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WAVE EQUATION WITH A STABLE NOISE

UDC 519.21

L. I. PRYHARA AND G. M. SHEVCHENKO

Abstract. The three-dimensional wave equation is studied in the paper. The right
hand side of the equation has a symmetric α-stable distribution. Two cases are con-
sidered, namely the cases where the perturbation is a (1) “white noise” and (2) “col-
ored noise”. It is proved for both cases that a candidate for a solution (a function
represented by the Kirchhoff formula) is a generalized solution.

1. Introduction

Stochastic partial differential equations play a leading role in modeling the behavior
of complex systems where a randomness is involved. The number of studies devoted
to such equations increases constantly. The majority of publications deal with the case
where the randomness in the equation has a Gaussian distribution. In particular, the
wave equation with a Gaussian random noise is studied in the papers [3,4,8,10,14]. The
one-dimensional wave equation with a general random measure is considered in [2, 6].

In this paper, we continue the studies initiated in [9], where the wave equation is
considered with a stable measure in the plane. The object of our studies is the wave
equation in the space

(1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∂2

∂t2
− a2Δ

)
U (x, t) = f(x, t), x ∈ R

3, t > 0,

U(x, 0) = 0,
∂U

∂t
(x, 0) = 0,

where the right hand side is a random perturbation of the form f(x, t) = σ(x, t) · Ż(x).

Here σ(x, t) is a non-random bounded function, while Ż(x) is a random noise with a
symmetric α-stable distribution. We consider two completely different cases, namely,
the cases where the noise is (1) “white” (that is, it is a derivative in a certain sense of
an independently scattered stable measure) and (2) “colored” generated by a field with
dependent increments (more precisely, it is generated by a real harmonizable anisotropic
fractional stable field). For both cases, the function represented by the Kirchhoff formula
is considered as a potential solution of the equation. It is proved that this function is
well defined and is a generalized solution of the equation. Since the theory of integration
with respect to a stable colored noise is not developed yet, we provide the definition of
the integral with respect to such a noise.

The paper is organized as follows. Auxiliary results concerning stable random variables
and their distributions are given in Section 2. This section contains a brief description
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of decompositions into LePage series. Sections 3 and 4 contain statements and proofs of
the main results of the paper for the white and colored noise, respectively.

2. Stable random variables

We consider symmetric α-stable (SαS) random variables with α ∈ (0, 2). More details
concerning such random variables can be found in [12].

A random variable ξ whose characteristic function is given by

E
[
eiλξ
]
= e−λα‖ξ‖α

α

is called an SαS random variable with the scale parameter ‖ξ‖α.
A special role in the construction of processes and fields with stable distributions is

played by an independently scattered SαS measure. In the current paper, we restrict
our consideration to the case of SαS measures in R3 which are defined as functions
M : Bf (R

3) × Ω → R, where Bf (R
3) is a family of Borel subsets of finite Lebesgue

measure such that

(1) for every Borel set A ∈ Bf (R
3), M(A) is an SαS random variable with the scale

parameter λ(A); here λ(A) denotes the Lebesgue measure of the set A;
(2) the random variables M(A1), . . . ,M(An) are independent for all disjoint sets

A1, . . . , An ∈ Bf (R
3);

(3) the series
∑∞

n=1 M(An) converges almost surely, and moreover

M

( ∞⋃
n=1

An

)
=

∞∑
n=1

M(An)

almost surely for all sequences of disjoint sets A1, . . . , An, . . . ∈ Bf (R
3) such that⋃∞

n=1 An ∈ Bf (R
3).

The integral

I(f) =

∫∫∫
R3

f(x, t)M(dx)

is defined for a function f(x, t) ∈ Lα(R3) as the limit in probability of the integrals of
simple functions with bounded supports. The following isometry property holds for such
an integral:

‖I(f)‖αα =

∫∫∫
R3

|f(x, t)|α dx.

A powerful tool for an analysis of stable random variables is the LePage representation,
which we describe briefly for the measure M . Let ϕ be an arbitrary continuous positive
distribution density in R3 and let independent families {Γk, k ≥ 1}, {ξk, k ≥ 1}, and
{gk, k ≥ 1} be such that

• {Γk, k ≥ 1} is the sequence of moments of arrivals of a Poisson process with unit
intensity;

• {ξk, k ≥ 1} are independent random vectors with density ϕ;
• {gk, k ≥ 1} are independent centered normal random variables with E[|gk|α] = 1.

