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ADAPTIVE TEST ON MEANS HOMOGENEITY

BY OBSERVATIONS FROM A MIXTURE
UDC 519.21

R. E. MAĬBORODA AND O. V. SUGAKOVA

Abstract. We consider the problem of testing the homogeneity of two components
of a mixture with varying mixing probabilities and construct an adaptive test that
minimizes the asymptotic probability of error of the second kind for local alternatives.

1. Introduction

Finite mixture models are often used to fit statistical data in biology and sociology
(see, for example, [11, 9]). One of the problems arising when analyzing such data is to
test the homogeneity of certain probability characteristics (means, variances, distribution
functions, etc.) for different components of a mixture. In the current paper, we are
concerned with the problem of testing the homogeneity of certain functional moments of
two components of a mixture. We assume that the concentrations of components (mixing
probabilities) of a mixture are known but may vary with observations. This problem is
studied in the paper [10] where we propose a test based on the minimax estimators of
the corresponding moments.

A natural generalization of this approach is to use a linear combination of observations
with some weights b as the test statistics. Different weights b generate tests of different
powers (for a given significance level). To choose optimal weights b we investigate the
powers of tests at local alternatives and choose bopt such that the corresponding asymp-
totic power is maximal. Since the optimal weights bopt depend on unknown distributions

of components, the resulting adaptive test uses estimators b̂ for bopt. The main result of

the paper is that the test based on b̂ is of the same asymptotic power as the test based
on the optimal weights bopt.

The results of the paper [10] are generalized in [8] for solving the problem of testing
the homogeneity of moments for more than two components. Minimax estimators for
moments are used in [8] to construct the tests. A test for equality of distributions of two
components based on wavelet estimators of the probability density is considered in [7].
A test for the homogeneity of mixtures based on censored data is proposed in [5]. Other
statistical problems related to mixtures with varying concentrations are considered in
the papers [3, 6].

The paper is organized as follows. Section 2 contains the setting of the problem. Some
auxiliary definitions and results concerning the estimation of functional moments by using
the observations obtained from a mixture with varying concentrations are provided in
Section 3. A general description of tests with arbitrary nonrandom weight coefficients b
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is given in Section 4. An investigation of the asymptotic power of such tests at local
alternatives is presented in Section 5. An adaptive test with estimated optimal coefficients
is constructed and the main result about its optimality is given in Section 6. Section 7 is
devoted to a description of results obtained with the help of computer simulation; here
we compare the powers of adaptive and nonadaptive tests for samples of a fixed size.
The proofs are collected in the Appendix.

2. Setting of the problem

The statistical data in the model of mixtures with varying concentrations is a set
Xn = (ξ1;n, . . . , ξn;n) of observations ξj;n that are independent random elements of some
probability space X with the distribution

(1) P{ξj;n ∈ A} = Ψj;n(A) =

M∑
i=1

pij;nFi(A),

where Fi denotes the distribution of the ith component of the mixture, pij;n is the con-
centration of the ith component at the moment when the jth observation is collected
(pij;n is called the mixing probability in [4]). In the current paper, we assume that the
concentrations of components are known but the distributions are not known.

Let g : X → R be some measurable function such that the corresponding functional
moments of components

ḡi =

∫
X
g(x)Fi(dx), i = 1, . . . ,M,

are finite. The problem of testing the equality of functional moments for two components
of a mixture is considered in [10]. Without loss of generality we assume that we are
dealing with a test of the hypothesis H0 : ḡ1 = ḡ2. The test proposed in [10] is based on
the statistics being a weighted mean of the form

(2) Sn = Sn(b) =
1

n

n∑
j=1

bj;ng(ξj;n),

where bj;n = bnaivej;n are “naive” coefficients that equal the difference between minimax
coefficients (3) used to estimate ḡ1 and ḡ2. A Student type statistic S is compared in the
test with a threshold that guarantees a given asymptotic significance level α of the test.

Along with bnaivej;n , other weight coefficients can be used in statistics (2) for which the
following natural condition is satisfied:

given H0, ESn(b) = 0.

