CANONICAL FORMS OF QUATERNARY ABELIAN
SUBSTITUTIONS IN AN ARBITRARY GALOIS FIELD*

BY

LEONARD EUGENE DICKSON

§ 1. Introduction.

For application to the problem of the distribution of the substitutions of a
given group into complete sets of conjugates within the group, a set of canon-
ical forms for its substitutions should have the property that two substitutions
are conjugate within the group if, and only if, they are reducible to the same
canonical form according to a definite scheme of reduction. In particular, if the
canonical form belongs to a higher field than the initial G'F'[ p"], the new in-
dices introduced must be conjugate with respect to the initial field.

In the present paper is given a set of canonical forms of quaternary abelian
substitutions in the G'F'[ p*] such that the canonical forms likewise belong to
the special abelian group SA4(4, p*), the reduction being effected within the
group. From them are derived the ultimate canonical forms, not all belonging
to the given abelian group. In the former case, the canonical forms depend
on the coefficients of the characteristic equation, in the latter case upon its roots.

When the given group is the general linear homogeneous group on m indices
with coefficients in the G F[p"], a set of ultimate canonical forms is furnished
by a theorem due (for the case » = 1) to JorDAN.{ Likewise for the group of
ternary linear homogeneous substitutions of determinant unity in the G #'[ p*] ,
a complete set of ultimate canonical forms has been determined. § The problem
has also been solved for the corresponding binary group. The corresponding
problem for a linear group of special character (i. e., not directly related to the
general linear group) has not been previously solved so far as is known to the
writer. The simplicity of the canonical substitutions for the quaternary abelian
group makes comparatively easy the classification of abelian substitutions into

* Presented to the Society (Chicago) December 28, 1900. Received for publication January
5, 1901.

t Traité des substitutions, pp. 114-126. A simple proof by induction of the general theorem
has been given by the writer in the American Journal of Mathematiecs, vol. 22, p. 121,
1900.

1 DICKSON, American Journal of Mathematics, vol. 22, p. 231, 1900.
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sets of conjugates within the abelian group (§23). The analogous problem is
then solved (§ 25) for the simple quotient-group A(4, p") and the results are dis-
cussed for the case p” = 3, which leads to a simple group of order 25920 of fre-
quent occurrence in geometrical problems (§§ 26-27). In addition to the checks
mentioned in §§ 28, 24 upon the calculations of the paper, it may be stated that
the results for the case p” = 3 were previously derived by methods independent of
those employed in this paper.*
Frequent use will be made of the theorem } that the equation

aft + Bt =1

has in the GF[ p*] (p > 2), p" — v solutions (£, n), where » denotes + 1 or
— 1 according as — af3 is a square or a not-square in the field.

§ 2. Definition of the abelian group.

The quaternary special abelian group SA(4, p™) is composed of the linear
substitutions
& m & m,

Ei=lay v ay Y

=B & B, o
(1) S: : 1 11 12 %2

Ez =|%y TYa @y V2

N,=|Bn O Bn &
with coefficients in the G'F'[ p"] which satisfy the relations }

@) B P A I +|a22 ﬁ/”l=1,
8, 5.8, s, B & |8y 8]

o [l e, B e
@G V| | Bu Sl By 8,

o [ L e, BB
By 8 |8y 8, G Yn| |G V)

and equivalent relations (2'), (3'), (4'), formed from the columns of (1) as the
former were formed from its rows.

* An account of these elementary methods, sufficient for the case » =3, was presented Jan-
uary 7, 1901, to the London Mathematical Society.

t Compare American Journal of Mathematics, vol. 21, p. 195, 1899.

} Forn=1, the abelian group was studied by JORDAN, Traité des substitutions, pp. 171-179 ;
for general n, it was investigated by the writer, Quarterly Journal of Mathematics,
vol. 29, pp. 169-178, 1897 ; vol. 31, pp. 383-4, 1899.
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Of the simplest substitutions satisfying these relations, the following are fre-
quently employed in this paper, the notations being standard : {

M, : E=mn, n=—E&;

Ly : Ei=&+4 M

Liy: o=+ A

Tin = Ei=XE, n;=7n;

P, 2 E=&, m=m =&, m=mn;
VU Ei=E+Ny, E=E4+M,.

The order &V of SA(4, p) is p*(p* — 1) (p* —1).

Since the general substitution (1) may be derived from the gemerators L, ,
M, and N;,, its determinant is unity.

The reciprocal of §; given by (1), is

8, — M O —Ya

) S-1 - - By @y = Pa Ay
8y — My 8y — Yn
— By, a, —By gy

It follows that the first minors (taken without prefixed sign) of a, 86, Bys vy
are respectively &, a ., v, B,

i ?

§ 8. Characteristic equation of an abelian substitution.

By definition, the characteristic determinant of S is

ay—£ Y a, Y12

A( ) By, 8, —x By, 3,
K) =

@y Va1 Agp— K Uy

1321 821 '822 822 —K

The constant term A(0) of A(x) expanded according to powers of « is unity,
being the determinant of the substitution. The coefficient of — « is

8, B, 9, a, a, Y, @, Yu M a, Yu @,

Voo G V| |G Gy Vul+ By Oy S|+ By &y By

8 Bn Oy By Bn Oy By Oy &y @1 Va9
=08, +a,+ 06, +a,:

1 If an index is not altered, it is not written in the formula.
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The coefficient of «?is the sum of six determinants of the second order. In
particular, A(x) has the form

wt— (@ + 8y + @y + 8 + ()" — (ay; + 8, + @y + S)c + 1.
Hence the reciprocal of any root of A(x) = 0 is itself a root. ZThe character-
istic equation of a special abelian substitution is a reciprocal equation.*

§ 4. Substitutions whose characteristic equations have all their
roots in the GF'[ p™], no root being +=1.

Suppose first that all the roots of A(x) = 0 belong to the GF[p~]. Desig-
nate them by «, =%, A, A~! and consider first the case in which no root is == 1.
The root « leads to a linear function w = af, + by, + c§, + dn, which § mul-
tiplies by «. But SA(4, p") contains a substitution ¥ which replaces & by ».
Then V'SV = 8, replaces § by «¢ . Likewise the root «~*, which is also
a root of the characteristic equation for |, leads to a linear function

o, = af +bmn + ¢+ dm,,
which S| multiplies by «'.
If b, 4 0, the group contains the abelian substitution

b 0 0 0

.
a b ¢ d

U=
—b%d, 0 o7t O
¢ 0 0 b
Then U-'8,U, being abelian, takes the form
k 0 (U
0 «' 0 O
0 0 a v ’
L0 0 B 8

From the assumption concerning A(«), the equation

a—K
7 -0
B S—«k
has as its roots the distinct marks A, A~' of the GF[p~]. Hence the given
substitution § is conjugate with the canonical form

* The theorem is true for any number 2m of indices. For proof, the direct method of the
text may be employed ; another proof may be based upon the canonical forms of linear substi-
tutions in a Galois field. In a subsequent paper the writer intends to extend the present inves-
tigation to the case 2m > 4.
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(6) E=«E, n=«q, E=NE, n,=2"Tn,.

We take A & « or ', the contrary cases leading to the type (7) below. Here
« has p” — 8 and A has p* — 5 values if p > 2; while, for p = 2, « has 2" — 2
and X has 2" — 4 values. But the substitution (6) is transformed by M into a
similar one with « and «~' interchanged ; by M, into one with A and A~ inter-
changed ; by P,, into one with « and A, x~! and A~! interchanged. The eight
resulting combinations give all the substitutions of the type (6) with the distinct
roots x, k7', A, A~'.  The number of types of canonical forms is therefore

3(p"—38)(p"—5), for p>2; 3@ —2)(2"—4), for p=2.

The most general substitution of SA(4, p™) commutative with a given substitu-
tion (6) has the form

§,=af, n=an, E=0, n,=>0",.
Their number being (p* — 1)% it follows that each substitution (6) is one of
N = (p" — 1) = p*(p™ + 1) (p" + 1)° conjugates within SA(4, p).
If, however, b, = 0 in ®,, we may suppose that ¢, 0. For, if ¢, =0,
d, = 0, then M;'S M, multiplies & + d,&, by «~'. With ¢, & 0, the group
contains the abelian substitution

1 0 o o0 )
V={O 1 0 —alcl‘ll.
a 0 ¢ d ’
0 0 0 ¢t
Hence V'S,V belongs to the group and has the form
k. 0 0 O
fu I(; 1 ,flzl g (B =K7B,).
By 0 2 K

Transforming by L;,L;  and taking
Bll+'r(/c—lc_l)=0, /322+°'("_1_")=0’

we find a substitution of the same form, having B8, = 8,,=0. If 8,=0, we
have the canonical form

(7) E; = ICEI ] 17; = "'_1'71 ’ E; = K—I‘Ez’ ’7; = K7, .

If B, & 0, we transform by 7, . and obtain the type

Biox
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ek 0 0 0

0 «1' «1 0 ]
® 0 0 &' 0 ’

K 0 0 «

The number of non-conjugate substitutions (7) with «* 4 1 is 1(p" —3) if
p>2 and }(2"—2) if p=2. A substitution commutative with (7) has the
form

a 0 0 B
0 a 5 0
0 ¢c 4 0
vy 0 0 &

The abelian relations give
ag—PBb=1, ac—Bd=0, —na+4+8=0, —qc+dd=1.
Letting A = ad — bc, we have, as the solution of these relations,
a=d/A, B=c/A, y=0b/A, S=a/A.
The number of the commutative substitutions is therefore (P =1 (p*™ —p",

so that each substitution (7) is conjugate.within SA(4, p") with exactly

P*(p™ + 1) (p" + 1) substitutions.