Then M has the same distribution as

(2) M ′(dx) = Cα

∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/αδξk(dx)gk,

where

Cα =

(
Γ(2− α) cos πα

2

1− α

)1/α

.
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The series on the right hand side of (2) converges almost surely. Equality (2) is under-
stood in the following sense: for all f1, f2, . . . , fn ∈ Lα(R3), the distribution of the vector(
I(f1), I(f2), . . . , I(fn)

)
coincides with that of

(
I ′(f1), I

′(f2), . . . , I
′(fn)

)
, where

(3) I ′(f) = Cα

∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/αf(ξk)gk.

Without loss of generality we assume in what follows that M is given by equality (2)
and that the integral

I(f) =

∫∫∫
R3

f(x, t)M(dx)

is defined for a function f(x, t) ∈ Lα(R3) by equality (3). For simplicity, we also assume
that

(Ω,F ,P) = (ΩΓ ⊗ Ωξ ⊗ Ωg,FΓ ⊗Fξ ⊗Fg,PΓ ⊗ Pξ ⊗ Pg)

for all ω = (ωΓ, ωξ, ωg), where Γk(ω) = Γk(ωΓ), ξk(ω) = ξk(ωξ), and gk(ω) = gk(ωg) for
all k ≥ 1.

3. Wave equation with a stable white noise

Consider equation (1),

(4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∂2

∂t2
− a2Δ

)
U (x, t) = σ(x, t)Ṁ(x), x ∈ R3, t > 0,

U(x, 0) = 0,
∂

∂t
U(x, 0) = 0,

where the right hand side of the equation is the product of a non-random function
σ : R3 ×R+ → R and an “SαS white noise” Ṁ(x) being, in a certain sense, the Radon–
Nikodym density of the independently scattered SαS measure M in R3. The function
represented by the Kirchhoff formula, namely,

(5) U(x, t) =
1

4πa

∫∫∫
y : |x−y|<at

σ
(
y, t− |x−y|

a

)
|x− y| M(dy1, dy2, dy3),

is considered as a candidate for a solution of equation (4). We assume throughout that
the function σ is bounded.

Theorem 1. The integral in (5) is well defined for all (x, t) ∈ R3 × R+.

Proof. The integral in (5) is well defined if∫∫∫
y:|x−y|<at

∣∣∣∣∣∣
σ
(
y, t− |x−y|

a

)
|x− y|

∣∣∣∣∣∣
α

dy1 dy2 dy3 < ∞.

So, we check the condition:∫∫∫
y:|x−y|<at

∣∣∣∣∣∣
σ
(
y, t− |x−y|

a

)
|x− y|

∣∣∣∣∣∣
α

dy1 dy2 dy3 ≤
∫∫∫

y:|x−y|<at

Cα

|x− y|α dy1 dy2 dy3

= 4πCα (at)
3−α

3− α
< ∞,

and this is what had to be proved. �
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Theorem 2. The series

U(x, t) = Cα

∑
k≥1

Γ
−1/α
k ϕ(ξk)

−1/α
σ
(
ξk, t− |x−ξk|

a

)
|x− ξk|

gkI{|x−ξk|<at}

converges almost surely for all (x, t) ∈ R3 × R+.

Proof. Put

uk(x, t) = CαΓ
−1/α
k ϕ(ξk)

−1/α
σ
(
ξk, t− |x−ξk|

a

)
|x− ξk|

gkI{|x−ξk|<at}.

