
CANONICAL FORMS OF QUATERNARY ABELIAN

SUBSTITUTIONS IN AN ARBITRARY  GALOIS  FIELD*

BY

LEONARD  EUGENE  DICKSON

§ 1. Introduction.

For application to the problem of the distribution of the substitutions of a

given group into complete sets of conjugates within the group, a set of canon-

ical forms for its substitutions should have the property that two substitutions

are conjugate within the group if, and only if, they are reducible to the same

canonical form according to a definite scheme of reduction. In particular, if the

canonical form belongs to a higher field than the initial GF[p"~\ , the new in-

dices introduced must be conjugate with respect to the initial field.

In the present paper is given a set of canonical forms of quaternary abelian

substitutions in the GF[p"~\ such that the canonical forms likewise belong to

the special abelian group SA(4,pn), the reduction being effected within the

group. From them are derived the ultimate canonical forms, not all belonging

to the given abelian group. In the former case, the canonical forms depend

on the coefficients of the characteristic equation, in the latter case upon its roots.

When the given group is the general linear homogeneous group on m indices

with coefficients in the GF\_pn~\ , a set of ultimate canonical forms is furnished

by a theorem due (for the case n = 1) to Jordan. •)• Likewise for the group of

ternary linear homogeneous substitutions of determinant unity in the GF[_pn~\ ,

a complete set of ultimate canonical forms has been determined. $ The problem

has also been solved for the corresponding binary group. The corresponding

problem for a linear group of special character (i. e., not directly related to the

general linear group) has not been previously solved so far as is known to the

writer. The simplicity of the canonical substitutions for the quaternary abelian

group makes comparatively easy the classification of abelian substitutions into

* Presented to the Society (Chicago) December 28, 1900. Received for publication January

5, 1901.

•f Traité des substitutions, pp. 114-126. A simple proof by induction of the general theorem

has been given by the writer in the American Journal of Mathematics, vol. 22, p. 121,

1900.

t Dickson, American Journal of Mathematics, vol. 22, p. 231, 1900.
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sets of conjugates within the abelian group (§ 23). The analogous problem is

then solved (§ 25) for the simple quotient-group A (4, pn) and the results are dis-

cussed for the casep" = 3, which leads to a simple group of order 25920 of fre-

quent occurrence in geometrical problems (§§ 26-27). In addition to the checks

mentioned in §§ 23, 24 upon the calculations of the paper, it may be stated that

the results for the case pn = 3 were previously derived by methods independent of

those employed in this paper.*

Frequent use will be made of the theorem f that the equation

a? + ßn2=l

has in the GF[pn] (p~> 2), p" — v solutions (£, n), where v denotes + 1 or

— 1 according as — aß is a square or a not-square in the field.

§ 2. Definition of the abelian group.

The quaternary special abelian group SA (4, pn) is composed of the linear

substitutions

(1)

fi    vx    £, v.

S:
y¡ =

e-
v'2 =

7l2

8.,ßll       Sll       ßl2

¿Il       821       ^22       S22

with coefficients in the GF[p"~\ which satisfy the relations J

(2)

(3)

(4)

ßn

a,.

A

7U

K

721

Ya

K

+

+

+

ß,

ß.

7,2

Su

712

722

712

= 1,

= 0,

= 0,

721

021

ßn

021

Ai

"21

7M

+

+

+

022 S«

012   «,

02

0,

022 K

512

=   1,

= 0,

= 0,

and equivalent relations (2'), (3') , (4'

former were formed from its rows.

formed from the columns of (1) as the

* An account of these elementary methods, sufficient for the casepn = 3, was presented Jan-

uary 7, 1901, to the London Mathematical Society.

fCompare American Journal of Mathematics, vol. 21, p. 195, 1899.

X For n = 1, the abelian group was studied by Jordan, Traité des substitutions, pp. 171-179 ;

for general n, it was investigated by the writer, Quarterly Journal of Mathematics,

vol. 29, pp. 169-178, 1897 ; vol. 31, pp. 383-4, 1899.
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Of the simplest substitutions satisfying these relations, the following are fre-

quently employed in this paper, the notations being standard : f

L'iK

N<ij A

llFi — Vt,   n'i'

v'i = Vi + Hi ;

Hi = Hit   y'i*-*~\>

£ [ — £a •   n¡ = Vít   I a — ix,   n't — Vi i

K-fc + H'   fi-fc + H-
The order iYof &4(4, p") is ^4n(^4n - 1) (p2n — 1).

Since the general substitution (1) may be derived from the generators Lik,

M. and iY^- k, its determinant is unity.

The reciprocal of  S-, given by (1), is

Sn    -7U ê2i    —7k'

-^n an     -^21 a2i

(5) Ä-1
S12       -  7I2 S22   - r.

~ß, ~ß,

It follows that the first minors (taken without prefixed sign) of a.., 8.., ß.., y„

are respectively 8.., a.., yv, ß...

§ 3.   Characteristic equation of an abelian substitution.

By definition, the characteristic determinant of  S is

A(«)s
ßn

«21

ßU

7ii «u

8XX-K ßu

72i «2.

8» ß,

7«

8-

822-*

The constant term A(0) of A(/e) expanded according to powers of k is unity,

being the determinant of the substitution.    The coefficient of — a; is

ß S12

S21 ßll K

+

ß*     ßn     «

an    7n    7i,

-   ßn     Sn     K

ßn     K     «22

=   SU   +  "il   +   S22   +   «22 :

+

7u

ßn      «ii     /31;

t If an index is not altered, it is not written in the formula.
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The coefficient of /c2 is the sum of six determinants of the second order.    In

particular, A(«) has the form

«4 - («11 + SU + «22 + S22>3 + ( y - («11 + Sll  + «22 + S22> + 1 •

Hence the reciprocal of any root of A(k) = 0 is itself a root.     The character-

istic equation of a special abelian substitution is a reciprocal equation.*

§ 4.  Substitutions whose characteristic equations have all their

roots in the GF^p*], no root being ± 1.

Suppose first that all the roots of A(k) = 0 belong to the GF\_pn~\ . Desig-

nate them by k , ie~\ X, X-1 and consider first the case in which no root is ± 1.

The root « leads to a linear function co sa a£, + br/x + c%2 + dy2 which S mul-

tiplies by ic . But tSA(4 , pn) contains a substitution V which replaces £, by co .

Then V~lSV= Sx replaces £, by k£,. Likewise the root k_1 , which is also

a root of the characteristic equation for Sx, leads to a linear function

to, = a,£, + bxnx + c,£2 + dxv2,

which Sx multiplies by ie~x.

If 5, +- 0 , the group contains the abelian substitution

bxl     0     0       0

a.        b,    \
¿7 =

bx2dx 0

c,        0 0

0

6,

Then U~XSXU, being abelian, takes the form

r«     0      0     0

0       0

0

0 0
From the assumption concerning A(«), the equation

— k    y

ß S — K

= 0

has as its roots the distinct marks \, X-1 of the GF\_pn~\ .    Hence the given

substitution S is conjugate with the canonical form

* The theorem is true for any number 2m of indices. For proof, the direct method of the

text may be employed ; another proof may be based upon the canonical forms of linear substi-

tutions in a Galois field. In a subsequent paper the writer intends to extend the present inves-

tigation to the case 2m > 4 .
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(6) £' -o *£ ,     7?; = k lyx,     £2 = X£2 ,  t?2 = X ^ .

We take X + k or /c_1, the contrary cases leading to the type (7) below. Here

k has pn — 3 and X has p" — 5 values if p > 2 ; while, for ^? = 2, k has 2n — 2

and X has 2" — 4 values. But the substitution (6) is transformed by Mx into a

similar one with « and «_1 interchanged ; by M2 into one with X and X~l inter-

changed ; by P12 into one with k and X, tc~x and X-1 interchanged. The eight

resulting combinations give all the substitutions of the type (6) with the distinct

roots k , k~x , X, X_I.    The number of types of canonical forms is therefore

Up*-3)(p*- 5)' for P> 2 '    8-(2"- 2)(2"-4)' for P = 2•

The most general substitution of -SA(4, pn) commutative with a given substitu-

tion (6) has the form

f Í = «& »    < = «",7?i >    £2 = h%2 »    ^2 = ^^ •

Their number being (_pn — l)2, it follows that each substitution (6) is one of

N ^(pn — I)2 = pin(p2n + 1) (pn + If conjugates within SA(4, pn).

If, however,  6, = 0 in <ox, we may suppose that c, + 0 .    For, if c, = 0,

dx=\=0, then M2lSxM2 multiplies a,f, + dxC2 by «r1.

contains the abelian substitution

With c, 4= 0, the group

F =

1

0

«i

0

0

1

0

0

0

0

cl

0

0

d,

(A, = «»a,).

Hence F '#, F belongs to the group and has the form

«000]

011    "-1    0,2    0

0       0       k-1   0

i 021   o     £22   «

Transforming by L'x TL'2 a and taking

ßxx + r(tc - «-') = 0 ,    ß22 + oí*"1 - «) = 0 ,

we find a substitution of the same form, having ßxx = ß22 = 0.    If ßX2 = 0, we

have the canonical form

(7) %[ = «li,     fí — * ^ i     £ — «'%,     V'2 = *n2 •

If ßX2=$= 0 , we transform by T2 ß 2< and obtain the type
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o     o     o

AT"1      AT1       0

o     «-1  o

0 0 K   .

The number of non-conjugate substitutions (7) with k2 4= 1 is ^(pn — 3) if

p > 2 and i(2" — 2) if ^ = 2 . A substitution commutative with (7) has the

form

a    0    0    ß'

0    a    6     0

0    c     d    0

7    0    0    8
The abelian relations give

aa — ßb = 1,    ac — ßd = 0 ,    — ya + 8b = 0 ,    — yc + 8d = 1.

Letting A = ad — be, we have, as the solution of these relations,

a = d/A,    ß=cjA,    y=o/A,    8= a/A.

