f(s) ds− ak

)2

.
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Minimizing each sum

k+nm−1−1∑
i=k

(
1

η

∫ si+1

si

f(s) ds− ak

)2

with respect to ak, k = 0, . . . , n− 1, we prove that the latter double sum is not less than
its value calculated for the sequence

ai =
1

nm−1
· 1
η

i+nm−1−1∑
k=i

∫ sk+1

sk

f(u) du =
1

δ

∫ s′i+1

s′i

f(u) du,

namely

D1 ≥ Cδ2mH
n−1∑
k=0

k+nm−1−1∑
i=k

(
1

η

∫ sk+1

sk

f(s) ds− 1

δ

∫ s′k+1

s′k

f(t) dt

)2

.

By Theorem 3.2, D1 ≥ C1δ
2mH−m+2. On the other hand, D2 ≤ −C2δ

2m by Lemma 3.2
applied to the partition πη. Thus

E

⎡⎣(∫ 1

0

f(s)dBH
s −

n−1∑
k=0

ak

(
BH

s′k+1
−BH

s′k

))2
⎤⎦ ≥ C1δ

2mH−m+2 − C2δ
2m.

Putting m = 2 (this gives the best estimate), we prove that the latter expression is not
less than C1δ

4H for sufficiently small δ. Theorem 3.3 is proved. �

Remark 3.1. If H = 1
2 , the accuracy of approximation in the Milstein scheme is of order

δ2 = δ4H ; that is, the estimate of the order of accuracy obtained in Theorem 3.3 is precise
if H = 1

2 (note however that Theorem 3.3 is proved for H > 1
2 only). The question on

whether the estimate in Theorem 3.3 is precise for H > 1
2 is still under consideration.

Example 3.1. Consider the Ornstein–Uhlenbeck equation with the fractional Brownian
motion

Xt = X0 +

∫ t

0

(
aXs ds+ b dBH

s

)
, t ∈ [0, 1],

where X0, a ∈ R, and b > 0.
It is well known that

(8) Xt = X0e
at + b

∫ t

0

ea(t−s) dBH
s , t ∈ [0, 1],

is a solution of this equation.
Let ξ = X1. Then equality (8) provides the Itô–Wiener expansion for ξ, namely

f0 = X0e
a, f1(t) = bea(1−t), fn = 0, n ≥ 2.

It is easy to see that the derivative of the function f1 is bounded and does not vanish.
Hence all the assumptions of Theorem 3.3 hold for ξ.

4. Concluding remarks

The problem on the approximation of random variables by functionals of increments of
the fractional Brownian motion is studied in this paper. A lower bound for the accuracy of
the approximation is obtained for a certain class of random variables (namely, for random
variables whose Itô–Wiener expansion is such that the function f1 is not constant).
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