If ωξ ∈ Ωξ and ωΓ ∈ ΩΓ are fixed, then uk are independent and centered random variables.
According to Kolmogorov’s theorem, the statement of Theorem 2 follows if

Eg

[
|U(x, t)|2

]
=

∞∑
k=1

Eg

[
|uk(x, t)|2

]
< ∞

for almost all ωξ ∈ Ωξ and ωΓ ∈ ΩΓ. To check the latter condition, we estimate

Eξ,g

[
|U(x, t)|2

]
≤ Eξ,g

⎡⎢⎣C2
α

∑
k≥1

Γ
−2/α
k ϕ(ξk)

−2/α

∣∣∣σ (ξk, t− |x−ξk|
a

)∣∣∣2
|x− ξk|2

g2kI{|x−ξk|<at}

⎤⎥⎦
≤ Eξ

⎡⎣C∑
k≥1

Γ
−2/α
k ϕ(ξk)

−2/α 1

|x− ξk|2
I{|x−ξk|<at}

⎤⎦
= C

∑
k≥1

Γ
−2/α
k

∫∫∫
y : |x−y|<at

ϕ(y)1−2/αdy

|x− y|2

≤ C

(
inf

y : |x−y|≤at
ϕ(y)

)1−2/α∑
k≥1

Γ
−2/α
k

∫∫∫
y : |x−y|<at

dy

|x− y|2

≤ Cx,t

∑
k≥1

Γ
−2/α
k .

The strong law of large numbers implies that Γk ∼ k as k → +∞ almost surely with
respect to PΓ. Then Eξ,g

[
|U(x, t)|2

]
< ∞ almost surely with respect to PΓ. Hence

Eg

[
|U(x, t)|2

]
< ∞

almost surely with respect to Pξ ⊗ PΓ. This completes the proof. �

Now we show that the function U(x, t) satisfies equation (4) in the generalized sense.

Theorem 3. Let θ(x, t) ∈ C∞
fin(R

3 × R
+) be an arbitrary function. Then

(6)

∫ ∞

0

∫∫∫
R3

U(x, t)

(
∂2

∂t2
θ(x, t)− a2Δθ(x, t)

)
dx dt

=

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)M(dx) dt

with probability one.

Remark 1. The exceptional event of probability zero where equality (6) fails may depend
on θ in Theorem 3.
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Proof. We introduce the following notation:

ψ(x, t) =
∂2

∂t2
θ(x, t)− a2Δθ(x, t),

K(y) =

∫ ∞

0

∫∫∫
x:|x−y|<at

ϕ(y)−1/ασ
(
y, t− |x−y|

a

)
ψ(x, t)

|x− y| dx dt,

L(ψ) =

∫ ∞

0

∫∫∫
R3

U(x, t)ψ(x, t) dx dt

= Cα

∫ ∞

0

∫∫∫
R3

∞∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/α
σ
(
ξk, t− |x−ξk|

a

)
|x− ξk|

gkψ(x, t)I{|x−ξk|<at} dx dt

= Cα

∞∑
k=1

Γ
−1/α
k K(ξk)gk,

R(θ) =

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)M(dx) dt

= Cα

∫ ∞

0

∫∫∫
R3

∞∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/ασ(ξk, t)θ(ξk, t)gk dx dt.

Then equality (6) can be rewritten as L(ψ) = R(θ).
Assume that supp θ ⊂ B(0, R)× [0, R]. Then L(ψ) = 0 for |y| > R + at, while

|K(y)| ≤

∣∣∣∣∣∣
∫ ∞

0

∫∫∫
x : |x−y|<at

ϕ(y)−1/α
σ
(
y, t− |x−y|

a

)
|x− y| ψ(x, t) dx dt

∣∣∣∣∣∣
≤
∫ R

0

∫∫∫
x : |x|<R

|ϕ(y)|−1/α

∣∣∣σ (y, t− |x−y|
a

)∣∣∣
|x− y| |ψ(x, t)| dx dt

≤ C

(
inf

x : |x|≤R+at
ϕ(x)

)−1/α

sup
x∈R

3

t≥0

|ψ(x, t)|
∫ R

0

∫∫∫
x : |x|≤R

dx dt

|x− y| ≤ CR,ψ

for |y| ≤ R+ at. The equality

Eg

[
L(ψ)2

]
= C2

α

∑
k≥1

Γ
−2/α
k K2(ξk)

holds for all fixed ωξ ∈ Ωξ and ωΓ ∈ ΩΓ. The above bound on K(y) proved above
implies that Eg