The number of the commutative substitutions is therefore (p2n — 1) (p2n — p"),

so that each substitution (7) is conjugate. within SA(4t, pn) with exactly

p3n(p2n + 1) (pn + 1) substitutions.

The substitution (8) is transformed by PX2 into a similar one with k_1 in place

of k . Hence there are \(pn — 3) or |(2" — 2) non-conjugate substitutions (8)

with k2 4= 1 ■    A linear substitution commutative with (8) has the form

a    0    0    0"

0    c    d    0

0    0    c     0

[ b    0    0    a

The abelian relations give ac = 1 , — be + ad = 0 , whence

c = a-1,    d= be2.

The number of such substitutions is therefore pn(pn — 1). Hence each substitu-

tion (8) is one oíp3n(p4n — l)(pn + 1) conjugates.

§ 5. Roots in the field, two of them being ± 1.

Suppose next that the roots are k , k~1 , ± 1, ± 1, where k is a mark =(= 0

or ± 1 of the G F \_pn~\ .    The canonical form is

(8)
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(9)

0        0        0

k-1      0 0

Oil       o

0        0        /3   ±1

For ß = 0 there are pn — 3 or ^(2" — 2) types each commutative with

it     0     0     01

(10)
o   r1 o    o

0     0     a     o

0     0 d

(ad— ic = l) ,

giving (p" — l)pn(p2n — 1)  substitutions.     Hence each type yields a set of

p3n(p2n + 1) (pn + 1) conjugate substitutions of SA(4 , p").

For ß =j= 0 , the substitutions with ß a square are transformed into each other

by abelian substitutions T2a and likewise those with ß a not-square. The two

sets are seen to be not conjugate within ,604(4, pn). The number of types is

therefore 2(p" — 3) or -|-(2" — 2) according as p > 2 or p = 2 . A substitution

commutative with (9) for ß 4= 0, k2 4= 1 has the form (10) with 6=0 and

a = d. Each type is therefore commutative with 2pn(pn — 1) or 2"(2" — 1)

substitutions and thus conjugate with exactly ^p3n(p4n — 1) (pn + 1) or

23"(24" - 1) (2" + 1) substitutions within &á(4 , p").

§ 6.  Two roots each ± 1 and two roots each q= 1.

If the roots are ±1, ±1, =f1, =f 1) the canonical form is

r=hi      0      0      0

a    ±1 0 0

0 0^1 0

0 0 ß    Tl

(11)

One may chose the lower sign, transforming if necessary by PX2.

For a = ß = 0 , the substitution becomes Tx _. and, for p > 2 , is commuta-

tive only with the \_pn(p2n — 1)]2 substitutions

(12)

a b    0    0

c d    0    0

0 0

0 0

ax   bx
(ad — be=l, axdx — 6^=1),

ci    dxl
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For a + 0 , we may suppose that a = 1 or v, where v is a particular not-

square in the GF[_pn~\ ; indeed, a is replaced by aa—2 upon transforming (11)

by Txa . Similarly, we may assume that ß = 0 , 1 or v . The resulting eight

types are :

L,.. T A^-D Ai^i-D L 2 ß ' A* ̂ î-i A*
where  p, = 1 or v.    The number of conjugates  to  each may  be  determined

directly or more simply by the method of §§ 9—10.

§ 7. Four equal roots each ± 1.

If the roots be ± 1, ± 1, ± 1,. ±1, the canonical form is either

L =

±1

a

0

0

0

±1

0

0

0

0

±1

ß

Oí

0

0

1

ov    R =

±1

011

«21

ft.

0

±1

0

0

0

012

=1=1

0

K
0

±1

according as the linear function a>x determined by the second root ± 1 contains

yx or does not. If ßX2 = oX2 — 0 , R is of the form L. If 8,2 = 0 , /3,2 + 0,

the transform of R by T2ß is of the form R with ßX2 = 1, S,2 = 0 . The

abelian relations give <x2, = 0 , ß2X = 1. Then, for /3„ + 0 , we transform by

the abelian substitution

£ - & + 0n^2 »     V'2 = V2- ßTiVx ,

and reach a substitution of the form L . A similar result follows if ßxx = 0 ,

a22 + 0 , since the transform of R by P12 then has ßxx + 0 . Finally, if

011 = «22 = 0 ) we have the substitution

(13)

r±l

0

0

1

0

:1

0

0

0

1

±1

0

0]

0

0

For p > 2 , this is transformed into L (with a = 1, ß = — 1) by

1 0        I        01

0 i        0        1

-1 0        J        0

10    -i 0
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For p = 2 , substitution (13) will be seen to furnish a new type. A substitu-

tion (1) commutative with (13) must have the form

axx     0      aX2     0

011      Sn      ßi»     S12

. ^21       ai2       £*22       ail .

subject to the abelian conditions

aJn + ai2«i2 = 1. . ßnau + siAi + an^i2 + «12/322 = 0 .

By the former, axx and aX2 are not both zero, so that the latter determines one of

the ß{. in terms of the other three, which may be chosen arbitrarily in the

GF [2"] . Hence there are 2"(22n — 1)23" substitutions of Ä4(4, 2") commuta-

tive with (13). A substitution L is conjugate with the identity or LX1 or

LXXL2X.    By §10, LXXL2X is commutative with exactly 24" substitutions of

SA(4:, 2"), so that LXXL2X and (13) are not conjugate within the group. A

different argument is necessary for the case of Lx x and (13) ; but the latter are

readily shown to be not conjugate under abelian transformation.

It remains to consider R when 8X2 4= 0 . The transformed of R by T2 8—i is

of the form R with 8X2 = 1. The latter is transformed by L'2 ß into the

substitution

±1 0 0 0"

ßn ±1 ° 1

-1 0     ±1 0

q= a 0 a    ± 1

Suppose first that p = 2 . If a = 0 , the transform of Rx by M2 is of the form

R with 812 = 0, a case previously considered. If a 4= 0, the transform of

Rx by Tu T2k is of the form Rx with K~2a in place of a . Choosing k = a*, we

obtain a substitution
fl    0    0    0

ß   1   0   1

10    10

10    11

of period 4.    Transforming Rß by the abelian substitution

£ = & >   v[ = vl + -r-n-i + t2í¿ ,   £¡ = £¡ — T^ t   v'í = v¿ + t%î t

we obtain, for p = 2 , the substitution Ä6, where b = ß + t + r2.    In order

Rx =

Rr  =
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that the Cr7^[2"] shall contain a mark t for which 6=0, it is necessary and

sufficient that

B = ß + ß2+ßi+... + ß2"'1 = 0

marks ß mak-

The 2"_1 substitutions Rß for which

Since ß belongs to the field, B2 = B. Inversely, there are 2

ing B = 0 and as many making B = 1

B = 0 are therefore conjugate within SA(1, 2") - Likewise the 2"_1 substitu-

tions Tip for which B = 1 are all conjugate ; indeed, Rß is conjugate with Rb

and b = ß + r + t2 takes 2n_1 distinct values when t runs through the series of

2" marks, while

h + b2 + ¥ + ■ ■ ■ + b2"'1 = ß + ß2 + ß* + ■ ■ ■ + /32"-1 + t + t2" = B (mod 2).

That the substitutions Rß for which B = 1 are not conjugate with 7?0 may be

shown by considering the condition Rß S = SR0, S being of the general form

(1).    We find that S must have the form

(14)

n
0u

022

02,

0

012

1

022

0

022

0

1

fßa=ß11 + ß„ + ß\
^n = Ai + Ä /'

The latter conditions require that ß + ß22 + ß\2 m 0 (mod 2) .

For p = 2, the only substitutions of SA(1, 2") commutative with Rß are of

the form (14) subject, however, to the conditions

021=012+022-       02, =  012 +022-

Hence ß22 = 0 or 1, while /3„ and ßX2 are arbitrary ; thus there are 2 • 22" sub-

stitutions.

For p > 2, Rx is transformed into a similar substitution R' having ßxx = 0

by the following abelian substitution

n'i — ? i + ^01,^21   % = v2 + Í0,,£i •

For a = 0 , the transform of R by M2 is of the form (13).

For a =j= 0 , the transform of R' by Tx ±1 gives the substitutions

A =

1

0

-1

0

0

1

0

1

0

1

A_a7,_172_,.

Transforming Aa by 7, „T^ we obtain Aait-2.   Hence, if 7? > 2 , there are only

four canonical types, v being a particular not-square :
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■A>     -^■i'»     -^1^1-1^2-1' ¿VTX_XT2_X.(15)

The substitutions Aß and A Tl_lT2_l are not conjugate, if p > 2, their char-

acteristic equations having different roots. But every substitution commutative

with one is commutative with the other, TX_XT2_X being commutative with every

quaternary linear substitution. The period of A^ is readily seen to be p if

p > 3, 9 if p = 3, or 4 if p — 2.* Then ^„^i.^., is of period 2p if

J9 > 3, 18 if p = 3, or 4 if p = 2.

If S be the general substitution (1), the identity AaS = SAa, requires that

7U = 7i2 = 7a = 722 = ai2 = «21 = ° »    "22 = an >    «22 = «11 »    ^22 = a8i2 •

ß2l = — ^12 — aS12 '       aS22 = a'a22 >       _ aitll + «'«21 = — ^22 ~ a822 •

The second abelian relation (2) then gives an822 = 1, whence

a8\2 = a'.

Hence Aa and Aa, are conjugate within SA(á , pn) only when a and a are both

squares or both not-squares in the GF[pn~\. To determine the substitutions S

commutative with Aa, set a = a .    Then

S =

"ii

ßn

-S,.

l-ßu— aS12

subject to the abelian relations

0

ai

0

0

0

ßn

an

a8„

0

°ïi = ! '     2aifiiî + aan8i2 - aSi2 = ° •

For each of the two values of axx, the second relation determines 8X2. Hence

there are 2p2n substitutions commutative with Aa. Hence each of the substitu-

tions (15) is conjugate with exactly \p2n(p4n — 1) (p2n — 1) substitutions within

SA(4 , p"), while no two of the four canonical types are conjugate.