In the rest of this paper, we are dealing with the problem of choosing the optimal coef-
ficients.

3. Estimation of moments in the model of mixture

with varying coefficients

We recall some basic approaches to estimating the moments by using observations
obtained from a mixture with varying concentrations.

In what follows we denote by 〈·〉n the averaging over all observations for triangle
matrices b, pi = (pij:n, j = 1, . . . , n;n = 1, 2, . . . ). The operations written inside the
triangle brackets are understood in the coordinatewise sense. For example,

〈b〉n =
1

n

n∑
j=1

bj:n,
〈
pipk

〉
n
=

1

n

n∑
j=1

pij:np
k
j:n.
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Let 〈b〉 = limn→∞〈b〉n provided the limit exists. Consider the matrix

Γn =
(〈
pipk

〉
n

)M
i,k=1

that can be treated as the Gram matrix for the set of vectors (p1, . . . ,pM ) in the scalar
product 〈pi,pk〉n = 〈pipk〉n. Correspondingly, Γ = limn→∞ Γn.

Let det Γn �= 0. The minimax coefficients for the estimation of the distribution of ith
component of a mixture are defined by

(3) aij;n =
1

det Γn

M∑
m=1

(−1)m+iγmi;np
m
j;n,

where γmi;n is the minor (m, i) for the matrix Γn (see [4, Section 2.1] where we proved
that these coefficients are minimax). The corresponding estimator for ḡi is defined by

(4) ĝi;n =
1

n

n∑
j=1

aij;ng(ξj;n).

Asymptotic properties of these estimators are described in [4, Section 2]. In particular,
it is shown in [4] that these estimators are consistent under rather wide assumptions.

4. Constructing a nonadaptive test

Consider the statistic Sn(b) defined by equality (2). Assume that H0 : ḡ1 = ḡ2. Then
ESn(b) = 0 if

(5)
〈
b
(
p1 + p2

)〉
n
= 0,

〈
bpi

〉
n
= 0 for i = 2, . . . ,M.

In addition, if 〈bp1〉n �= 0, then ESn(b) = 〈bp1〉n(ḡ1 − ḡ2) �= 0 for ḡ1 �= ḡ2. Therefore,
small values of Sn(b) are in favor of the main (zero) hypothesis, while large deviations
from zero are in favor of the alternative. To choose the critical value for the test that
guarantees a given asymptotic significance level, we consider a Student type transforma-
tion of the statistic Sn(b). Note that its variance equals

VarSn(b) =
1

n

[
M∑

m=1

〈
(b)2pm

〉
n
g2m −

M∑
m1,m2=1

〈
(b)2pm1pm2

〉
n
gm1

gm2

]
,

where

g2m =

∫
(g(x))2 Fm(dx).

The estimator ĝi;n for ḡi is defined by (4). A natural estimator for g2m is

(6) ĝ2m;n =
1

n

n∑
j=1

amj;n(g(ξj;n))
2.

Substituting these estimators to the expression for VarS(b) in place of the corresponding
moments we get the following estimator:

Dn(b) = Dn =
1

n

[
M∑

m=1

〈
(b)2pm

〉
n
ĝ2m;n −

M∑
m1,m2=1

〈
(b)2pm1pm2

〉
n
ĝm1;nĝm2;n

]
.

Set

D∞(b) = lim
n→∞

nVarSn(b) =
M∑

m=1

〈
(b)2pm

〉
g2m −

M∑
m1,m2=1

〈
(b)2pm1pm2

〉
gm1

gm2

provided the limits exist.
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Lemma 4.1. Let

1. det Γ �= 0;
2. the limits 〈(b)2pm1pm2〉, m1,m2 = 1, . . . ,M , exist;

3. g2m < ∞, m = 1, . . . ,M .
4. D∞(b) �= 0

Then Dn(b)/VarSn(b) → 1 in probability as n → ∞.

Consider the Student type statistic

(7) Tn(b) = Tn =
Sn(b)√
Dn(b)

.