[
L(ψ)2

]
< ∞ for almost all ωξ ∈ Ωξ and ωΓ ∈ ΩΓ. According to the

strong law of large numbers Γk ∼ k, k → +∞, almost surely with respect to PΓ. Thus
the series for L(ψ) converges almost surely by Kolmogorov’s theorem for an arbitrary
function ψ(x, t) ∈ C∞

fin(R
3 × R+). The same is true for the series R(θ). It remains to

check that the corresponding partial sums are equal, that is, to prove the equality

Cα

N∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/αgk

∫ ∞

0

∫∫∫
R3

σ
(
ξk, t− |x−ξk|

a

)
|x− ξk|

ψ(x, t)I{|x−ξk|<at} dx dt

= Cα

N∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/αgk

∫ ∞

0

θ(ξk, t)σ(ξk, t) dt.

(7)
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Note that∫∫∫
R3

∫ ∞

|x−y|
a

σ
(
y, t− |x−y|

a

)
|x− y| ψ(x, t) dt dx =

∫ ∞

0

∫∫∫
R3

σ(y, s)

|x− y|ψ
(
x, s+

|x− y|
a

)
dx ds.

To prove equality (7), it suffices to check that the corresponding terms are equal, that
is, to prove that

(8)

∫∫∫
R3

ψ
(
x, s+ |x−y|

a

)
|x− y| dx = θ(y, s)

for all s > 0 and y ∈ R3. Since supp θ ⊂ B(0, R)× [0, R], we get θ(x, s) = 0 for all s ≥ R
and x ∈ R

3. In particular, equality (8) is obvious for s ≥ R. To prove equality (8) for
s ∈ (0, R), put

θ̃(x, u) = θ(x,R− u), u ≤ R.

Then

∂2

∂t2
θ(x,R− u) =

∂2

∂t2
θ̃(x, u), Δθ(x,R− u) = Δθ̃(x, u);

θ̃(x, 0) = 0;
∂

∂t
θ̃(x, 0) = 0.

Consider the following boundary problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∂2

∂t2
− a2Δ

)
V (x, t) = ∂2

∂t2 θ̃(x, t)− a2Δθ̃(x, t), x ∈ R3, t ∈ (0, R],

V (x, 0) = 0,
∂V

∂t
(x, 0) = 0.

Obviously, the function θ̃(x, t) satisfies this equation. On the other hand, a solution of
this equation is of the form

θ̃(y, t) =
1

4πa

∫∫∫
x : |x−y|<at

∂2

∂t2 θ̃
(
x, t− |x−y|

a

)
− a2Δθ̃

(
x, t− |x−y|

a

)
|x− y| dx

by the Poisson–Parseval formula. Substituting t = R− s, one obtains

θ(y, s) =
1

4πa

∫∫∫
x:|x−y|<a(R−s)

∂2

∂t2 θ
(
x, s+ |x−y|

a

)
− a2Δθ

(
x, s+ |x−y|

a

)
|x− y| dx

=
1

4πa

∫∫∫
R3

ψ
(
x, s+ |x−y|

a

)
|x− y| dx.

The latter equality holds, since s+ |x−y|
a ≥ R for |x− y| ≥ a(R− s), whence ψ(x, t) = 0.

Therefore equality (8) is proved. �

4. Wave equation with a stable colored noise

Our next aim is to consider equation (4) with the “colored” random noise. In contrast
to the “white” noise, the values of the colored noise are not independent. To be more
precise, consider a random noise generated by a real harmonizable anisotropic fractional
stable field with Hurst parameter H,

ZH(x) = Re

∫∫∫
R3

3∏
l=1

eixlyl − 1

|yl|H+1/α
M(dy).
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For some technical reasons, we restrict the consideration to the case of α ∈ (1, 2)
and H ∈ (1/3, 1).

Properties of such a random field are studied in [7]. Its multifractional analogues
are studied in the papers [5, 13]. In particular, it is proved in [5, 13] that this field has
a version whose realizations satisfy the Hölder condition with index β ∈ (0, H). The
LePage decomposition for this field is given by

ZH(x) = Cα Re

∞∑
k=1

Γ
−1/α
k

3∏
l=1

eixlξk,l − 1

|ξk,l|H+1/α
ϕ (ξk)

−1/α
gk,

where

ϕ(x) =

3∏
l=1

K

|xl|
(∣∣log |xl|

∣∣+ 1
)1+η .