§ 8.    Study of the abelian substitutions of type L.

Upon transforming L by Tx a T2 K, we obtain a substitution of the form L

with a, ß replaced by aa~2, ßic~2. Hence the substitutions L are conjugate

with one of the following :

* For example, by introducing the new indices

x=—?,, r=f„ z=h—*-*!>„ w=-a-i

Aa takes the standard canonical form (not abelian) :

X' = X,   Y'=Y+X,  Z' = Z+Y,   W' = W+Z.

fs + n_1 'h,
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(/í,  r = 0,  1,  v).An Ar>       A/xAt^I-I^-I

Of these, 7/, XL2 „ is transformed into Lx VL2, by P, 2, and Lx XL2 x is trans-

formed into LXvL2y by the abelian substitution

vB

0

— va

0

0

o

ver

0

KO

0

01

er

0

8

subject only to the condition v(B2 + a2) = 1, which has solutions in every

6r7y7[^n]. The identity and TX_XT2_X are conjugate only with themselves.

Hence the types L remaining for consideration are :

Ajií      A ^^,-1^2-1'      A^Al»      AMAl^l-1^2-l (M=?l. »).

The characteristic equations for the second and fourth substitutions have the

roots — 1 and hence are not conjugate with the first or third.

The substitutions Lx, and LXv,v being a not-square in the GF[pn],p > 2 ,

are not conjugate within the SA(1, pn). In fact, SEXX = LlvS gives the

conditions :

011 = 0 »       K = "«11 >       0,2 = 021 =  «21 =  S12 =  ° •

Thus S does not satisfy the abelian relation (2) :

1  = «lA, - 0il7l, +  «12°12 - 0i27l2 =  Va\l •

The fact that LXXL2X and LXvL2X are not conjugate with each other and that

neither is conjugate with either Lxx or LXv within SA(1, pn) follows inciden-

tally from the following determination of the number of abelian substitutions

conjugate with each of the four. To determine the number of substitutions of

/SA(4, p") conjugate with EXi¡L2t, let S denote the general substitution (1)

commutative with it.    The conditions for the identity

&A„At-A.*At# (^ + o)
are found at once to be the following :

011= 0>       0,2= 0>       021= 0>

For t = 0 , S has the form

(16)

"ii' rß22 = 0 ,

r*«21 = tS2, «       ^812 = T« 12 '
ra„„ = t8„,

0

0

0

7„

«a

72i

8« 0,

712

0

722

«22 J
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In particular, an abelian relation gives a2xx = 1. Hence S = Yov TX_XY, where

Y is the most general substitution of SA(4, pn) which leaves vx fixed. The

number of substitutions Y is p3np"(p2n — 1), being equal to the number of

substitutions of SA(4, pn) which leave fixed the index ^ .* According as

p > 2 or p = 2 , L¡ is one of \(pin — 1) or 24" — 1 conjugate substitutions

within £4(4, pn).

For t = 1, a substitution S commutative with LXfiL2X has the form

«u    7U      m812    TTis"

(17) °     "'     °       S"   ,
a21       721 *22 722

.0 M«21       0 «22.

subject to the abelian relations

aU + M&U = 1 »     «22 + Ki = 1 .     «11 + Ki = ! »

axxa2X + 8X2a22 = 0 ,    axxy2l - yxxa2X + p8X2y22 - yX2a22 = 0 .

Hence

g12 = «îl '       «22 = ± «11 «       ail(a21 ± Slî) =  0 '

Suppose first that p. is a, not-square v in the GF[p"~\ , p > 2 . Then axl

4= 0 and a2X = =p 8X2, an = ± an . For any one of the pn + e sets of solutions

of a\x + v8\2 =l,e being ± 1 according as p" = 41 ± 1 , a21 and a22 are de-

termined except in sign ; while y2X is determined in terms of 7U , yX2, -y22. Hence

there are 2p3"(pn + e) substitutions of SA(A, pn) commutative with LXvL2X.

Suppose next that p. = 1. Whether an be zero or not, we may set a22 = ± axx,

a2X = =p 8X2. For any one of the pn — e sets of solutions of a2xx + 822 = 1 in the

GF[pn] , p> 2, a22 and a21 are determined except in sign, and one of the y{.

is determined in terms of the remaining three. Hence there are 2p3n(p"— e)

substitutions of SA(4, pn) , p > 2 , commutative with Lx XL2X. For p = 2 ,

we get aM = an, 8X2 = a21, au + 8X2 = 1, so that xS'^4(4, 2") contains exactly

24n substitutions commutative with LXXL2X.

§ 9.    Study of the substitutions Lx   Tx _j awd Xj   7^ _x (p, = l or v).

If v be a not-square in the GF[pn~], p~> 2, no two of the substitutions

Ai^i-i» LXvTx_x, L11T2_1, LlyT2_x are conjugate within SA(4, p"). The

first two are not conjugate and the last two are not conjugate since their

(p + l)-th powers are Lxl and LXv and are not conjugate by § 8 . Finally, a

relation SLX)iTx_x = XlT272_1/S'is proved impossible by forming the respective

products.

•Quarterly Journal of Mathematics, vol. 29, pp. 171-173, 1897.
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Within SA(1, pn), p > 2 , each of the four substitutions is one of a complete

set of ^p2n(pin — 1) conjugate substitutions. In proof, let S be an abelian sub-

stitution commutative with Lx Tx _,. Then S is commutative with the p-th and

(p + l)-th powers of the latter, which are Tx _, and Lx tf respectively. Hence S

is at the same time of the forms (12) and (16).    Hence

«u    7n    0      0

0      a„    0      0
S =

0 0 «22       722

.0      0      ß22    S22

subject to the abelian relations

aU ™ ! >       «22822 - 022722 = 1   •

The number of substitutions S is therefore 2pnpn(p2n — 1) .

A substitution S' commutative with LXliT2_x will be commutative with

Lx T2 _x ■ Tx _j T2 _, = Lx B Tx _x and vice versa. Hence every S' is an S and

vice versa.    Hence the final theorem :

Within SA(4, pn) ,p^>2, the substitutions Lx x Tx _x, Lx\ T2 _,, Lt r Tx _x and

Lx VT2_X, where v is a not-square in the field, are not conjugate and each gives

rise to a complete set of %p2"(p4n — 1) conjugate substitutions.

§10.     Study of the substitutions LXjLTx_xL2r (p., t = 1 or v).

The substitutions LXXTX_XL2X and LXvTx_xL2X are not conjugate within

tSA(4 , p"), p > 2 . Indeed, their p + 1-th powers, Lx XL2 x and Lx VL2 x are not

conjugate by § 8. Likewise LxxTx_xL.2v and LXvTx_xL2v are not conjugate

within ^A(4,^n). Finally, LXliTx_xL2X is not conjugate with LlKTx_xL2v>

for, if S transform the former into the latter, it is seen that S must replace £2

Dy "822?2 + 722^2 an<^ v2 Dy 822^2 ' wnere vB222 = 1. Combining the four non-con-

jugate substitutions into the single type E = LlfLTx_xL2T, where p, t= 1, v,

it will be shown that each E is commutative with exactly lp2n substitutions of

SA(1, pn) , p > 2 , and hence is one of a set of \(pin — 1) (p2n — l)p2n conjugate

substitutions. In proof, let $ be commutative with E. Then tS must be com-

mutative with Ep = Tx_x, so that S must be of the form (12). Also S must

be commutative with Ep+l = Lx liL2r and hence have ßxl = 0, ß22 = 0 , a„ = 8„,

«22 = 822 (§ 8) •    Hence S has the-form

a      y      0       0   '

0       a       0       0
(a2 =(^ = 1).

0 0 «22        722

0       0       0       a22

Inversely, each of these substitutions is evidently commutative with E.
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In view of the number of the substitutions of SA(4, pn) commutative with

the substitutions E and the number commutative with the four of § 9, none of

the latter are conjugate with a substitution E.

§ 11.   Canonical form of a binary substitution of irreducible characteristic

determinant.

Theorem.    A binary linear substitution in the GF[pn~\

2 = (^    l) (°s-ß?=i)

whose characteristic determinant D(k) = k2 — ic(a + 8) + 1 is irreducible in the

field may be transformed into the canonical form

2' = (-l     a + 8)

by a linear substitution of determinant unity and belonging to the field.

If ßy = 0 , then   D(k) = (k — u)(k — 8), contrary to  hypothesis.    Trans-

forming 2 by ( 1 ), we obtain #=(_   _x        i s ) •    If 7 be a square

in the field, the transform of S by Tlyn gives 2L.    If 7 be a not-square, so

(1    t\ .
that p > 2, the transform of  S by  I .     1  ) is a substitution of the form 2

with c = 7 + r(a + 8) + r2y~l in place of the coefficient 7.    Since

C7-1=l + T7-1(a.+ S) + (T7-1)2

is irreducible in the field, c cannot vanish. Moreover, at most two values of r

give the same value to the expression c. Hence c has at least \(pn + 1) values

4= 0 , at least one of which is therefore a square in the field. By the earlier

case, the substitution is conjugate with 2t.

By an analogous proof, 2 may be transformed into

,_x_(a+8    -1\
'•*m\        1 0)

§ 12.   Substitutions whose characteristic  determinant is the product of two

linear factors and an irreducible quadratic factor.

Let the characteristic determinant A(«) of the abelian substitution S be

the product of two linear factors and an irreducible quadratic factor each be-

longing to the G F \_pn~\ ■ Denote the roots of the former by a, b and those of

the latter by X, X*". Then (§ 3), 6 = a"1, \"n= X"1 ; hence X"n+1= 1, X""-14= 1,

the latter excluding only the two roots ± 1 of the former, so that X may have

pn — 1 or 2" distinct values, according as p > 2 or p = 2 .
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If a-1 =)= a, S may be transformed by a substitution of -S'A(4, pn) into a

substitution -S' which replaces £, by a£, and wx by a_17?,. On account of the

abelian conditions, S' is seen to affect £2, r¡2 according to a substitution of the

form

<;i)
(ad-/?y=l),

From the invariance of A(«), it follows that X, X 1 are the roots of

K2 — ,c(a + B) + l=0.

