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FOURIER SERIES AND FOURIER–HAAR SERIES

FOR STOCHASTIC MEASURES
UDC 519.21

V. M. RADCHENKO AND N. O. STEFANS’KA

Abstract. The Fourier series and Fourier–Haar series are introduced for general
stochastic measures. The convergence of partial sums of these series and the abso-
lute continuity of a stochastic measure are studied. An application is given for the
convergence of solutions of the stochastic heat equation.

1. Introduction

Representations of stochastic processes by random series is an important tool for the
approximation of random functions. Stochastic processes and random series generated
by a general stochastic measure μ defined on Borel subsets of (0, 1] are considered in this
paper. The only restriction imposed on the measure μ is the σ-additivity in probability.
By analogy with the classical case, we introduce the Fourier series and Fourier–Haar
series for general stochastic measures. We prove that the values of μ as well as the values
of stochastic integrals with respect to μ can be approximated with the help of these
series.

Representations of stochastic processes in the form of random series are studied start-
ing from the well-known Paley–Wiener decomposition for the Wiener process. An anal-
ogous decomposition for the fractional Brownian motion is obtained in [1]. Wavelet
decompositions of stochastic processes have been studied recently; see, for example, [2].

There is an extensive literature devoted to Fourier series with random coefficients and
their sums. Properties of Fourier series with independent coefficients are studied in detail
in [3, 4].

The necessary results for Fourier series and Fourier–Haar series used in the current
paper can be found, for example, in [5, 6].

The paper is constructed as follows. Section 2 contains necessary results and facts.
The proofs of theorems concerning the convergence of Fourier series and the absolute
continuity of the stochastic measure are given in Section 3. An application for the
convergence of solutions of stochastic heat equation is discussed in Section 4. Some
properties of Fourier–Haar series for stochastic measures are presented in Section 5.

2. Preliminaries

The set of all random variables defined on a complete probability space (Ω,F ,P)
is denoted by L0 = L0 (Ω,F ,P). More precisely, L0 denotes the classes of P-equivalent
random variables. The convergence in L0 is understood as the convergence in probability.
Let S be an arbitrary set and let B be the σ-algebra of subsets of S.
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Definition 2.1. An σ-additive mapping μ : B → L0 is called a stochastic measure.

We do not assume that μ is nonnegative or is adapted. In this sense, our definition is
general. Such a function of sets is called a general stochastic measure in [7].

One can consider μ(A) =
∫ T

0
1A(s) dX(s) as an example of a stochastic measure,

where X(s) is a square integrable martingale or a fractional Brownian motion with Hurst
index H > 1/2. Another example of a stochastic measure is represented by an α-stable
measure defined on the Borel σ-algebra (see [8, Chapter 3]). Other examples can be
found in [7, Chapters 7 and 8]. Conditions for the differences of a stochastic process with
independent increments to generate a stochastic measure can also be found in [7, Chapters
7 and 8].

The theory of integration of real-valued functions with respect to stochastic measures
is given in [7, 9], for example. In particular, it is shown in [7, 9] that every measurable
function is integrable with respect to any stochastic measure μ. Moreover, an analogue of
the Lebesgue dominated convergence theorem holds; see [7, Corollary 1.2] or [9, Propo-
sition 7.1.1].

We say that fn converges to f (and write fn → f) μ-almost everywhere if μ(A) = 0
almost surely for each set A ⊂ {fn �→ f}, A ∈ B.

The integral of random functions with respect to the real measure dx is understood
in the Riemann sense. This type of integral is studied in [10]. Here we briefly discuss
the definition and an important property of such an integral.

Definition 2.2. Let B ⊂ Rd be a Jordan measurable set and let ξ : B × Ω → R be a
measurable random function. We say that ξ is integrable in the set B if, for an arbitrary
sequence of partitions

B =
⋃

1≤k≤kn

Bkn, n ≥ 1, max
k

diamBkn → 0, n → ∞,

and all xkn ∈ Bkn, the limit in probability of integral sums∫
B

ξ(x) dx := P lim
n→∞

∑
1≤k≤kn

ξ(xkn)m (Bkn)

exists.

Here m denotes the Jordan measure, and the sets Bkn, 1 ≤ k ≤ kn, are Jordan mea-
surable in every partition and such that their intersections coincide with the intersections
of their boundaries.