The substitution (8) is transformed by P,, into a similar one with «~* in place
of . Hence there are (p" — 8) or 3(2" — 2) non-conjugate substitutions (8)
with ¥* 4 1. A linear substitution commutative with (8) has the form

(e 0 0 01
IOchl
loocol'
llbOOaJI

The abelian relations give ac =1, — bc + ad = 0, whence
c=a"', d=bc.

The number of such substitutions is therefore p"(p" — 1). Hence each substitu-
tion (8) is one of p**(p*" — 1)( p" + 1) conjugates.

§ 5. Roots in the field, two of them being £ 1.

Suppose next that the roots are ¥, ¥, =1, =1, where « is a mark 5 0
or =1 of the GF [ p*]. The canonical form is
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[« 0 0 0

0 1 0 0
(9

0 0 =1 0

0 0 B =1

For B8 = 0 there are p” — 3 or 1(2" — 2) types each commutative with

[t 0 0 01
(10) 0 =00 I (ad—be=1),
‘0 0 a b
(0 0 ¢ d|

giving (p"— 1)p"(p*™ — 1) substitutions. Hence each type yields a set of
P¥(p™ + 1)(p" + 1) conjugate substitutions of SA(4, p).

For B % 0, the substitutions with 8 a square are transformed into each other
by abelian substitutions 7, and likewise those with B a not-square. The two
sets are seen to be not conjugate within SA(4, p*). The number of types is
therefore 2(p" — 8) or 1(2" — 2) according as p > 20r p = 2. A substitution
commutative with (9) for 840, «* 4 1 has the form (10) with 6= 0 and
a=d. Each type is therefore commutative with 2p"(p" —1) or 2%(2" — 1)
substitutions and thus conjugate with exactly p*(p*"—1)(p"+1) or
232" — 1)(2" 4 1) substitutions within SA(4, p).

§ 6. Two roots each &= 1 and two roots each £ 1.
If the roots are =1, =1, =1, == 1, the canonical form is
[ +1 0 0 0
a =1 0 0
0 0 x1 0
0 0 B =1

One may chose the lower sign, transforming if necessary by P,,.
For a = =0, the substitution becomes 7 _, and, for p > 2, is commuta-
tive only with the [p"(p™ — 1)]? substitutions

(11)

a b 0 0 ]

e d 0 0
(12) 0 0 o b ’ (ad—be=1, ajd,—be,=1).
|
J
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For a 4 0, we may suppose that a = 1 or v, where » is a particular not-
square in the GF'[ p*] ; indeed, a is replaced by as—2 upon transforming (11)
by 7},. Similarly, we may assume that 3 =0, 1 or ». The resulting eight
types are :

‘Lll-LI'l—l 4 Lzuzvl-l’ Lllz"l—l’ L2H~ ’ LXVT'I—ILZM

where p=1or ». The number of conjugates to each may be determined
directly or more simply by the method of §§ 9-10.

§ 7. Four equal roots each +=1.
If the roots be =1, =1, =1, &= 1, the ¢anonical form is either

[:I:l 0 0 owl =1 0 0 0)
Lt @ # 0 o| I R
0 0 x1 0 a, 0 x£1 0

Lo o g :l:lJ By 0 a1l

according as the linear function w, determined by the second root == 1 contains
n, ordoes not. If B,=0,=0, Ris of the foorm L. If 6,=0, B,+ 0,
the transform of B by 7,, is of the form R with 8,=1, 8,=0. The
abelian relations give a, =0, 8, = 1. Then, for 8, 4 0, we transform by
the abelian substitution

E=6+B1Es m=m—Byn,
and reach a substitution of the form Z . A similar result follows if 8, =0,

a, % 0, since the transform of R by P, then has 8 4+ 0. TFinally, if
B,, = a,, = 0, we have the substitution

(1 0 0 0
I 0 =1 1 0
0 0 +1 0
1 0 0 +1
For p > 2, this is transformed into L (witha =1, 8= —1) by
1 0 3 01
o 1 0
—1 0

(13)

O
o

0o -1 0 1
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For p = 2, substitution (13) will be seen to furnish a new type. A substitu-
tion (1) commutative with (13) must have the form
11 O

a 0 a
Bll 8ll BIZ 812
) 0 &

12

12

By ay By ay

1

subject to the abelian conditions
a8, +a0,=1, ) Byay, + 8,8, + a8, + 8,8, = 0.

By the former, a,, and a,, are not both zero, so that the latter determines one of
the B3, in terms of the other three, which may be chosen arbitrarily in the
GF[27]. Hence thereare 2"(2™ — 1)2% substitutions of S4(4, 2") commuta-
tive with (13). A substitution L is conjugate with the identity or L, or
L,L,. By §10, L L, is commutative with exactly 2** substitutions of
SA(4, 2", so that L L, and (18) are not conjugate within the group. A
different argument is necessary for the case of L, and (13); but the latter are
readily shown to be not conjugate under abelian transformation.

It remains to consider /2 when 8, & 0. The transformed of 2 by 7}, is
of the form R with §,=1. The latter is transformed by L;, into the

substitution
[ +1 0 0 0

lﬂu +1 0 1
R, =
-1 0 =1 0
Fa 0 a =+1

Suppose first that p = 2. If a = 0, the transform of R, by M, is of the form
R with 8,=0, a case previously considered. If a 4 0, the transform of
R, by T, T, is of the form R, with x~%a in place of a. Choosing « = a¥, we
obtain a substitution

|r1ooow

B 1 0 1

R, = |
101 0l
[1011]

of period 4. Transforming 72, by the abelian substitution

£;=E1’ "7; =+ T, + ,1.252, E; = fz'_'rfls 77;=772+ 'ng,
we obtain, for p = 2, the substitution R,, where b = 8+ 7+ 7. In order
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that the G#[2"] shall contain a mark 7 for which b = 0, it is necessary and
sufficient that

B=B+B+ B+ -+ 7 =0.

Since B belongs to the field, B = B. Inversely, there are 2*—! marks 8 mak-
ing B = 0 and as many making B=1. The 2" substitutions &, for which
B = 0 are therefore conjugate within SA4(4, 2%). Likewise the 2"~ substitu-
tions B, for which B =1 are all conjugate; indeed, &, is conjugate with 72,
and b = B + 7 + 7° takes 2"! distinct values when 7 runs through the series of
2" marks, while

b+ 4+ b 4 T =B+ Bt + BT F 747" = B(mod 2).

That the substitutions &, for which B =1 are not conjugate with 22, may be
shown by considering the condition B, S = SR,, S being of the general form
(1). We find that .S must have the form

1 0 o0 0
Bu 1 By Py B =Bro+ B+ B
14 21 — M12 gz .
( ) /322 0 1 0 ﬁzl =pp+ B )
'321 0 '622 1 J

The latter conditions require that 8 + 8,, + 8%, = 0 (mod 2).

For p = 2, the only substitutions of SA(4, 2") commutative with %2, are of
the form (14) subject, however, to the conditions

/821 = BIZ + /8:2’ '321 = Blz + /322
Hence B, = 0 or 1, while 8,, and B,, are arbitrary ; thus there are 2 -2 sub-
stitutions.

For p > 2, R, is transformed into a similar substitution &’ having B, = 0
by the following abelian substitution

"7; = 771 + %Bufg 9 ﬂ; = "2 + %‘Bugl M

For a =0, the transform of R’ by M, is of the form (13).
For a4 0, the transform of B by 7 ., gives the substitutions

1 0 0 0
0 1 0 1

'A‘a= _ 1 0 1 0 9 A—uﬂ—lﬂ—l’
—a 0 a 1

Transforming A, by 7, 7, we obtain 4_, 2. Hence, if p > 2, there are only
four canonical types, » being a particular not-square :
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(15) Al’ Av’ Alz—lz;—l’ AVZ;—IZ,Z—I'

The substitutions A, and 4,7, _ T, _, are not conjugate, if p > 2, their char-
acteristic equations having different roots. But every substitution commutative
with one is commutative with the other, 7} _, 7, | being commutative with every
quaternary linear substitution. The period of A4, is readily seen to be p if
p>38,9if p=38,or4if p=2* Then 4,7, 7, , is of period 2p if
p>3,18if p=3, or4if p=2.

If § be the general substitution (1), the identity 4,8 = SA4,, requires that

-1

M =Y2=Tn= Y= 0,= 821= 0, Qgy = Q19 822= 811’ /322= “812’
By=—B,—ad,, ad,=da,, —da,+da,=—F,—ad,.
The second abelian relation (2) then gives a,,8,, = 1, whence
adl, =a'.

Hence A4, and A4, are conjugate within SA(4, p") only when a and a’ are both
squares or both not-squares in the GF [p"]. To determine the substitutions §
commutative with 4_, set @’ =a. Then

[ a, 0 0 0
Bll all '812 812

-8, 0 a 0

{—B,—ad, 0 ad

subject to the abelian relations

S =

)
11 l

a J

2 __ N
an = 1, 2a’llBl2 + aa11812 - a’812 =0.