Then the test for the hypothesis H0 based on Tn(b) is written as follows:

πb(Xn) = �{|Tn(b)| > λα/2},
where λα/2 is the quantile of level 1−α/2 for the standard normal distribution. In other
words, the test πb(Xn) accepts the hypothesis H0 if |Tn(b)| ≤ λα/2, and rejects it if
|Tn(b)| > λα/2.

Using Lemma 4.1 and the asymptotic normality of Sn(b) (see [10]) we obtain the
following result.

Theorem 4.1. Let conditions 1–4 of Lemma 4.1 hold and, moreover,

sup
j,n

|bj;n| < ∞.

Then:

1. under hypothesis H0,

Tn(b) ⇒ N(0, 1) as n → ∞;

2. the asymptotic significance level of the test πb(Xn) equals

lim
n→∞

PH0
{πb(Xn) = 1} = α.

5. Asymptotic study of nonadaptive test under near alternatives

When studying the asymptotic behavior of tests under near alternatives we restrict
the consideration to the case of X = R, g(x) = x, and where the distributions Fi,
i = 2, . . . ,M , of all components, except the first one, do not depend on the size of a
sample. The distribution of the first component

(8) F1;n(x) = F1;∞(x− vn)

is fixed up to a shift parameter vn = v/
√
n. Here, F1;∞ is a fixed probability distribution

such that

(9)

∫
xF1;∞(dx) =

∫
xF2(dx),

that is, the hypothesis H0 holds for a mixture with F1 = F1;∞.
From the practical purposes, the latter assumption is not crucial. Indeed, if the dis-

tribution of the sample Xn = (ξ1;n, . . . , ξn;n) of a fixed size n is given by (1), then the set
(η1, . . . , ηn), ηj;n = g(ξj;n), is also a sample from a mixture with varying concentrations
and the distribution of the first component can be represented in the form of (8) with a
distribution function F1;∞ that satisfies condition (9) and

v =
√
n

∫
g(x)(F1(dx)− F2(dx)).
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In the framework of model (1), the hypothesis H1;n is that the distribution function
F1(x) = F1;n is given by (8) and equality (9) holds.

Put

ḡ1 =

∫
g(x)xF1;∞(dx).

The following result describes the asymptotic behavior of the probability of error of
the second kind for the test πb at alternatives H1;n.

Theorem 5.1. Let

1. det Γ �= 0;
2. 〈(b)2pm1pm2〉 exist for all m1,m2 = 1, . . . ,M ;

3. g2i < ∞ for all i = 1, . . . ,M ;
4. D∞(b) �= 0;
5. supj,n |bj;n| < ∞.

Then

β(b)
def
= lim

n→∞
PH1;n

{πb(Xn) = 0} = P{|R(b) + ζ| < λα/2},

where ζ is a standard normal random variable,

(10) R(b) =
v
〈
bp1

〉√
D∞(b)

.

6. Adaptive test

For a given significance level, the test with a minimal probability of error of the
second kind is optimal. It follows from the above asymptotic analysis that, given the
alternative H1;n, the tests πb have the minimal asymptotic probability of error of the
second kind if R(b) is maximal. Moreover, the weights b have to satisfy condition (5).
Since R(b) is not changed if b is multiplied by a constant, one can introduce an additional
normalization condition 〈bp1〉 = 1. Then the problem of maximization of R(b) reduces
to the problem of minimization of D∞(b) provided that

〈
bp1

〉
= 1,

〈
bp2

〉
= −1,

〈
bpi

〉
= 0, i = 3, . . . ,M.

The latter conditions are equivalent to conditions (5) if the normalization condition holds.
We change this problem by its “pre-limit” analog, that is, we minimize Dn(b) under the
conditions 〈

bp1
〉
n
= 1,

〈
bp2

〉
n
= −1,

〈
bpi

〉
n
= 0, i = 3, . . . ,M.