If the usual Riemann integral exists for every trajectory of ξ and for every fixed ω,
then ξ is integrable in the sense of Definition 2.2, and moreover both integrals coincide.

Theorem 2.1 (Theorem 4.1 [10]). Let μ be a stochastic measure in (S,B) and let B ⊂ Rd

be a Jordan measurable set. Assume that h(x, s) : B×S → R is a measurable nonrandom
function being Riemann integrable on B with respect to dx for every fixed s. We further
assume that

|h(x, s)| ≤ q(s),

∫
B

|h(x, s)| dx ≤ q1(s),

where q, q1 : S → R are integrable on S functions with respect to dμ(s). Then the random
function ξ(x) =

∫
S
h(x, s) dμ(s) is integrable on B, and∫

B

dx

∫
S

h(x, s) dμ(s) =

∫
S

dμ(s)

∫
B

h(x, s) dx.
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3. Fourier series for general stochastic measures

Let B be the Borel σ-algebra of subsets of (0, 1]. For a given stochastic measure μ,
consider the following Fourier series. Put

(1)

ξk =

∫
(0,1]

exp {−2πikt} dμ(t)

:=

∫
(0,1]

cos(2πkt) dμ(t)− i

∫
(0,1]

sin(2πkt) dμ(t), k ∈ Z.

Definition 3.1. The series

(2)
∑
k∈Z

ξk exp {2πikt}

is called the Fourier series for the stochastic measure μ. The random variables ξk are
called the Fourier coefficients of series (2). Partial sums of series (2) are given by

sn(t) =
∑
|k|≤n

ξk exp {2πikt} .

Stochastic integrals on the right hand side of (1) are defined for any measure μ, since
the integrands are bounded. Thus the Fourier series is well defined for every stochastic
measure in B.

Theorem 3.1 below claims that μ is uniquely defined if ξk, k ∈ Z, are given.

Theorem 3.1. If ξk = 0 almost surely for k ∈ Z, then μ(A) = 0 almost surely for all
sets A ∈ B.

Proof. It is known that, for a given stochastic measure μ, there exists a real control
measure λ such that μ(A) = 0 for all sets A with λ(A) = 0 (see [7, Theorem B.2.2]).
Consider the space of functions

C̃ = {f ∈ C([0, 1]) : f(0) = f(1)} .

The Stone–Weierstrass theorem applied to functions defined on a circle of the unit cir-

cumference claims that the trigonometric polynomials are dense in C̃ equipped with the
uniform metric. It follows from assumptions of the theorem that

∫
(0,1]

P dμ = 0 for

every trigonometric polynomial P . By analogy with the Lebesgue theorem [7, Proposi-

tion 7.1.1], we conclude that
∫
(0,1]

f dμ = 0 for all f ∈ C̃. The class C̃ is dense in L1(λ),

and thus, given an arbitrary A ∈ B, there are some functions fn in C̃ that λ-almost
everywhere converge to 1A. Since λ is a control measure, fn converge to 1A almost
everywhere with respect to the measure μ. It is clear that the functions

gn = fn1{|fn|<2} + 21{fn≥2} − 21{fn≤−2}

are uniformly bounded, belong to C̃, and μ-almost everywhere converge to 1A. An
analogue of the Lebesgue theorem implies that∫

(0,1]

gn dμ
P→

∫
(0,1]

1A dμ = μ(A).

Since
∫
(0,1]

gn dμ = 0, we obtain μ(A) = 0 almost surely. �

The weak convergence of partial sums sn is proved in Theorem 3.2.
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Theorem 3.2. Let a function g ∈ C̃ be such that its Fourier series converges to g
uniformly in the interval [0, 1]. Then

(3)

∫
(0,1]

g(x)sn(x) dx
P→

∫
(0,1]

g(x) dμ(x), n → ∞.

The integral above of the random function is understood in the sense of Definition 2.2.