For each of the two values of a,,, the second relation determines 8,. Hence
there are 2p™ substitutions commutative with 4,. Hence each of the substitu-
tions (15) is conjugate with exactly 1p*(p*" — 1)(p* — 1) substitutions within
SA(4, p"), while no two of the four canonical types are conjugate.

§8. Study of the abelian substitutions of type L .

Upon transforming L by 7} 7,,, we obtain a substitution of the form Z
with a, B replaced by ac—%, B«~*. Hence the substitutions L are conjugate
with one of the following :

* For example, by introducing the new indices
X=—&, Y=§, Z=§—alp, W=—aln—§+aln,
A, takes the standard canonical form (not abelian):
X=X, Y=Y+4+X, Z=Z+Y, W=W42Z.
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L,L,., L L, T _T,, (¢, 7=0, 1, »).
Of these, L, L,, is transformed into Z,,L,, by P,,, and L, L,, is trans-
formed into L, ,L,, by the abelian substitution
vd 0 vo 0
0 ) 0 g
—vo 0 v8 0
0 —o 0 ) J

subject only to the condition »(8* + o%) =1, which has solutions in every
GF[p*]. The identity and 77 _,7,_, are conjugate only with themselves.
Hence the types L remaining for consideration are:

Llu’ LluTl—sz-—l’ LluL LluLlel—sz—l (r=1, ).

The characteristic equations for the second and fourth substitutions have the
roots — 1 and hence are not conjugate with the first or third.

The substitutions Z,, and L, , v being a not-square in the GF [p"],p > 2,
are not conjugate within the SA(4, p*). In fact, SL,, = L,,S gives the
conditions :

21

Bn=0, 8 =vay, By=By=0a,=28,=0.
Thus S does not satisfy the abelian relation (2):

1 =a,8, — By + @8, — By, = vaj,-

The fact that Z, L, and L,,L,, are not conjugate with each other and that
neither is conjugate with either Z,, or L,, within SA(4, p") follows inciden-
tally from the following determination of the number of abelian substitutions
conjugate with each of the four. To determine the number of substitutions of
SA(4, p") conjugate with Z, L, , let S denote the general substitution (1)
commutative with it. The conditions for the identity

SL,,L,,=1L,, L, S (b +0)

are found at once to be the following:
By=0, B,=0, B,=0, a,=9,, 78,=0,

pay, =78, , pd,=rTa,, Ta,=T1d,.

For =0, S has the form

G Tn %z Y
0 4, 0 O
(16)
0 vy @y W,
L 0 821 '822 822
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In particular; an abelian relation gives a?, =1. Hence S = ¥ or 7 _, ¥, where
¥ is the most general substitution of SA4(4, p”) which leaves 7, fixed. The
number of substitutions ¥ is p*p"(p** — 1), being equal to the number of
substitutions of SA(4, p*) which leave fixed the index £ .* According as
p>2orp=2, L, is one of (p*—1) or 2" —1 conjugate substitutions
within SA(4, p*).

For 7=1, a substitution S commutative with L, , Z,, has the form

all 711 p’ 812 712

0 a 0 )

11

9
@ Ya ) Va2 J
0 Hay, 0 ™)

(17)

subject to the abelian relations
al, +p8, =1, aj,+pay =1, aj+pa;=1,

an@y + 812“"22 =0, anYa — Tu%a + "’812'722 — V1% = 0.
Hence

2 __ 2 — —
812 =y A= + Ay “11(“21 =+ 812) =0.

Suppose first that w is a not-square v in the GF[p"], p> 2. Then q
# 0anda, = +3,, a,=+a,. Forany one of the p" + € sets of solutions
of a?, + 87, =1, € being &= 1 according as p"=4l+1, a, and a,, are de-
termined except in sign ; while v,, is determined in terms of v, , 7,,, 7,,- Hence
there are 2p°(p" + €) substitutions of SA(4, p") commutative with L, ZL,,.

Suppose next that u = 1. Whether @, be zero or not, we may set a,, = +a,,
a, = 5 8,. For any one of the p" — € sets of solutions of a} + &%, = 1 in the
GF[p7, p>2, a,and a, are determined except in sign, and one of the v,;
is determined in terms of the remaining three. Hence there are 2p*( p"— )
substitutions of SA(4, p"), p > 2, commutative with L, L, . For p =2,
we get a,=a,, 8,=a,, a, +8,=1, so that SA(4, 2") contains exactly
2% substitutions commutative with L L, .

§9. Study of the substitutions L, T, _; and L, T, , (=1 orv).

If » be a not-square in the GF[p*],p > 2, no two of the substitutions
rL.1 _, L, 1,_, LT, ,, L,,T,_, are conjugate within SA4(4, p"). The
first two are not conjugate and the last two are not conjugate since their
(p + 1)th powers are L,, and L,, and are not conjugate by § 8. Finally, a
relation SL, , 7T} _, = L,,7,_,Sis proved impossible by forming the respective
products.

*Quarterly Journal of Mathematics, vol. 29, pp. 171-173, 1897.
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Within SA(4, p"), p > 2, each of the four substitutions is one of a complete
set of 1p™(p* — 1) conjugate substitutions. In proof, let S be an abelian sub-
stitution commutative with Z, , 77 ;. Then § is commutative with the p-th and
(p + 1)-th powers of the latter, which are 77 _; and L, respectively. Hence S
is at the same time of the forms (12) and (16). Hence

a, vy, 0 O
g 6 o, 0 O ,

i 0 0 ay, v,

0 0 B, 3,

subject to the abelian relations
afl =1, a22322 - '822'722 =1.
The number of substitutions § is therefore 2pp"(p*™ —1).

A substitution §' commutative with Z,, 7, _, will be commutative with
L, T, , 7, ,T, ,= L, T _, and vice versa. Hence every S is an S and
vice versa. Hence the final theorem :

Within SA(4, p™), p> 2, the substitutions L T, _,, L, T, _,, L, , T, _; and
L,,T,_,, where v is a not-square in the field, are not conjugate and each gives
rise to a complete set of 1p™(p*" — 1) conjugate substitutions.

§10. Study of the substitutions L, T _L,, (u, 7=1o0rv).

The substitutions ZL,,7;_,L,, and L, 7, _,L,, are not conjugate within
SA4,p"),p>2. Indeed, their p + 1-th powers, L, ,L,, and L, L,, are not
conjugate by §8. Likewise L,,7} _,L,, and L, T, ,L,, are not conjugate
within SA4(4, p*). Finally, L, 7} _,L,, is not conjugate with L, 7} _,L,,;
for, if S transform the former into the latter, it is seen that S must replace &,
by v8,,€, + v,,m, and 7, by 8,,€,, where 57, =1. Combining the four non-con-
jugate substitutions into the single type ¥ = L, , 7} _,L,,, where p, 7=1, v,
it will be shown that each £ is commutative with exactly 4p® substitutions of
SA4, p”), p > 2, and hence is one of a set of }(p** — 1) (p™ — 1)p™ conjugate
substitutions. In proof, let S be commutative with Z. Then § must be com-
mutative with £? = T, _,, so that § must be of the form (12). Also S must
be commutative with E#+!' = L, , L, andhencehave 8, =0, 8, =0,a,=3,,
a,=25,(§8). Hence S has the form

fa o 0 0
|O a 0 0
0 0 a

(@?=a2,=1).

22 (YZZ

t0 0 0 ay,j

Inversely, each of these substitutions is evidently commutative with Z'.
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In view of the number of the substitutions of SA(4, p™) commutative with
the substitutions £ and the number commutative with the four of §9, none of
the latter are conjugate with a substitution %'.

§ 11. Canonical form of a binary substitution of irreducible characteristic
determinant.

Theorem. A binary linear substitution in the GF[ p"]
p (‘; g) (a8 —py=1)
whose characteristic determinant D(x) = «* — k(a + 8) + 1 is irreducible in the
Jield may be transformed into the canonical form

0 1
2IE(—I a+3)

by a linear substitution of determinant unity and belonging to the field.
If By=0, then D(x)= (x — a)(x — 3), contrary to hypothesis. Trans-

1 0 0
forming = by (a/fy 1),weobtain S= (_7_1 Z+8)' If o be a square

in the field, the transform of § by 7, s gives =,. If v be a not-square, so
that p > 2, the transform of S by (3 ;) is a substitution of the form =
with ¢ = 4 + 7(a 4 8) + 7%y~ in place of the coefficient . Since

oy '=1+ Y (a+ 8) + (7y7)’
is irreducible in the field, ¢ cannot vanish. Moreover, at most two values of r
give the same value to the expression ¢. Hence ¢ has at least 2(p" + 1) values
+ 0, at least one of which is therefore a square in the field. By the earlier

case, the substitution is conjugate with X, .
By an analogous proof, = may be transformed into

4 fa+d —1
211=< 1 0)'

§ 12. Substitutions whose characteristic determinant is the product of two
linear factors and an irreducible quadratic factor.

Let the characteristic determinant A(x) of the abelian substitution S be
the product of two linear factors and an irreducible quadratic factor each be-
longing to the GF [ p™] . Denote the roots of the former by @, b and those of
the latter by A, M. Then(§3),b =a™', "= A~'; hence M¥"+'=1, M"-'4 1,
the latter excluding only the two roots &= 1 of the former, so that A may have
p" — 1 or 2" distinct values, according as p > 2 or p = 2.
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If a' 4 @, S may be transformed by a substitution of SA(4, p) into a
substitution S’ which replaces £ by @£, and 5, by a='y,. On account of the
abelian conditions, S is seen to affect £,, 7, according to a substitution of the

form
zs<g g) (ab—py=1).