In particular, the latter is irreducible in the GF[pn~] . By §11, there exists a

substitution on £2, w2 with coefficients in the field and having determinant unity

which transforms 2 into

SiS(-l     a+Sj-

A substitution S of the group SA [4 , pn~\ whose characteristic determinant is

the product of two distinct linear factors tc — a , tc — a-1 and an irreducible

quadratic factor tc2 — Ak + 1 is conjugate within the group with the canonical

substitution
f a       0       0       0

(18')
0

0

0       0-1

0

1

A

If a-1 = a, S may be transformed by a substitution of the group into a sub-

stitution Sx which replaces f, by a£, and yx by ayx + b£x and therefore f2, v2 by

linear functions of £2, n2 only. If b + 0, we transform 8, by Tx c and obtain

a substitution of the form -S, with c~2b in place of b, so that b may be restricted

to unity and (for^-> > 2) a particular not-square v of the field. The canonical

forms within SA(l,pn) of substitutions whose characteristic determinant is

the product of two equal linear factors « q= 1 and an irreducible quadratic

factor tc2 — Ate + 1 are

f±l       0       0       0

(19') (6 = 0, 1 orv).
6   ±1 0        0

0       0       0       1

0       0   -1       A

To obtain ultimate canonical forms, we introduce the new indices, conjugate

with respect to the GF\_pn~\ ,

X=-£2 + Xt?2,    F=-£2 + X-V

Then (18') and (19') each replace Xby
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- X£2 + (\A - IK = - X£2 + X2i?2 = X(- f, + \n2).

Hence (18') and (19') are reducible to the canonical forms

(18) fr-afc,    rt[ = ar\,    X' = \l_,    Y'=\~lY (« + ±D,

(19) fí-±flf    iii-db^ + if,,    JY' = XX,    JT'-X-^r.

Two substitutions of >S,J4(4, ̂ j") reducible in this manner to the same canon-

ical form (18) or (19) are conjugate within the group and inversely.

There are \(p11 — l)(pn — 2>) or ^2™(2" — 2) non-conjugate canonical types

(18). Indeed, Mx transforms (18) into a like substitution with a and a~l inter-

changed; M2 transforms (18) into a like substitution with X and X-1 inter-

changed. A substitution of SA(4, pn) commutative with one having the canon-

ical form (18) has simultaneously the canonical form

fi-efi,    v[ = c-\,    X' = tX,    F'=r-T,

where c is any mark =(= 0 of the GF[pn] and t any root of Tpn+1 = 1, giving

(¡)n — 1) (pn + 1) substitutions. Hence each type (18) represents a complete

set of pin(pin — 1) conjugate substitutions of SA(4, pn).

For 5 = 0, there are pn — 1 or 2'1"1 non-conjugate types (19). A substitution

of SA(4, pn) commutative with one having the canonical form (19) with b = 0

has simultaneously the canonical form

(20) fi-»£i+«li,    vl = tÇx + uVx,    Z'=tJ,    Y'=t-^Y,

where ru — st = 1, giving p"(p2u — l)(pn + 1) substitutions. Each type thus

represents p3n(p2n -f l)(pH — 1) conjugate'substitutions of SA(4, pn).

For o = 1 or a not-square v, there are altogether 2(pn — 1) or 2"""1 non-con-

jugate types (19). The commutative substitutions have the canonical form (20)

with s = 0,r=w=±l, giving 2pn(pn + 1) or 2"(2™ -f 1) substitutions. Hence

each type represents a set of ^p3"(pin — 1) (pn — 1) or 23n(24" — 1) (2n — 1) con-

jugate substitutions.

§ 13.  Substitutions whose characteristic equations have no root in the GF[2in~\.

Theorem. Within SA(4, pn) any substitution S, whose characteristic

equation A(k) = 0 has no root in the GF\_ p"~\ , is conjugate with a substitu-

tion replacing %x by ynx.

Let S replace fx by » = anfx + yxxyx + axJ;2 + yX2n2. Suppose first that ylx

4= 0 . There exists in SA(4,pn) a substitution T which replaces £x by y^^

and nx by to [compare §4]. Then T~lST replaces £x by yxxnx. The same

result will follow if S be conjugate within SA(4, p") with a substitution having

7n =)= 0 . In the contrary case 7n = ßxx = y22 = ß22 = 0 in S and all its con-

jugates ; indeed, by transforming S by Mx, Px2 or PX2MX, we may bring the

Trans. Am. Math. Soc. 9
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coefficient /9„, y22 or ß22 in the place of the former yxx.    By an earlier trans-

formation, we can make ßX2= yX2 = 0 . *

S' =

[02,

0

K
72,

The resulting substitution is

«,2       0     1

o\.0

a.„

0

The transform of S' by n[ = vx + n2, |2 = f2 —- £, has /32, as the coefficient of

£, in w[. Hence ß2X = 0 . Similarly y2X — 0 . Next Lxl transforms tS' into

a substitution with S„ — axl as the coefficient of r\x in £'x. Hence B¡x = a„.and

similarly 822 = a22. The transform of S' by TV",2, : f¡¡ = £, + t?2, %'2 = %2 + nx,

has 82, — a,2 as the coefficient of 77, in £¡. Hence a,2 = B.n and similarly

a2, = BX2. Now a,2 or Bl2 is not zero, since otherwise the characteristic equation

has a root a„ or Bn in the field.    The transformed of S' by

f, = £ 1 + T^2 >    ^2 = ^2 — rni

0      0      ,
has the form

(au + Td12 = 0) ,

0

0

0

0

0

0

K
0

0

It is transformed by T2 '  into P,2 whose characteristic determinant is (1 — .tc2)2,

contrary to the hypothesis concerning the roots of A(/c) = 0 .

§14.

The further discussion of the resulting substitution

(21)

f0

0„
0

0

7„

»„

72i

02,

0

0,2

«22

02-,

0

722

is separated into the cases ßX2 = BX2 = 0 , when the substitution has the form

(12) , and ßl2, S,2 not both zero. In the latter case we may take ßl2 + 0 , first

transforming by M2 if Bl2 + 0. Transforming by T2 ß , we have a similar

substitution with ßX2 = 1.    Then the transform by L2 a    becomes

* Quarterly Journal of Mathematics, vol. 32, pp. 42-63, (¡5, 1900.
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S,
h

7„722       «22

7l,822       022

It has the characteristic determinant

0

0„
0

0

7„

o,

0

1

0

0

122

(Ai7n = ■1,    a226TZ — ßily.a = l).

(22)   *- K\Bn+ a22+ B22) + tc2(2 + 8„a22+ 5„822- 7ll722) - tc(Bxx+ a22+ 822) + 1.

It is the product of two factors «2 — ate + 1 and «2 — X/c + 1 if, and only if,

a + X = a22+S22+ o„ ,    <rX = (a22 + B22)BXX - 7„722

may be satisfied by marks a , X of the GF\_pn~\. For p > 2 , the necessary and

sufficient condition is that (<z22 + B22 — B]x)2 + 4y„y22 be zero or a square in the

field, viz., (a — X)2.    In particular, if 722 = 0, we have

A(*) = (*s - V + 1) [*2 - «(«22 + »a) + 1] •

§15.
We seek the conditions under which new indices

A' = a£, + bnx + c?2 = dr¡2,    Y= a,f, + bxnx + c,£2 + dxv2

may be introduced so that Sx will replace X hy Y and F" by — X + AY,

where A, a, 6, c, a", a,, •••, are marks of the GF\_pn~\ satisfying the equation

(23) +
d

d,
= 1.

In order that Sx shall replace X by Y and Y by — X + AY, we must have

a, = 6/3„, 6, = a?,, + 68„ + cy„722 + dylxB22,

cx = b + ca22 + dß.,2,    a", = cy22 + dB22,

J - a = - a,A + 6,/3„, - 6 = a,7„ + bx(Bxx — A) + c,7„722 + dxyxxB22,

\-c = bx + cx(a22 - A) + dxß22,    -d= cxy22 + dx(B22 - A).

On substitution of the values of a,, 6,, c,, dx into the second set of equations,

we have the following equations :

(24) bßlx(Bn-A)-cy22-dB22 = 0,

(25) a(o„ - A)7„ + Z>(7„722 + «Ï, - K¿) + C7„722(«22 + 822 + *„ - A)

+ dyn(o-l2 + ß22y22+BxxB22-AB22) = Q,

(26) ayxx + 6(8„ + a22 - A) + c{7„722 + a22(a22 + B22 - A)}

+ d{ynK + 022(«22 + K -A)} = 0,

(27) 0722 + C722(a22 + B22 - A) + dB22(a22 + B22 - A) = 0 .
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Multiplying (24) by a22 + 822 — A and adding to (27), we find

(28) 722 + /3„(8„ - A)(a22 + 822-A) = Q.

Indeed, if 6 = 0, then ax = 0 , a = 0 ; then (24) and (26) require

whence (24) and (25) require d = 0 , 722c = 0 . Then dx = 0 , so that (23) will

not hold. If we calculate the determinant of the coefficients of (24), (25), (26),

(27), we find yxx times the square of the left member of (28). Hence the latter is

the condition that these equations have solutions other than a = b = c=d=0.

In order that A determined by (28), viz.,

A2 - A(8XX + a22 + 822) + Sn(an + 8X2) - 7ll7j8 = 0 ,

shall belong to the GF[pn~\ it is necessary and sufficient that A(k) decomposes

into quadratic factors h? — Ak + 1, k2 — A'k + 1 [see § 14].

For the case of 722 = 0 , the decomposition is evident :

A = 8XX,    A' = a22+822.