Using the Lagrange multipliers method, we obtain a solution of this conditional opti-
mization problem, namely

b = bopt =
(
boptj;n(G)

)n
j=1

,
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where

boptj;n(G) =
1

dj;n(G)

M∑
m=1

λm(G)pmj;n,

G =
(
ḡ1, . . . , ḡM , g21, . . . , g

2
M

)
,

dj;n(G,p) = dj;n(G) = Var(ξj;n) =

M∑
m=1

pmj;ng
2
m −

M∑
m1,m2=1

pm1
j;np

m2
j;nḡm1

ḡm2
,

λ(G) = (λ1(G), . . . , λM (G))T = Γ−1
n (G)(1,−1, 0, . . . , 0)T ,

Γn(G) = (Γk,l;n(G))Mk,l=1, Γk,l;n(G) =
1

n

n∑
j=1

pkj;np
l
j;n

dj;n(G)
,

Γ(G) = lim
n→∞

Γn(G).

It is clear that the existence of a solution requires the necessary condition det Γn(G) �= 0.
If det Γ(G) �= 0, then det Γn(G) �= 0 for sufficiently large n.

Theorem 6.1. Let

1. g2i < ∞ for all i = 1, . . . ,M ;
2. the limit in the definition of Γ(G) exists and is finite, det Γ(G) �= 0;
3. 〈(bopt)2pm1pm2〉 exist for all m1,m2 = 1, . . . ,M ;

4. supj,n |b
opt
j;n | < ∞.

Then the minimal value of β(b) is attained at b = bopt.

Since bopt depends on unknown parameters of the model G, these weight coefficients
cannot be used explicitly for constructing a test. The adaptive approach suggests to
estimate G by an estimator, say, by

Ĝ =
(
ĝ1;n, . . . , ĝM ;n, ĝ21;n, . . . , ĝ

2
M ;n

)
,

and then substitute this estimator in place of the true value in the expression for Gopt.

As a result, we obtain estimators for the optimal weight coefficients b̂ = bopt(Ĝ). The
adaptive test π̂(Xn) is based on the statistic

T̂n =
S(b̂)√
Dn(b̂)

.

The test π̂(Xn) accepts the zero hypothesis H0 if |T̂n| ≤ λα/2 and rejects it otherwise,

that is, if |T̂n| > λα/2.

Theorem 6.2. Let all the assumptions of Theorem 6.1 hold. Assume additionally that
σ2
m = g2m − (gm)2 > 0 for all m = 1, . . . ,M . Then

β(b̂)
def
= lim

n→∞
PH1;n

{π̂(Xn) = 0} = β(bopt(G)).

Therefore, the asymptotic probability of error of the second kind for the adaptive test
is the same as that for the optimal nonadaptive test.

Remark. One can use not only weighted means with minimax coefficients to estimate G.
Instead, one can use other

√
n-consistent estimators. Since the minimax weight co-

efficients may be negative for some j, the corresponding weight estimators may have
unpleasant properties if the size of a sample is small. In particular, it is quite possible
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that the estimator for dj;n = Var ξj;n is negative in this case. For this reason, it is worth-
while to use improved estimators for moments described in [2] to construct estimators
for the optimal weight coefficients.

7. Results of computer simulation

We compare the quality of test algorithms for samples of a finite size based on results
of a computer simulation. We simulate two component mixtures with varying concen-
trations in every experiment. The concentrations of the first component pij;n = pj are
generated as independent uniformly distributed on the interval [0, 1] random variables.
Correspondingly, p2j;n = 1− pj . The following approach is followed when generating the
distributions of the components of a mixture. We choose a basic distribution function F0

with zero expectation and unit variance. Then the distribution function of a component
m is given by Fm(x) = F0((x − μm)/σm), where μm is the expectation and σ2

m is the
variance of the component m. To compare the probabilities of error of the first kind
α we generate the data with the distribution that corresponds to the zero hypothesis,
that is, to the case of μ1 = μ2 = 0. To compare the probabilities of error of the sec-
ond kind, β, we generate the data with the distribution corresponding to the alternative
H1;n : μ1 = v/

√
n, μ2 = 0 (here n means the number of observations). Therefore, the

distribution of the data in different experiments is different and is determined by the
parameters F0, σ

2
1 , σ

2
2 and v.