From the invariance of A(k), it follows that A, A~ are the roots of
K —k(a+8)+1=0.

In particular, the latter is irreducible in the GF [p~]. By §11, there exists a
substitution on £,, 5, with coefficients in the field and having determinant unity

which transforms ¥ into
s = 01
1=\ =1 a+43d)°

A substitution S of the group SA[4, p"] whose characteristic determinant is
the product of two distinct linear factors kK — a, K — a~* and an irreducible
quadratic factor £* — Ak + 1 is conjugate within the group with the canonical
substitution

e 0 0 -0
0 al 0 0

(18)
0 0 0o 1

[0 0 -1 4

If ! = @, S may be transformed by a substitution of the group into a sub-
stitution S, which replaces £ by a£, and 7, by an, + b, and therefore £,, 7, by
linear functions of £,, , only. If & 4 0, we transform S, by 7}, and obtain
a substitution of the form S, with ¢=?5 in place of b, so that b may be restricted
to unity and (for p > 2) a particular not-square. » of the field. ~7%e canonical
Jorms within SA(4,p") of substitutions whose characteristic determinant is
the product of two equal linear factors k =1 and an irreducible quadratic
Sactor k¥ — Ak + 1 are

=1 0 0 0
o b =1 0 0
19’ (6=0, 1Lorv).
(19 o 0 o0 1
l 0 0 -1 4]

To obtain ultimate canonical forms, we introduce the new indices, conjugate
with respect to the GF'[ p"],

E-£2+)"772’ Y='—E2+x—l772'

Then (18) and (19’) each replace X by
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— A+ (AA =1y, = — A, + Mgy =N— &, + M)
Hence (18’) and (19’) are reducible to the canonical forms
(18) E=at, n=a, X' =rx._., Y =\'7 (a++1),
(19) g ==+, 7 =9 +b, X' =rX, ¥ =r'Y.

Two substitutions of SA4(4, p”) reducible in this manner to the same canon-
ical form (18) or (19) are conjugate within the group and inversely.

There are }(p" —1)(p" — 8) or }27%(2" — 2) non-conjugate canonical types
(18). Indeed, M, transforms (18) into a like substitution with @ and @~ inter-
changed ; M, transforms (18) into a like substitution with A and A~!inter-
changed. A substitution of SA(4, p*) commutative with one having the canon-
ical form (18) has simultaneously the canonical form

£{=c‘§1a 77;=C-1171, X' =7X, YV'=1Y,

where ¢ is any mark = 0 of the G'F'[ p*] and 7 any root of 7#"+1 =1, giving
(p* — 1)(p" + 1) substitutions. Hence each type (18) represents a complete
set of p*(p** — 1) conjugate substitutions of SA(4, p*).

For b = 0, thereare p» — 1 or 2! non-conjugate types (19). A substitution
of SA(4, p*) commutative with one having the canonical form (19) with 6 = 0
has simultaneously the canonical form

20)  E =tk +sm, n=th+un, X' =rX, ¥'=1F,

where ru — st =1, giving p"(p* — 1)(p" + 1) substitutions. Each type thus
represents p*(p™ + 1)(p" — 1) conjugate ‘substitutions of SA(4, p).

For 5 =1 or a not-square v, there are altogether 2(p" — 1) or 2*~! non-con-
jugate types (19). The commutative substitutions have the canonical form (20)
with s = 0, r=wu ==+ 1, giving 2p"(p" + 1) or 2%(2" + 1) substitutions. Hence
each type represents a set of £ p*(p*" — 1)(p" — 1) or 2/(2" — 1)(2" — 1) con-
jugate substitutions.

§ 18, Substitutions whose characteristic equations have no root in the GF'[ p].

THEOREM. Within SA(4, p™) any substitution S, whose characteristic
equation A(k) = 0 has no root in the GF[ p"], is conjugate with a substitu-
tion replacing &, by v, .

Let S replace & by o = a,,& + v,m, + a,,§, 4 v,,m,- Suppose first that v,
4 0. There exists in SA(4, p") a substitution 7" which replaces & by ;'€
and 7, by @ [compare §4]. Then 7'-'ST replaces & by v;;'n,. The same
result will follow if § be conjugate within SA(4, p*) with a substitution having
v, + 0. In the contrary case v,, = B, = v, =B, =0 in S and all its con-
jugates ; indeed, by transforming S by M,, P, or P M, , we may bring the

Trans. Am. Math. Soc. 9
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coefficient ), v, or B,, in the place of the former ¢,,. By an earlier trans-
formation, we can make B,,= v,,= 0.* The resulting substitution is

lfau 0 awO]‘
o 5, 0

1 812

Si

8

@y Y Wy O

‘8 21 821 O 8

22

The transform of S’ by n; = 7, + 9,, &, = &, — £, has B, as the coefficient of
g in 5. Hence B, =0. Similarly ¢, =0. Next L, transforms S’ into
a substitution with 6, — a,, as the coefficient of 7, in ;. Hence 8, = a,, and
similarly 8, = a,,. The transform of S8’ by N,,,: &, = &, + n,, E,=E+mn>
has &, —a,, as the coefficient of », in £ . Hence a,=3, and similarly
a, =38,. Now a, or?d, is not zero, since otherwise the characteristic equation
has a root @, or §,, in the field. The transformed of S’ by

£;=fl+7‘gza ’7;‘_"772—77)1 (ay + 6,,=0),
has the form '
(0 0 a, 0
0 0 0 5,
5, 0 0 0
o a, 0 o0

It is transformed by 73, into P,, whose characteristic determinant is (1 — «%)?,
contrary to the hypothesis concerning the roots of A(x)= 0.

§ 14.
The further discussion of the resulting substitution
[ 0 v, 0 0

(21) , Bll 811 BIZ 812
0 vy @y v

lo B 21 B 22 822

is separated into the cases B, = 8,= 0, when the substitution has the form
(12), and B,,, o, not both zero. In the latter case we may take 8, 4- 0, first

transforming by M, if 8,4 0. Transforming by T;5,,» we have a similar
substitution with 8, =1. Then the transform by L,,  becomes

8

|
|
J

*Quarterly Journal of Mathematics, vol. 32, pp. 42-63, ¢ 5, 1900.
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0 v, 0o 0

B, 9, 1 0

0 7y @ Va

0 %8, B, 8,

It has the characteristic determinant

(22) «*— K38+ ag+ 8,,) + K32 + 8, ap+ 8,,8,,— ¥,,7,,) — #(8,,+ ap+8,,) + 1.

It is the product of two factors «* — ox + 1 and «* — Ak 4 1 if, and only if,
o+ A=a,+08,+8,, oh=(a,+ 8,)8, — 7,7

may be satisfied by marks o, A of the GF[p~]. For p > 2, the necessary and

sufficient condition is that (a,, + &,, — &,)? + 4v,,7,, be zero or a square in the
field, viz., (¢ — )% In particular, if v,, = 0, we have

A(r) = (k" — 8,k + 1) [&* — r(ay, + 8) + 1].

Sl = (Burm=—1, a0y —Buyn=1).

-§15.
We seek the conditions under which new indices
X=af + by +ci,=dn,, Y=af +bn+ck+dn,

may be introduced so that S, will replace X by ¥ and ¥ by — X +4Y,
where 4, a,b,c¢c,d, a, ---, are marks of the GF [ p"] satisfying the equation

23) S LRy
a, b ¢, d
In order that S, shall replace X by ¥ and ¥ by —X + AY, we must have
a, =bB,, b, = ay,, + b8, + ¢v,, s, + 4,8,
{ ¢, =0b+cay,+dB,, d =cy,+ dd,,
{ —a=—ad +0bB,, —b=ay,+ 5,8, — 4)+ ¥,V + & 71.025
—c=b+c(ay—A)+dBy —d=cy,+d(d,—A4).

On substitution of the values of @, b, ¢, d, into the second set of equations,
we have the following equations :

(24) 0B, (8, — A) —cy,—dd,=0,
(25) a8, — A)yy, + b(v¥y¥e + O — 8, 4) + o7y pp(ag + 8, + 6, — 4)
+ dygl(sgz + ByYa + 8,0, — 48,) =0,
(26) @y, + b3, + ay — A) + c{vy Yz + @@y + 8, — 4)}
+ {70 + Bylay + 0, — 4)} =0,
(27) b3 + €Y@y + 8 — A) + ddyay, + 8, — A) = 0.
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Multiplying (24) by a,, + 8,, — A and adding to (27), we find

(28) Yoz + Bu(8,, — 4) (ay, + 6, — A)=0.

Indeed, if 5= 0, then @, =0, @ = 0; then (24) and (26) require
a,+8,—A4=0,

whence (24) and (25) require d = 0, v,c=0. Then d, =0, so that (23) will

not hold. If we calculate the determinant of the coefficients of (24), (25), (26),

(27), we find o2, times the square of the left member of (28). Hence the latter is

the condition that these equations have solutions other than e =b=c=d = 0.
In order that A determined by (28), viz.,

A?— A8, + ay, + 3,,) + 8 (@p + 8,) — 1Y =0,

shall belong to the G F'[ p"] it is necessary and sufficient that A(x) decomposes
into quadratic factors «* — Ak + 1, > — A’k + 1 [see §14].
For the case of r,, = 0, the decomposition is evident :

A=3,, A =ay+35,.