If these roots be equal, we have

«22(«22 + S22 - Sn) = < - V22 +  1   =   0 I

since a22822 = 1, so that k2 — 8xxk + 1 would be reducible in the field.    Hence

if A(k) has equal irreducible quadratic factors, then 722 4= 0 .

In case (28)  is satisfied by a mark A, equation (27) may be dropped from

consideration.    Multiplying (24) by 7U and adding to (26), we find

(26') ayxx + ba22 + ca22(a22 + 822 - A) + dß22(a22 + 822-A) = 0.

Multiplying (24) by yxx8xx and (27) by — 7U , and adding the resulting equations

to (25), we find

(25') d=a(8xx-A).

Using the relation 1 + ß22y22 = a22822 and (28), we have from (26') and (24)

a22{«7US22 +  b  + C(tt22 +   S22~A)}   =0t

(8XX - A){ayxx822 + b + c(d22 + 822 - A)} = 0 .

If 8XX — A = 0 , then 722 = 0 and <x22 4= 0 .    Hence, in every case

(29) b=-ayxx822-c(a22+822-A).

Hence, if (28) be satisfied, equations (24), (25), (26), (27) are equivalent to the

two (25') and (29).
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It remains to prove that the condition (23) may be satisfied.    For 722 = 0 ,

we may take A = ¿>„ so that d = 0, dx = 0 .    Then

= a27u + abBlx - S2/3„ = 1,

For p = 2 , we may take 0=0, a =y\\, every mark of the GF [2"] being a

square.    For p > 2, the condition may be written

(a - l bßxA,)2 + Vß\x(l - { B\x) = - /3„.

It has solutions a, b in the G F [/>"] , unless S„ = ± 2 . In the latter case

/c2 — Buk + 1 = (tc =p l)2, contrary to hypothesis. Then c is determined by (29)

since a22 + B22 - B + 0 .

For 722 =)= 0, we may suppose B22 = 0. Indeed the transform of Sx by

A T » «22 + T722 = 0 , is of the form Sx with B22 = 0 , 722 + 0 .    Then

d = a(S„ - -4) i     0 = - c(a22 -A),    a, = - c^„(a22 - A) ,

&1 = «7,1 — C-4(«22 — A) >        Cl = «022(SU — A) + CA »        d, = C722 •

Hence the condition (23) becomes

«2{7„ - ßj*u - A)2} - acA(a22 + S„ - 2A) + c2{y22 - /3„(a22 - A)2} = 1 .

Since -S22722 = — 1, 7„722 = (^u — A) (a22 — A) , the condition may be written

(«22 +K- 2^){«27I, - «C7uA(a22 - A) + c2(a22 - A)2} = 7„(a23 - A) .

Here a22 — A + 0.' Hence the equation is impossible if 2A = a22 + S„ , whence

47n722 + («22 — ^n)2 = 0 . In this case A(/e) is the square of a quadratic factor

(see § 14).

This case being excluded here the above condition may be satisfied, when

p > 2 , unless 1 - {A2 = 0 [cf. § 1].    Then 7„722 = (S„ =p 2) (a22 =f 2), so that

47n722 +  («22 - S,,)2 =   («22 +   gll =F 4)2 »

A(«) = K3 - <a22 + 6„ =f 2) + 1] [«2 =f 2* + 1] ,

contrary to the hypothesis concerning the roots of A(/c) = 0 . For p = 2 , the

condition is satisfied by the values

a = y-fA(a22 - Ayi(a22 + S,,)"'* ,     c = y'^(a22 - A)-*(an + Su)-* .

As a first conclusion of the preceding investigation it follows that if the char-

acteristic determinant A(k) of a substitution S of -S^l(4,p") decomposes in the

GF[pn~\ into two distinct irreducible quadratic factors tc2 — Ak + 1 and

K2 — A'tc + 1, then S is conjugate within /SA(4, p*) with a substitution of

the form (12) and therefore conjugate with
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(30)

0

-1

0

o

1

A

0

0

0

0

0

-1

0

o

1

A'

If A(k) be the square of an irreducible quadratic factor, then S is either conju-

gate with (21) for ßX2 — 8X2 = 0 and hence conjugate with (30), or else is conju-

gate with Sx with 722 4= 0 . In the latter case we transform by L'2T and make

S22 = 0 , obtaining the substitution

S2 m

0

-77

0

0

7!

8

0

1

%7      «

0     -7-1

The characteristic determinant of S2 is

A(k) m k* - k3(8 + a)+ k2(2 + 8a- 77J - k(8 + a) + 1.

In particular, A(k) is a perfect square * if, and only if,

(31) -4771=(a-8)2.

A second result of the investigation is that S is conjugate with a substitution

of the form S2 within SA(4,p") when A(/c) is irreducible in the GF[jjn] or is

the product of two factors k2 — pie + t , T=j=l, belonging to and irreducible in

the GF[pn~\ . The latter cases are treated in § 17 ; the case in which (31)

holds is considered in the next section.

(32) 22 = (—4c = as).

§16.   Characteristic determinant the square of an irreducible quadratic.

Consider the following substitution of the form S2 :

0        10        0

10        10

0        c a        c

0        0    -c-1      0

It has the characteristic^ determinant (whether p = 2 or p > 2)

K* _ A + ^2 _ c) _ Ka + 1 - [«2 _ (- cf'K + If.

*If.p>2and (31) is satisfied, A(k) = \k* — \(a + <5)k + l\2.



1901] ABELIAN   SUBSTITUTIONS   IN   A   GALOIS   FIELD 125

A substitution S2 satisfying (31) will have the same characteristic determinant

as 22 if, and only if, a = a + 8, and for p = 2 , c = a2 — 77L. The latter are

consequently necessary conditions for the conjugacy of S2 and 22 under linear

transformation. We proceed to prove that, if S2 satisfy the condition (31) and

if K2 —(— cy^K + 1 be irreducible in the GF[p"] , then a = a + 8, together

with c = a2 — 77j if p = 2 , are sufficient conditions for the conjugacy of S2 and

22 within SA(4 , pn) . Assuming these conditions satisfied, we may determine

a substitution S of SA(4,pn) such that SS2= 2,.2S. We take for S the

general substitution (1), the latter relation imposes a set of conditions which re-

duce to the following upon applying a = a + 8, — 4c = a2 and (31) :

7,i = - 7A,,    eaX2 = yx8X2,      y22 = — ycß22,    a2X = y82X,

caX2 = — axx + yx8xx, cyxßX2 = — aaxl + ayx8xx + cyxx — yX2,

an = 7i"lan - 8n - Sßa » 7,7« = "jAi + c7n - «an — 7121

7i7/321 = San + 712, 77iC/322 = aaxl - cyxx — ayx8xx,

a22 = K + aßn t 77x822 = eaxx - ayX2.

It suffices to take ax2 = 0 .    Setting p = 77^121 we have S in the form

7,8,i -7i/3,i 0 yxP

ßn «a -ßn-^P 0

- 8ßxx - 88xx - cßn -p    8XX- aßxx - ac~lp - cßxx

. 7_I88U + 7"V — y~18ßxx 7-'/3u C7_I8„ — ay~]p

The abelian relations (2), (3) , (4) here reduce to the two :

&Î, + ßn + ßnP + C"V2 = 771.

(33)
- 882n - 8ß2xx - c8xxßxx - 28xxP + aßnP + ac~Y = 0 .

Multiplying the first by a and the second by — 1 and adding, we have

(34) (a + 8) (8\x + ß2n) + c8nßxx + 28xxP = ay~\

If p > 2 , we may eliminate p between (33) and (34) and find

(35) 82xx{-ß\x(c + 4) + 8a-layxi - 4y7l} = {2ß2xl-( - c)^ayx1}2.

We prove that there exists a mark ß2xx making the coefficient of 82xx a square

and the right member not zero.     Let

t = Scr^ay-1 — 47"1.

For p > 2 , t 4= 0 ; since 2a~1a = 1 requires a = 8 and therefore 77t = 0 . If

t be square, we may take /3n = 0, when (35) determines 8U 4= 0 and (34) de-

termines p.    Suppose finally that t is a not-square.    Since k2 — (— c)y-K + 1
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is irreducible, — c — 4 is a not-square. After we divide (35) by t , the question

is the possibility of finding a mark p? such that p? + 1 is a not-square. There

are \(pn =F 1) such squares p.2 + 0 , according as pn = Il ± 1 .* Hence for

pn > 5 , there are at least two marks /32, making the coefficient of o-,, in (35) a

square, and hence at least one mark /32, making also the right member + 0 .

Then S„ is determined different from zero, so that (34) gives p .

For pn = 5 , the right member of (35) vanishes only if

/32,= ±1,    (-c)-*«77l = ±2.

Then t is a not-square only when 7"1 = + 1 or — 1. Since 7, is a square, it

may be taken to be +1 by an earlier transformation of S2 by TXiaT2ltt-\, m

being suitably chosen. With 7, = 1, then a~la = ± 1. But a~*a = 1 makes

t a square.      Hence   a~la = — 1,   so   that   S = — 2a,    a = — 28 .      Since

— c — 4 is a not-square, and — c = B2, it follows that S2 = 1, a2 = — 1 •

Since /3,, was chosen to make the coefficient of o-,, a square, and since t is now

3, it follows that ß\x = - 1 , and 8„ = 0 . Then (34) is an identity and (33)

becomes (2/3 — /3„)2 = 1 and may be satisfied.

For pn = 3 , e = 0 (mod 3), since — c — 4 is to be a not-square, necessarily

— 1. Hence the substitution 22 cannot be employed. Since a + B = 0, (31)

gives 77, = — a2 = — 1 (mod 3).    Hence tS2 takes the form

f0     -7-1     0        01

7      —a 1 0

0-1 a 7    "

0 0     -7-1      0

But PX2MXM2 transforms [a, 7] into [—a, — 7] . Hence [a, 7] is conju-

gate either with [1, — 1] or with [—1, — 1]. The latter is transformed

into the former by the special abelian substitution

"      1 0-1 0

0-1 1 1

-1 0-1 0

-1 1 0 1

For p = 2 , we have a=0, a + ô = 0, c = a2 — 77,, so that (34) becomes

cBnßn = cuy]-1- The latter together with (33) are to be satisfied by marks /3„,

Bn, p of the GP[2"]. Letting p = cßxlr2 in (33), dividing by c/32, and ex-

tracting the square root, we find

^ + 'scH~c^07_" (mod2)

_= c";- + ^11(71^ + 8n)

*American Journal of Mathematics, vol. 21,«p. 196.