Proof. We have∫
(0,1]

g(x)sn(x) dx =

∫
(0,1]

g(x)

⎛⎝ ∑
|k|≤n

ξk exp{2πikx}

⎞⎠ dx

=

∫
(0,1]

g(x) dx
∑
|k|≤n

exp{2πikx}
∫
(0,1]

exp{−2πikt} dμ(t)

=
∑
|k|≤n

∫
(0,1]

g(x) dx exp{2πikx}
∫
(0,1]

exp{−2πikt} dμ(t)

(∗)
=

∑
|k|≤n

∫
(0,1]

exp{−2πikt} dμ(t)
∫
(0,1]

exp{2πikx}g(x) dx

=

∫
(0,1]

dμ(t)

⎛⎝ ∑
|k|≤n

exp{−2πikt}
∫
(0,1]

exp{2πikx}g(x) dx

⎞⎠ .

We use Theorem 2.1 to ensure equality (∗). When changing the order of integration with
respect to dx and dμ(t) we have chosen q(t) = q1(t) = supx |g(x)|. By assumption of the
theorem, ∑

|k|≤n

exp {−2πikt}
∫
(0,1]

exp {2πikx} g(x) dx → g(t)

uniformly in [0, 1] as n → ∞. Now the analogue of the Lebesgue theorem completes the
proof of (3). �

Remark 3.1. Various sufficient conditions for the uniform convergence of Fourier series to
g can be found, for example, in Sections II.8 and II.10 of [6]. In particular, the uniform
convergence follows if g satisfies the Hölder condition or if g is a continuous function of
bounded variation.

The following result provides a condition for a certain absolute continuity of μ with
respect to the Lebesgue measure in terms of Fourier coefficients.

Theorem 3.3. Let
∑

k∈Z
|ξk| < +∞ almost surely, ξ(t) =

∑
k∈Z

ξk exp {2πikt}, and a

function g ∈ C̃ be such that its Fourier series converges to g uniformly in the interval
[0, 1]. Then ∫

(0,1]

g(t) dμ =

∫
(0,1]

ξ(t)g(t) dt.

Proof. Note that ξ(t) as the limit of a uniformly convergent Fourier series has continuous
trajectories. Thus

∫
(0,1]

ξ(t)g(t) dt is defined as a usual Riemann integral for every fixed

ω ∈ Ω, and its value coincides with the value provided by Definition 2.2.
By Theorem 3.2, ∫

(0,1]

g(t)sn(t) dt
P→

∫
(0,1]

g(t) dμ(t).
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Hence, it is sufficient to show that∫
(0,1]

g(t)sn(t) dt
P→

∫
(0,1]

ξ(t)g(t) dt.

The latter relation follows from the uniform convergence of integrands for any fixed ω. �

4. Convergence of solutions of the heat equation

As an application of the results obtained in the preceding section we consider the
convergence of solutions of the stochastic heat equation governed by a measure μ:

du(t, x) = a2Δu(t, x) dt+ σ(t, x) dμ(t), u(0, x) = u0(x), (t, x) ∈ [0, T ]× R
d.

Here the operator Δ acts with respect to the variable x. The solution of this equation is
understood in the mild sense,

(4) u(t, x) =

∫
Rd

p(t, x− y)u0(y) dy +

∫
(0,t]

dμ(r)

∫
Rd

p(t− r, x− y)σ(r, y) dy .

In equality (4), p(t, x) = (4a2πt)−d/2e−|x|2/4a2t denotes the fundamental solution of
the heat equation. Changing definitions in an obvious way, we consider Fourier series
for functions defined on the interval [0, T ] rather than on the interval [0, 1]. In what
follows, the symbol C stands for a constant whose precise value does not matter for our
reasoning.

Some applications of the Fourier transform to the convergence of solutions of equa-
tion (4) are given in [11].

We impose the following restrictions.

A1. The function u0(y) = u0(y, ω) : R
d×Ω → R is measurable and bounded for every

fixed ω.
A2. The function σ(r, y) : [0, T ]× Rd → R is measurable and bounded.
A3. |σ(r1, y1)− σ(r2, y2)| ≤ C (|r1 − r2|+ |y1 − y2|).

Theorem 4.1. Assume that conditions A1–A3 hold. Let sn be the partial sums of
series (2) and let

(5) un(t, x) =

∫
Rd

p(t, x− y)u0(y) dy +

∫
(0,t]

sn(r) dr

∫
Rd

p(t− r, x− y)σ(r, y) dy .