If these roots be equal, we have
a22(a22 + 822 - 811) = a’gz - 811“22 +1=0,

since a,,8,, =1, so that «* — & « + 1 would be reducible in the field. Hence
if A(k) has equal irreducible quadratic factors, then v,, & 0.

In case (28) is satisfied by a mark 4, equation (27) may be dropped from
consideration. Multiplying (24) by v,, and adding to (26), we find

(26,) a:yll + ba22 + ca22(a22 + 822 - A) + dBZZ(aZZ + 822 - A) = O *

Multiplying (24) by v,,6,, and (27) by — v,,, and adding the resulting equations
to (25), we find
(25") d=a(s, — 4).

Using the relation 1 + 8,y,, = a,,5,, and (28), we have from (26") and (24)
ay,{ay,8, + b+ c(ay, + 8, — A)} =0,
8, — A){ay, 8, + b+ c(dy, + 8, — A)} =0.
If 8, — A4 =0, then v,,=0 and a,, 4 0. Hence, in every case
(29) b= — av,5,, — c(ay,, + 6,, — 4).

Hence, if (28) be satisfied, equations (24), (25), (26), (27) are equivalent to the
two (25") and (29).
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It remains to prove that the condition (28) may be satisfied. For «,, =0,
we may take 4 = 6, sothat d =0, d, =0, Then

a b |
= d¥y, + abd, — 8B, =1.
la 8]
For p =2, we may take b =0, a = v%, every mark of the GF [2"] being a
square. For p > 2, the condition may be written
(a - % b'811811)2 + 62'8%1(1 - i’ 8f1)= - Bu .

It has solutions @, b in the GF'[p"], unless 5, =+ 2. In the latter case
k* — 8,k + 1 = (k 3= 1)?, contrary to hypothesis. Then c is determined by (29)
since a,, + 6,, — d 4 0.

For 4,4 0, we may suppose 8,,=0. Indeed the transform of S, by
Ly, , 8, + 7y,=0,is of the form S, with ,,=0, v, 4 0. Then

d=a(d,— A), b= —cla,— A), a, =—cB,(a,— 4),
b, =ay, — CA(aaz —4), ¢= aBzz(Su —A)+cd, d =cy,.
Hence the condition (23) becomes
az{ryu - /322(3u - A)z} - aCA(azz + 811 - 2A) + cz{'yzz - Bu(am - A)Z} =1.
Since By, = —1, 7,7, = (6,, — 4)(a,, — 4), the condition may be written
(azz + 811 - 2‘4){“2'7?1 - ac'yuA(azz - 'A) + cz(azz - A)Z} = '711(“22 - A) .

Here a,, — A 4 0. Hence the equation is impossible if 24 = a,, + §,, , whence
47,7y + (2, — 8,)*=0. In this case A(x) is the square of a quadratic factor

(see §14).

This case being excluded here the above condition may be satisfied, when
p>2,unless 1 — 1A*=0 [cf. §1]. Then v, v,,= (3,, F 2) (a,,  2), so that
4'711'722 + (a’zz - 811)2 = (azz + 811 + 4)2 ’

A(k) = [ —k(ay, + 8, F2) + 1] [*F 2« + 1],

contrary to the hypothesis concerning the roots of A(k)=0. For p =2, the
condition is satisfied by the values

a= '71_1%‘4(“22 - A)}é(azz + 811)_% y C= 'yi{i(azz - A)_%(azz + 811)_% .

As a first conclusion of the preceding investigation it follows that if the char-
acteristic determinant A(x) of a substitution S of SA(4, p*) decomposes in the
GF[p"] into two distinet irreducible quadratic factors «*— Ax+ 1 and
k*— A’k 4+ 1, then § is conjugate within SA(4, p”) with a substitution of
the form (12) and therefore conjugate with
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o 1 0 o

-1 4 0 0
o o0 o 1

L o o —1 4

If A(x) be the square of an irreducible quadratic factor, then S is either conju-
gate with (21) for B, = 8, = 0 and hence conjugate with (80), or else is conju-
gate with S| with vy, = 0. In the latter case we transform by Z; and make
d,,= 0, obtaining the substitution

(30)

0 % 0 0

p e 1 0
P 0 mnY @ v l
L 0 0 —y' o]

The characteristic determinant of S, is

A() = r* — *8 + a) + £(2 + 8a —yy,) — k(8 +a) + 1.
In particular, A(«) is a perfect square * if, and only if,
(1) — dyy, = (a —9)".

A second result of the investigation is that S is conjugate with a substitution
of the form S, within SA(4, p") when A(k) is irreducible in the GF[p"] or is
the product of two factors «* — px + 7, 7 4 1, belonging to and irreducible in
the GF[p"]. The latter cases are treated in §17; the case in which (81)
holds is considered in the next section.

§16. Characteristic determinant the square of an irreducible quadratic.
Consider the following substitution of the form S, :
[ 0 1 0 0
-1 0 1 0
(32) 3, = (—dc=a?).

0 c a c

0 0 —ct' 0
It has the characteristictic determinant (whether p = 2 or p > 2)

K — ka4 k*(2 —¢) —ka + 1 = [&* — (— ) + 1]°.

*1f p>2and (31) is satisfied, A(x) = {x?— (a4 )4 1}2.
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A substitution S, satisfying (81) will have the same characteristic determinant
as 2, if, and only if, ¢ = a 4 8, and for p = 2, ¢ = a* — yy,. The latter are
consequently necessary conditions for the conjugacy of S, and X, under linear
transformation. 'We proceed to prove that, if S, satisfy the condition (31) and
if #* —(—c)%c + 1 be irreducible in the GF[p"], then ¢ = a + &, together
with ¢ = a® — yy, if p = 2, are sufficient conditions for the conjugacy of S, and
2, within S4(4, p”). Assuming these conditions satisfied, we may determine
a substitution § of SA(4, p") such that §§,=2,8. We take for § the
general substitution (1), the latter relation imposes a set of conditions which re-
duce to the following upon applying @ =a + &, — 4¢c = o® and (81):

== =m0, Y= —17By, ay=1%,,
ca,= —a, +v9,, ey By, = —aa, + av,8,, + ¢V, — YVis»
ay = 9y'a, — 8, — 88, NYn = a0 + oy — aay — vy,
Y8y = 8a, + V35 YYie8,, = aay — ey, — ay,d,,
a,=28,+aB,, 9,8, = ca,, — ay,,.
It suffices to take @, = 0. Setting p = y;'y,,, we have S in the form
[ 7.8, — 78y 0 NP
By 8, —By—cp 0
I — 88, — 8, —cB,—p &,—aB,—acp —cB,
[’Y“33u +v7'p — 7788, v '8y ey™'8, —ay7lp

The abelian relations (2), (3), (4) here reduce to the two:
8+ B+ Bup + ¢t =17
— 887 — 8B — b, B, —28,p+ aB,p+ acp*=0.
Multiplying the first by a and the second by — 1 and adding, we have
(34) (@ + ) (8, + BE) + 8,8, + 28 p=ayy".
If p > 2, we may eliminate p between (33) and (34) and find
(35) S {=Bllc+4) + 8aTlay! — 4y} = {28}, — (— o) Har{'}™

We prove that there exists a mark B? making the coefficient of &7, a squdre
and the right member not zero. Let

(33)

T = 8atayTt — 4y

For p>2, 74 0; since 2¢7'a = 1 requires a = & and therefore yy, = 0. If
7 be square, we may take B, = 0, when (85) determines &, 4= 0 and (34) de-
termines p. Suppose finally that 7 is a not-square. Since «* — (—c¢ )%« + 1
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is irreducible, — ¢ — 4 is a not-square. After we divide (35) by 7, the question
is the possibility of finding a mark w? such that u? + 1 is a not-square. There
are }(p"=1) such squares u?= 0, according as p"=4/+1.* Hence for
p" > 5, there are at least two marks 3} making the coefficient of &, in (35) a
square, and hence at least one mark B} making also the right member 4 0.
Then 8, is determined different from zero, so that (34) gives p .

For p» =5, the right member of (35) vanishes only if

fl= :l:]., (—c)“%a'yl‘1=:|:2.