In every experiment and for every size n, we generate 10,000 samples with a given
distribution corresponding to the zero hypothesis H0 and 10,000 samples with the dis-
tribution corresponding to the alternative H1;n. For every sample, the hypothesis H0

about the homogeneity of the means, μ1 = μ2, is checked by two different tests, namely
by the naive test with weight coefficients bnaive = a1 − a2 and adaptive test with coeffi-

cients b̂ proposed in the preceding section. Then the corresponding frequencies of errors
of the first kind, αnaive and αadapt, and those of the second kind, βnaive and βadapt, are
calculated for the naive and adaptive tests for different sample sizes n. These frequencies
are shown in the tables. The lower row of every table contains asymptotic values of the
corresponding probabilities α = 0.05 (for errors of the first kind) and β(b) (for errors of
the second kind).

Finally, we use the improved moment estimators proposed in [2] to estimate unknown
parameters G.

Experiment 1. Here F0 is the standard normal distribution with σ2
1 = 0.1, σ2

2 = 1,
and v = 10. When choosing the parameters we take into account a relation between the
probability of errors of the second kind for the adaptive and naive tests: the probability
of errors of the second kind for the adaptive test is considerably smaller than those for
the naive test if the variances of components are sufficiently different. So we could see if
the adaptive test really performs better than the naive one in the case where the theory
predicts so. The results of this experiment are shown in Table 1.

The results show that the approximation of the probability of error of the first kind
by the asymptotic values is not precise but, nevertheless, is sufficiently good for practical
needs if the sample size exceeds 500 for both tests. The asymptotic values provide more
accurate approximations for the probabilities of errors of both kinds in the case of the
naive test than in the case of the adaptive test. However, the differences between both
cases are not essential. At the same time, the probability of error of the second kind for
the adaptive test is smaller than that for the naive test for all sample sizes. For example,
the adaptive test shows an almost double advantage for sample sizes exceeding n = 500
(compare with the asymptotic relation βnaive/βadapt = 2.795).
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Table 1. Results of computer simulation: Experiment 1

n βnaive βadapt αnaive αadapt

100 0.1715 0.1376 0.0412 0.0344
250 0.2047 0.1501 0.0458 0.039
500 0.1388 0.0776 0.0449 0.0414
1000 0.1325 0.0686 0.0461 0.0422
5000 0.1173 0.0492 0.0486 0.0422
10000 0.1052 0.0411 0.0477 0.047
∞ 0.104869 0.037512 0.05 0.05

Table 2. Results of computer simulation: Experiment 2

n βnaive βadapt αnaive αadapt

100 0.1838 0.1878 0.0556 0.0562
250 0.1057 0.1088 0.055 0.0561
500 0.1283 0.1287 0.0474 0.0478
1000 0.0799 0.0809 0.0513 0.0512
5000 0.0807 0.0804 0.0495 0.0493
10000 0.0903 0.0912 0.0478 0.0479
∞ 0.0790173 0.0790173 0.05 0.05

Table 3. Results of computer simulation: Experiment 3

n βnaive βadapt αnaive αadapt

100 0.1872 0.1413 0.0398 0.0369
250 0.1632 0.0931 0.0412 0.0386
500 0.1807 0.0939 0.0457 0.040944
1000 0.1315 0.0586 0.051 0.0435
5000 0.1375 0.0616 0.047 0.044
10000 0.1114 0.0402 0.0452 0.0414
∞ 0.104869 0.037512 0.05 0.05

Experiment 2. Here F0 is the standard normal distribution with σ2
1 = 0.5, σ2

2 = 0.5,
and v = 10. The variances of both components are chosen identical and thus the adaptive
test has no advantages over the naive test. Since the adaptive test requires a more so-
phisticated estimation technique, one may expect that the asymptotic theory will exhibit
the advantages of the naive test. The aim of the experiment is to check this idea.