«,  7]
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upon eliminating ßxx and denoting the constant c^a_17i DY <7- It remains to

prove that a mark 8U may be founded for which this equation has a root r be-

longing to the field.    But, by § 7, r2 + r = t is irreducible if, and only if,

T + t* +  T* +   ■ ■ ■ +  T2""1  =  1 .

By hypothesis k2 + c%k + 1=0 and therefore p2 + p + c_1 = 0 is irreducible

in the field, so that

c-1 + (c-1)2 + (c-1)4 +... + (c-y-1 = i.

If, for every mark 8a , the equation in r be irreducible, then

gSJyf* + 8XX) + {gSJx* + 8XX)}2 +...+ {g8xx(y-* + 8,)}2""1 = 0

must be an identity modulo 2 in the variable 8U. This will be the case if,

and only if, g = g2yxx, whence g = yx. The latter requires c = a2. But

c = a2 — 77x.    Hence 7=0, which is impossible.

In addition to the determination of the canonical form (32) and for pn = 3 ,

[1, — 1] , we have derived the theorem :

If two substitutions S2 have as (common) characteristic determinant the square

of an irreducible quadratic, they are conjugate within the group SA(4, p") .

§17.

It remains to consider the cases in which A(k) is irreducible in the

GF\_p'l~\ or is the product of two irreducible quadratic factors of the form

k2 — pic + t , t =(= 1. In either case the roots of A(k) = 0 are a , cr~l, .0* ,

o—pn ; in the former case <tí,2"+1 = 1 , in the latter case ap "~l = 1. We may

write A(«) = 0 in the form

(36) <7277l = (a2 - aa + 1) (a2 - 08 + 1) .

The substitution #2 given at the end of § 15, multiplies by 0- the function

Xxm— y%x + a-yyxVx + (a2 — a8 + l)f2 + a'ly(a2 — a8 + l)v2.

Denote by Yx, X2, Y2 the linear functions derived from Xx upon replacing a

by o--1, apU, a-~pn respectively. If A(k) be irreducible, so that a belongs to the

GF[piH] , the functions Xx, Yx, X2, Y2 are conjugate with respect to the

GF\_pn~\. In the second case, a belongs to the GF[p2n] , so that Xx and X2,

Yx and Y2 are conjugate with respect to the GF[pn] . Hence the four func-

tions satisfy the requirements as to the conjugacy. In terms of these functions

taken as new indices,* the substitution S2 takes the canonical form

(37)      x; = axx,   y; = o->yx,  xl = ^x2,   y2=^y2.

* It may be verified by direct calculation that the determinant of the transformation of in-

dices does not vanish ; but the result follows from the abelian character of the transformation.
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— 7

— 7

0-77,

<rp 77,
+

The transformation of indices satisfies those abelian conditions specified by

formulse (3) and (4).    In fact,

T2 - <t8 + 1 <r-ly(a2 -erB + 1)

rV _ ar"B + 1     a-"ny(a2^ - a»"B + 1)

= -y(ö- _ o*") {77, + (a2 - crB + 1) (a2"n - a""B + l)a~pn-1} .

On elimination of 77, by (36), the quantity in brackets vanishes if

apn-i (a2 _aa + l) +(T2P* _ap"B +1 = 0.

The latter is derived by multiplying by apU the identity

<r + 0--1 + o-?" + o-V =a+ 8,

which follows from the form of A(/c) = 0 , with the roots <r, a—1, •• ■.    In a

similar manner, we find that

— 7

— 7

0-77,

"""77, + = 0.
a2 - crB + 1 a-ly(a2 - aB + 1)

-%"" _ a~pnB + 1     apny(a-2pn - a-^B + 1)

Replacing a by o-_1 in the two identities just established, we obtain two new

identities. The four embrace the relations (3) and (4). Consider next the left

member of the first abelian relation (2) :

o-* _ aB + 1       .   a-ly(a2 - aB + 1)

-2 _ a~lB + 1     ay(a-2 - a~"B + 1)

= y(a - a"1) {77, + a-\a2 - aB + l)2} .

Denoting, for the moment, the quantity in brackets by O, we observe that Ca2

may be written

2(o-2-ao + l)(o-2-a + a(

-7

-7

0-77,

77,
+

1)

and hence does not vanish. If a — <r_1 = 0 , then a2 — 1 — 0 , contrary to hy-

pothesis. The left member of the second abelian relation (2) is seen in like

manner to be

ri(apn - a-»n) G"n .

If <7P " = a, it is only necesary that A", and X,, Yx and Y2 be conjugate

with respect to the GF[f>'l~\ ■ When we take uXx in place of A, and p''"X2

in place of A^2, the canonical form (37) is preserved, as well as the abelian re-

lations (3) and (4) just established. In case p, is the reciprocal of 7(0- — a~l)C,

the resulting transformation of indices satisfies also the abelian relations (2) and

is therefore an abelian substitution in the (9P[p2"] on two pairs of conjugate

indices. In this case it follows that two substitutions -S'2 having the same char-

acteristic equation are conjugate within SA(1, jf).
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If A(«:) = 0 be irreducible, so that a" " = <r_1, the replacement of Xx by

pXx requires the replacement of Yx by pp "Yx, X2 by pp'lX2, Y2 by pp n Y2.

The above expression 7(0- — o-~l)C is then multiplied by p.p "+1, a mark of

the GF[p2n~\ ; the product can not be made unity by choice of p , since C be-

longs to the GF{_p2n~\ , while a — o-_1 does not. Hence S2 is not reducible to

the canonical form (37) by a special abelian substitution with conjugate indices.

Nor is S2 so reducible by a general abelian substitution ; for the product

p*
"+iy(a--<7~l)C

differs from its (pn)-tli power; indeed, the product equals the negative of its

(p2n)-ih power. By a suitable choice of p , pp "+lyC = 1, so that the left mem-

bers of (2) become u — a-"1 and crpn — cr~pn . Hence if T denote the transfor-

mation of indices reducing S2 to the canonical form (37), then T replaces <j> by

</>', where

</> = +
£2 ^2

^l77!

+ (apn - a-pn)
ÏîV2

P = (a - *-')
iîV2

when T operates cogrediently upon the indices £., ni and f., yi. If T' denote

the transformation of indices which reduces a second substitution S'2 to the can-

onical form (37), the product A = T' T~l leaves </> absolutely invariant and

transforms S\ into S2. In view of the conjugacy of the indices X., Y. and

the invariance of <j> under A , the latter may be expressed as a special abelian

substitution on £., 77. with coefficients in the GF\_pn] . Hence, if two substi-

tutions S2 have the same characteristic determinant and if the latter be irre-

ducible or the product of two irreducible quadratic factors k2 — pic + t , t 4= 1 t

they are conjugate within the group ,#.¡4(4, pn) .

§18.
Let S be an abelian substitution whose characteristic determinant is ir-

reducible in the GF[pn], so that S may be reduced to the canonical form

(37), where ap "+1 = 1. Of the solutions of the latter, only a = ± 1 satisfy

also ap "~l = 1 , so that there remain p2n — 1 or 22" suitable values of a. Re-

placing a by cr~l, we obtain from (37) a substitution which is transformed into

(Sl)byMxM2; replacing er by a-~p", we obtain the transform of (37) by PX2MX.

Replacing a by apU, we obtain the transform of (37) by Pi2M2. Any new

replacement of a leads to a substitution not conjugate with (37). Hence there

are \(p%l — 1) or ^22" non-conjugate types (37). An abelian substitution Sx

commutative with an abelian substitution S having the canonical form (37) has

simultaneously the canonical form

x'x=Pxx,   y; = p~1yx,  x;=ppnx2 Y* -p"Y2     (p^"+> = 1),

so that there are p2n + 1 such substitutions Sx.    Hence  S is conjugate with

p**(p2n — I)2 substitutions within S A (4, pn) .
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§19.

An abelian substitution tS whose characteristic determinant is the product

of two irreducible quadratic factors tc2 — pic + t , t + 1, is reducible to

the canonical form (37), where ap2n~l = 1, o*" + a, ap" + a-1. The (pn — l)2

or 22" — 2 • 2" suitable values of a give, in sets of four, conjugate substitutions.

Hence there are \(pn — l)2 or ^2"(2" — 2) non-conjugate types. Each is com-

mutative with -p2" — 1 substitutions and therefore conjugate with exactly

pinson _ -^ substitutions of SA (4 , pn) .

§20.

An abelian substitution S whose characteristic determinant is the prod-

uct of two distinct irreducible factors of the form tc2 — Ate + 1 is conjugate

within SA(i, pn) with a substitution (30) and therefore is reducible to the can-

onical form

(38) x;=\xx,   r¡-\-*rlt  x2=px2,   y;=p-iy2,

where X^1 = 1, p*n+l = 1, X""-1 + 1, p»"-1 + 1, p, + X, p + X"1. Of

the^j" + 1 solutions of Xp"+1 = 1, X = ± 1 are to be excluded ; then of the

pn + 1 solutions of pp"+l = 1, p. = ± 1 and p = \, X-1 are to be excluded.

Hence there are (pn — 1) (pn — 3) or 2"(2" — 2) pairs of suitable values X, p .