Then 7 is a not-square only when ;' = 41 or —1. Sincer, is a square, it
may be taken to be + 1 by an earlier transformation of S, by 7} ,7}; -1,
being suitably chosen. With ¢y, =1,thena'a==+1. Butela=1 mukes
T a square. Hence ¢7'a= —1, so that §= — 2a, a= —25. Since
— ¢ — 4 is a not-square, and — ¢ = &, it follows that =1, a?=—1-
Since 3%, was chosen to make the coefficient of &7, a square, and since 7 is now
3, it follows that 8%, = — 1, and §,;, = 0. Then (34) is an identity and (33)
becomes (2p — B,,)* =1 and may be satlsﬁed

For p"=38, ¢ = 0 (mod 3), since — ¢ — 4 is to be a not-square, necessarily
— 1. Hence the substitution 2, cannot be employed. Since a + =0, (31)

gives yy, = —a’= — 1 (mod 3). Hence S, takes the form
(0 —y1 0 0]
vy —a 1 0

[a, v]= l 0

ILO 0 —y1 0
But P, M M, transforms [a, ] into [—a, —¢]. Hence [a, y] is conju-

gate either with [1, — 1] or with [—1, —1]. The latter is transformed
into the former by the special abelian substitution

1 0 —1
[ 0 —1 1
l_1 0 —1
|L_1 10

Forp=2, wehavea=0, a + =0, ¢ = a®— vy, so that (34) becomes
¢8,8,, = ay7'. The latter together with (33) are to be satisfied by marks 3, ,
8., p of the GF[2"]. Letting p = cB,»* in (33), dividing by ¢3}, and ex-
tracting the square root, we find

= o = O

]
.
|
|

I/ 8
r4r=c" 2+Zl—/; £ (mod 2)

=c% 4+ ./811(')’1 + 811)

* American Journal of Mathematics, vol. 21,+p. 196.
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upon eliminating B,, and denoting the constant c*a~'y, by ¢g. It remains to
prove that a mark 8, may be founded for which this equation has a root » be-
longing to the field. But, by § 7, #* 4+ » = 7 is irreducible if, and only if,

PRI LR TR & A

By hypothesis «* + ¢k + 1 =0 and therefore u? + u + ¢! = 0 is irreducible
in the field, so that

¢l (c—l)z + (6—1)4 4ot (6—1)2"—1 =1.

If, for every mark 8, , the equation in » be irreducible, then

1n°
98u(n ™ + 8y) + {g3u(v% + )} + - + {98 (v + 811)}’2"_l =0

must be an identity modulo 2 in the variable &,,. This will be the case if,
and only if, g = g*y;', whence g =r,. The latter requires ¢ =a*. But
¢c=a’—qy,. Hencey = 0, which is impossible.

In addition to the determination of the canonical form (82) and for p" =3,
[1, — 1], we have derived the theorem :

If two substitutions S, have as (common) characteristic determinant the square
of an irreducible quadratic, they are conjugate within the group SA(4, p*).

§17.

It remains to consider the cases in which A(x) is irreducible in the
GF [p*] or is the product of two irreducible quadratic factors of the form
k*—p+ 7, 7 1. In either case the roots of A(k)= 0 are o, o'
o=?"; in the former case ¢?*+! =1, in the latter case o**'=1. We may
write A(x) = 0 in the form

(36) o’yy, = (6" —oa + 1)(¢® — ad + 1).
The substitution S, given at the end of §15, multiplies by o the function

X, = — ok + oyym + (62— 08 + 1), + a7 y(0? — 68 + 1)n,.

Denote by ¥, X,, ¥, the linear functions derived from X, upon replacing o
by o', o, c=*" respectively. If A(k) be irreducible, so that o belongs to the
GF[p*], the functions X, ¥;, X,, ¥, are conjugate with respect to the
GF[p*]. In the second case, o belongs to the GF'[p*], so that X and X,
Y and ¥, are conjugate with respect to the GF [ p*]. Hence the four func-
tions satisfy the requirements as to the conjugacy. Interms of these functions
taken as new indices,* the substitution S, takes the canonical form

87  X/=0X,, ¥Y{=0F,, Xi=0"X,, ¥/ =0T,

1

n
y o7,

* It may be verified by direct calculation that the determinant of the transformation of in-
dices does not vanish ; but the result follows from the abelian character of the transformation.




128 L. E. DICKSON: CANONICAL FORMS OF [April

The transformation of indices satisfies those abelian conditions specified by
formule (3) and (4). In fact,

' —9 oy, d?—od+1 o 'y(e? — a8+ 1)

—y oy, o — o8 +1 o Py(c¥" —o?"8 + 1)
= (o — a“""){fyfyl + (e —0od + 1) (0'2"" —o?"8 4 1)a 7"},
On elimination of yy, by (36), the quantity in brackets vanishes if
o1 (e —oca+1) 4% —o?"84+1=0.
The latter is derived by multiplying by ¢*”" the identity
ct+ol+oe” +o " =a+3d,

which follows from the form of A(x)= 0, with the roots o, 7', ---. In a
similar manner, we find that

- Ty, ?—ob+1 o ly(e? — ad + 1)

=0.

+
—y o Pyy, oV _ 0?8 +1 oy (o ¥ —a*8+1)
Replacing o by o' in the two identities just established, we obtain two new
identities. The four embrace the relations (3) and (4). Consider next the left

member of the first abelian relation (2):

’ —v oy, o’—ad+1 . o'y(e?—ad+1)

c2—0%+1 oylc?—0c84+1)

— 2o — o) (o, + (et — 0B + 1))
Denoting, for the moment, the quantity in brackets by C, we observe that Co®
may be written

—y oy,

3
2(c?— a8+ 1) (0'2 2 —2*-"— o+ 1)

and hence does not vanish. If ¢ —o¢~!= 0, then ¢> — 1 = 0, contrary to hy-
pothesis. The left member of the second abelian relation (2) is seen in like
manner to be

y(o?" — o ?") O,

If o*" =0, it is only necesary that X, and X,, ¥, and ¥, be conjugate
with respect to the GF[p*]. When we take uX, in place of X, and w"X,
in place of X, the canonical form (87) is preserved, as well as the abelian re-
lations (3) and (4) just established. In case w is the reciprocal of y(¢ — o) C,
the resulting transformation of indices satisfies also the abelian relations (2) and
is therefore an abelian substitution in the G'F’[ p*] on two pairs of conjugate
indices. In this case it follows that two substitutions S, having the same char-
acteristic equation are conjugate within SA4(4, p*).
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If A(k) =0 be irreducible, so that o?"" = o, the replacement of X, by
1 X, requires the replacement of ¥, by u*™¥,, X, by u?'X,, ¥, by uw ¥, .
The above expression (o — o~')C is then multiplied by pr 1 a mark of
the GF[p™]; the product can not be made unity by choice of u, since C be-
longs to the GF[p™], while ¢ — o' does not. Hence S, is not reducible to
the canonical form (37) by a special abelian substitution with conjugate indices.
Nor is S, so reducible by a general abelian substitution ; for the product

,,,Pz"'l'lfy(tr _ a.—l) C

differs from its (p")-th power; indeed, the product equals the negative of its
(p™)-th power. By a suitable choice of u, p?*"+lyC =1, so that the left mem-
bers of (2) become o — o' and ¢?" — c—*". Hence if 7' denote the transfor-

mation of indices reducing .S, to the canonical form (37), then 7" replaces ¢ by
¢’ , where

!

& &, & m &,

& &, & m &, |
when 7 operates cogrediently upon the indices £,, 7, and £,, #,. If 7" denote
the transformation of indices which reduces a second substitution S to the can-
onical form (37), the product 4 = 7" 7! leaves ¢ absolutely invariant and
transforms S into .S,. In view of the conjugacy of the indices X, ¥ and
the invariance of ¢ under A4, the latter may be expressed as a special abelian
substitution on £;, #, with coefficients in the G'F'[p"]. Hence, if two substi-
tutions S, have the same characteristic determinant and if the latter be irre-
ducible or the product of two irreducible quadratic factorsk* —px + 7,7 %1,
they are conjugate within the group SA(4, p").

+

y, ¢ =(c—07) + (a7 — o)

9

§18.

Let S be an abelian substitution whose characteristic determinant is ir-
reducible in the G'F[p"], so that S may be reduced to the canonical form
(37), where o®+*1=1. Of the solutions of the latter, only o = = 1 satisfy
also o?”~1= 1, so that there remain p™ — 1 or 2% suitable values of . Re-
placing o by o=, we obtain from (37) a substitution which is transformed into
(87)by M, M, ; replacinga by 2", we obtain the transform of (37) by P, M.
Replacing o by %", we obtain the transform of (37) by P ,M,. Any new
replacement of o leads to a substitution not conjugate with (37). Hence there
are 1(p™ — 1) or 12* non-conjugate types (37). An abelian substitution .S,
commutative with an abelian substitution § having the canonical form (37) has
simultaneously the canonical form

X/ =pX,, ¥ =p'F,, X,=p"X,, ¥=p7F, (-1,
so that there are p® + 1 such substitutions S,. Hence § is conjugate with
p"(p* — 1)? substitutions within S4(4, p").
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§19.

An abelian substitution S whose characteristic determinant is the product
of two irreducible quadratic factors x> —px + 7, 7% 1, is reducible to
the canonical form (87), where " 1=1, " &0, o & . The (p~— 1)
or 2> — 2 -2 suitable values of o give, in sets of four, conjugate substitutions.
Hence there are }(p" — 1)? or }27(2" — 2) non-conjugate types. Each is com-
mutative with -p* — 1 substitutions and therefore conjugate with exactly
p"(p™ — 1) substitutions of SA(4, ).

§ 20.

An abelian substitution S whose characteristic determinant is the prod-
uct of two distinct irreducible factors of the form «* — Ax + 1 is conjugate
within SA4(4, p") with a substitution (80) and therefore is reducible to the can-
onical form

(88) X/ =2\X,, ¥ =\¥, X/=pX,, ¥]=p"F,

where A" 1=1, p?™ 1 =1, W11, p? 11, pr, pErt. Of
the p" + 1 solutions of A*"*! =1, A= =+ 1 are to be excluded; then of the
p" + 1 solutions of p?"t'=1, u==+1 and p=2x, A~! are to be excluded.
Hence there are (p™ — 1)(p" — 3) or 27(2" — 2) pairs of suitable values A, .
But A and A" are interchanged upon transforming (88) by M, ; wand u~' upon
transforming by M,; X and g, A" and w~! upon transforming by P ,. Hence
eight of the pairs of values A, s lead 1o conjugate types, so that there are ex-
actly 1(p" — 1)(p" — 8) or $2%(2" — 2) non-conjugate types (38). Each is com-
mutative with exactly (p" + 1)* substitutions having the canonical form

X/ =7X,, ¥/ =1Y,, X=X, ¥/ =1"F,

1
7 being a primitive root of the equation 77"t! = 1 and / and m being arbitrary in
tegers. Each type represents a set of p*(p™ + 1)(p" — 1)’ conjugate substi-
tutions of SA(4, p").