Here η is a fixed positive constant, and

K =

(∫ +∞

−∞
|x|−1 (∣∣log |x|∣∣+ 1

)−1−η
dx

)−1

is a normalizing constant. The LePage decomposition is one of the main tools when
studying properties of realizations of the field ZH such as continuity or the Hölder con-
dition mentioned above.

One cannot find the theory of integration with respect to the field ZH in the literature.
For this reason, we introduce the corresponding integral here in the way described below.
Denote by

ψ(x) =
1

(2π)3/2
e−|x|2/2, x ∈ R

3,

the density of the standard normal distribution in R3. For every ε > 0, let

ZH,ε(x) =
(
ZH ∗ ψε

)
x =

∫∫∫
R3

ψε (x− z)ZH(z) dz

be the convolution, where ψε(x) =
1
ε3ψ
(
x
ε

)
. Let

Xε(z, y) =
∂3

∂x1∂x2∂x3
ψε(y − z)ZH(z)

=

∏3
l=1(yl − zl)

(2π)3/2ε9
e−

|y−z|2
2ε2 Re

∫∫∫
R3

3∏
l=1

eizltl − 1

|tl|H+1/α
M(dt)

and put

Y ε(y) =

∫∫∫
R3

Xε(z, y) dz.

We are going to prove that one can interchange the order of integration in the latter
integral. According to Theorem 4.1 of [11], this follows if∫∫∫

R3

∣∣Xε(z, y)
∣∣ dz < ∞

almost surely. In turn, the latter condition is equivalent to∫∫∫
R3

∏3
l=1 |yl − zl|
(2π)3/2ε9

e−
|y−z|2

2ε2

(∫∫∫
R3

∣∣∣∣∣Re
3∏

l=1

eizltl − 1

|tl|H+1/α

∣∣∣∣∣
α

dt

)1/α

dz < ∞
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by Theorem 3.3 of [11]. Applying the inequality |eizltl − 1| ≤ 2 ∧ |zltl| and making the
change ul = zltl, l = 1, 2, 3, the latter integral is estimated from above by∫∫∫

R3

∏3
l=1 |yl − zl||zl|H+1/α−1

(2π)3/2ε9
e−

|y−z|2
2ε2

(∫∫∫
R3

3∏
l=1

2α ∧ |ul|α

|ul|αH+1
du

)1/α

dz < ∞.

Therefore

Y ε(y) =
1

(2π)3/2ε9

∫∫∫
R3

3∏
l=1

1

|tl|H+1/α

× Re

∫∫∫
R3

⎛⎝ 3∏
j=1

(
eizltl − 1

)
(yj − zj)

⎞⎠ e−
|y−z|2

2ε2 dzM(dt).

(9)

Following similar reasoning we prove that

ZH,ε(x) =

∫ x1

0

∫ x2

0

∫ x3

0

Y ε(y) dy3 dy2 dy1

for an arbitrary x ∈ R3, whence we conclude that the field ZH,ε is, at least in the weak
sense, differentiable. Moreover

∂3

∂x1∂x2∂x3
ZH,ε(x) = Y ε(x).

Thus it is natural to define the integral with respect to the field ZH for a function
f : R3 → C as the limit in probability

(10)

∫∫∫
R3

f(x)ZH(dx) = lim
ε→0+

∫∫∫
R3

f(x)
∂3

∂x1∂x2∂x3
ZH,ε(x) dx

if it exists.
Consider the wave equation with an α-stable colored perturbation

(11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
∂2

∂t2
− a2Δ

)
U (x, t) = ŻH(x), x ∈ R3, t > 0,

U(x, 0) = 0,
∂U

∂t
(x, 0) = 0.

As in the preceding section, a candidate for a solution of equation (11) is defined by the
Kirchhoff formula

(12) U(x, t) =
1

4πa

∫∫∫
y : |x−y|<at

1

|x− y| Z
H(dy).

The integral on the right hand side of equality (12) is understood as the limit in proba-
bility (10).