The results of the experiment are shown in Table 2.
The results confirm that the asymptotic approximation is of a lower accuracy for the

adaptive test than for the naive one. However the difference is not essential from the
point of view of applications.

Experiment 3. Here F0 is the centered and normalized χ2 distribution with six degrees
of freedom such that the expectation is zero, while the variance is unit. Also, σ2

1 = 0.1,
σ2
2 = 1, and v = 10. The asymptotic results for this experiment are similar to those in

Experiment 1. However, the distributions of components are not symmetric in Exper-
iment 3 and have heavier right tails as compared to the standard normal distribution.
The aim of the experiment is to check whether these features of the distribution influence
the asymptotic values.

The results of the experiment are shown in Table 3.
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As the results of the experiment show, the accuracy of asymptotic values is lower only
for small sample sizes. The adaptive test has an advantage over the naive test for all
sample sizes as far as the error of the second kind is concerned.

It is worth mentioning that the test show a conservative behavior in the sense that the
empirical frequency of errors is smaller than the true probability in all cases, while the
probability of error of the first kind for both tests differs sufficiently from the theoretical
value 0.05 for small sample sizes.

8. Concluding remarks

The techniques of the adaptive estimation allow one to improve essentially the errors
of the second kind in the test of homogeneity of means based on observations obtained
from a mixture with varying concentrations. One can suggest to use the adaptive test
if the sample size n is larger than 500, especially in the case of a big difference between
the variances of components of a mixture. Even if the sample size is smaller than 500
and variances are identical, the adaptive test does not increase the probabilities of errors
essentially as compared to the naive test. It is also true that an asymmetric distribution
or moderate heavy tails do not lead to significantly worse results of the adaptive test.

Appendix

Proof of Lemma 4.1. By [4, Theorem 3.1.1], conditions 1 and 3 imply that ĝ2m;n → g2m
and ĝm;n → ĝm in probability. Further, condition 2 yields 〈(b)2pm〉n → 〈(b)2pm〉 and
〈(b)2pm1pm2〉n → 〈(b)2pm1pm2〉. Thus,

Dn(b)

VarSn(b)
=

nDn(b)

nVarSn(b)
→ D∞(b)

D∞(b)
= 1. �

For further proofs, we need a special construction of the data under consideration.
Consider a family of jointly independent random variables,

ηmj and κj;n, j = 1, 2, . . . , m = 1, . . . ,M,

whose distributions are η1j ∼ F1,∞, ηmj ∼ Fm, m = 2, . . . ,M , and P{κj;n = m} = pmj;n.
Put δmj;n = �{κj;n = m}.

The random variables

(11) ξ̃j;n =
M∑

m=1

δmj;nη
m
j

have distribution (1) corresponding to zero hypothesis H0, while the distribution of the
data Xn = (ξ1;1, . . . , ξn;n), where

(12) ξj;n = ξ̃j;n + δ1j;nvn,

corresponds to the local alternative H1;n.
Therefore, we may assume that the data are given by (12) when calculating the proba-

bilities related to the tests under consideration provided an alternative hypothesis holds.
Then model (12) corresponds to the main hypothesis with vn = 0. In what follows we
use the structure of the data described above.

Proof of Theorem 5.1. Now we assume that the alternative hypothesis holds in contrast
to the case of Lemma 4.1.

Put

S̃n(b) =
1

n

n∑
j=1

bj;nξ̃j;n.
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By [4, Theorem 3.1.2], √
nS̃n(b) ⇒ N(0, D∞(b)).

Then
√
n(Sn(b)− S̃n(b)) =

1√
n

n∑
j=1

δ1j;nbj;n
v√
n
= v〈δ1b〉n → v〈bp1〉

by the law of large numbers (see [1, Theorem 3, Section 3, Chapter 8]).
Hence,

(13)
√
nSn(b) ⇒ N

(〈
bp1

〉
, D∞(b)

)
.