§21.

An abelian substitution S whose characteristic determinant is the square
of an irreducible quadratic is either conjugate within SA(4, p”) with a substitu-
tion (30) having 4" = A or else with a substitution S, satisfying (31). In the
former case, S has the canonical form

(39) Xll = XX'I, Ifll = X_IY—I ) Xz' = XI’Z, 1’; = )\.—11"2,

where A”"+' =1, A4 &=1. There are J(p" — 1) or 2”71 types not conjugate
within SA(4, p"). An abelian substitution §,, commutative with § has simul-
taneously the canonical form
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X/ =aX + BX,, X, =vX + 06X,
¥ =a"F, 4 B7F,, ¥ =" F487F,
subject to the abelian conditions *

a?+l 4 Bp”+l =1, ,Yp"+1 487 =1 s a,yp" + BSP" =0.

But these are the conditions that (; ’88 ) shall be a binary hyperorthogonal sub-

stitution, the number of which is (p" + 1)p"(p™ —1). Hence each canonical
form (39) represents a set of p*(p™ + 1)(p” — 1) conjugate substitutions of
SA4, p").
§22.
A substitution S, satisfying (31) has the canonical form
(40) X{ =cX,, ¥{=o"¥, 40X, X/=0X,, ¥=0¥,+0X,
o being a root of A(x) =0. Asin §17, we employ new indices
X, = — v + oy, + (0" — 08 + 1), + o7'y(e" — 08 + 1)n,,
and X, obtained from X by replacing ¢ by " = ¢~'; but for ¥] and ¥, we
now take the functions
Fi=ob+ (7 =D&+ 90— 20)m,, Fy=vE+ (" —1DE + 90— 207,
The determinant of the transformation of indices is seen to be

- '78'71(0- - 0'_1)4 + 0.
Upon replacing o by o' in (40), we obtain the transform of (40) by P,,.

Hence there are 1(p" — 1) or 2"~ non-conjugate types (40). Each is commuta-
tive only with the substitutions

X/ =aX,, ¥,=a'¥,+d"X, X/=a"X, ¥,=a¥,+dX,
where a?"t!' =1, a?"d = ad®", so that d = ax, « a mark of the GF[p"],

giving p"(p" + 1) commutative substitutions. Hence each type represents a set
of p**(p* — 1) (p" — 1) conjugate substitutions within SA(4, p*).

§28. Summary of the preceding results.

The numerical results obtained in the preceding investigation are collected
icto the following table. The mark w denotes 1 or a particular not-square v
when p > 2; while u =1, if p=2. Also, # denotes 1 or 1 according as
p>2o0rp=2. Finally, for p >2, e==+1according as p"=4l+1. By
the “ number of types” is meant the number of non-conjugate types of the speci-

* Indeed, S given by (30) with 4= 4 may be reduced to its canonical form by an abelian
substitution (not necessarily special), so that the canonical form of \S; satisfies the conditions (2),

(3), (4).
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As a check upon the enumeration it was verified

that the sum of the products of the number of conjugate substitutions of each
type (fourth column) by the number of types (second or third column) gives the
order N = p**(p*" — 1) (p™ — 1) of the group.

TABLE OF THE NON-CONJUGATE TYPES OF OPERATORS OF THE GROUP

SA(4, p") OF ORDER N .
Number of types. Number of ‘oonjl.]gate
Type. substitutions of each
»>2 p=2 type.
©) |38 (=5 @ =)@ (" + D (" + 1
(M 3(p"—3) -1 PP+ 1) (p"+1)
® R I B S R P M AR
(9), B=0 p—38 i1 |p(p*+1)(p" +1)
(9), B=1p 2(p—38) gn-1__ 1 Op(p* — 1) (p" + 1)
T T 2 1 1
Ly T Do 4 1 o(p* —1)
Ly Ly, Ty 1 T s 2 1p(p—1)(p"+¢)
1 2" —1)(2* —1)
L Ly T i Ts 1 2 %-p"(p‘”—l)(p”—e)
(13) 1 2 1
Ry, R, 2 ' 1gmm(gin _ 1) (2% — 1)
AT 0T 4 §p7(p—1) (p"—1)
(18) i(p"=1) (p"=3)| 272" —1) p(p* —1)
19), b=0 pr—1 on—1 (™ + 1) (p* — 1)
(19) 3 b = M 2(19" _— 1) 2”—1 opsn(ph» — 1) (pn — 1)
(37), O-P27'+l =1 %(pZn _ 1) Qm—2 P‘"(l)% _ 1)2
(37) , a_p2n_1 =1 i_(pn — 1)2 2n—l(2n—1 — 1) p4n(p4" _ 1)
69 [Ir—1)('—3)| AT —1) |pe(ph 4 1) (" — 1)
(39) 3m—1) 2 P+ 1 ("= 1)
(40) 3H(p"—1) 2~ P —1) (pr—1)
171 -1 1 p2n(p2n + 1)
'Ll ;1.111 -1
L,.T, } 4 %pzn(pm _ 1)
T, _ L
Lll 1-12pu } 4 %pzn(pm_ 1) (P2n_ 1)

LT L,
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§24. The group SA(4, 2) and the symmetric group on six letters.

A second check upon the above results is furnished by a consideration
of the case p"= 2, when the group SA4(4, 2) is holoedrically isomorphic with
the symmetric group on six letters.* The isomorphism may be established by
the correspondence of generators:

A2)~ M, 2)~L,,, (H~8, (#5)~L,, (56)~2H,,

where

S= , =L L, 8L, L =

0
1
. ~ (25).
1

H - O -

1
1
0
1

S M oM
—.

0 0 0
110
010
011

O e e

J
Since M, transforms L, into L;,, L;, ~(18), L, ~ (46). Then+t
R, = L, MS ML, ~ (2456), B, = M,L] S L,, ~ (18)(2456),
[18] = L; L;, S8 ~ (13)(46)(25).

117721
By §12, there is a single type L, M, given by (19") for 5 = 0 and a single
type L, L,, M, given by (19") for 6 =1, The single type (39) may be rep-
resented by L,, ML, M,. Thesingle types(40) and (37), o*"+' =1, may be
represented respectively by

01 0 )
40 1o 1,0 M [13] M,
[ ]= 0 1 O 1 = l[ ] 29
0 0 1 0]
(01 0 0
010
BT =], | | (| =Z01810E.
0 0 1 0

For p" = 2 the above table gives the following types of abelian substitutions :

*Proceedings of the London Mathematical Society, vol. 31, p. 40, 1899.
t The abelian substitution numbered (13) is now referred to as [13].
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Type. Number of conjugates. Corres%%ng?%e:?:r:?itution
identity 1 identity
L, 15 (23)
L L, 45 (23) (45)
[13] 15 (18)(25)(46)
R, 90 (2456)
B, 90 (18)(2456)
L, M, 40 (465)
L L, M, 120 (13)(465)
[37] 144 (16523)
LML, 40 (128)(465)
[40] 120 (164523)

The third column gives every type of -substitution on six letters and the num-
ber of conjugates to each type is given by the second column. In view of the
independence of the two determinations of the types of substitutions of SA4(4, 2),
the check is a complete one.

§ 25. Operators of the simple group A4, p™), p> 2.

For p=2, n>1, the group SA(4, p") is simple; for p > 2, it has
the maximal invariant subgroup composed of the identity and 7’= 7|_,7,_,,
the quotient-group A(4, p™) being simple.* In view of the importance of the
latter group, we proceed to determine, by means of the earlier results, the dis-
tribution of its operators into complete sets of conjugate operators.

In the table (§ 28) of the non-conjugate types of substitutions within SA4(4, p*),
p > 2, the types are grouped into sets (each set being exhibited in a single line
of the table, except the last two sets) such that types .§ and S7 always belong
to the same set. If S be not conjugate with S7' within SA(4, p), the
number of conjugates with § within SA(4, p*) equals the number of conjugates
with § within A4(4, p").t+ If, however, there exists a substitution ¥ in
SA(4, p”) which transforms S into S7, the riumber of conjugates with S in
A(4, p") equals one-half the number of conjugates with & in SA4(4, p*); in-
deed, if W transforms S, into .S, then WV W " will transform .S, into S, 7".

A type S of the group SA(4, p"), p > 2, will be called special and denoted

*Quarterly Journal of Mathematics, vol. 29, pp. 169-178, 1897 ; vol. 31, pp. 383-4,
1899.

1 In the quotient-group, S and ST become the same operator. It is convenient to denote the
latter by §, the context sufficing to avoid confusion.
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S, if S be conjugate with SZ7" within the group. For example, there is a
single special type (7),,

£ =ik, my=—1in, &=—1&, n=1m, (r=—1),
occurring if and only if — 1 be a square in the G'F'[p"], viz., if p*=41+1.
In general, a type can be special only when the negative of each root of the
characteristic equation is also a root.