The further proof is split into several steps. First we introduce the function U ′(x, t)
as the result of the formal differentiation of LePage’s series for the field ZH(x). Write a
formal equality

∂3

∂x1∂x2∂x3
ZH(x) = Cα Re

(
−i

∞∑
k=1

Γ
−1/α
k ϕ (ξk)

−1/α gk

3∏
l=1

sign ξk,le
ixlξk,l

|ξk,l|H+1/α−1

)
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and put for a moment

U ′(x, t) = Cα

∞∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/α
3∏

l=1

sign ξk,l

|ξk,l|H+1/α−1
gk

× Im

(
ei(x,ξk)

∫∫∫
y : |x−y|<at

ei(y−x,ξk)

|x− y| dy

)
.

(13)

Then∫∫∫
y : |x−y|<at

ei(y−x,ξk)

|x− y| dy =

∫∫∫
|z|<at

ei(z,ξk)

|z| dz =
∣∣ξk → |ξk| −→e3

∣∣
=

∫∫∫
|z|<at

eiz3|ξk|

|z| dz =

∫ 2π

0

∫ π

0

∫ at

0

ρ2 sin θ
eiρ cos θ|ξk|

ρ
dρ dθ dν

= 2π

∫ π

0

dθ

∫ at

0

ρ sin θeiρ cos θ|ξk| dρ dθ = − 2π

i |ξk|

∫ at

0

eiρ cos θ|ξk|
∣∣∣∣π
0

dρ

=
4π

|ξk|

∫ at

0

eiρ|ξk| − e−iρ|ξk|

2i
dρ =

4π

|ξk|

∫ at

0

sin ρ |ξk| dρ =
4π

|ξk|2
(− cos ρ |ξk|)

∣∣∣∣at
0

=
4π

|ξk|2
(1− cos at |ξk|) .

The latter formula is used to define the function U ′ by putting

(14) U ′(x, t) =
Cα

a

∞∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/α
3∏

l=1

sign ξk,l

|ξk,l|H+1/α−1
sin (x, ξk)

1− cos at |ξk|
|ξk|2

gk.

Proposition 1. The series on the right hand side of equality (14) converges almost
surely.

Proof. Since the random variables gk are independent,

Eg

[
U ′(x, t)2

]
=

C2
α

a2

∞∑
k=1

Γ
−2/α
k ϕ(ξk)

−2/α
3∏

l=1

1

|ξk,l|2H+2/α−2
sin2(x, ξk)

(1− cos at |ξk|)2

|ξk|4

=:
C2

α

a2

∞∑
k=1

Γ
−2/α
k g(t, x, ξk).

Then we estimate the expectation,

Eξ [g(t, x, ξk)] =

∫∫∫
R3

ϕ(y)1−2/α sin
2(x, y)(1− cos at |y|)2

|y|4
3∏

l=1

dyl

|yl|2H+2/α−2

= K3−6/α

∫∫∫
R3

sin2(x, y)(1− cos at |y|)2

|y|4
3∏

l=1

dyl

|yl|2H−1 (∣∣log |yl|∣∣+ 1
)1+η−2/α−2η/α

≤ K3−6/α

∫∫∫
R3

(
1 ∧ |x|2 |y|2

)(
4 ∧ a4t4 |y|4

)
|y|4

×
3∏

l=1

dyl

|yl|2H−1 (∣∣log |yl|∣∣+ 1
)1+η−2/α−2η/α

.
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Now we make the spherical change of variables

(15)
y1 = ρ sin θ cos ν, y2 = ρ sin θ sin ν, y3 = ρ cos θ,

ρ > 0, θ ∈ [0, π], ν ∈ [0, 2π].

Using the inequality

(16)
(∣∣log |z|∣∣+ 1

)d ≤ Cε

(
|z|−ε ∨ |z|ε

)
,

where d = 2/α+ 2η/α − 1− η, we prove the bound

(17)
(∣∣log |ρ sin θ cos ν|∣∣+ 1

)d ≤ Cε

(
ρε ∨ ρ−ε

)
|sin θ|−ε |cos ν|−ε

.