Then, for all (t, x) ∈ [0, T )× Rd,

un(t, x)
P→ u(t, x), n → ∞,

where u(t, x) is defined by equality (4).

Proof. Assumptions A1 and A2 ensure that the integrals in (4) and (5) are well de-
fined. The integral in (5) with respect to dr is understood in the sense of Definition 2.2
(Theorem 2.1 guarantees that this integral is well defined, too). Put

g(z, r) =

∫
Rd

p(t− r, x− y)σ(r, y) dy, z = (t, x), 0 ≤ r < t,
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and extend g for t ≤ r ≤ T in a linear way such that g(z, 0) = g(z, T ). For r1, r2 ∈ [0, t),
we have

|g(z, r1)− g(z, r2)|

= C

∣∣∣∣∣∣
∫
Rd

e
− |y|2

4a2(t−r1)

(t− r1)d/2
σ(r1, x− y) dy −

∫
Rd

e
− |y|2

4a2(t−r2)

(t− r2)d/2
σ(r2, x− y) dy

∣∣∣∣∣∣
(∗)
= C

∣∣∣∣∫
Rd

e−|v|2σ
(
r1, x− v

√
4a2(t− r1)

)
dv

−
∫
Rd

e−|v|2σ
(
r2, x− v

√
4a2(t− r2)

)
dv

∣∣∣∣
= C

∣∣∣∣∫
Rd

e−|v|2
(
σ
(
r1, x− v

√
4a2(t− r1)

)
− σ

(
r2, x− v

√
4a2(t− r2)

))
dv

∣∣∣∣
(∗∗)
≤ C

(
|r1 − r2|+

∣∣∣√4a2(t− r1)−
√
4a2(t− r2)

∣∣∣) ∫
Rd

(1 + |v|)e−|v|2 dv.

We used the change of variables v = y/
√

4a2(t− r) for equality (∗) and assumption A4
for equality (∗∗).

Thus the function g(z, r) is of bounded variation on the interval [0, T ], is continuous,
and is uniformly approximated by its Fourier series according to [6, Theorem II.8.1].
Now Theorem 3.2 completes the proof. �

5. Fourier–Haar series for general stochastic measures

We turn back to a stochastic measure μ defined on the Borel σ-algebra in the inter-
val (0, 1]. Consider the function μ̃(t) = μ((0, t]), 0 ≤ t ≤ 1. Our aim is to obtain an
approximation of μ̃(t) by step functions with the help of the Fourier–Haar series with
random coefficients.

In what follows, we use the following notation:

dik = i2−k, k ≥ 0, 0 ≤ i ≤ 2k, Δ1 = Δ0
0 = (0, 1), Δ1 = [0, 1],

Δn = Δi
k =

(
di−1
k , dik

)
, Δn =

[
di−1
k , dik

]
, 2k + 1 ≤ n ≤ 2k+1,

Δ+
n =

(
Δi

k

)+
=

(
di−1
k , d2i−1

k+1

)
= Δ2i−1

k+1 , Δ−
n =

(
Δi

k

)−
=

(
d2i−1
k+1 , d

i
k

)
= Δ2i.

k+1.

The system of functions

χ = {χn(x), n ≥ 1} , x ∈ [0, 1],

where χ1(x) ≡ 1 and

χn(x) =

⎧⎪⎨⎪⎩
0, x /∈ Δn,

2k/2, x ∈ Δ+
n ,

−2k/2, x ∈ Δ−
n ,

for 2k + 1 ≤ n ≤ 2k+1 is the classical orthonormal Haar system. At the points of
discontinuity, we put

χn(x) =
(
χn(x−) + χn(x+)

)
/2, χn(0) = χn(0+), χn(1) = χn(1−).

Let trajectories of the function μ̃(t) be Riemann integrable for every ω. Then its
Fourier–Haar coefficients are defined by the equality

(6) ηn =

∫
[0,1]

μ̃(t)χn(t) dt = 2k/2
(∫

Δ+
n

μ̃(t) dt−
∫
Δ−

n

μ̃(t) dt

)
.

Below we use the integration by parts formula provided by Theorem 5.1.
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Theorem 5.1. Let μ̃(t) be an integrable function on the interval [a, b] in the sense of
Definition 2.2. Then

(7)

∫
[a,b]

μ̃(t) dt = bμ̃(b)− aμ̃(a)−
∫
(a,b]

t dμ.