Since

ĝm;n − 1

n

n∑
j=1

bj;nξ̃j;n = vn
1

n

n∑
j=1

bj;nδ
1
j;n → 0

in probability, we conclude that ĝm;n → ḡm. Similarly, ĝ2m;n → g2m in probability.
Therefore, Dn(b)/D∞(b) → 1 as n → ∞. This together with (13) implies

(14) Tn(b) ⇒ N

(
〈bp1〉√
D∞(b)

, 1

)
.

Since {πb(Xn) = 0} = {|Tn(b)| < λα/2}, relation (14) completes the proof. �
Proof of Theorem 6.2. We show that

(15) n
(
Dn(b̂)−Dn(b

opt)
)
→ 0

and

(16) Δn(Ĝ)
def
=

√
n
(
Sn(b)− Sn(b̂)

)
=

1

n

n∑
j=1

(
boptj;n(G)− boptj;n(Ĝ)

)
ξj;n → 0

in probability as n → ∞. This yields the statement of the theorem.
Thus, we prove relation (15). Put σ2

min = minm σ2
m. Then

(17)

dj;n(G) = Var(ξj;n) = EVar(ξj;n | κj;n) + VarE(ξj;n | κj;n)

≥ EVar(ξj;n | κj;n) =

M∑
m=1

pmj;nσ
2
m ≥ σ2

min.

Moreover,

sup
p

∣∣dj;n(G,p)− dj;n(Ĝ,p)
∣∣

≤ sup
p

∣∣∣∣∣
M∑

m=1

pmj;n
(
g2m − ĝ2m;n

)∣∣∣∣∣+ sup
p

∣∣∣∣∣
M∑

m1,m2=1

pm1
j;np

m2
j;n(ḡm1

ḡm2
− ĝm1;nĝm2;n)

∣∣∣∣∣
≤ C

(
|G| · |G− Ĝ|+ |G− Ĝ|2

)
,

where C is a constant that does not depend on G, Ĝ, and p.

Under the assumptions of the theorem, εn
def
= |Ĝ−G| → 0 in probability as n → ∞.

Next, ∣∣∣Γkl;n(G)− Γkl;n(Ĝ)
∣∣∣ ≤ 1

n

n∑
j=1

pkj;np
l
j;n|dj;n(G)− dj;n(Ĝ)|
dj;n(G)dj;n(Ĝ)

≤ 1

n

n∑
j=1

C(|G|εn + ε2n)

σ2
min(σ

2
min − C(|G|εn + ε2n))

→ 0
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as n → ∞. Hence, Γ(Ĝ) → Γ(G) in probability. Taking into account det Γ(G) �= 0, we
obtain

Γ−1(Ĝ) → Γ−1(G) and λ(Γ̂) → λ(Γ)

in probability as n → ∞. This implies relation (15).
Now we prove (16). By construction of bopt,〈

bopt(G̃)p1
〉
n
= −

〈
bopt(G̃)p2

〉
n
,

〈
bopt(G̃)pm

〉
n
= 0, m = 3, . . . ,M,

for all G̃ = (G̃1, . . . , G̃2M ). Thus,

μ(G̃) = E
√
nΔn(G̃) = v

(〈
bopt(G)p1

〉
n
−
〈
bopt(G̃)p1

〉
n

)
.

Since Ĝ → G in probability as n → ∞, we proceed as in the proof of relation (15) and
obtain

(18) μ(G̃) → 0 in probability as n → ∞.

Put ξ′j;n = ξj;n − E ξj;n,

Δ̃n(G̃)
def
= Δn(G̃)− μ(G̃) =

1√
n

n∑
j=1

(
boptj;n(G)− boptj;n(G̃)

)
ξ′j;n.

Let ε > 0. Set Gk = (Gk
1 , . . . , G

k
2M ), k = 0, 1, where G0

i = Gi − ε, G1
i = Gi + ε,

Kε =

2M⊗
i=1

[
G0

i , G
1
i

]
.

In what follows we choose ε to be sufficiently small and n0 to be sufficiently large in
order to have the property that det Γn(G̃) �= 0 for all G̃ ∈ Kε and all n > n0.