But X and X-1 are interchanged upon transforming (38) by Mx ; p and p~l upon

transforming by M„ ; X and p., X-1 and p~l upon transforming by P,2. Hence

eight of the pairs of values X, p lead lo conjugate types, so that there are ex-

actly i(pn — 1) (pn — 3) or i.2n(2'v — 2) non-conjugate types (38). Each is com-

mutative with exactly (pn + l)2 substitutions having the canonical form

x; = rxx,   y; = t-<yx,  x2=t™x2,   y; = t-~y2,

t being a primitive root of the equation Tf"+1 = 1 and I and m being arbitrary in

tegers. Each type represents a set of pi,l(p2n + 1) (pn — l)2 conjugate substi-

tutions of SA(4,pn).

§21.

An abelian substitution S whose characteristic determinant is the square

of an irreducible quadratic is either conjugate within SA(1, pn) with a substitu-

tion (30) having A' = A or else with a substitution S2 satisfying (31). In the

former case, S has the canonical form

(39) z; = \z„   f,' = x-if-,,  x; = xf-2,   y.; = \-1y2,

where X!'"+1 = 1, X + ± 1. There are \(pn — 1) or 2"-1 types not conjugate

within -S^l(4, p"). An abelian substitution -S,, commutative with S has simul-

taneously the canonical form
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X; = aXx + ßX2, X'2 = yXx + 8X2,

y[ = apnYx + ßpnY2,  r; = 7p"F"i+8*":r2,

subject to the abelian conditions *

aPn+i + ßrn+i = 1 f     ^-H + gp"+i = 1 f     ayp" + ßÖp" = 0 .

But these are the conditions that I vT 1 shall be a binary hyperorthogonal sub-

stitution, the number of which is (pn + l)pn (p2n — 1) . Hence each canonical

form (39) represents a set of p3"(p2n + 1) (pn — 1) conjugate substitutions of

SA(4,p").

§22.

A substitution S2 satisfying (31) has the canonical form

(40) x; = *xx,   Y; = a-iYx + *-ix2,  x; = ^x2,   Y; = *Y2 + aXx,

<t being a root of A(k) = 0 .    As in § 17, we employ new indices

Xi = - 7^i + ^7,1, + (°"2 - o"8 -f 1)£2 + <r-ly(a2 - a8 + l)v2,

and X2 obtained from Xx by replacing a by apn = a~l ; but for Yx and Y2 we

now take the functions

Yx = 7^1 + (t-2 - l)f, + 7(8 - 2a)r,2,    Y2 = 7f, + (V - ljf, + 7(8 - 2a-*)v2.

The determinant of the transformation of indices is seen to be

- 737l(cr - o-1)4 4= 0 .

Upon replacing <r by cr~l in (40) , we obtain the transform of (40) by P12.

Hence there are \(pn — 1) or 2B_1 non-conjugate types (40). Each is commuta-

tive only with the substitutions

X; = a,Xx,    Y; = apnYx + dpnX2,    X'z = apnX2,    Y'2 = aY2 + dXx,

where ap"+1 = 1, ap"d = adpn, so that d = aie, k a mark of the GF\_pn~\ ,

givingpn(p" + 1) commutative substitutions. Hence each type represents a set

of p3n(p4n — l)(pn — 1) conjugate substitutions within SA(4, pn).

§23.  Summary of the preceding results.

The numerical results obtained in the preceding investigation are collected

into the following table. The mark p denotes 1 or a particular not-square v

when p > 2 ; while p = 1, if p = 2 . Also, 6 denotes 1 or 1 according as

p > 2 or p = 2 . Finally, for p > 2 , e = ± 1 according as pn = 41 ± 1. By

the " number of types " is meant the number of non-conjugate types of the speci-

* Indeed, S given by (30) with A' = A may be reduced to its canonical form by an abelian

substitution (not necessarily special), so that the canonical form of Sx satisfies the conditions (2),

(3), (4).



132 L. E. DICKSON :    CANONICAL   FORMS   OF [April

fied form within -SA(4, p"). As a check upon the enumeration it was verified

that the sum of the products of the number of conjugate substitutions of each

type (fourth column) by the number of types (second or third column) gives the

order X = pin(p4n — 1) (p2n — 1) of the group.

Table of the non-conjugate tyt-es of operators of the group

SA(1 , p")   OF   ORDER  N.

Type.

(6)

(7)

(8)

(9), /3 = 0

(9), ß - /*
7, ±,-Í2 ±1

An    1 ±1-^2±1

AiAi^i ±i-*2 ±i

Ai-Al^l ±1-^2 ±1

(13)
llß ,   -£l0

AM 7j ±xl 2 ii

(18)

(19), 5 = 0
(19), b = p

(37), a^'+^l

(37), o-"2"-1 = l

(38)

(39)

(40)
Ti-i

A^i-i    1
AB^-i    i

Al^l-lAM    1

A »^l-i A m J

Number of types.

i>>i

K2»"-3)(j>--5)

2(^n - 3)

2

4

2

-|(^~ 1) (pn- 3)

j>n —1

2(^-1)

¿>2»-l)

i(^-l)2

i(^_l)(^_3)

Kp"-i)
Ki>"-1)

1

p = 2

(2"-1-l)(2"-2-l)

2»-1 - 1

2'-1 - 1

2-1 _ 1

2"-1 - 1

1

1

Number of conjugate
substitutions of each

type.

1

2

2»-1(2"-1 - 1)

2»-i

2»-i
0277.-2

2»-1(2"-1 - 1)

2»-.2(2"-1 - 1)

2"-1

2"-1

p4"(p2n + 1) (pn + l)2

p*-(p**+l)(p* + l)
p3n/pin _ -^ fpn +  ^

p3H(p2n +  1) (jf +  1)

6p3n(p4n - 1) (pn + 1)

1

0(p4" - 1)

\p\p*-l){p+e)

(24" - 1) (22" - 1)

\pXP» - 1) (pn - e)

24"-l

i_22»(24" _ !) (22« _ 1)

y*>(p«>-l)(p2»-l)

p*iy — 1)
pin(p2n + l)(pn-l)

ffpto/pt» _ i) <pn _ 1)

/(/" - l)2
pir,(pin — 1)

pi"(p2" + l)(pn-lf

p3n,pU + ±) ,pn _ 1 )

P3"(pt"-l)(pn-l)

p2"(p2n +  1)

ip2"(p^-l)

iyV._l)(p2»_l)
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§ 24.  The group SA(4 , 2) and the symmetric group on six letters.

A second check upon the above results is furnished by a consideration

of the case pn = 2 , when the group SA(4 , 2) is holoedrically isomorphic with

the symmetric group on six letters.* The isomorphism may be established by

the correspondence of generators :

(12)~MX,    (23)~£n.    (34)~tf,    (45)~Ai>    (56)~J/2,

where

S S3

0    1    1    li

10    11

110    1

1110

S' = LXXL2XSL2XLXX =

10 0 0

1110

0 0 10

10    11

(25).

Since Mi transforms L{, into L'ix, L'xx~ (13),    L'tl ~ (46).    Then f

Rx m L2XM2SM2L'2X~ (2456),    R0 = M2L'XXS'L2X ~ (13) (2456),

[13] = L'XXL'2XS'~(U) (46) (25).

By § 12, there is a single type L2XM2 given by (19') for b = 0 and a single

type L'xx L2X M2 given by (19') for 6 = 1, The single type (39) may be rep-

resented by Lx, MXL2 XM2. The single types (40) and (37), ap2"+l = 1, may be

represented respectively by

[40] =

[37] =

fO 1 0 0

10 10

0 10 1

0    0    10

Í0 1 0 0

10 10

0 111

0    0    10

= ^[13]^,

L'2XMxilZ]M2.

For p" = 2 the above table gives the following types of abelian substitutions :

* Proceedings of the London Mathematical Society, vol. 31, p. 40, 1899.

fThe abelian substitution numbered (13) is now referred to as [13].
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Corresponding substitution
on six letters.

identity

(23)

(23) (45)

(13) (25) (46)

(2456)

(13)(2456)

(465)

(13) (465)

(16523)

(123)(465)

(164523)_

The third column gives every type of substitution on six letters and the num-

ber of conjugates to each type is given by the second column. In view of the

independence of the two determinations of the types of substitutions of SA(4, 2),

the check is a complete one.

§ 25.   Operators of the simple group A(4 , p"), p > 2.

For p = 2, n > 1, the group SA(4 , pn) is simple ; for p > 2 , it has

the maximal invariant subgroup composed of the identity and T'== TX_XT2_X,

the quotient-group ^4(4 , pn) being simple.* In view of the importance of the

latter group, we proceed to determine, by means of the earlier results, the dis-

tribution of its operators into complete sets of conjugate operators.

In the table (§ 23) of the non-conjugate' types of substitutions within SA(4; pn),

p > 2, the types are grouped into sets (each set being exhibited in a single line

of the table, except the last two sets) such that types S and ST always belong

to the same set. If S be not conjugate with ST within SA(4, pn) , the

number of conjugates with S within SA(4 , p") equals the number of conjugates

with S within ^4(4, pn) .f If, however, there exists a substitution V in

SA(4, p") which transforms S into ST, the number of conjugates with S in

A(4,p") equals one-half the number of conjugates with S in SA(4, p") ; in-

deed, if   Wtransforms Sx into S, then WVW-1 will transform Sx into SXT.

A type S of the group SA(4 ,p"),p> 2 , will be called special and denoted

»Quarterly Journal of Mathematics, vol. 29, pp. 169-178, 1897; vol. 31, pp. 383-4,

1899.
f In the quotient-group, S and ST become the same operator. It is convenient to denote the

latter by S, the context sufficing to avoid confusion.
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S if S be conjugate with ST within the group. For example, there is a

single special type (7)s,

£, = *£,> v[=—iVi, £=— *£¡¡, v'2 = iv2 (¿2=—i),

occurring if and only if — 1 be a square in the G F [p™], viz., if pn = 11 + 1 .

In general, a type can be special only when the negative of each root of the

characteristic equation is also a root.