Proof. Consider partitions a = t0 < t1 < · · · < tj = b whose diameters tend to zero.
Using an analogue of the Lebesgue theorem in equality (∗) below we get∫

(a,b]

t dμ
(∗)
= P lim

j→∞

∫
(a,b]

j∑
i=1

ti1(ti−1,ti](t) dμ = P lim
j→∞

j∑
i=1

ti
(
μ̃(ti)− μ̃(ti−1)

)
= bμ̃(b)− aμ̃(a)− P lim

j→∞

j∑
i=1

μ̃(ti−1) (ti − ti−1) .

The latter sums tend to
∫
[a,b]

μ̃(t) dt according to Definition 2.2. �

Using (7), we get from equality (6) that

ηn = 2k/2

(
−dikμ̃

(
dik

)
+ 2d2i−1

k+1 μ̃
(
d2i−1
k+1

)
− di−1

k μ̃
(
di−1
k

)
−
∫(

di−1
k ,d2i−1

k+1

] t dμ+

∫(
d2i−1
k+1 ,di

k

] t dμ)(8)

for 2k + 1 ≤ n ≤ 2k+1. The random variable ηn given by the right hand side of (8) is
defined for an arbitrary stochastic measure μ even if its trajectories are not integrable
in the Riemann sense. Throughout below, we assume that the random variable ηn is
defined by equality (8).

Definition 5.1. Let μ be an arbitrary stochastic measure defined on the Borel σ-algebra
of the interval (0, 1] and let the random variables ηn be defined by equality (8). Then

(9)
∑
n≥1

ηnχn(x)

is called the Fourier–Haar series for the stochastic measure μ. Accordingly, the sums

SN (x) =
N∑

n=1

ηnχn(x)

are called the partial sums of series (9).

Similarly to equality (3.8) of [5], we conclude that

(10) S2k(x) =

2k∑
i=1

2k

(
dikμ̃

(
dik

)
− di−1

k μ̃
(
di−1
k

)
−
∫
Δi

k

t dμ

)
1Δi

k
(x)

for x �= dik and 0 ≤ i ≤ 2k. Analogously to equality (3.11) of [5], we conclude that

(11) SN (x) =

⎧⎪⎨⎪⎩
S2k+1(x), x ∈ [0, dik),

S2k(x), x ∈ (dik, 1],

S2k(x) + ηNχN (x), x = dik,

for ΔN = Δi
k, 2

k + 1 ≤ N < 2k+1.

Theorem 5.2. If a point x ∈ (0, 1] is such that μ({x}) = 0 almost surely, then

SN (x)
P→ μ̃(x), N → ∞.
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Proof. Using equality (10), we conclude that

S2k(x) =
2k∑
i=1

(
μ̃
(
dik

)
+ (i− 1)μ

(
Δi

k

)
− 2k

∫
Δi

k

t dμ(t)

)
1Δi

k
(x)

=

∫
(0,1]

2k∑
i=1

(
1(0,di

k]
(t) +

(
i− 1− 2kt

)
1Δi

k
(t)

)
1Δi

k
(x) dμ(t)

=:

∫
(0,1]

gk(x, t) dμ(t).

Here gk(x, t) → 1(0,x](t) as k → ∞ for all t �= x. The convergence at the point x does
not matter if μ({x}) = 0 almost surely. An analogue of Lebesgue’s theorem implies that

S2k(x)
P→ μ̃(x). In addition,

ηNχN (dik) = −1

2

(
−dikμ̃

(
dik

)
+ 2d2i−1

k+1 μ̃
(
d2i−1
k+1

)
− di−1

k μ̃
(
di−1
k

)
−

∫(
di−1
k ,d2i−1

k+1

] t dμ+

∫(
d2i−1
k+1 ,di

k

] t dμ) ,

and thus ηNχN (x0)
P→ 0, N → ∞, for any fixed point x0 = dik if μ({x0}) = 0 almost

surely (different k result in different i). It remains to apply equality (11). �

It is worth mentioning that the proof above provides an approximation of trajectories
of μ in contrast to the proof of Theorem 3.2, where partial Fourier sums are used to
approximate integrals with respect to dμ.
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