Now we show that

(19) Pε(λ) = sup
n>n0

P

{
sup

G̃∈Kε

|Δ̃n(G̃)| > λ

}
→ 0 as ε → 0

for all λ > 0. To prove relation (19), we need a Sobolev type inequality which provides
an upper bound for the uniform norm of a function expressed in terms of L2-norms of
its derivatives.

For all α = (α1, . . . , α2M ) ∈ {0, 1}2M and an arbitrary u = (u1, . . . , u2M ) ∈ Kε, let

Kε(α) =
⊗

i:αi=1

[
G0

i , G
1
i

]
,

let u|α be a vector of R2M whose ith coordinate equals G0
i if αi = 0 or equals ui if αi = 1,

and

Dα =
∏

i : αi=1

∂

∂ui
, (du)α =

∏
i : αi=1

dui.

By [4, Lemma 7.1.1],

(20) sup
u∈Kε

|f(u)| ≤ f(G0) + ‖f‖H V̄ (ε)

for any 2M times differentiable function f : Kε → R, where

V̄ (ε) =

⎛⎝ ∑
α∈{0,1}2M ,α�=0

Vα(ε)

⎞⎠1/2

,
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Vα(ε) =
∏

i:αi=1(G
1
i −G0

i ),

‖f‖H =

⎛⎝ ∑
α∈{0,1},α�=0

∫
Kε(α)

(Dαf(u|α))2(du)α
⎞⎠1/2

.

Now we apply inequality (20) with f(u) = Δ̃(u) to prove relation (19).
It is clear that

(21)

J1(ε)
def
= E

(
Δ̃n

(
G0

))2
= Var Δ̃n(G

0)

=
1

n

n∑
j=1

(
boptj;n(G)− boptj;n(G)0

)2
Var ξj;n

≤ σ2
max sup

n>n0

(
boptj;n(G)− boptj;n

(
G0

))2 → 0

as ε → 0.
Further, E ‖Δ̃n‖2H ≤

∑
α∈0,12M ,α�=0 Jα(ε), where

(22)

Jα(ε) = E

∫
Kε(α)

(
DαΔ̃n(u|α)

)2
(du)α

=
1

n2

∫
Kε(α)

E

⎛⎝ n∑
j=1

Dα
(
boptj;n(u|α)ξ′j;n

)⎞⎠2

(du)α

≤ max
m=1,...,M

g2m sup
j=1....,n;n>n0;u∈Kε(α)

(
Dα

(
boptj;n(u)

))2
.

It is easy to see that

(23) sup
j=1,...,n;n>n0;u∈Kε

Dα
(
boptj;n(u)

)2
< C

for sufficiently small ε0 and 0 < ε < ε0, where C is a constant that does not depend on ε.
Taking into account (20)–(23) we obtain

Pε(λ) ≤
2(J1(ε) + CV̄ε)

λ2
→ 0

as ε → 0 by the Chebyshev inequality. The latter result proves relation (19).
Note that

P
{
|Δ̃n(Ĝn)| > λ

}
≤ P{Ĝ �∈ Kε}+ P

{
sup

G̃∈Kε

∣∣Δ̃n(G̃)
∣∣ > λ

}
.

In view of (19), the second term is as small as we wish by choosing a small enough ε.

Fix ε. Then the first term approaches 0 as n → ∞, since Ĝ is a consistent estimator
of G. Hence, (18) implies (16).

Then

(24) Jn(ε)
def
= P

⎧⎨⎩
∣∣∣∣∣∣ Sn(b

opt)√
nDn(bopt)

− Sn(b̂)√
nDn(b̂)

∣∣∣∣∣∣ ≥ ε

⎫⎬⎭ → 0

as n → ∞ for all ε > 0 (this follows from (15) and (16)).
Since

β(bopt) = lim
n→∞

P
{
|Sn(b

opt)|/
√
nDn(bopt) < λα/2

}
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is a continuous function of λα/2, we derive from (24) that

β(b̂) = lim
n→∞

P

{∣∣Sn(b̂)
∣∣/√nDn(b̂) < λα/2

}
= β

(
bopt

)
.

The theorem is proved. �
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