For special types (6), three cases are to be examined. First, if — tc = /t_1,

so that —k~1 = k, then must —X = X-1 ; hence k2 =—1, X2 =—1, so that

X = K or k~1 , contrary to the hypothesis for type (6). Second, if — tc = X, we

have the special type

(6). fi = *fii   V'i="*~\,   £ — *?a» V'»—— K~\>

which may be transformed into (Q),T by P,2- By the hypotheses for a type

(6), ä + 0,/c2+1,/c2+ — 1, the latter having solutions in the GF \_pn~\ if, and

only ii,pn = 11 + 1. Hence there are \(pn — 5) non-conjugate special types (6)a

if pn = 11 + 1 and \(pn — 3) such types if pn = 11 — 1. Third, if — k = X"1,

the resulting special type is transformed into (6)a by M2.

There is no special type (18), since a2 =— 1, X2 = — 1 require that a and X

belong to the same field, contrary to hypothesis.

To show that type (37), ap2n+l = 1, is never special, we consider three cases.

If — er = o—1, then a2 = — 1 , whilep2n + 1 is not divisible by 4. If — a = a*",

then o-*2" = — o*" = a + o-1.   Similarly, for — a = <r*", o-^2" = — err" = o- + o—'.

To determine the special types (37), a*2""1 = 1, a?"-1 +- 1, o-p"+1 =j= 1, we

examine the three cases. If — a = cr_1, either cr-?"-1 = 1 or aPn+l = 1, contrary

to hypothesis. If — <r = a*", each solution of o-p"-1 = — 1, such that a2 + — 1

and therefore cri>"+1 =j= 1, furnishes a special type ; there are p" — 1 ov pn — 3

such values of a according as p" = 11 ± 1. If — a = tr~**, each solution of

o-p'ifi _— i ^ such that cr2 + — 1 and therefore cr-?"_1 + 1, furnishes a special

type ; there are p" =p 1 such values of a according as pn = 11 ± 1. The two

sets of values for a are wholly distinct since <r2 + 1. Hence there are 2pn — 2

values o-, whatever be the form of pn, p>2. Hence there are \(pn — 1)

special types (37) when a?2"-1 = 1.

Type (38) is not special for — X = X-1, — p, = /a-1 , since then p = X or X-1,

but is special for p = — X, viz. :

(38^    Xx = XA,,    Yx = X- F,,    A^2 = — t\,a2 ,    x 2 = — X- Y2,

since P,2 transforms it into (38)^. The number of solutions of Xp"+1 = 1 ,

X2 + 1, X2 + — 1, is pn — 1 or pn — 3 , according as p" = 11 ± 1.

Of the remaining types in the table of § 23, it may be determined by inspec-

tion what special types, if any, exist. Our results may be combined in the fol-

lowing table :

Trans. Am. Math. Soc. 10
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Table of the non-conjugate types*

of operators of  the simple group A(4, pn), p>2,

OF   ORDER   lp4"(p4n — 1) (p2n — 1).

Type.

(6).

(6)

CO,
CO
(8).

(8)

(9), ß = 0

(9), ß = P
identity

A,
AiAi
A>A¡,

¿*

(18)

(19), 6 = 0
(19), & = /*

(37)

(37)

(37)

o*"^1 = 1

ap2"-¡ = 1

a1'     ' =

(38).

(38)

(39).

(39)

(40).

(40)
2,-,

Number of distinct types.

j," = 4/4-1,       p" = 4f—1

H^"-5).   i(i^-3)
îVCP*-5)2. ̂ (^B-3)(i>n-7)

1,0

i(^"-5),   ÍCP--8)
1        , 0

£i>»-5),   Hi3"-3)

*(/>•-»)

/»" — 3

1

1

2

1(^-1)^"-3)
-i(^-l)

y — l

Ml'2"-1)

H^'-i)
l(y-l)(^-3)

H^'-i)        . Í0>B-
^(i»B-l)(^-6), iV^"-

0

iCp*~i)
0

K2>n-1)

1

t\{pn-

1

. i Ci*" -

-3)

-3)2

-3)

3)

1

2

1

2

Number of operators conjugate

with each type.

\p*Íf+ !){? +Vf
p4n(p2,l + l)(p>" + 1)2

±273"(p2" + l)(2)n + l)

2/"(2i2" + l)(p" + l)

%ps»(p*»-l)(p»+l)

p3n(pi» — l)(pn + 1)

*p3"(p2n + 1) (p" + 1)

lj>3»(p4>'-l)(pn + l)

1

Up4"-1)
lp"(p4»-l)(pn + e)

-¡■p"(pin - v>'iPn -£)

lf-<(p4»-i)(p2»-i)
p4»(pin -1)

P3\p2n + i)(Pn-i)

i-p'Xp4" -1) (pn -1)

p4"(p2" -I)2

j/"(p4" — i)

ip4\p2" + i)(p"-i)2

p4\p2" + i) (p"~ i)2

l/"(F" + l)(^"-l)

p*>(f» + l)(pn-l)

ifXp4"-i)(p"-i)
p»*(p*» -1) (pn -1)

lp2\p2" +1)

lp2"(pin -1)

lp2"(p4"-l)(p2"-l)

Ip2Xp4* -1) (p2* -1)

* A type marked s is special, otherwise a type is not special except for 2'i_i and Li^Lî^Ti-i .
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In the table p denotes 1 or a particular not-square v : e denotes ± 1 accord-

ing aspn = 4¿±l. The total number of non-conjugate types in the simple

group A (4 , p") , p > 2 , is the same function of p" in the two cases p" = 11 ± 1 ,

viz. :
} (p2n + 1) + 3p" + 6 .

§26. The operators of the simple group A(l, 3) of order 25920.

As proved by Jordan, <SA(4, 3) is the group of the equation for the trisection

of the periods of a hyperelliptic function of four periods. Moreover, the group

of the equation for the determination of the 27 lines on a general cubic surface

of the third order is of the same order 51840 as -SA(4, 3). After a certain

square root has been adjoined to the realm of rationality, the group reduces to

the quotient-group A(4, 3) of order 25920. Hence the above two problems

are essentially the same. In view of the importance of the group A(4, 3) , it is

desirable to know the distribution of its operators into complete sets of conjugates

and likewise for its cyclic subgroups. By § 25, there are exactly twenty types

of non-conjugate operators in the group. It is desirable to have simple repre-

sentatives in the group for each type. Type (39) maybe represented hy MXM2 ;

type (19), 6=0, by M2 ; type (19), b = 1, by M2LIX ; type (19), b = - 1,

by J72A,_, ; type (37), a* = - 1 , by Pl2Mx ; type (40) by PX.,LX_XT^X ; type

(37), o-1" = 1, by ^2 for 7, = 1, y = a = B = - 1 , viz.,

0 10 0

-1-1 1 0
K=

0    -1    -1    -1

0 0 10

of characteristic determinant tc4 — k3 + tc2 — tc + 1. Of the preceding statements,

the only ones requiring further proof are those concerning the representatives

P,.MX and PX2LX_XTX_X ; but the former has the characteristic determinant

(tc2 + k — 1)(k2 — * — 1), each factor being irreducible modulo 3 , and hence

has the canonical form (37), a8 = 1 ; while the latter is reduced to the canonical

form (40) by the abelian transformation

Xx «-!?! + <r%,   YX=ÇX — of2 - o-t;2 ,   X2 = 77, — ar,2,   Y2 = f, + <r£2 + at)2,

where a2 = — 1 (mod 3). We have therefore, by § 25, the complete list of types

of operators of A(4, 3) together with their periods and the number of their con-

jugates within A(4, 3), as given on the following page.

§ 27.   Cyclic subgroups of the simple group A(l, 3).

To determine the distinct types of cyclic subgroups of A(4, 3), it is nec-

essary to find what powers of each type of   substitution are conjugate with
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Type.

Al

A-i
A ¡A,
A-iAi

T

A i^i-i
L\-\T\-\

AiA-i^i-i
A iA \T\-\

Period.

A -i A T-l-M -1

3

3

3

3

2

6

G

6

6

6

Conjugates.

40
40

240
480

45

360

360

1440

720

720

Type.

identity

A
¿-i
M2

M2Llx
M,L^X

K
PX2MX

MXM2

P12LX_XTX_X

Period.

1

9

9
4

12
12

5
4

2

Conjugates.

1

2880

2880

540
2160

2160

5184
3240
270

2160

that type. Thus, Lx, is not conjugate with its square Lx _, ; Lx XL2, is con-

jugate with its square. A_, is transformed into A~x by T2_XL'2X. Since

A, = L[ _j and A, = L[, are not conjugate, A, is not conjugate with either

A, or A,, so that the latter are conjugate with A~x. Hence their squares A,,

A, and A, are conjugate. Hence A, generates a cyclic group self-conjugate

only under a G27. Again, M2 is transformed into M\ by the abelian substitu-

tion (modulo 3) £2 = f2 + 7]2, n'2 = £2 — n2. Hence M2LXX is conjugate with its

seventh power M\LX x, so that the fifth and eleventh powers are conjugate. The

latter is M\LX _. and is consequently conjugate with M2LX _, and hence (by the

above table) not conjugate with M2LX, itself. Hence M2LX, is conjugate only

with one other generator of the same cyclic group. The fact that P12LX _XTX _x

is conjugate with its reciprocal within A(4, 3) may be simply verified by observ-

ing that the canonical form (40) is transformed into its reciprocal by the abelian

substitution PX2T2_X on the indices X., Y.. In a similar way, PX2MX is shown

to be conjugate with its reciprocal. Finally, there being but a single type of

substitutions of period 5, K must be conjugate with A"2, K3, K4. We have

therefore the following complete list of the distinct types of cyclic subgroups

of A(4, 3), together with the number of conjugates to each cyclic group.

Type of generator.

A i A i
A-iAi

A i^i-i
AiA-i^i-i
AiAi^i-i

Conjugate cyclic groups.

40

120
240

45
360

720
720

Generator.

M2

M2LXX

K

PX2MX

MXM2

A2A-i^i-i

Groups.

960

270

1080

1296

1620
270

1080

The University of Chicago, January 3, 1901.