For special types (6), three cases are to be examined. First, if —x=x"",
80 that — k' = «, then must — A = A""'; hence k2 =—1, A2=—1, so that
A =« or k!, contrary to the hypothesis for type (6). Second, if — =X, we
have the special type

(6)' E; = Kgl’ 17; = ’C_lnl’ g; =— KEz’ "7; = ’0_1’72,

which may be transformed into (6),7" by P,,. By the hypotheses for a type
(6), & 0, ¥* % 1, «* 4= — 1, the latter having solutions in the G F' [ p"] if, and
only if, p" =47+ 1. Hence there are }(p" — 5) non-conjugate special types (6),
if p» =41 4 1 and }(p" — 38) such types if p* =4/ — 1. Third, if — k=271,
the resulting special type is transformed into (6), by M,.

There is no special type (18), since a> =— 1, A* =— 1 require that ¢ and A
belong to the same field, contrary to hypothesis.

To show that type (37), o»™*+1 =1, is never special, we consider three cases.
If —o =0, theno?=—1, while p* + 1 is not divisible by 4. If — o = o?",
then o#* = — g#" = 0 % 0~!. Similarly,for —c =07, 0?*"=—0c?" =0 Fo7".

To determine the special types (37), o#*-1=1, o?" 11, o1 1, we
examine the three cases. If — o = o', either g#»"~1 =1 or o?"t1 =1, contrary
to hypothesis. If — o = o7", each solution of ¢#"~! =— 1, such that ¢* 4= — 1
and therefore o»"+1 & 1, furnishes a special type; there are p” — 1 or p* —3
such values of o according as p"=4l+1. If — o= o—»", each solution of
oP*t1 = — 1, such that ¢® & — 1 and therefore o#»"~! 4 1, furnishes a special
type; there are p" =1 such values of o according as p"=4/-1. The two
sets of values for o are wholly distinct since o> &= 1. Hence there are 2p* — 2
values o, whatever be the form of p*, p > 2. Hence there are 1(p* — 1)
special types (37) when ¢#**-1 = 1.

Type (38) is not special for —A =2A"", — u= p', since then p =A or A7,
but is special for u = — A, viz.:

(88), X(=\X,, ¥|=2F, X;=-AX, ¥;——1F,
since P,, transforms it into (38),7’. The number of solutions of M*"+' =1,
ME1,M4+ —1,is p"—1orp"—3, according as p" =4/£1.

Of the remaining types in the table of §23, it may be determined by inspec-
tion what special types, if any, exist. Our results may be combined in the fol-
lowing table:

Trans. Am, Math, Soc. 10
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TABLE OF THE NON-CONJUGATE TYPES*
OF OPERATORS OF THE SIMPLE GROUP A(4, p™), p> 2,

OF ORDER p"(p* —1)(p™ —

1)

Type Number of distinct types. Number of operators conjugate
’ pr=4l+1, =41 with each type.
(6). 1(»=5), 1(»p"—3) (P +1)(p" + 1
(6) T6("=5), fe("=8)(»"=T)| p"(P™+D(p"+1)
™, r ., 0 i7"+ (P + 1)
™ (=95, 1(»—3) "+ (" + 1)
(8), r ., 0 (" =" +1)
(8) 1("=9%), 1 (" —3) pr(p"—=1)(p"+ 1)
(9), B=0 3 (p"—3) pr(p" + 1) (p"+ 1)
9, B=p =3 Fp7(p"—=1)(p" +1)
identity 1 1
Ly, 2 F(p—1)
L, L, 1 Ip(p"—=1)(p" +€)
L, L, 1 i (p" =1 (p"—¢)
A, 2 Lp(p— 1) (p* —1)
(18) (=1 (p"—3) (" —1)
19), =0 (=1 P(p™ + 1) (p" —1)
(19), b= 7 =1 It -1 (= 1)
@7) , o =1 Fo"—1) pU(p — 1)
(87),, o' =1 1 -1 1pt(pn—1)
@D, "t =1 " =1)(p" = 3) P ~1)
(38), " —1) » 1 (-3 3+ D (- 1)
(38) 16(7"=1)(p"=5), f&(p"=3)  p"(p" +1)(p"—1)
(39), 0 o1 P+ D (= 1)
(39) 1 -1 1 (@ =38)| "+ (P -1
(40), 0 » 1 (" = 1) ("= 1)
(40) t(»—1) (=8 POt -1(p—1)
T4 1 1p™(p™ + 1)
LT 2 p7(pt —1)
L Ly, Ty 1 1p7(p" = 1) (p* —1)
LauLa T 2 (" — 1) (p" - 1)

* A type marked s is special, otherwise a type is not special except for 711 and L1, Lo, Ti—1.
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In the table w denotes 1 or a particular not-square v; e denotes == 1 accord-
ing as p® =4/=+1. The total number of non-conjugate types in the simple
group A(4, p*), p> 2, is the same function of p" in the two cases p" =4/ +1,
viz. :

L(p"+1)+3p"+6.

§26. The operators of the simple group A(4, 8) of order 25920.

As proved by JorpAN, SA(4, 3)is the group of the equation for the trisection
of the periods of a hyperelliptic function of four periods. Moreover, the group
of the equation for the determination of the 27 lines on a general cubic surface
of the third order is of the same order 51840 as SA(4, 3). After a certain
square root has been adjoined to the realm of rationality, the group reduces to
the quotient-group A(4, 8) of order 256920. Hence the above two problems
are essentially the same. In view of the importance of the group A(4, 3), itis
desirable to know the distribution of its operators into complete sets of conjugates
and likewise for its cyclic subgroups. By § 25, there are exactly twenty types
of non-conjugate operators in the group. It is desirable to have simple repre-
sentatives in the group for each type. Type (39) may be represented by M M, ;
type (19), =0, by M,; type (19), b =1, by ML,  ; type (19), b= —1,
by M,L,_,; type (37), o= —1, by P,,M,; type (40) by P, L, ,7_,; type
(37), 0‘10=1, by SszI‘ ‘yl-——l, Y= a=0= —-1, YViZ.,

f 0 1 0 0
-1 -1 1 0
0 —1 —1 -1}’

Lo o 1 o

of characteristic determinant «* — «* 4+ &> — x4+ 1. Of the preceding statements,
the only ones requiring further proof are those concerning the representatives
P .M and P, L, _ T _ ; but the former has the characteristic determinant
(¥* + £ — 1)(kK* — k — 1), each factor being irreducible modulo 3, and hence
has the canonical form (37), ® = 1; while the latter is reduced to the canonical

form (40) by the abelian transformation
)(1="71+0'772s 1/v1=§1_a§2_67729 X2=771—°"’72, Y2=fl+0'52+0'7729
where 6* = —1 (mod 3). We have therefore, by § 25, the complete list of types

of operators of A(4, 3) together with their periods and the number of their con-
jugates within A (4, 3), as given on the following page.

~
|

§27. Cyclic subgroups of the simple group A(4, 3).

To determine the distinct types of cyclic subgroups of A(4, 8), it is nec-
essary to find what powers of each type of substitution are conjugate with
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Type Period. | Conjugates. Type. Period. | Conjugates.
L, 3 40 identity 1 1
L, _, 3 40 A, 9 2880
L, L, 3 240 A_, 9 2880
L, _L, 3 480 M, 4 540
T _, 2 45 ML, , 12 2160
L .\T _, 6 360 ML, _, 12 2160
L, _\T _, 6 360 K 5 5184
L L, T _ 6 1440 P,M 4 3240
L L, T _ 6 720 MM, 2 270
‘Ll —1L2 —1Tl—1 6 720 'P12Ll —le -1 6 2160
that type. Thus, L , is not conjugate with its square L, _ ; L, L,, is con-

jugate with its square. A

_, is transformed into A;' by 7,_ L.

Since

A¥=L;_, and A%= L are not conjugate, 4, is not conjugate with either
A? or A}, so that the latter are conjugate with A;'. Hence their squares A4},
A, and A7 are conjugate. Hence A, generates a cyclic group self-conjugate
only under a G,,. Again, M, is transformed into M3 by the abelian substitu-
tion (modulo 8) &, = &, + 9,, n, = £, —7n,. Hence M, L is conjugate with its
seventh power M3 L, , so that the fifth and eleventh powers are conjugate. The
latter is M3L, _, and is consequently conjugafte with M, L, _, and hence (by the
above table) not conjugate with M, L  itself. Hence M, L , is conjugate only
with one other generator of the same cyclic group. The fact that P,L, _ 7] _,
is conjugate with its reciprocal within 4(4, 3) may be simply verified by observ-
ing that the canonical form (40) is transformed into its reciprocal by the abelian
substitution 2,7, | on the indices X, ¥,. In a similar way, P, M, is shown
to be conjugate with its reciprocal. Finally, there being but a single type of
substitutions of period 5, A must be conjugate with A%, K3, K*. We have
therefore the following complete list of the distinet types of cyclic subgroups

of A(4, 3), together with the number of conjugates to each cyclic group.

Type of generator. | Conjugate cyclic groups. Generator. Groups.
L, 40 A, 960
L,.L, 120 M, 270
L _L, 240 ML, 1080
- 45 K 1296
L7, 360 PM, 1620
Lu 2—1"1-1 720 M‘ZM; 270
'Ll 1L21T1—1 720 P12L1—1Tl—1 1080
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