Other logarithms are estimated similarly. Thus

Eξ [g(t, x, ξk)] ≤ Cε

∫ ∞

0

∫ 2π

0

∫ π

0

(ρε ∨ ρ−ε)
3
(
1 ∧ |x|2 ρ2

) (
4 ∧ a4t4ρ4

)
ρ6H−1

× |sin θ|3−4H−2ε |cos θ|1−2H−ε |sin ν|1−2H−ε |cos ν|1−2H−ε dθ dν dρ,

whence

Eξ [g(t, x, ξk)] ≤ Cε

∫ ∞

0

(ρε ∨ ρ−ε)
3
(
1 ∧ |x|2 ρ2

) (
4 ∧ a4t4ρ4

)
ρ6H−1

dρ

for ε < 2 − 2H. The latter integral converges at zero, since 7 − 6H − 3ε > −1. It
converges at infinity for 1 − 6H + 3ε < −1, that is, for ε < 2 (H − 1/3). Setting ε =
(1−H) ∧ (H − 1/3), we obtain Eξ [g(t, x, ξk)] < ∞, whence

Eg,ξ

[
U ′(x, t)2

]
=

C2
α

a2

∞∑
k=1

Γ
−2/α
k Eξ [g(t, x, ξk)] < ∞

almost surely with respect to PΓ. As above, this together with the Kolmogorov theorem
implies the almost sure convergence of the series for U ′(x, t) in (14). �

Put

Uε(x, t) =
1

4πa

∫∫∫
R3

∂3

∂x1∂x2∂x3
ZH,ε(y)

dy

|x− y| .

Theorem 4. The convergence in probability

(18) Uε(x, t)
P−→ U ′(x, t), ε → 0+,

holds for all t > 0 and x ∈ R3.

Proof. The inner integral on the right hand side of the expression for ∂3

∂x1∂x2∂x3
ZH,ε is

transformed as follows:

1√
2πε3

∫
R

(
eiziti − 1

)
(yj − zj) e

− |yj−zj |
2

2ε2 dzj =
1√
2πε3

∫
R

eiziti (yj − zj) e
− |yj−zj |

2

2ε2 dzj

= eiyjtj

∫
R

ei(zj−yj)tj (yj − zj)e
− |yj−zj |2

2ε2
dzj√
2πε3

= eiyjtj

∫
R

eixtjxe−
|x|2

2ε2
dx√
2πε3

= eiyjtj ψ̂′
ε(tj)

= eiyjtj (−itj)ψ̂ε(tj) = −itje
iyjtje−ε2t2j/2.

Then

∂3

∂x1∂x2∂x3
ZH,ε(y) = i

∫∫∫
R3

ei(z,y)
3∏

j=1

sign zje
−ε2z2

j /2

|zj |H+1/α−1
M(dz).
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Following the same reasoning as led us to (9) we obtain

Uε(x, t) =
1

4πa
Re

⎛⎝i

∫∫∫
y:|x−y|<at

1

|x− y|

×
∫∫∫

R3

ei(z,y)
3∏

j=1

sign zj

|zj |H+1/α−1
e−ε2|z|2/2 M(dz) dy

⎞⎠
=

1

4πa
Re

⎛⎝i

∫∫∫
R3

3∏
j=1

sign zj

|zj |H+1/α−1
e−ε2|z|2/2

∫∫∫
y:|x−y|<at

ei(z,x)

|x− y| dyM(dz)

⎞⎠
=

1

a
Re

⎛⎝i

∫∫∫
R3

3∏
j=1

sign zj

|zj |H+1/α−1
e−ε2|z|2/2 ei(z,x)

|z|2
(1− cos at |z|)M(dz)

⎞⎠
=

1

a

∫∫∫
R3

3∏
j=1

sign zj

|zj |H+1/α−1
e−ε2|z|2/2 sin(z, x)

1− cos at |z|
|z|2

M(dz).

Let

UN (x, t) =
Cα

a

N∑
k=1

ϕ(ξk)
−1/α

3∏
j=1

sign ξk,j

|ξk,j |H+1/α−1
sin (x, ξk)

1− cos at |ξk|
|ξk|2

gk,

Uε
N (x, t) =

Cα

a

N∑
k=1

Γ
−1/α
k ϕ(ξk)

−1/α
3∏

j=1

sign ξk,j

|ξk,j |H+1/α−1
e

−ε2|ξk|2
2 sin(ξk, x)

1− cos at |ξk|
|ξk|2

gk

be the partial sums of the LePage series. For a given δ > 0,

(19)

P (|U ′(x, t)− Uε(x, t)| > δ) ≤ P

(
|UN (x, t)− Uε

N (x, t)| > δ

3

)
+ P

(
|U ′(x, t)− UN (x, t)| > δ

3

)
+ P

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)
.

It is easy to see that
Uε
N (x, t) → UN (x, t), ε → 0+,

almost surely for all t ≥ 0, x ∈ R3, and N ≥ 1. Then

lim
ε→0+

P (|U ′(x, t)− Uε(x, t)| > δ)

≤ P

(
|U ′(x, t)− UN (x, t)| > δ

3

)
+ lim

ε→0+
P

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)
.

Proposition 1 implies that

P

(
|U ′(x, t)− UN (x, t)| > δ

3

)
→ 0, N → ∞.

Therefore

(20) lim
ε→0+

P (|U ′(x, t)− Uε(x, t)| > δ) ≤ lim
N→∞

lim
ε→0+

P

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)
.

Now

(21) lim
ε→0+

P

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)
≤ EΓ,ξ

[
sup
ε>0

Pg

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)]
.
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For an arbitrary ε > 0,

(22) Pg

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)
≤ 9

δ2
Eg

[
|Uε(x, t)− Uε

N (x, t)|2
]

by the Chebyshev inequality. Now we conclude that

Eg

[
|Uε(x, t)− Uε

N (x, t)|2
]

≤ C
∞∑

k=N+1

Γ
−2/α
k ϕ(ξk)

−2/α
3∏

j=1

1

|ξk,j |2H+2/α−2
sin2(ξk, x)

(1− cos at |ξk|)2

|ξk|4

=: C

∞∑
k=N+1

Γ
−2/α
k g(t, x, ξk)

by considering the LePage decomposition. Proposition 1 implies that the series

∞∑
k=1

Γ
−2/α
k g(t, x, ξk)

converges almost surely with respect to PΓ ⊗Pξ. Taking into account inequality (22) we
get

sup
ε>0

Pg

(
|Uε(x, t)− Uε

N (x, t)| > δ

3

)
→ 0

as N → ∞ almost surely with respect to PΓ ⊗ Pξ. Now we derive from bounds (20)
and (21) that

lim
ε→0+

P (|U ′(x, t)− Uε(x, t)| > δ) = 0

by applying the Lebesgue dominated convergence theorem. The proof of Theorem 4 is
complete. �

Like the case of the wave equation with a white noise, the function U(x, t) satisfies
equation (11) in the generalized sense.

Theorem 5. For an arbitrary function θ(x, t) ∈ C∞
fin(R

3 × R+),

(23)

∫ ∞

0

∫∫∫
R3

U(x, t)

(
∂2

∂t2
θ(x, t)− a2Δθ(x, t)

)
dx dt

=

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH(dx) dt

with probability one.

Proof. Since the reasoning is completely analogous to what had been demonstrated
above, we provide only an outlined proof. Put

∂2

∂t2
θ(x, t)− a2Δθ(x, t) = ψ(x, t).

Then equality (23) can be rewritten as∫ ∞

0

∫∫∫
R3

U(x, t)ψ(x, t) dx dt =

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH(dx)dt.

Note that∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH(dx) dt = lim
ε→0

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH,ε(dx) dt.
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Since the field ZH,ε is smooth, the standard properties of partial differential equations
imply that∫ ∞

0

∫∫∫
R3

Uε(x, t)ψ(x, t) dx dt =

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH,ε(dx) dt.

Further, similarly to the proof of Theorem (2), one can show that∫ ∞

0

∫∫∫
R3

Uε(x, t)ψ(x, t) dx dt
P−→
∫ ∞

0

∫∫∫
R3

U(x, t)ψ(x, t) dx dt.

On the other hand,

lim
ε→0

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH,ε(dx) dt =

∫ ∞

0

∫∫∫
R3

θ(x, t)σ(x, t)ZH(dx) dt

by the definition. �
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